

185
9/13/84 85(1)

DR-0391-3

Energy

F
O
S
S
I
L

DOE/PC/50804-6
(DE84014466)

**CO + H₂ REACTION OVER NITROGEN-MODIFIED IRON
CATALYSTS**

**Quarterly Technical Progress Report for the Period
January 1–March 31, 1984**

By
W. Nicholas Delgass

Work Performed Under Contract No. FG22-82PC50804

**Purdue University
West Lafayette, Indiana**

**Technical Information Center
Office of Scientific and Technical Information
United States Department of Energy**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

Price: Printed Copy A03
Microfiche A01

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issues of the following publications, which are generally available in most libraries: *Energy Research Abstracts (ERA)*; *Government Reports Announcements and Index (GRA and I)*; *Scientific and Technical Abstract Reports (STAR)*; and publication NTIS-PR-360 available from NTIS at the above address.

DOE/PC/50804-6

(DE84014466)

Distribution Category UC-90a

CO + H₂ Reaction Over

Nitrogen-Modified Iron Catalysts

Quarterly Technical Progress Report
for the Period Jan. 1, 1984 - Mar. 31, 1984

W. Nicholas Delgass
Purdue University
West Lafayette, Indiana 47907

PREPARED FOR THE
U. S. DEPARTMENT OF ENERGY

Disclaimer

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process description disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

	<u>Page</u>
Disclaimer	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	iv
LIST OF TABLES	iv
ABSTRACT	1
1. OBJECTIVE AND SCOPE	3
1.1 Background	3
1.2 Objectives	4
2. TECHNICAL PROGRESS	6
2.1 Mössbauer Parameter Review	6
2.2 Summary of Results	11
2.2.1 ϵ -Fe _x N Catalysts	11
2.2.2 Intermediate Phases during Denitriding	14
2.2.3 Transient Kinetics by Mass Spectroscopy	16
3. FUTURE RESEARCH	21
4. REFERENCES	21
5. APPENDICES	23
5.1 Report Distribution List	23
5.2 DOE Form RA 427	25

LIST OF FIGURES

	<u>Page</u>
Figure 1: Mössbauer spectra of ϵ-iron nitrides	12
Figure 1: Mössbauer spectra of ζ-Fe_2N denitriding	15
Figure 3: Denitriding of ζ-Fe_2N in D_2 and H_2	18

LIST OF TABLES

Table 1: Mössbauer parameters for γ'-Fe_4N	9
Table 2: Mössbauer parameters for ϵ-Fe_xN	10
Table 3: Mass Spectrometer fragmentation data for molecular ions	20

ABSTRACT

We have found that the nitride catalysts lose substantial amounts of nitrogen during the initial minutes of Fischer-Tropsch synthesis. In order to further study the stability of these catalysts, we have concentrated on the decomposition of the nitride in hydrogen. In addition, we have prepared a range of ϵ - Fe_xN ($2 < x < 3$) phases. The Mössbauer parameters from these phases will aid in the identification and fitting of the transient ϵ phases formed during the carburization of ζ - Fe_2N .

Extremely rapid nitrogen loss has been observed from ζ - Fe_2N in H_2 at 523 K both in constant velocity Mössbauer and in transient mass spectrometer experiments. In order to study the phase change from ζ - Fe_2N to α -Fe in more detail, the hydrogenation temperature was decreased to 473 K and intermediate samples were quenched in liquid nitrogen to lock in the phase distribution for subsequent Mössbauer study. The spectra show complete conversion to α -Fe at or before 21 minutes at 473 K. The intermediate samples show evidence of an extremely sharp gradient; only a very small amount of γ' or ϵ phase is observed. Thus, a moving front model of the phase transformation appears to be appropriate.

Mass spectroscopy of the hydrogenation of ζ - Fe_2N at 523 K showed similar behavior to that of both the γ' and ϵ phases, in which an active surface species and a slowly activating one were observed. The H_2 was replaced by D_2 in this experiment in order

to observe partially hydrogenated surface species in the initial spike of ammonia. All NH_xD_y ($x + y = 3$) species were observed in this spike, indicating extremely rapid surface H/D exchange with gaseous ammonia. The fragmentation pattern of NH_3 in the mass spectrometer was also determined and will be used to calculate initial NH_x surface contributions.

1. OBJECTIVES AND SCOPE

1.1 BACKGROUND

The feasibility of utilizing synthesis gas ($\text{CO} + \text{H}_2$) via the Fischer-Tropsch reaction pathway for the production of fuels and chemicals is well established. The SASOL ventures, for example, take advantage of abundant coal resources to produce both desirable synthetic automotive fuels and basic chemical feedstocks. The applicability of these chemical transformations is nonetheless limited. The present procedure requires extensive processing if the production of non-essential byproducts is to be avoided. The discovery and subsequent usage of improved catalysts would therefore be advantageous.

Experimental results published in the current literature show that nitrogen affects the performance of iron catalysts—catalysts which find widespread use in the Fischer-Tropsch synthesis route. Prenitriding of the fused promoted iron and precipitated iron catalyst is said to shift the product distribution to one exhibiting lower molecular weight fractions and enhanced alcohol yields (1,2). Iron nitrides with high initial activity and significant stability over weeks of experimentation are also reported (1,2). On the other hand, simultaneous introduction of ammonia (NH_3), with synthesis gas produces nitrogenous compounds. Furthermore, and probably of greater importance, this addition of ammonia effects a reduction in the overall chain length of compounds in the product spectrum (3,4). It is of considerable

interest, therefore, to study these and other characteristics of nitrided iron catalysts in order to gain a basic understanding of their behavior. Discovery of the new pathways in Fischer-Tropsch synthesis afforded by nitrogen will add to the fundamental knowledge from which future synthesis-catalysts can be derived.

1.2 OBJECTIVES

The scope of the program may be broken down into two main areas of concern. Firstly, consideration must be given to the role of the surface nitrogen in

- i. altering the product distribution and
- ii. stabilizing catalyst activity

of the synthesis reactions. In-situ Mossbauer studies, are aiding in the identification of the various iron nitride phases and allow examination of their stability during reaction. The Mössbauer results are forming a the basis for detailed kinetic tracer experiments involving transient and isotope labeling analyses. Ultrahigh vacuum work using SIMS and AES will supplement the Mossbauer and kinetic characterizations. XRD studies will supplement the Mössbauer effect in identifying the bulk iron nitride phases.

The second area of consideration will involve the kinetic and catalytic effects observed during the addition of ammonia to the synthesis gas stream. Transient work will be ideal for observing initial activity changes occurring as a result of NH_3

pulses. Along with ultrahigh vacuum studies, the transient kinetics of NH_3 addition will help clarify which steady state experiments would be most productive. The various analytical methods will define interactions between surface and bulk nitrogen, and their role in effecting new reaction pathways.

The primary experiments which define our route to understanding which parameters influence the selectivity and alter the activity of synthesis reactions may, therefore, be outlined as follows:

- i. Mössbauer and simultaneous kinetics of prenitrided iron catalysts are being used to determine nitride phase stability and to correlate these phases to reaction selectivity.
- ii. Similar analysis of the effects of addition of NH_3 to the reactant stream will be performed.
- iii. Transient analysis and isotope tracer studies of synthesis reactions over prenitrided catalysts will determine surface nitride stability. The stoichiometry at the surface and influence of nitriding on CO dissociation will be sought.
- iv. Ultrahigh vacuum analysis will examine surface stoichiometry and reaction intermediates. Interaction between the nitrided phases and adsorption bond strengths of CO and H_2 will be investigated.

v. The effects of NH_3 addition to the reactant stream will be similarly followed by UHV and transient tracer studies to determine possible alterations in reaction pathways invoked by the presence of NH_3 .

Computer modeling will be undertaken to aid in quantitative interpretation of transient data.

2. TECHNICAL PROGRESS

2.1 MÖSSBAUER PARAMETER REVIEW

Several investigators have used the Mössbauer effect to help characterize the iron nitride phases. Other spectroscopic methods include x-ray diffraction and magnetization studies. An appreciation of the reported Mössbauer spectra of iron nitrides aids us in interpreting our Mössbauer results [5]. We consider here an update of our previous spectral parameter review, but limit the reported spectra to γ' - and ϵ -iron nitrides. The third major phase, $\zeta\text{-Fe}_2\text{N}$, is well established to be a paramagnetic doublet at 300 K. The characterization of the remaining two phases is not, however, so facile and is a contentious subject in the literature to date.

So, although the eight line spectrum of $\gamma'\text{-Fe}_4\text{N}$ is well established, the actual assignment of electronically different iron sites in this nitride is still under debate. Shirane et al. [6], Gielen and Kaplow [7], and Maksimov et al. [8] consider two

superimposed six line patterns in the analysis of the γ' -nitride. Other researchers, however, support a third site in the analysis. Nozik *et al.* [9], Lo and coworkers [10], Focet *et al.* [11], and Clauser [12] are among such investigators. The exact assignment of this third site is, however, unresolved within this group of researchers. Two explanations exist, either the IIA and IIB sites are electronically different, or the inequality arises from a ninety degree difference in the EFG-magnetization vector angle between atoms on adjacent sides of the cubic unit cell. Maksimov and coworkers [8], in fact, only report two indentifiable iron sites in the Fe_4N lattice but remark that the difference between the IIA and IIB sites may be masked by the estimated error in their reported parameters. Table I highlights the Mössbauer parameters reported for $\gamma'\text{-Fe}_4\text{N}$ by the aforementioned researchers.

The wider range of nitrogen composition for the ϵ -iron nitrides further complicates this characterization by the Mössbauer effect. These hexagonal close packed nitrides exhibit an average bulk nitrogen concentration ranging from approximately 26 at % to 33.3 at %. Special quenching or preparation techniques can produce hexagonal unit cells with nominal compositions below the room temperature 26 at % limit [13]. Overall inhomogeneity of ϵ -nitrides, where the nitrogen is distributed through the iron lattice only statistically, creates a wider variation of magnetic fields at the iron nucleus than is encountered in either $\gamma'\text{-Fe}_4\text{N}$ or $\alpha\text{-Fe}$. Recent work [14-15] reports increasing peak

widths with distance from the center of the isomer shift. Thus, constraining of peak dips to 3:2:1 (with equal width) is no longer valid for randomly orientated Fe powders under such conditions. Other interpretations of ϵ -iron nitride spectra are given by DeCristofaro and Kaplow [16]. Eichel and Pitsch [17] and Fock et al. [11]. The reported bulk compositions and Mössbauer parameters are summarized in Table II.

As evidenced by Tables I and II, the characterization of even the more defined γ' - Fe_4N stoichiometry is not trivial. Particle size distributions, sample inhomogeneity and synthesis conditions play a role in altering the Mössbauer parameters. A given nitride may then be characterized differently despite an equivalent nominal stoichiometry or identical x-ray diffraction pattern. Care must be exercised in interpreting such parameters, and the sample condition and pretreatments should be clearly cited.

Table 1

MÖSSBAUER PARAMETERS FOR γ' -Fe₄N

Iron Identity	Temp. (K)	Isomer Shift (mm/s)	Quadrupole Splitting (mm/s)	Hyperfine Field (kOe)	Reference
Fe-I	300	+0.24	0.0	340.6	9
Fe-II-A	300	+0.52	-0.22	215.5	9
Fe-II-B	300	-0.15	+0.43	219.2	9
Fe-I	300			340 \pm 5	8
Fe-II	300			216 \pm 5	8
Fe-I	300	+0.30 \pm 0.08		345 \pm 10	6
Fe-II	300	+0.45 \pm 0.06		215 \pm 10	6
Fe-I	300	+0.24	0.0	340	12
Fe-IIA	300	+0.30	-0.22		12
Fe-IIB	300	+0.30	+0.43		12
Fe-I	300	+0.01 \pm 0.05	0.0	339 \pm 4	7
Fe-II	300	+0.11 \pm 0.1	+0.2 \pm 0.4	202 \pm 7	7
Fe-I	300	+0.25 \pm 0.01	0.0	339 \pm 1	10
Fe-IIA	300	+0.30 \pm 0.01	-0.12 \pm 0.02	217 \pm 1	10
Fe-IIB	300	+0.30 \pm 0.01	+0.12 \pm 0.02	217 \pm 1	10
Superpara.	300	+0.29 \pm 0.01	0.0	0	10
Fe-I	77	+0.36 \pm 0.02	0.02 \pm 0.02	370 \pm 2	11
Fe-II	77	+0.40 \pm 0.02	-0.25 \pm 0.02	234 \pm 2	11
Fe-II	77	+0.41 \pm 0.02	0.12 \pm 0.02	235 \pm 2	11

Table 2
MÖSSBAUER PARAMETERS FOR ϵ -Fe_xN

Nitride	Iron Identity	Temp. (K)	IS (mm/s)	QS (mm/s)	HFS (kOe)	Reference
ϵ -Fe _x N	1nn	well	298	16
	2nn	below	238	16
	3nn	T _c	130	16
ϵ -Fe _{2.67} N	Fe-I	300	+0.26	...	273	14
	Fe-II	300	+0.34	...	205	14
	Fe-III	300	+0.40	...	99.5	14
	Fe-I	4.2	+0.40	...	330	14
	Fe-II	4.2	+0.48	...	258	14
	Fe-III A	4.2	+0.54	...	140	14
	Fe-III B	4.2	+0.52	...	64	14
ϵ -Fe _{2.47} N	Fe-II	300	+0.35	...	186	14
	Fe-III	300	+0.41	...	84	14
	Fe-II	4.2	+0.47	...	259	14
	Fe-III A	4.2	+0.57	...	142	14
	Fe-III B	4.2	+0.60	...	66	14
ϵ -Fe _{3.2} N	Fe-II	295	+0.24	...	298	17
	Fe-II	295	+0.33	...	238	17
ϵ -Fe _{4.4} N	Fe-I	??	+0.29±.03	0.0±.03	298±2	11
	Fe-III	??	+0.34±.01	0.02±.01	222±1	11
ϵ -Fe _{2.5} N	Fe-II	??	+0.45±.05	-0.03±.05	243±3	11
	Fe-III	??	+0.45±.06	0.00	85±5	11
ϵ -Fe _{2.66} N	Fe-II	300	+0.34	0.0	220	15
	Fe-III	300	+0.41	0.0	112	15
	Fe-Q	300	+0.40	...	0	15

2.2 SUMMARY OF RESULTS

2.2.1. $\epsilon\text{-Fe}_x\text{N}$ Catalysts

The wide distribution of nitrogen stoichiometries in the ϵ -iron nitride was discussed in the previous section. Different iron sites may be predicted, depending upon the statistical distribution of nitrogen within the bulk lattice. The hyperfine splitting for each site will vary with localized nitrogen content. An appreciation of the variation of spectral parameters of the Fe-N system, notably in the $\epsilon\text{-Fe}_x\text{N}$ region, may be necessary in order to clearly understand the spectral variations occurring with incorporation of carbon into the catalyst lattice. We have observed that during Fischer-Tropsch synthesis (at 523 K in $3\text{H}_2/\text{CO}$ synthesis gas) the initial transient period (15 minutes) is characterized by a major nitrogen content depletion, rather than by carbon incorporation. The rapid loss of bulk nitrogen from a nitrogen rich $\zeta\text{-Fe}_2\text{N}$ to an $\epsilon\text{-Fe}_x\text{N}$, under synthesis condition is documented [14,18]. The ability to distinguish the ϵ -iron nitride over which the reaction then proceeds thus becomes important.

In an attempt to produce an informative sequence of ϵ -iron nitrides, we performed the experiment illustrated by Figure 1. Here one sees the sequential leaching of nitrogen from the zeta nitride. The starting phase was produced by nitriding a freshly reduced $\alpha\text{-Fe}$ wafer with pure ammonia (100 ml/min) at 673 K. The gas phase ammonia concentration was then diluted to 91% by adding

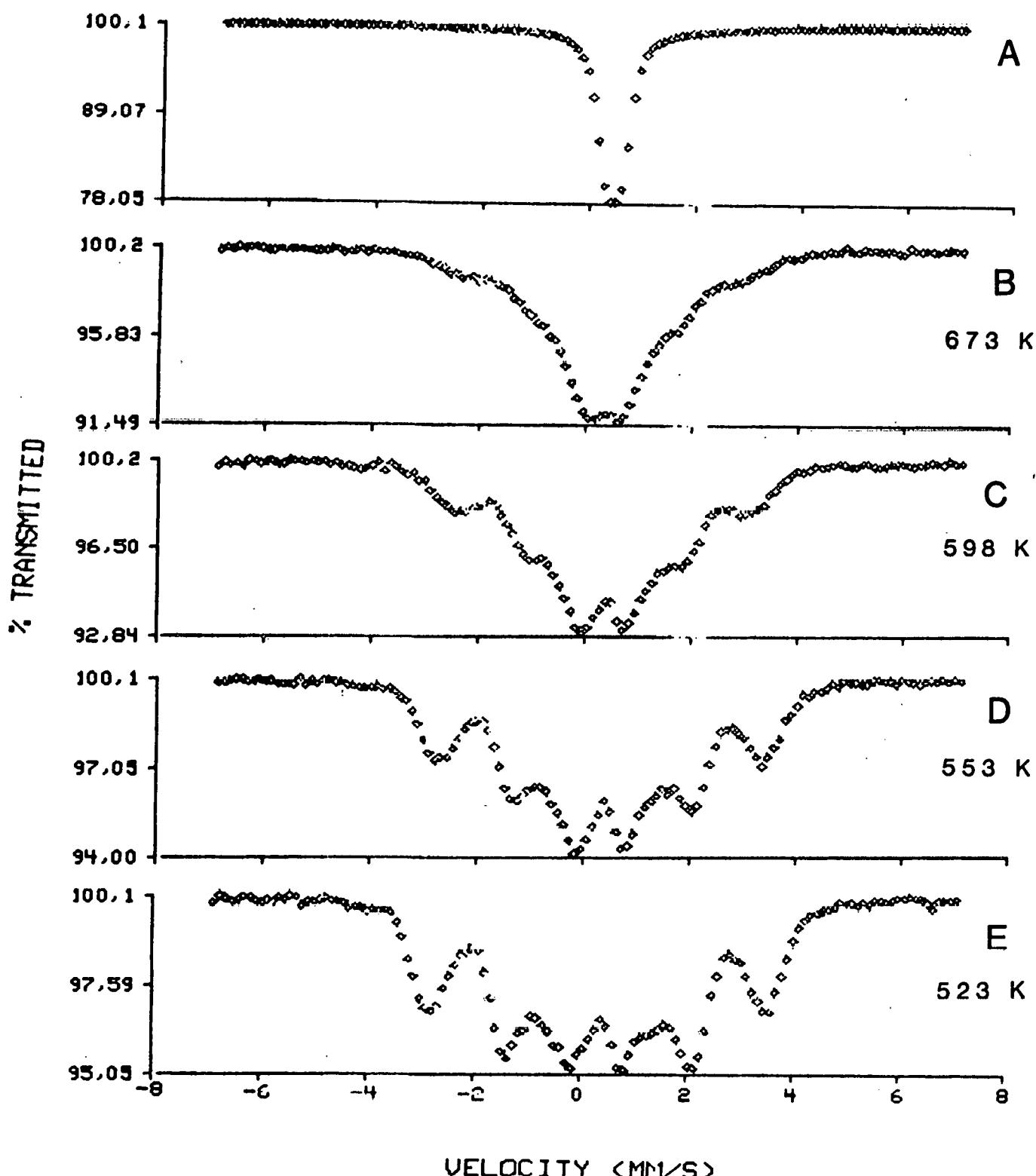


Figure 1: Mössbauer spectra (298 K) of ϵ -iron nitrides
 A) Starting ϵ/ζ -Fe₂N then consecutively annealed in 91% NH₃ for 6 hours at respective temperatures (B-E)

hydrogen and make up ammonia to a 150 ml/min total flow rate. The sample was then annealed at 673 K in 91% NH₃ for approximately 6 hours. The Mössbauer spectrum of this new ϵ phase is shown in Figure 1B. An additional six hour annealing cycle did not produce a noticeable change in this spectrum. The sample was then sequentially annealed in 91% NH₃ for 6 hours, but at progressively lower temperatures. Figure 1C, D and E show the spectra from 598K, 553 K, and 523K annealing treatments respectively. This sequence further demonstrates that the synthesis of a higher nitrogen containing nitride may be accomplished by an increase in the synthesis temperature. Additionally, a similar effect is seen for an increase in ammonia concentration when the temperature is kept constant. In the temperature range 450-725K, the lines of equal nitriding potential are therefore represented by a decreasing ammonia mole fraction with increasing temperature. This trend follows the nitriding envelopes presented by Eisenhutt and Kaupp [19] in their early study of iron nitrides.

The spectra shown in Figure 1 span a nitrogen concentration ranging from 33.3 at % N to an estimated 29 at % N. Although final least squares fit spectral parameters are not yet available for these spectra, certain trends are worth mentioning. The magnetic splittings of the two major 6 line patterns expected in the Figure 1 spectra, H_{Fe-II} and H_{Fe-III} , increase from 0 to approximately 190 and 100 kOe in Figure 1E. The exact increase in the peak intensities of the Fe-II and Fe-III sites with decreasing N content is difficult to determine exactly without the completion

of computer fittings. The prominence of the inner two peaks is probably complicated by a paramagnetic doublet, whose quadropole splitting also appears to increase with decreased nitrogen content. These and others more exact trends should be confirmed after fitting and will then form the basics for the analyses of samples carburized previously.

2.2.2 Intermediate Phases in Denitriding

The transient nature of iron nitride denitriding is fast in hydrogen rich atmospheres at the present synthesis temperatures (523 K) and greater. The mechanism of phase change and nitrogen migration from the bulk to the surface is thus difficult to follow under such conditions through Mössbauer effect measurements. In an attempt to slow the rate of nitrogen removal kinetics, the gas phase was kept as pure hydrogen while the denitriding temperature was reduced from 523 K. The experiment was partly successful and serves as an upper bound estimate as to the behavior of the bulk nitride exposed to hydrogen rich atmospheres.

Figure 2 shows the room temperature Mössbauer spectra of a ζ - Fe_2N sample denitrided in hydrogen at 473 K for 2.5, 5.0, 10.0 and 21.0 minutes. After the specified exposure to H_2 , each sample was liquid nitrogen quenched to prevent further loss of nitrogen. Hydrogen was flowed during the quench. After the room temperature spectrum had been acquired, the sample was then nitrided for approximately 6 hours in flowing NH_3 at 673 K to

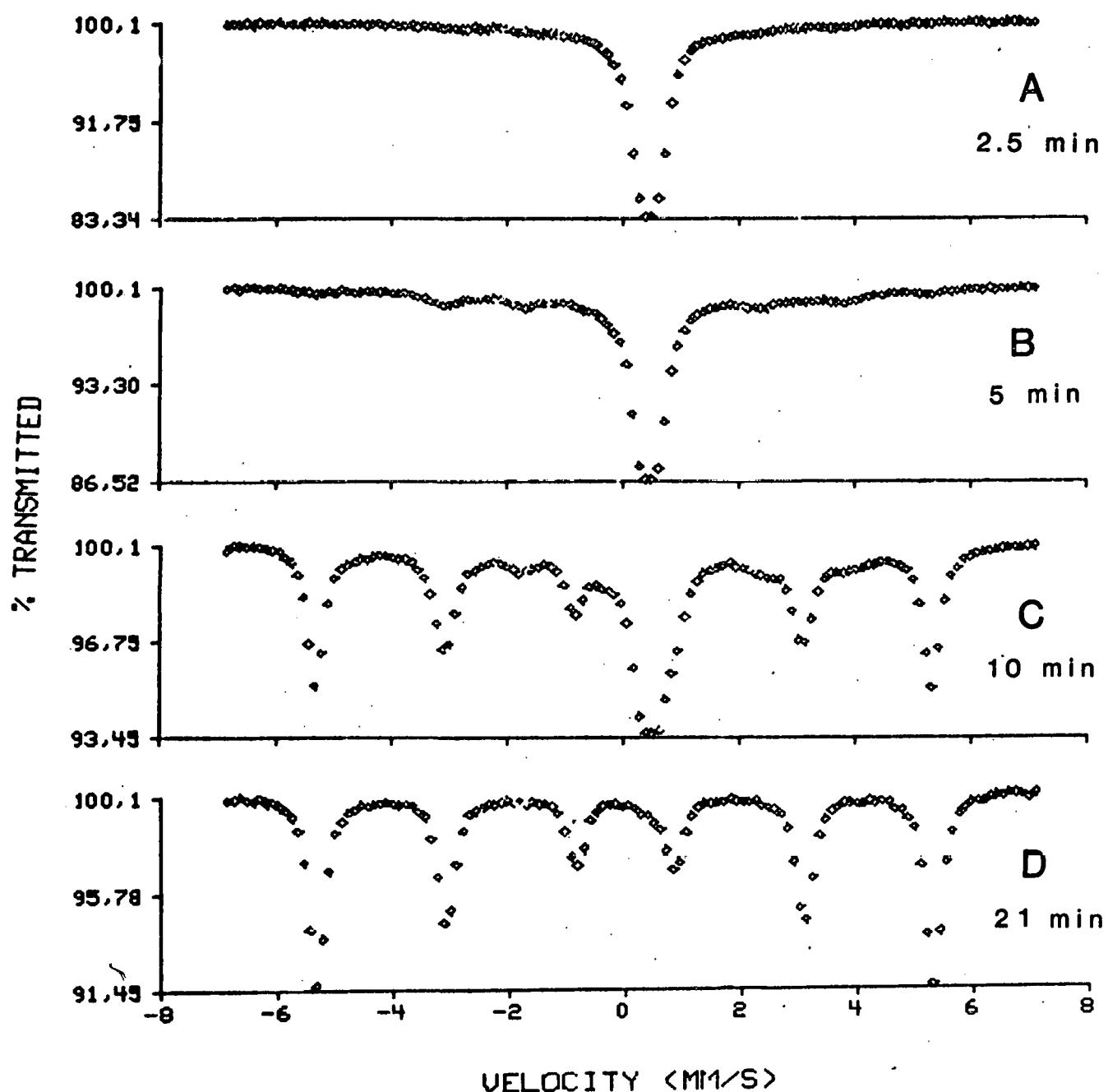


Figure 2: Mössbauer spectra (298 K) of ζ -Fe₂N denitriding in H₂ at 473 K for progressively longer time periods.

reestablish the homogeneous ζ - Fe_2N . The sample was then cooled in flowing ammonia to 473 K before switching to hydrogen. Total denitriding to α -Fe is seen to occur in 21 minutes or less and corresponds well to constant velocity measurements of ζ - Fe_2N loss in H_2 at 473 K.

The two intermediate spectra, 2B and C, accentuate the denitriding phenomenon. The former shows a slight change of the initial ζ - Fe_2N phase to an intermediate nitride with very broad peaks. An additional five minutes of hydrogen then produces substantial amounts of α -Fe. The broad center peak (doublet) shows that the nitrogen rich ϵ/ζ - Fe_2N phase is presumably covered by a Fe^0 domain. Quantities of an intermediate nitride are clearly visible in 2C. The small amount of this intermediate (γ'/ϵ) phase further shows the rapid nature of this transition from ζ - Fe_2N to α -Fe, and also serves as an indication of the steep N concentration gradient between the two major phases.

The inhibition of this rapid denitriding must be accomplished if the catalyst is to retain its nitride structure and associated kinetics. Conditions and treatments for stabilizing the nitrides will be considered and emphasized in future work.

2.2.3 Transient Kinetics by Mass Spectrometry

Transient denitriding behavior of ζ - Fe_2N in H_2 has been further investigated by mass spectrometry. Results of the deni-

triding behavior of γ' - Fe_4N and ϵ - $\text{Fe}_{2.7}\text{N}$ have been reported in previous progress reports (20, 21). In addition, extremely rapid decomposition of ζ - Fe_2N has been observed in our previous Mössbauer studies.

From the hydrogenation (decomposition) of γ' - Fe_4N , ϵ - Fe_xN (21) and in the present case ζ - Fe_2N , it is apparent that there are two distinct nitrogen species associated with the virgin nitride. An active and presumably partially hydrogenated surface species reacts to form a first small spike of NH_3 , and then a second slow activating species builds to maximum NH_3 production. The active, partially hydrogenated NH_x species could appear due to a rate limiting step during the nitriding process; obviously, ammonia must adsorb and decompose through this species to become the nitride. Drechsler and coworkers (22) and Grunze *et al.* (23) have in fact found evidence for an NH species in the decomposition of NH_3 on iron single crystal surfaces.

If this active species is indeed partially hydrogenated, decomposition of the ζ - Fe_2N nitride in D_2 should yield NH_xD_y ($x+y=3$) ammonia in the short spike. Figure 3 shows the result of switching to a pulse of D_2 from the argon, followed by a step to H_2 . As can be seen in the D_2 pulse, partially hydrogenated NH_xD_y species are observed indicating the presence of NH_x ($x \neq 0$) species on the surface prior to the step to D_2 . Also, from the variety of NH_xD_y ($x+y=3$) species ranging from NH_3 to ND_3 , it is evident that H/D exchange was occurring in the ammonia as it traveled across the catalyst bed.

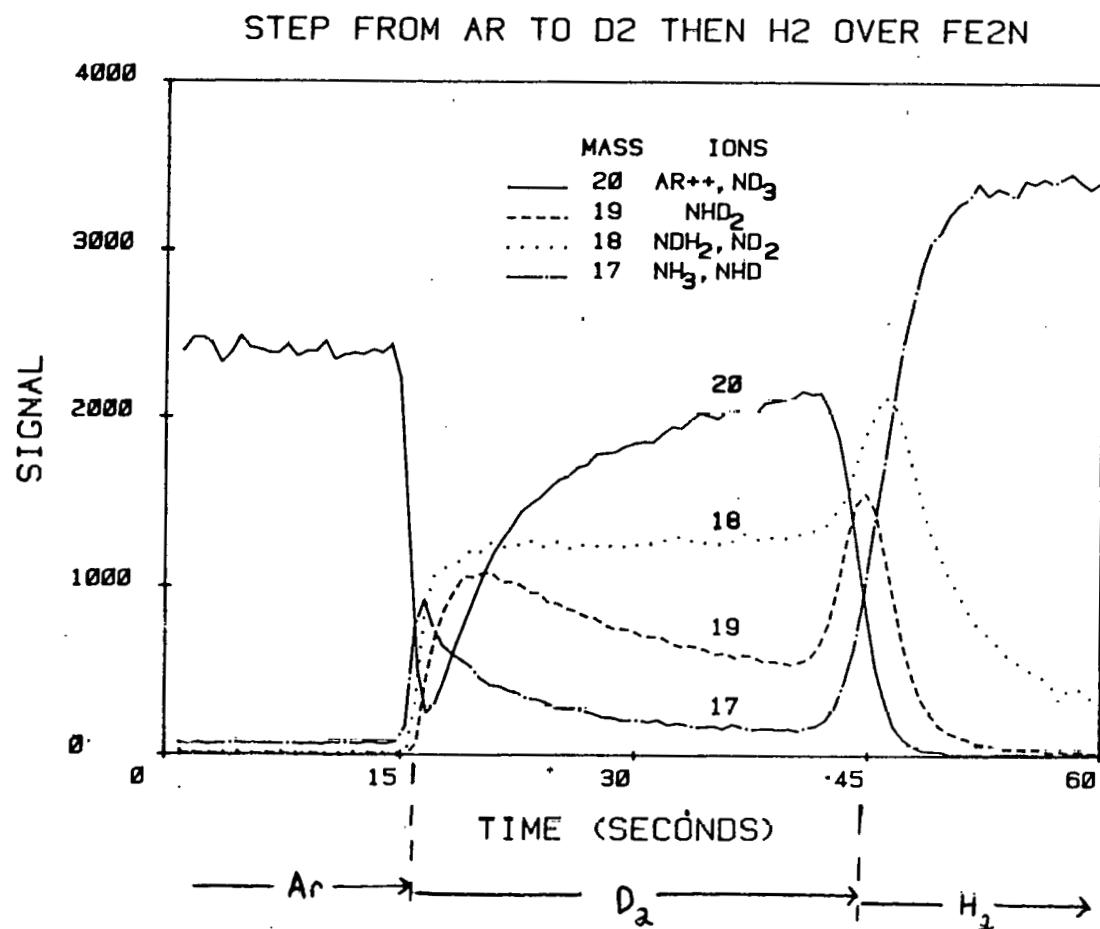


Figure 3: Denitriding of $\zeta\text{-Fe}_2\text{N}$ in a pulse of D_2 followed by H_2 at 523K. The masses shown are the deuterated isotopes of ammonia with contributions due to the fragment ions shown in the legend.

The different masses shown in Figure 3 have contributions due both to the parent molecule and to fragments formed in the mass spectrometer. In order to subtract out the fragment contributions, a fragmentation table (Table III) was developed from calibration NH₃ data. The calibration was made immediately after the D₂ experiment. Computer programs designed to deconvolute the data of figure 3 from the fragmentations of Table III are currently being debugged. The final result will be data in which the total amount of N and H can be estimated in the short spike in order to determine the degree of hydrogenation (the value of x) in the NH_x species.

Table 3.

Fractions of Parent Molecule Contributions to Masses Due to Fragmentations.

3. FUTURE RESEARCH

Research during the forthcoming three month period will be twofold; a continuation of search for stable reaction conditions, and a continuation, if not completion, of computer fittings of the Mössbauer parameters. This latter direction will be directly aided by the analysis of recent ϵ -nitride phase spectra. The former direction, conditions for increased nitride stability, will continue to develop the study of lower hydrogen ratio synthesis conditions. In addition, we will consider the inclusion of gas phase ammonia during the synthesis reaction. This potential stabilizing treatment, however, may require significant NH_3 concentrations and could alter the distribution of hydrocarbon products.

4. REFERENCES

1. Anderson, R.B., Cat. Rev. - Sci. Eng., 21, 53 (1980).
2. Anderson, R.B., Adv. Catal., V 355 (1953).
3. Gainbrett, J.W. and Anvil, S.R. U.S. Patent 4272451, June 9, 1981.
4. Anvil, S.R. and Penquite, C.R., U.S. Patent 4272452, June 9, 1981.
5. U.S. Department of Energy Quarterly Technical Progress Report, DO/PC50804-2.
6. Shirane, G., Takei, W.J. and Ruby, S.L., Phys. Rev., 126 (1) 49 (1962).
7. Gielen, P.M. and Kaplow, R., Acta Met., 15 50 (1967).
8. Maksimov, Y.V., Suzdalev, I.P., Kushnerev, M.Y. and Arents, R.A., Fiz. Metal. Metalloved., 37 (2) 267 (1974).

9. Nozik, A. J., Wood, J. C. and Haacke, G., Sol. State Commun., 7 1677 (1969).
10. Lo, C. Krishnaswamy, S., Meisser, R., Rao, K. R. P. M., and Mulay, L. N., J. Vac. Sci. Technol., 18 (2), 313 (1981).
11. Focet, J., LeCaer, G., duBois, J. M., and Fawie, R., Negliki, Bonki, Azotki W Stalachi, 46 X 225 (1978).
12. Clauser, M. J., Sol. State Comm., 8, 781 (1970).
13. Jack, K. H., Acta Crystall., 5 404 (1952).
14. Chen, G. M., Jaggi, N. K., Butl. J. B., Yeh, E. and Schwartz, L. H., J. Phys. Chem. 87, 5326 (1983).
15. Firrao, D., Rosso, M., Principi, G. and Frattini, R., J. Mat. Sci., 12 1773 (1982).
16. DeCristofaro, N. and Kaplow, R., Met. Trans. A., 8A 425 (1977).
17. Eichel, K. H. and Pitsch, W., Phys. Status Solids, 39 121 (1970).
18. U. S. Department of Energy Quarterly Technical Progress Report, DO/PC50804-3.
19. Eisenhut, O., and Kaupp, E., Z. Elektrochemie, 36 (6) 392 (1930).
20. U. S. Department of Energy Quarterly Technical Progress Report, DO/PC5081-4.
21. U. S. Department of Energy Quarterly Technical Progress Report, DO/PC50804-5.
22. Drechsler, M., Hointes, H., Kaasmann, H., Wilch, H., Ertl, G. and Weiss, M., Appl. Sur. Sci., 3 217 (1979).
23. Grunze, M., Bozso, F., Ertl, G. and Weiss, M., Appl. Sur. Sci., 1, 241 (1978).

5. APPENDICES

5.1 Distribution List

A) Fred W. Steffen (3)

Project Manager

U. S. Department of Energy

Pittsburgh Energy Technology Center

P. O. Box 10940

Pittsburgh, PA 16236

B) Michael Hogan

Acquisition & Assistance Division

U. S. Department of Energy

Pittsburgh Energy Technology Center

P. O. Box 10940

Pittsburgh, PA 15236

*C) U. S. Department of Energy

Technical Information Center

P. O. Box 62

Oak Ridge, TN 37830

E) U. S. Department of Energy

Patent Office

Office of General Counsel

Chicago Operations & Regional Office

9800 South Cass Avenue

Argonne, IL 60439

G) Frank M. Ferrell, Jr.

U. S. Department of Energy

FE-3 MS C-156 GTN

Washington, D.C. 20545

H) Marilyn Keane (3)

U. S. Department of Energy

Pittsburgh Energy Technology Center

P. O. Box 10940

Mail Stop 920-116

Pittsburgh, PA 15236

I) A. A. Hummel

Graduate Student

School of Chemical Engineering

Purdue University

J) A. P. Wilson

Graduate Student

School of Chemical Engineering

Purdue University

***NOTE: Grantee shall obtain patent
clearance from
addressee "E" above
prior to forwarding
copies to TIC. In-
clude Statement
"Patent Cleared by
Chicago OPC on**

Date

DOE/PC/50804-6

CO + H₂ REACTION OVER NITROGEN-MODIFIED IRON CATALYSTS

DOE