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Dyvnamics of Unbound Vortices In the 2-Dimensional XY

and Anisotropic Helsenberg Models
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and G.M Wysin

Theoretical Division. Los Alamos National Laboratory,
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Assuming an ldeal gas of vortices above the Kosteriitz-Thouless
transition temperature, the dynamic form factors are calculared
For the In-plane correlations a Lorentzian central peak |Is
predictcd which is Indeperdent of the vortexn size and shape
However, for the out-of-plane correlations the velocity dependence
of the vortex structure |Is decisive for the occurrence of a
tyAUSSIAN central pvnl; Both results are in good agreement with

combined Monte carlo-molecular dyvnamics simulations
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1. Introductlon

Quasi-two-dimensional magnetic materials with

easy-plane symmetry, e.g. RbZCrCl.‘ or BaCoz(Aso4)2.
have been studled recently both by Inelastic neutron
scattering experiments [1.2,8]} and by 8
phenomenological theory for the dyvnamic correlations
{3). In this theory the anisotropic Heisenberg model

with nearest-neighbor Interactions

- m_.n m _.n m .n
H = JZ[SxS *5,-5,-*‘5252] (1.1)

Is consldered, where gm is a classical spin vector
and O = \ < 1; \ = 0 corrcsponds to the “Y-model.

Al a critical temperature Tc(\) Monte cCarlo (MC)
data [5) show a HKosterlitz-Thouless phase transition
Above Tc a part of the vortex-antivortex pairs unbind
and the unbound vortices are in motion due to thelr
Interactions. Assuming that the positions are random
locelly, the velocity distribution is Gaussian [4],
therefore the unbound vortices can  be treated
phenomenologically as an 1deal gas, In the same
spirit as the solitor-gas approach for 1-d magnets

The correlations for the in-plane componenis .\'-.\ or
hy are quite distinetr from those far the out-of - pland
component Sl We show here that the veloelty
dependence of the vortex siructure Is decisive for
the out-of plane carrelations, In contrast to ref

[:4) where  only the  statie structure  has bheen



conslidered.

2. In-plane correlaticns

We wuse a continuum description and spherical

coordinates for the spin conflguratlion

S(r.) = S(cos © sin &, sin o sin 6, cos @) (2.1)

where r = (x,v). The equations of motion have two
static vortex or antivortex sojutions [6]) or) =
- twn Yy x). Molecular dyramics (MD) simulations
have shown [6) that for U = \ < O.7 only a planar
solution O(f) = m 2 |s stable. whereas for - » 0.8
only a solution which has an out-of-plane structure
6(f) = m2 Is stable; onl: the former case s

considered here.

Sx and S‘_ are not locallzed. l.e. they have no
spatial Fourler rtransforms. Therefore the In-plane
. - - - .
correlation function §_ _(r.t) = <SS _(r,1) S (0.O)» s
XX X X
only globally sensitive 1o the presence of vortices
Thus th:* characterist'c  length 1~ the average
vortex-vortex separation 2r, where ? Is  the
hosterlitz-Thouless correlation jengtlh.

Whaeh oa planar vortex starts moving 1t deyveiops an
out- of-plane structure (see next section) Howenver,
for .\H(r‘.l) this s not mmportant  because the
dominant effect of moving vortices Is to act ke

4 sign functions 0l .d hinks . 10w every



vortex that passes with Its center between O and r In
time t diminishes the correlations. changing cos o by
& factor of (-1), Independent of the direction of
movement and Independent of the internal structure of
the voriex (3]

The detalled calculation of Sxx(;.t) ls published
elsewhere [4) and gives a (squared) Lorentzian

centra] peak for the dynamic form factor

s2 2

2
;L
2

) (E.u)=
RX 2n (uzﬂzln(!q)zl)z

with , = /7 U (2¢). Here u is the rms velocity of the
vortices which can be taken from Huber [7] who
calculated the velocity auto-correlation function.
The central peak (2.2) Is In excellent sgreement with
data obtained from combined M¢-MD simulations (4]
Moreover there is a qualitative agreement with the

abhove mentioned neutron scattering experiments [1.,2)

d Qut-of-plane correlatlions

4
Sz(r.t) is locallzed for a single vcortex, therefore
correlations arc sensitive o the voriex size and
structure. We assume a dllute gas of h\, urbound
-9 -
vartices  with  positions R.l and velocities ur and

consider the incnherent superposition



N
v

S0 =8 T cos6 (F-R -du. (3.1)
j=1

The thermal average in szz(F.t) = <sz(?.t) 52(5.0)>

Is evaluated by Integration over R and u

Szz(r.t) =

n‘,s2 /1 d°R d%u P(D) cos O(F-R-U1) cos 6(R) (3.2)

where n‘_ Ils the vortex density and P(U) Is the
velocity distribution. Introducing the voriex form

factor l'(&') = Fourler transform of cos O(r‘). we get

5,,(q.1) = =0/ d%u 1@ 1% pad e 719 (39)

This can be evaluasted ewsily If the static vortex
solutions are inserted {3). However, for \ < 0.7 only
the planar solution turns out to be stable (6] and
Szz would then vanish, in contradiction to the MC-MD

simulation ([3]).

Therefore the velo~ity dependen:e of H(F; must he

taken into account For 1 ¢ (.7 and small velocity u
the equations of motion yleld the asyvmptatic solution

tfin the moving frame, with time unit h JS)

oy M = e . r e Y

whih has been cherped by MD-simulavions, & = | v



and ;’ is the azimuthal unit vector In the xy-plane.
The solution for r = O can be obtained also, but we
ar¢ Interested here only In the correlations for
small q where the asymptotic solution should be a
good approximation. This leads 1o a veloclty
dependend form factor and eventually to

n

Szz(a.u) = —;—; exp (-(‘-_-_"—)2) (3.5)
32/m 6% q uq

ol !

This Is a Gaussiah central peak which reflects the
velocity distributlon. The width I, = uq has a llnear
q-dependence, which is very well supported by the

MC-MD data [3). The Integrated intensity is

n.
lz\q) =

(3.6)

o ’=|
n . ]

32 6°
Here the dlvergence ‘%r q < O results from the
infinite ra'ge of the structure (3.4). Houwever. the
actual radius of a vortex must be on the order or
(See Introduction). which can be tahen into account
¢ g. by an ad-hoc cut-off funrction exp(-+r ?) with a
free parameter ¢ This gives &n extra factor of 'g In
(4h), with 2 =1 - 1 %W and % = [I + (r.qt)zl‘ : The
final result for l’.(ql is consistent with our Mc-MD
data for small q (Fig 1) Mote  that absolute
Intensities are compared here, we have chosen ¢ such
that I, 15 smiller than the data  because  othep

effects can also contribute o the central peak, o p



2-magnon difference processes and vortex-magnon
interactions which wlll be treated In future
publications.
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Captlons

Fig. 1. Intensity Iz of central peak for a temperature
T > Tc = 0.8. Data points result from MC-MD simulations on =&
60 x 50 lattice (circles) and a 100 x 100 lattice (crosses). Solid

line from (3.6) Including the cut-off, with u and % from ref. [4)
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