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Abstract: The most recent research-oriented software package devel­
oped as part of the ITPACK Project is called “NSPCG” since it contains 
many nonsymmetric preconditioned conjugate gradient procedures. It is 
designed to solve large sparse systems of linear algebraic equations by a 
variety of different iterative methods. The coefficient matrix can be passed 
in one of several different matrix data storage schemes. These sparse data 
formats allow matrices with a wide range of structures from highly struc­
tured ones such as those with all nonzeros along a relatively small number 
of diagonals to completely unstructured sparse matrices. Alternatively, the 
package allows the user to call the accelerators directly with user-supplied 
routines for performing certain matrix operations. In this case, one can use 
the data format from an application program and not be required to copy 
the matrix into one of the package formats. This is particularly advanta­
geous when memory space is limited.
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The main entry point into the package is through a single subroutine 
call. The various methods are accessed by using a particular naming con­
vention for the first two parameters that in turn selects a preconditioner, an 
accelerator, and a data storage scheme. Some of the basic preconditioners 
that are available are Jacobi, Incomplete LU Decomposition, and Symmet­
ric Successive Overrelaxation as well as block preconditioners. The user 
can select from a large collection of accelerators such as Conjugate Gradi­
ent (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual 
(GMRES), Biconjugate Gradient Squared (BCGS), and many others. The 
package is modular so that almost any accelerator can be used with al­
most any preconditioner. One of the main purposes for the development 
of the package was to provide a common modular structure for research 
on iterative methods. The entire package is written in Fortran 77 with 
vectorization in mind for applications on supercomputers.
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1 Introduction
NSPCG was developed as part of the ITPACK Project at the Center for 
Numerical Analysis. The ITPACK software packages are designed to solve 
Au = b by various iterative techniques where A is a large, sparse, real 
matrix. The following packages have been developed:

ITPACK 1: This is a prototype package that is no longer available. [See, 
for example, Kincaid and Young [15], Kincaid and Grimes [14], Kin­
caid, Grimes, and Young [12], or Grimes, Kincaid, MacGregor and 
Young [2].]

ITPACK 2C: In this package, A must be symmetric and positive defi­
nite (SPD) or nearly so. A is stored in the A-JA-IA sparse matrix 
format. Either conjugate gradient or Chebyshev acceleration is ap­
plied to the Jacobi, Symmetric Successive Overrelaxation (SSOR), 
or Reduced System (RS) basic iterative methods. Successive Overre­
laxation (SOR) is supplied without acceleration. Either the natural 
ordering or a red-black orclering of the unknowns can be used. Adap­
tive procedures can be used for iteration parameters such as u> and 
for eigenvalue estimates. [See Kincaid,-Respess, Young and Grimes 
[11]-]

ITPACKV 2C: This package is a vectorized version of ITPACK 2C. The 
iterative algorithms are unchanged, but the storage format for A was 
changed to allow vectorization of certain computational kernels such 
as the matrix-vector product, matrix permutation and matrix scaling. 
A is stored in the COEF-JCOEF sparse storage format. This version 
is available in the ELLPACK package as several solution modules. 
Versions for the Cyber 205, Cray-1, and Cray X-MP supercomputers 
have been written. [See Kincaid, Oppe, Respess, Young [7].]

ITPACK 3A: This package contains acceleration routines and basic iter­
ative methods for both symmetric and nonsymmetric systems. The 
accelerators for symmetric systems are conjugate gradient and Cheby­
shev acceleration. The accelerators for nonsymmetric systems are 
ORTHOMIN(s), ORTHODIR(s), ORTHORES(s), Lanczos/ORTHO- 
MIN (Biconjugate Gradient), Lanczos/ORTHO DIR, Lanczos/
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ORTH ORES, and nonsymmetric Chebyshev acceleration. The ma­
trix is stored in the A-JA-IA sparse matrix format. [See Young and 
Mai [24].]

ITPACK 3B: This package contains basically the same algorithms as IT­
PACK 3A. It is written with an ELLPACK-style preprocessor that 
allows the user more flexibility in designing the iterative method. The 
preprocessor constructs a Fortran program with the appropriate calls 
to the ITPACK 3B library. [See Mai and Young [17].]

NSPCG: (a.k.a. ITPACK 4) This package is similar to ITPACK 3A in 
that it is Fortran-callable and contains acceleration schemes and basic 
iterative methods intended for both symmetric and nonsymmetric 
matrix problems. It has a large variety of basic iterative methods and 
acceleration schemes, and the matrix can be represented in any one 
of several sparse matrix formats plus a matrix-free format in which 
the user supplies the matrix-vector routines. As with ITPACKV 2C, 
it has been vectorized for vector supercomputers such as the Cyber 
205'and Cray X-MP. [See Oppe, Joubert and Kincaid [18].]

The objective of this paper is to give an overview of the most recent 
research-oriented software package, NSPCG, and to highlight a few of its 
key features. More detailed information can be found in the User’s Guide 
by Oppe, Joubert, and Kincaid [18].

2 Features of the Package
Some of the key features available in the NSPCG Package are:

• Symmetric accelerators, [conjugate gradient, Chebyshev]

• Nonsymmetric accelerators. [ORTHOMIN, GCR, Lanczos, LSQR, 
etc.]

• Basic preconditioners. [Jacobi, ILU(k), MILU(k), SOR, SSOR, RS, 
polynomial, etc.— most have line versions available.]
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• Natural, red-black, line red-black, general multicolor orderings of the 
unknowns and equations allowed. [Corresponding multicolor versions 
of preconditioners are available.]

• Some accelerators allow left-, right-, or two-sided orientations of the 
preconditioner.

Left: Q~xAu = Q-1b
Right: (AQ~x){Qu) = b
Two-Sided: (Q21AQ]11)(Qru) = (Ql'b) assuming Q = QlQr

• Modular Structure. [Any preconditioner can be used with any accel­
erator and almost any preconditioner with any data storage format.]

• Several sparse matrix storage schemes are available. [The data struc­
tures were chosen for efficiency on vector computers and for handling 
structured or unstructured matrices.]

• Matrix-free mode of usage. [The user supplies customized routines 
for matrix-vector operations.]

• Wide selection of stopping tests including the idealized stopping test.

• Adaptive procedures for eigenvalue estimates and iteration parame­
ters in the symmetric case, [e.g., u) for the SOR and SSOR methods.]

3 Purposes for Development of the Package
NSPCG was developed for a variety of reasons, among them are the follow­
ing:

• To investigate the suitability of various basic iterative methods for 
vector supercomputers.

• To provide a common modular structure for research on iterative 
methods. [The package is constructed to facilitate the addition of 
new preconditioners and new acceleration schemes.]

• To serve as an experimental research tool for evaluating iterative 
methods.
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• To guide in the constructing of iterative algorithms tailored to a spe­
cific problem. [NSPCG is not production software but can provide 
information useful in designing production iterative code.]

The degree of vectorization depends on many factors including the par­
ticular iterative method, the underlying structure of the matrix, the data 
storage format, the ordering of the equations, and the architecture of the 
computer. The NSPCG package permits several sparse matrix data struc­
tures (suitable for regularly or irregularly structured matrices), various or­
derings for enhanced vectorization, and different vectorizing philosophies 
(Cyber 205 memory-to-memory or Cray register-to-register).

NSPCG can provide useful information such as the convergence or non­
convergence of an iterative method, the number of iterations for conver­
gence, the suitability of an approximate stopping test vs. the idealized 
stopping test, the effectiveness of certain adaptive procedures for iterative 
parameters, the existence of a preconditioner (e.g., Does ILU or MILU re­
sult in negative pivots?), and information on vectorization techniques for 
various iterative kernels with certain data structures.

Many factors must be considered when designing software for solving 
linear systems using iterative solution methods. For example, an applica­
tion may suggest a particular iterative method. Some of the properties of 
the matrix A that are useful in choosing an iterative method or operator 
representation are the matrix’s sparsity pattern, symmetry in structure or 
elements, and the existence of constant coefficients. Also, vectorization 
and parallelization of iterative methods usually depends on exploiting the 
matrix’s sparsity pattern. The representation of A may be either explicit 
or implicit. For explicit representation, the sparse matrix data structure 
can be chosen on the basis of storage and computational efficiency. On 
the other hand, storage requirements might preclude storing A, and the 
operation Au would have to be represented implicitly.

4 Usage
The calling sequence for the package is

CALL NSPCG ((precon) , (accet) , NDIM,MDIM,N,MAXNZ,COEF,
JCOEF,P,IP,U,UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)
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and a brief summary of the parameters involved is

(precon) name of preconditioning routine
(accel) name of acceleration routine
NDIM row dimension of COEF array
MDIM column dimension of COEF array
N order of linear system
MAXNZ active column size of COEF array
COEF coefficient matrix (nonzeros) in various formats
JCOEF integer array associated with COEF
P permutation vector for multi-color orderings
IP inverse permutation vector
U iterative solution vector
UBAR optional exact solution vector
RHS right-hand-side vector
WKSP real workspace vector of length NW
IWKSP integer workspace vector of length INW
NW length of WKSP
INW length of IWKSP
IPARM integer parameter vector
RPARM real parameter vector
IER error flag

5 Choices for Preconditioner {precon)

The naming convention used for the routine specifying the preconditioner, 
(precon), is (name)i where (name) indicates the preconditioner and i indi­
cates the storage format. The choices for storage format that are available 
are:

i = \ primary (ELLPACK) format
2 symmetric diagonal format
3 nonsymmetric diagonal format
4 symmetric coordinate format
5 nonsymmetric coordinate format

A brief summary of the choices for preconditioner is given in the following 
table.
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Point Preconditioners
RICHi Richardson
JAC* Jacobi
SORi Successive Overrelaxation
SSORi Symmetric Successive Overrelaxation
IC* Incomplete LU decomposition
MIC* Modified Incomplete LU decomposition
LSPi Least Squares Polynomial
NEUz Neumann Polynomial
RSe Reduced System

Line or Block Preconditioners
LJACz Line Jacobi
LJACXz Line Jacobi (approximate inverse)
LSORz Line Successive Overrelaxation
LSSORz Line Symmetric Successive Overrelaxation
BICi Block Incomplete LU decomposition (version 1)
BICXz Block Incomplete LU decomposition (version 2)
MBICz' Modified Block Incomplete LU decomposition (version 1)
MBICXz Modified Block Incomplete LU decomposition (version 2)
LLSPz Line Least Squares Polynomial
LNEUz Line Neumann Polynomial
RSz Reduced System

6 Choices for Accelerator {accel)

A large collection of accelerators is available to handle both symmetric and 
nonsymmetric systems. A brief summary of the accelerators in the package 
is given in the following table.
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Symmetric and Positive Definite Case
CG conjugate gradient (2-term form)
SI Chebyshev or Semi-Iteration (2-term form)
SOR Successive Overrelaxation
SRCG adaptive Symmetric Successive Overrelaxation CG
SRSI adaptive Symmetric Successive Overrelaxation SI

Nonsymmetric Case
BASIC null accelerator (just basic iterative method)
ME Minimal Error algorithm (Fridman)
CGNR conjugate gradient applied to the normal equations

(Elman)
LSQR least squares algorithm (Paige, Saunders)
ODIR truncated/restarted ORTHODIR (Young, Jea)
OMIN truncated/restarted ORTHOMIN (Young, Jea)
ORES truncated/restarted ORTHORES (Young, Jea)
IOM Incomplete Orthogonalization Method (Saad)
GMRES Generalized Minimal Residual Method (Saad)
USYMLQ Unsymmetric LQ (Yip, Saunders, Simon)
USYMQR Unsymmetric QR (Yip, Saunders, Simon)
LANDIR Lanczos/ORTHODIR (Young, Jea)
LANMIN Lanczos/ORTHOMIN or Biconjugate Gradient

(Young, Jea)
LANRES Lanczos/ORTHORES or two-sided Lanczos

(Young, Jea)
CGCR Constrained Generalized Conjugate Residual (Wallis)
BCGS Biconjugate Gradient Squared (Sonneveld)

7 Storage Modes
NSPCG allows a number of different storage modes for representing the 
coefficient matrix A using two arrays COEF and JCOEF. A short description 
of each storage mode follows.
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T.l Symmetric Diagonal Storage Format
COEF Real array of size N by MAXNZ containing the main and nonzero upper 

diagonals of A in its columns. Dimensioned NDIM by MDIM where 
NDIM > N and MDIM > MAXNZ. MAXNZ is the number of diagonals 
stored. Diagonals axe top-justified.

JCOEF Integer array of size MAXNZ containing nonnegative integers giving 
the distances of each diagonal from the main diagonal.

For example, the matrix

A

/ 11 12 0 14 0 \
12 22 23 0 25
0 23 33 34 0

14 0 34 44 45
\ 0 25 0 45 55 /

would be represented in the COEF and JCOEF arrays as

COEF =

/II 12 14 \ 
22 23 25 
33 34 0
44 45 0

V 55 0 0 /

JCOEF = ( 0 1 3 )

This storage mode is intended for diagonal or block structured matrices. 
On vector computers, most matrix operations vectorize with this format. 
However, it is the most rigid of the available storage formats and matrix 
permutation is awkward.

7.2 Nonsymmetric Diagonal Storage Format
COEF Real array of size N by MAXNZ containing the nonzero diagonals of A 

in its columns. Upper diagonals are top-justified and lower diagonals 
are bottom-justified.

JCOEF Integer array of size MAXNZ containing integers giving the distances 
(positive for upper diagonals and negative for lower diagonals) of each 
diagonal from the main diagonal.
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For example, the matrix

A =

/ 11 10 0 14 0 \
12 22 21 0 25

0 23 33 32 0
30 0 34 44 43

V 0 25 0 45 55 /

would be represented in the COEF and JCOEF arrays as

( 11 14 10 0 0 \
22 25 21 12 0

COEF = 33 0 32 23 0
44 0 43 34 30

V 55 0 0 45 25 /

JCOEF = ( 0 3 1 -1

The code for matrix-vector multiplication with this storage scheme is

DO 10 I = 1,N 
Y(I) = 0.0 

10 CONTINUE
DO 20 J = 1,MAXNZ 

NDEL = JCOEF(J)
IBGN = MAX0 (1,1-NDEL)
TEND = MIN0 (N,N-NDEL)
DO 15 I = IBGN,IEND

Y(I) = Y(I) + C0EF(I,J)*X(I+NDEL)
15 CONTINUE
20 CONTINUE

7.3 Primary (ELLPACK) Storage Format
COEF Real array of size N by MAXNZ containing all the nonzeros of A. Nonze­

ros in row i of A appear in row i of COEF. MAXNZ is the maximum 
number of nonzeros per row. Rows with fewer than MAXNZ nonzeros 
are padded with zeros in COEF.

JCOEF Integer array of size N by MAXNZ containing the column numbers of 
corresponding entries in COEF.
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For example, the matrix

■A =

/II 0 0 14 15 \
0 22 0 0 0
0 0 33 0 0

14 0 0 44 45
\ 15 0 0 45 55 /

would be represented in the COEF and JCOEF arrays as

/ 11 14 15 ^ / 1 4 5 \
22 0 0 2 0 0

COEF = 33 0 0 JCOEF = 3 0 0
44 14 45 4 1 5

V 55 15 45 J l 5 1 4/

This storage mode is intended for unstructured matrices having a relatively 
constant number of nonzeros per row. On vector computers certain oper­
ations vectorize with this data format while others do not. For example, 
matrix-vector products, matrix scaling, and matrix permuting all vector­
ize. Forward and back solution steps, with the natural ordering, do not 
vectorize in NSPCG with this data format.

The code for matrix-vector multiplication with this storage scheme is

DO 10 I = l.N 
Y(I) = 0.0 

10 CONTINUE
DO 20 J = 1,MAXNZ 

DO 15 I = l.N
Y(I) = Y(I) + COEF(I,J)*X(JC0EF(I,J))

15 CONTINUE
20 CONTINUE

7.4 Symmetric Coordinate Storage Format
COEF Real vector of length MAXNZ containing the nonzeros of A in any order. 

Only the nonzeros on the main diagonal and upper triangle are stored. 
COEF is dimensioned to be of length NDIM where NDIM > MAXNZ.
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JCOEF Integer array of size MAXNZ by 2 containing the row numbers of 
corresponding entries in COEF in column 1 and the column num­
bers in column 2. Thus if C0EF(A;) = atj, then JC0EF(&, 1) = i and 
JC0EF(fc,2) = j. JCOEF is dimensioned to be of size NDIM by 2.

For example, the matrix

A =

/ 11 12 0 14 0 \
12 22 23 0 25

0 23 33 34 0
14 0 34 44 45

\ 0 25 0 45 55 /

would be represented in the COEF and JCOEF arrays as

COEF =

(11 ^ / ! ! \
22 2 2
33 3 3
44 4 4
55 5 5
12 JCOEF = 1 2
23 2 3
34 3 4
45 4 5
14 1 4

V 25 J l 2 5 /

This storage mode is the most general of the available storage formats and 
is intended for unstructured matrices. On vector computers, the matrix- 
vector product, matrix scaling, and matrix permuting all vectorize with 
this data format.

T.5 Nonsymmetric Coordinate Storage Format
This format is similar to that of symmetric coordinate storage except that 
all nonzeros are stored. For example, the matrix
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A =

/ 11 10 0 14 0 \
12 22 21 0 25

0 23 33 32 0
30 0 34 44 43

\ 0 25 0 45 55 /

would be represented in the COEF and JCOEF arrays as

COEF =

/11 \ / ! 1 \
22 2 2
33 3 3
44 4 4
55 5 5
14 1 4
25 2 5
10 1 2
21 JCOEF = 2 3
32 3 4
43 4 5
12 2 1
23 3 2
34 4 3
45 5 4
30 4 1

V 25 J [5 2 J

The code for matrix-vector multiplication with this storage scheme is

DO 10 I - l.N 
Y(I) = 0.0 

10 CONTINUE
DO 15 K = 1,MAXNZ

Y(JC0EF(K,1)) = Y(JC0EF(K,1)) + C0EF(K)*X(JC0EF(K,2)) 
15 CONTINUE

Loop 15 is performed in partitions that have unique JCOEF entries to avoid 
“smashing” the Y vector during the scatter.
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7.6 Using NSPCG in Matrix Format-Free Mode
One feature of the NSPCG package is the ability to call acceleration rou­
tines directly with user-supplied customized routines for performing certain 
matrix operations. The motivation is to allow the user to design an iter­
ative algorithm suitable to a particular application using the data format 
available in the application code. This is a particularly desirable feature 
when storage demands may preclude copying the coefficient matrix into the 
allowable formats in NSPCG. Certain routines for matrix operations must 
be supplied by the user such as

SUBA to compute y = Ax given x 
SUBAT to compute y = ATx given x 
SUBQL to solve QlV = x for y given x 
SUBQR to solve Qny = x for y given x 
SUBQLT to solve Q^y = x for y given x 
SUBQRT to solve Q^y = x for y given x

Here Q = QlQr is the splitting matrix, and Qj}AQ^ is the preconditioned 
matrix. Note that Ql — Q and Qr = I for left preconditioning and Qi = I 
and Qr = Q for right preconditioning. A sample accelerator call might 
appear as
LSQRW (SUBA,SUBAT,SUBQL,SUBQLT,SUBQR,SUBQRT,COEF,JCOEF,

WFAC,JWFAC,N,U,UBAR,RHS,WKSP,NW,IPARM,RPARM,IER)

8 Stopping Tests
A wide selection of stopping tests is available for experimentation. For 
example, a representative stopping test is

EMAX \(An\z^)
' EMIN (6, Q~lb)

Here, EMAX = RPARM(2) and EMIN = RPARM(3) are estimates of the 2- 
norm of the preconditioned matrix and its inverse. In the symmetric case, 
EMAX and EMIN are estimates of the maximum and minimum eigenvalues 
of <3-1A, respectively. Some quantities used in the stopping test are Q, 
the preconditioning matrix, r(n) = b — Au^n\ the current residual, and

2 < C (1)
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5(n) = Q-Mn) = Q'jiQ2lrf'n\ current pseudo-residual. Certain vectors 
and inner products come for free with certain accelerators. For some ac­
celerators, EMAX and EMIN are adaptively computed. Thus, some stopping 
tests may be cheap or free.

9 IPARM and RPARM Parameter Arrays
Two arrays of integer and real parameters, IPARM and RPARM, are provided 
to control certain iteration parameters that affect the performance of the 
iterative method and are used to communicate with adaptive procedures. 
For example, some typical values stored in RPARM are 

EMAX, EMIN axe eigenvalue estimates of Q~XA 
□MEGA is the SOR and SSOR overrelaxation parameter
ALPHAB, BETAB are SSOR parameters 
SPECR is the spectral radius of the SOR matrix

Default values for all parameters can be set and then a few selected ones 
can be changed as in the following example.

CALL DFAULT (IPARM,RPARM) 
IPARM(4) = 3 
RPARM(l) = 1.0E-8

10 Using Reduced System Methods
The matrix A may have point or block “Property A,” in which case the 
system Au = b can be permuted to the form of a red-black system:

(Dr H \( uR \ = ( bR\
\ K Db ) \ ub ) \ ^ /

where DR and DR are point or block diagonal matrices. By eliminating uR, 
the “reduced system” is formed

(Dr - HDb'K^r = bR- HDg'bs

The NSPCG package has the capability to use the reduced system either 
explicitly or implicitly as outlined below.
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Implicit Use of an RS Method: If A has point or line Property A, 
NSPCG allows the user to run the point or line RS method with the reduced 
system implicitly used. First, the routine REDBLK is used to determine if 
A has Property A, and, if so, the permutation vector P that will permute 
A to a red-black system is constructed. Then NSPCG is called with an RS 
preconditioner. The reduced system Dr — HD^K is not explicitly com­
puted; rather, the application of this operator to a vector is accomplished 
using successive applications of K and H.

CALL REDBLK (NDIM,N,MAXNZ,COEF,JCOEF,P,IP,NSTORE,IWKSP,
A IER)

CALL NSPCG (RS6,CG,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,U,
A UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)

Explicitly Computing the Reduced System: If A has point Property 
A, NSPCG allows the user to explicitly compute the reduced system, and 
apply any of the iterative methods in NSPCG to solve the reduced system. 
The user calls routine RSNSP with the same calling sequence as NSPCG.

CALL REDBLK (NDIM,N,MAXNZ,COEF,JCOEF,P,IP,NSTORE,IWKSP,
A IER)

CALL RSNSP (MIC1,CG,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,U, 
A UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)

11 Sample Usage
In this section, an example is given of using NSPCG to solve the linear 
system Ax = b that arises from the discretization of the following partial 
differential equation:

f uxx + 2uyy = 0 on 5 = [0,1] x [0,1]
[ u = 1 + xy on boundary of S

Using the standard five-point central difference formula with a mesh size of 
h = T-, the finite difference stencil at node (i,j) is

Ui—ij Ui+ij 2uitj+i 2uij-\ 0
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The coefficient matrix in the resulting linear system is symmetric and pos­
itive definite of order 100 with five nonzero diagonals. Symmetric diagonal 
storage is used to represent the matrix so that only the main diagonal 
and the two nonzero super-diagonals need to be stored in arrays COEF and 
JCOEF:

/ 6 -1 -2 \
COEF =

V 6 -1 —2 /
JCOEF = (0,1,10) MAXNZ = 3

The iterative method used is the Modified Incomplete Cholesky (MIC(O)) 
method with conjugate gradient acceleration. Thus, (precon) = MIC2 and 
(accel) = CG.

The NSPCG calling program is as follows:

REAL COEF(120,4), RHS(IOO), U(100), WKSP(600), UBAR(l), 
A RPARM(30)

INTEGER JCOEF(4), IWKSP(300), IPARM(30), P(l), IP(l) 
EXTERNAL CG, MIC2

NDIM = 120 
MDIM = 4 
N = 100 
MAXNZ = 3 
NW = 600 
INW = 300 

C
CALL DFAULT (IPARM,RPARM)

C
C ... NOW, RESET SOME DEFAULT VALUES. 
C

IPARM(2) = 50 
IPARM(3) = 3 
RPARM(l) = 1.0E-8
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c
C ... GENERATE AN INITIAL GUESS FOR U AND CALL NSPCG.
C

CALL VFILL (N,U,0.0)
C

CALL NSPCG (MIC2,CG,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,U, 
A UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)

END

The output from NSPCG is given below:

INITIAL ITERATIVE PARAMETERS 
PREPROCESSOR AND PRECONDITIONER PARAMETERS

IPARM(12) = 2 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 0 (IPERM )
IPARM(15) = 1 (IFACT )
IPARM(16) = 0 (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 2 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 2 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = .OOOOOOOOE+OO (TIMFAC)
RPARM(14) = .OOOOOOOOE+OO (TIMTOT)
RPARM(15) = .35500000E-11 (TOL )
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RPARM(16) = .OOOOOOOOE+OO (AINF )

INITIAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS

IPARM( 1) = 2 (NTEST )
IPARM( 2) = 50 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) s 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (I0MGAD)
IPARM( 9) = 5 (NS1 )
IPARM(IO) = 100000 (NS2 )
IPARM(ll) = 0 (NS3 )
RPARM( 1) = .10000000E-07 (ZETA )
RPARM( 2) = .20000000E+01 (EMAX )
RPARM( 3) = 10000000E+01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .OOOOOOOOE+OO (TIMIT )
RPARM( 7) = .OOOOOOOOE+OO (DIGIT1)
RPARM( 8) = .OOOOOOOOE+OO (DIGIT2)
RPARM( 9) = .10000000E+01 (OMEGA )
RPARM(10) = .OOOOOOOOE+OO (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .OOOOOOOOE+OO (SPECR )

CG

INTERMEDIATE OUTPUT AFTER EACH ITERATION
ITERATION CONVERGENCE EMAX . EMIN

N S TEST

0 0 . 99366E+01 20000E+01 . 10000E+01
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1 1 .46168E-01 .10010E+01 . 10010E+01
2 2 .57189E-02 .20232E+01 . 10002E+01
3 3 .12255E-02 .24807E+01 . 10001E+01
4 4 .23770E-03 .27522E+01 .10000E+01
5 5 .49325E-04 .28711E+01 . 10000E+01
6 6 .87776E-05 . 29024E+01 . 10000E+01
7 7 .16811E-05 .29071E+01 . 10000E+01
8 8 .42316E-06 . 29074E+01 . 10000E+01
9 9 .15339E-06 . 29075E+01 .10000E+01

10 10 .38502E-07 . 29075E+01 . lOOOOE+Ol
11 11 .71532E-08 . 29076E+01 . 10000E+01

CG HAS CONVERGED IN 11 ITERATIONS 

FINAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS '

IPARM( 1) = 2 (NTEST )
IPARM( 2) = 11 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) = 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (IOMGAD)
IPARM( 9) = 5 (NS1 )
IPARM(IO) = 100000 (NS2 )
IPARM(ll) = 0 (NS3 )
RPARM( 1) = .10000000E-07 (ZETA )
RPARM( 2) = .29076287E+01 (EMAX )
RPARM( 3) = .10000004E+01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .34800000E+00 (TIMIT )
RPARM( 7) = .81454998E+01 (DIGIT1)
RPARM( 8) = .78457903E+01 (DIGIT2)
RPARM( 9) = .10000000E+01 (OMEGA )
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RPARM(10) = .00000000E+00 (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .OOOOOOOOE+OO (SPECR )

FINAL ITERATIVE PARAMETERS
PREPROCESSOR AND PRECONDITIONER PARAMETERS

IPARM(12) = 2 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 0 (IPERM )
IPARM(IS) = 1 (IFACT )
IPARM(16) = o' (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 1 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 2 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = . 22000000E-01 (TIMFAC)
RPARM(14) = . 51200000E+00 (TIMTOT)
RPARM(15) = . 35500000E-11 (TOL )
RPARM(16) = .00000000E+00 (AINF )

12 Distribution of Software
A limited number of copies of the software package NSPCG is available for 
distribution with the understanding that it is intended as a research tool 
and may undergo further development. The interested reader should write 
to the address below for additional information on obtaining the distribu­
tion tape of the software and the available documentation.
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Center for Numerical Analysis 
RLM Hall 13.150 
University of Texas at Austin 
Austin, TX 78713-8510

A nominal fee is involved to cover handling, mailing charges, etc. Also, 
reports of difficulties encountered plus comments and suggestions are wel­
come.

As usual with research-oriented software, The University of Texas at 
Austin and the Center for Numerical Analysis disclaim all warranties with 
regard to this software package and its documentation. It should be em­
phasized that it is preliminary, incomplete, and subject to change.
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