T I R "3 L S

frds SRl O

. 7 sANDBO-23673 b i
,,G<U&x Unlimited Release \(_,’
23 \

IMPLEMENTATION OF ROSENBROCK MMETHODS

Lawrence F, Shampine

@ Sandia National Laboratories

DISTRIBUTIOR OF THIS DOCUMENT i? URIIRIVEE



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Issued by Sandia Laboratories, operated for the United States
Department of Fnergy by Sandia Taboratories.

NOTICE

This report was prepared as an account of work sponsored by
the United States Government. Neither the United States nor
the United States Department of Energy, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy,
completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would
not infringe privately owned rights.



PAGES 1 to 2

WERE INTENTIONALLY
LEFT BLANK



i- - — T DISCLAIMER
t

This book was prepared as an account of work sponsored by an agency of the United Siates Government,
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
wareanly, express or implied, or assumes anv legal liability or responsibility tor the accuracy,

or of any i . product, or process disclosed, or
i | represenis that its use would not infringe pn\melv owned rights. Reference herein to any specific
commercial product, process, or service by trade name, 3 . or , does
. | mot necessarily constitute or imply its endorsement, recnmmendauan or 'avonng by the Un ted
1} States Government or any agency thereof. The views and opinions of authors expressed herein do not
l’ necessarily state or reflect those of the United States Government o any agency thereof.

— —— U

uc-32 ’
SAND80-2367J
Implementation of gpsenbrock Methods*
o

L. F. Shampine
Applied Mathematics Research Department
Sandia National Laboratories**
Albuquerque, NM 87185

Abstract

Rosenbrock formulas have shown promise in research codes for the
solution of initial value problems for stiff systems of ordinary
differential equations (ODEs). To help assess their practical value,
the author wrote an item of mathematical software based on such a
formula., This required a variety of algorithmic and software develop-
“ments. Those of general interest are reported in this paper. Among
them is a way to select automatically, at every step, an explicit
Runge-Kutta formula or a Rosenbrock formula according to the stiffness
of the problem, Solving linear systems is important to methods for
stiff ODEs and is rather special for Rosenbrock methods. A cheap,
effective estimate of the condition of the linear systems is derived.
Some numerical results are presented to illustrate the devclopmeuls.

Key Words and Phrases: Rosenbrock method, ordinary differential
equations (ODEs), stiffness, software for ODEs.

CR Categories: 5.17

* This article sponsored by the U. S. Department of Energy under
Contract Du-Acoh-76DPoo789.

** A, U. S. Department of Energy Facility.

DISTRIBUTION BF THIS DOCUMENT i3 UM.;M%



Implementation of Rosenbrock Methods

1. Introduction

The most popular codes ®r the numerical solution of a stiff
initial value problem for a system of ordinary differential equalions
(ODEs) are based on the backward differentiation formulas (BDF). There
is a great need for a better understanding of many fundamental issues
in both theoretical and practical terms. In addition the popular codes
havc certain weaknesses arising from both the formulas and their
implementation. The situation has stimulated the investigation of
many alternatives to the BDF. Because rather few have been devcloped
go far as to result in items of mathematical software, it is difficult
to evaluate the theoretical advances in the field.

In solving the system

y' = £(x,y),
the implementations of the BDF employ the Jacobian matrix f& in a
simplified Newton iteration for the evaluation of the implicit formulas.
This has suggested to many researchers the possibility of incorporating
the Jacobian matrix directly into the formula, One line of development
has been that of Rosenbrock formulaes. For a differential equation in auto-

nomous form, y' = T(y), such methods have Lhe form

i- . . ‘
(I - \-'hfy(yo)) ki = hf(yo + g a, K. ) + hI’y(yo) Y ltj i"" l,00ay8

(1)

vy (%, +h) =y, +2

Here the constants v, 013’ Ylj’

Ci define the formula. FEach stage ki
is obtained by solving a system of linear equations with the same matrix.
The linear combination of stages advances the solution Ys at X to Y1 at

xO + h = xl.



These formulas are not imbliéit in the sense that the BDF are and
lso avoid some implementation difficulties. It has proved possible to
derive Rosenbrock formulas which in some respects have better stability
than the higher order BDF., A price one pays for these and other advan-
tages is that one muét evaluate partial derivatives of f at every step.
Ordinarily it is presumed that these partial derivatives are either
clumsy or expensive to obtain, and for this reason the popular BDF
codes try to evaluate fy as infrequently as possible. This presumption
is by no means always true, so Rosenbrock formulas should not be dis~
carded for this reason alone., We shall restrict our attention in this
paper to the class of problems for which the partial derivatives of f
are convenient to obtain and are not a lot more expensive than the
evaluation of f itéelf.

Recently Kaps and Rentrop [lh] derived some Rosenbrock formulas
with internal error estimators. This was a natural development in view
of the history of explicit Runge-Kutta methods and was an important
step in maxing the methods practical. The computational results they
present suggest that Rosenbrock methods might be a practical alternative
_to the BDF. Their paper stimilated the author to develop a piece of
mathematical software, DEGRK; based on a Rosenbrock formula, Here we
report some of the algorithmic and software developments we considered
necessary. Although these developments were realized in a particular
code, most of the work is genefalty applicable fo Rosenbrock methods.

At present, codes are clearly intended for stiff or nonstiff
problems, but not both., Deciding the type of the problem is an im-
possible task for a user. This author considers the gquestion of how
to relieve the user of this decision to be thé most pressing question
in the area of ODE mathematical software. In [23] some progress is
reported and a fuller discussion of the isaues is given., Within the
class of problems we postulate here, the matter is relatively simple.
We shall desciribe how to switch between an explicit Runge-Kutta
formula palr and a Rosenbrock formula pair at any step reliably and
economically. The implementation of DEGRK uses a Fehlberg F(L,5)

e



pair for the explicit Runge-Kutta formulas. If the probiem is unequivocally
non-stiff, the integration by DEGRK is nearly as efficient as that by RXF4S
[2k, 25], an effective code for non-stiff problems based on the F(4,5)

pair. The class of problems for which DEGRK is intend=d is easily recognized.
In this class there is no particular reason for a user even to consider

th= issue of stifriness.

In this investigation we learned that virtually all of the published
Rozenbrock methods have what we consider to be a serious defect for their
use in production-quality codes. A variety of other one-step formulas
suffer from the same defect., We have not seen this matter pointed ocut
before, so we devote some space to it, It is the main reason we did not
implem=n% in DEGRK the formulas published by Kaps and Rentrop.

Rosenbrock methods solve lins=ar systems which may becouws ill-conditionzd.
This appears to be a matter deserving more attention than we give it hare.
We shall present a practical and cheap approximation of the condition which
may bs of value for other methods as well,

With the additional information available to Rosenbrock codes, it is
possible to devise an excéptiénally robust procedure for the selection of
the initial step size, at least in the context of a typa-insenszitive code,

It is extremely difficult to compare codes for the solution of stiff
ODEs and this is especially true when comparing codes based on quite
differant presumptions about the problem class. Some numnerical results
for DEGRK will be presented and in a few cases corresponding regulte for
a BDF code are given. Some research diractions are ludicated by bdhe

results of this investigation,

2. Getting Partial Derivatives

In the solution of

y' = f(X’Y)s

the Rosenbrock methods reguire evaluation of the partlal dzrivatives £ and
fx. Here we want to indicate some problems for which these partial derlva-
tives are not inconvenient nor much more expensive to =valuate than f
itself. In section 7 we describz a software device which may make this

more truie,



Perhaps the first observation ought to be that all the problems of

the well-known test set [8) fall into this class. To be sure, many

of the problems afe artificial, but many are not. The supplementary
test set of Enright and Hull [16, pp. 45-66] also falls into the class.
Most of its problems arise from a description of chemical kinetics in
a homogeneous solution reacting according to the mass action law. Such
problems are sufficiently important that there are a number of packages
written for this specific class. One such package is that of Edsberg
(30, pp. 81-94]. It writes the problems as

(1a) y' = Ap, y(o) given

where A is an M x N matrix with integer entries and p is an N vector with

, M rji
(1b) , p. = k. T v. .
. _ J Jj=p 1
Hera the ros 2 0 are integers describing the reactions and the kj >0
"are rate constants. This autonomous system has fx = 0 and fy is readily

computed from the observation that

3p. :
— =
VA Ji

QFLJ?'

This class was & major reason that we began a study of Rosenbrock methods.
Another class of problems which may well be suitable are the linear

problems
y' = J(x)y + g(x).

The Jacobian J(x) must be evaluated every time f is, so it cannot be

expensgive nor very lnconvenient to provide it. The uncertainty lies

in the f vector. Whether it is convenient and relatively inexpesnsive
X

will depend on the problem.



In our experience and in reading the scientific literature, we
have seen many individual problems which were in the class, and many
which were not. One problem [20] which we use as a numerical example

in section 13 is

N
dx _ . ad
Ee—'-(l"f' 5){1-(1+Nf)x+ym},
d_‘y.. = y_—s N {X - y___
a6~ "3 vy (I-y) [°
Here €&, N_., and K are (constant) parameters. This problem caught our

’
eye becauze the chemical. engineers were interested in a range of para-
meter values. For some values the problem is not stiff and for others,
it is stiff. It illustrates the convenience of a code which does not
ask the user to decide the type.

A very popular option in production codes for stiff problems is
for the code to gpproximate the necessary Jacobians by aumerical
differentiation. This makes life easy for the user, but we do not
think this option appropriate to Rosenbrock methods. One objection
is fundamental. Tae Jacobian is merely a1 aid to the BDF codeg~--thzy .
will solve the ODE even if the approximation is terrible, albeit
inefficiently. The Rosenbrock formulss are based on the partial
derivatives and all statements about order and the like depend on an
accurate Jacobian,

We are supposing that partial derivatives are not a lot more
expensive to evaluate than the function. This is because they must
be evaluated at every step with a Rosenbrock method and only infrequently
with the BUF., Of course if & Rosenbrock method took sufficiently fewer
steps than a BDF method, it could compensate for a more expensive step.
Still, it seems that Rosenbrock methods are not likely to be very compet-

itive except in the circumstances we postulate, Approximating partial

.,



derivatives by numerical differentiation generally results in a rather
expensive evaluation. Typical schemes for dense Jacobians use N extra
function evaluations to form a Jacobian for a system of N equations.
Except for N small, this makes a step with a Rosenbrock method mucﬁ
more expensive than a typical step with a BDF., If the Jacobian has
a useful structure, such as banded or sparse, it may be much cheaper
to form the Jacobian than in the dense case., Even so, it is compsara-
tively expensive except for Very narrow bands or very special sparse
structure. A

We note the successful computations of Kaps and Rentrop [14]
using differencing and remark oniy that all the problems in their
test set are small., In DEGRK we chose not to provide an option for

numerical differentiation for the reasons just given.

3. The Form of the Equation .

Theoretical treatments of Rosenbrock methods have taken the
differential equation in autonomous form because it is convenient
to avoid the special role of the independ=nt variable. Thes research
codes have followed the theory in this respesct. Of course many
problems do not arise in autonomous fom, so users are expected to
convert their problem. It is usually suggested that if the problem

arises as

£(x,y), y(a) given

gle

(1)
one convert this to

& = 2(x,y), y(a) given

(2)
dx - 1

—

3 » x(a) = a .



10

We have chosen not to use the autonomous form for a number of reasons.
Omne is the convenience of the software interface. The typical ODE solver
accepts the form (1) so that users are accustomed to it. Conversion may
be fairly described as a nuisance to the user and leads to questions
about an appropriate error control for the x variable,

Waen using a Rosenbrock method, the linear systems to bes solved
constitute a significant fraction of the work. To reduce linear algebra
coadtn ODE snlvers provide options for various matrix structures.
Conversion to autonomous form obviously affects the structure. We,
for example, provide for banded Jacobians in DIGRK. This structurs
is logt on conversion. To retrieve it we would have to ask the user
to recognize an unconventional structure ro¥ & prublem in sutonomoug farm,
or to tell the code he actually started with & banded Jacobian and
converted it. This kind of request is not likely to be popular with

users.
The Jacobian of (2) is, in partitioned form,
bl by
(3) J = ( y’ x)
L0 , O

Clearly the eigenvalues of the augmented system are those of fy plus
au eigenvalue O, Tuis is not lapnrtant, but norms may be more sgeriously

affected. In Lhe L, nora we nne,

I, = mexCle ll,» Tlgly) -

We use the norm of the Jacobian as a bound on the spectral railius to
assure stability of the explicit Runge-Kutta formula, and for other
parposes, Increasing the norm by conversion has a direct, harmful
effect,



There are a couple of conceptual objections to the convarsion.

The typical BDF code, for example, accepts the form (1), and if the
user provides analytical partial derivatives, he provides only'fy.

The Rosenbrock masthods require fx too. This matter is concealed when
all problems are accepted in autonomous form, but it is a distinction
which could be important. Also, the conversion changes a linear to a
nonlinear problem., It is interesting to note that the famous set of test
problems [8) did precisely this with the Liniger-wWilloughby problem D1.
The set carafully collected groups of linear and non-linear problems.

Dl is in the non-linear group only becaiase of the conversion from its
original form. The conversion of linear problems obscures the fact

that the Jacobian is immediately available in analytical form, It is
not clear what algorithmic consequences might follow converting a linear
to a non-lin=ar equation.

It is about as easy to implemeat the form (1) in a Rosenbrock code
as the autonomous form when done in the manner of the next section. In
many papers it has been considered obvious that one use the autonomous
form bescause of its elegance, - For this reason we felt obliged to state

a variety of arguments in support of our decision not to use it in DEGRX.

4, Efficient Representation

The usual form of the Rosenbrock formulas (1.1) apparently requires _
the storage of the Jacobian matrix and a matrix-vector multiplication at
each stage. These costs can be avoided by a simple manipulation of the
formula which has been attributed to Wolfbrandt. The resulting general

form which we write for aon-autonomous equations 1is

(1a) E=1I-vhf(x,7,)
i-1
(16) Bk, = f(xo +Ah, y +h 32_:5_ ai,jkj) + Bihfx(xo, yo)
i-1
+Z Cijkj i=1, «¢05 8
=1

11



12

S
lC = ] i
(le) yp =V, *th 2 m Ky
: i=1

There is another way to save a significant amount of arithmetic
in the formation of E. To actually solve the linear systems (la, 1b)

w2 scale so that we work with

fy(xo

> V)= —ly-h- I
instead of E. For the solution of stiff 0DZs we think this is a more
natural scaling anyway. Scaling in this way is advocated by Gourlay
and Watson [30, pp. 123 - 133] for a BDF codc and is used in a sparse,
semi-implicit Runge-Kutta code [11], but it does not seem to be well
known yet.

Solution of (1) involves the formation and factorization of E and
then the s solutions for the ki. The question that interests us right
now 1s whether to keep a copy of the Jacobian fy or to write ovar it
in forming and factoring E. Because a Rosenbrock method presumes that
;y changes at every step, it is recomputed aftér every succegsful stap.
So tha only obvious reason for saving fy is to reuse it when repeating
8 rejected step. (There is anothar resason wa Lake up in the next section,)
Because of the expense of a failed step, th2 step siZ= selection aigorithm
is rather conservative so as to meke tailed steps uucommon. We expect
Rosenbrock methods to be applied to problems for which computation of fy
is not much more expensive thair computation of f. Thus recomputation of
fy at failed steps should not be a very big waste for the kind of code
and problem we have in mind. In compensation we roughly halve the

storage requirsd hy the code, We deemed this to be a bargain in DEGRK.



5. Conditioning
The Rosenbrock methods require solution of linear systems involving
matrices E = I - hy f&. This 1s also true of the typical implicit method
for the solution of stiff ODEs although it is done for a different purpose.
It has been frequently commented that these matrices may be ill-conditioned,
but we have not noticed any arguments to the effect that this must be so.
We shall argue this here and devise a practical measure of the conditioning.
The situation is quite.different in the cases of a Rosenbrock and, say,
a BDF method, With the BDF and other implicit formulas, linear systems
are solved to obtain successive iterates approximating the result defined
implicitly. As described in [22, p. 109], this is normally arranged so
that one solves for the change in the previous iterate., Ill-conditioning
may slow down the overall iteration because some digits in the change are
spoiled, but as long as a few leading digits are obtained correctly, the
process "converges." With a Rosenbrock formula, the solutions enter
directly (and indirectly thiough the function evaluations) into the
solution valuz for the step. The situation for the first stage is
especially clear. With such forimulas, inaccurate solution of the
linear system leads to inascurate solution values. Normally one does
not solve stiff ODEs to stringent (relative) accuracies so with a
reasonable computer word length, this is probably not very important
in practice. However, in this respsct Rosenbrock methods and mesthods
like the BDF appear to differ fundamentally. The matter merits more
attention than we give it here.

By definition cond(E) = ||E|| ”E-l . In general

p(1) = [IM]

where p(M) is the spectral radius of the matrix M, If )\ is an eigen-
value of fV’ then 1 - hyl is an eigenvalue of E and its reciprocal an
eigenvalue$of E—l. At this point we need to put in some information

to the effect that the ODE problem is stiff. Stiffness is not a

13



14

precisely defined concept. Nevertheless, many workers would bz willing
to azcept a statement like the following: For a step size h yielding
the required accuracy in the formula, the eigenvaluss A of the Jacobian
fy fall into two classes: '

I . |nn| << 1,
II Re()) < O.

It is further assumed that neither class is empty, and that in class II
there is an eigenvalue X with IhX | >> 1. Notice that we do not take
up the conditioning of a single equatlon.

The genaral result

‘ l-l’I\;-)-\ <1l if Re()\) SC?

tells us that no eigenvalue in class II causes p(E-l) to be greater than 1.
The assumption class I is not empty then implies that p(E-l) = 1. The

assumption about class II says that
= h = th). 1.
p(E) = max [y | = |ma | >>

From the general relation of spectral radius to norm, we now conclude

2 o(m) p(EY) >>1 .

cond(E) = ||El| 2
Thus if the problem is stiff in the sense we have used, the matrix
=T - hyfy must be ill-conditioned.

A problem is usually described as non-stiff if all eigenvalues
of the Jacobian are in class I. This ignores the important role of
the norm, gad in these circumstances 1ll-conditioning is not precluded.
If the stronger condition that thy” is rather less than 1 holds, it
is easy to see that in this particular norm, I-hyfy is not ill-conditioned,



Because conditioning directly affects Rosenbrock methods and
because we have seen that ill-conditioning is to be expected, we
considered how to get some idea of the conditioning. A scheme was
devised [6] for LINPACK [7] which tries to compute a large lower
bound for the condition of a factored matrix., A computable norm is
chosen for ||E|| which in LINPACK happens to be the same one we chose

in DEGRK, namnely HEl In general if one solves Ev = w for v, he gets

Sl
a lower bound for ||E || from

ell = e~ < =) vl

. The ided of [6] is to select a w judiciously so

on dividing by |||
as to arrive at a large lower bouad. We observed that there is a
cheaper way to get a large lower bound in our context., It is psrhaps

a little clearer if we scale as in section 4 so that

Let XN be an eigenvalue of J of minimum modulus and let v bz aa

associated eigenvector. Then

and as above

We shall approximate this lower bound by hy. For stiff problems,
|th| << 1 so this is a good.approximation. Indeed for the chemistry
problems of (2.1), the Jacobian is always singular because of
conservation lawa, so that XN = 0 and this is not an approximation
at all.

We could evaluate ||E||l directly but this does not seem worth
the trouble. In gensral



_ 1
=l =l Il + o) -

In the particular norm we use, |[E||. = HJHl is an excellent approximation
in the sense of relative error when hy”fy” >> 1,
Finally then

cond(E) = T%%EQ%ET S E]

where the approximation to the lowsr bound should be excellent if the ODE
problem is stiff in the sense we have used.

The approximate lower bound fur the condillon is axtremely convenient
because all the partinent quantities are computed (cheaply) for other
purposes. For stiff problems it can be expected to provide & useful
indication of conditioaing. We have done a variety of experiments
comparing the lower bound of LINPACK to our approximate lower bound.

When solving the problems of the test set [8] it is mostly the case

that the matrix does not become extremely ill-conditioned, The most
ill-conditioned problem we have noticed was the integration of the
Rosenbrock problem in its original variables to approximate steady-

state on Lhe intcrval [0, hxlos], c,f. Hindmarsh and Byrne [16, pp.

147 - 166]. We found lower Lounds ac large on 6.2x1011. Another

fairly ill-conditioned problem wus that of Bui [2] on the interval

[0, 5] for which a bound of 4.1%x10°
quantitative comparison, we solved both of these problems at the
2 and 1o'h. Whenever the

was observed. To provide some

two pure absolute error tolerances 10°
LINPACK condition estimate COND =2 103, we computed the ratio
hnyyH/COND. The Rosenbrock problem has & singular Jacobian so

we expect our assumptions to be well satisfied. The agraement with
the lower bound of LINPACK is remarkable, The lower bounds always
agreed to at least 3 digits. The Jacobian of Bui's problem is

not singular and the estimated lower bounds differed more., At the



tolerance of lO-2 the ratio ranged from 0.2 to 1.4, At the tolerance
of lO-LL the ratio ranged from 1.1 to 1l.2. Experience with the LINPACK
lower bound seems. to show that it is comparable to the actual condition,
The limited experiments we have done indicate that our cheap estimated
lower bound is equally satisfactory in our very special circumstances.

Because of its generality, the LINPACK estimate is more expensive.
It does a norm computation which we avoid by the approximation HEH 2
ny”, available from other computations in DEGRK. It does two extra

solutions of linear systems to form the estimate. The Rosenbrock

procedure in DEGRK only does four solutions of linear systems in the
step, so the LINPACK estimate represents a substantial extra expense.
Because one advantage of the Rosenbrock methods may bz their low over-
head, the cheaper condition estimate is to be preferred here.

Now that w2 have a cheap, useful condition indicator, what do we
do with it? The trouble is that a large condition number alerts us to
possible difficulties, but it does not provide very precise information,
This matter is discussed by the LINPACK project in [7, p. I.9]. A rule
of thumb is suggested there that if the computer word has about t decimal
digits and if the condition is lOk, then the answers are accurate to no
more than t-k digits. " Even if this were so, what would be the appropriate
action? We could reduce the step size to reduce the conditioning, but
this makes the integration correspondingly more expensive. We could
resort to residual correction. This requires the storage of the
Jacobian, which we do not do in DEIGRK, and significantly increases
the number of linear systems to be solved. We could tura to another
- version of the code in a higher precision. This is considerably more
expensive than residual correction because then all computations are
done in multiple precision. rather than the relatively small proportion
needed to cdmpute the residugl. Unfortunately, on many machines ODEs
are normally solved in the highest precision provided by the hardware,
and the residual computation has'to be done by software multipie precision.
At the very least this causes portability problems, and it may be

comparatively expensive,

17



18

In DE3RK the question of ill-conditioning seems not to be serious.
Because of the low order formulas implemented and their less than
optimal stability at infinity, severe ill-conditioning appears to bes
rare., In addition, the low order makes the code inappropriate for
stringent tolerances. We have chosen to restrict the step size as
nzacessary to ensure that

e || < 10

on a machine with about 1h decimal digits. Should such a restriction
be imposed 10 times in a run, the integration is interrupted to waru
the user of the situation and to luguire as to whethar he wishes to

continue.

6. Formulas Pairs in DEGRK

In DE3RK we chose to implement a (L4,5) pair of formulas due to
Fehlberg bescaise they proved very satisfactory in other software, RKF45
[24, 25], we have written for non-stiff problems., Fehlberg intended
that the integration be advanced using the fourth ordzar formula., In
RKFL5 we instead advanced the integration with the fifth order formula,
local extrapolation. The reasonp given in [24, 25] for doing this
remain valid in DEGRK, but in one respect the situation jip anite
different., The algorithm described in sectluu 8 fer solecting methods
guarantees that the step size used is stable for the F(L4,5) pair.
Indeed, the conservative nature of the algorithm often mesans that
when the F(L4,5) pair is used, the step size is well within the
stability region. Thus the fact that the fifth order formuls is
the more stable is not relevant in DEGRK. Furthermore, the
constraint on the step size greatly increases the likelihodd that
the fifth order formula 1s significantly more accurate than the
fourth order formula, As a result the lozal error estimate is more
reliable and lozal extrapolation is more useful,

Kaps and Rentrop [1h4] aave devised (3,4) Rosenbrock formula pairs

winlch are four atage forwmulas involving thres fuastion evaluations and



one partial derivatives evaluation pasr step. In their Proposition

(3.19) they give a 5 parameter family of formulas. In Proposition (3.20)

they give a choice of parameters leaving one free parameter vy which
results in a fourth order formula satisfying 5 of the 9 esquations of
condition for a fifth order formula. The parameter y essentially deter-
mines the stability properties of the pairs constructed from either
proposition. The authors intended that the integration bes advanced
with the fourth order formula. They give two formula pairs in [14]

and a related pair in the text [27].

W2 have not used the pairs s=lected by Kaps and Rentrop for two
main reasons which are amplified in other sections.  In the section
on stability we go into the matter more fully, but here we just observe
that the fourth order formﬁlaé éhe& selected are Jjust barély étdble
at infinity. In the GRKUT pair and the pair in [27], the companion
third order formula is not stable at infinity. ‘The GRK4A pair does
have a third order formula with reasonable damping at infinity. For
this reason we chose first to implement the GRK4UA pair, but advancing
with the third order formula. As we report in section 12, this is a
better way to proceed for difficult problems.

We would have been happier with GRK4A if the fourth order formula
were also strongly damped at infinity but we were prepared to accept
this until we ran into what we consider a serious defect, 1In section
10 we take up the reason wny it is important that a method for stiff
problems evaluate the differential equatioh throughout the step. The
Kaps-Rentrop choices do not satisfy the criterion so we considered
other choices. Within the family of Proposition (3.20) there is just
one possibility which satisfies the design criterion of section 10. As
it turns out both formulas have the same damping at infinity which is
very nearly as good as the third order formula in GRKUA. Furthermore
both formulas are A-stable, ¥aps and Rentrup gave their forimlas in

decimal form, We went through the tedious computations to obtain this

19



- 20

other pair ir rational forimn, It is pleasing that they turned cut to
bz so simple. This increases portability. The formula pair in the

efficient form (4.1) is

"= £(x,y)

=1
1l

H
!

1
2 h fy(xo’yo)

i
]

‘1
1 f(xo’yo) +*zh fx(xo?yo)

Ek, = £(x_ +h, v, * hk, ) - % h fx(xo,yo) - ’+kl

Bk, = £(x, +%h, v, +gg bl é35 hi, ) +%h £ (x,¥) +l§§5§kl +§5-1<2
By, = £0x, + 'g' R 22 Rk, ¥ 235 hk,) + 25% h £ (x,,5,) - 122'65l Ky - Tdé—;'
yalx, +b) = vy + B(Zhky + 5k, + 42 k)

v, (%, +h) =y, + h(%kl +Il;k9 +216k +%§%ku)

_ 1 L )
(%, + h) = yylx, +h) = n(igé ky *ws ky v 5E k)

7. Software Interface

Recently the author aul H. A. Watts [2A) presented a design for a
software interface to a package of ODE solvers called DEPAC. At this
time the puckage contains three solvers, DIRXF - a Runge-Kutta Fehlberg
code, DEABM - an Adams-Bashforth-Moulton variable order code, and UERDF -
a BDF variable order code. The generalized Runge-Kutta Fehlberg and
Rosenbrock code DE3RK was written to fit into this package. In this

way it was provided with all the user convenience and protectioun



specified in the package. For the most part the interface is an obvious
mixture of the interfaces for the RungefKutta and BDF codes along with
appropriate descriptive éomments.'.ﬁome matters are pertinent only to
DEGRK. Oae is to iiscover and repoff that ill-conditionihg is causing
the step size to be restricted. The package design was intended to
incorporate such additional interrﬁpts. We shall mention other minor
matters elsewhere, but there is one important difference we take up
here. ‘ . A

We have chosen a differeﬁt»forh for the partial derivative routine

than is customary. In part this is nécéssary. A BDF routine needs only
the Jacobiaa fy; a Rosenbrock‘rqutine needs fX too., Tae difference could
have been concealed by using th2 autonomous form, but we think it better
to emphasize the difference, Thus the partial derivative routins returns
with the matrix fy and the vectdr fx. We require f to bz evaluated in
this subroutine at the same time., This is in addition to providing a
separate subroutine for the evaluation of f. The device is inténded to
increase the efficiency éf the code and to make it more likely that
partial derivatives are not a lot more expensive than a function evalua~-
tion. It depends on the fact tﬁat the code naver requires =avaluation
of the partial derivatives without also requiring evaluation of the
function at the same argument. The gain to be made is that often the
function evaluation is cheap if combin=d with the evaluation of the
partial derivatives., Consider the examples of section 2 where one

ees that he almost has to evaluate f in thg course of evaluating fy
and fx. If the user chooses to program the partial derivative sub-
routine to take advantage of this fact, and if the call list is as
we take it, a fuuction evaluation is obtained at a considerably

reduced cost, If the user does not want to bs bothered, or if it is
not cheaper to cémbine the £ and the partial derivative evaluations,
he can simply insert a call to the f subroutine in his subroutine for
the partial derivatives. This costs ths user som= liunkage and a little
complication in writing the partial derivative subroutine, but the cost

is not large. When applicable, thes device could be quite helpful.

21



22

8. Stiff or Non-Stiff?

Within the class of problems postulated, it is relatively easy to
decide at any step wahsther to use an explicit or Rosenbrock one-ghep
mathod., We shall describe what we did in DEGRK and the reader will see
that ths ideas are broadly applicable., Although crude, the decision
procedure is remarkably useful.,

We have found that an effective code for aon-stiff problems can be
based on a pair of formulas of ordsrs 4 and 5 involving 5 stages which
were davised by Fehlbarg., We would like to be able to switech from such
a code to a procedure suitable for stiff problems when it would be more
afficient and back when it would not. Naturally we exp=ct to pay some-
thing for ths convenience of such g type-insensitive code, but we hope
that the cost will be almost negligible if the problem is waequivocally
non-stiff or stiff. This turns out Lo be feasible,

The first question wz aaswer is when té switch to a method suitable
for stifr problems, in our case a Rosenbrocik forimula pair. The explicit
Runze-Kutta formila is inefficient only when a step size hacc suitable

for achieving the requested azcuracy must bz reduced to h to keep

stable

th2 computation stable. We can decid=s when to switch if wa2 caa =stimate

h and h .

acce stable

general purpose codes estimate ha'c’ and w2 need only consider h
i ac

One's immadiate reaction is likely to b2 that all
stable’
unfortunately this is not so. W2 have discussed the behavior of Runge-
Kutta codes in the presence of stability restrictions elsewhere [21].
Briefly, if hacc >> hstable’ the code will increase the step size until
the computation becomes unstable, The growing error is s=en by the local
errox estimator and the step size reduzed until the computation is azain
stahle, For such a step size propagated =rror is actually damped out
and eventually the smooth oehavior of the trus solution appears in the
numerical solution. As this behavior is manifested, thz code realizes
its step size is smaller than hacc and increases the step size. The
cycle repeats itself., It is gratifying that the error never gets out

of nand, but the difficulty we must face hare is that the step siz=



which the code estimates as appropriate for the accuracy is ordinarily

far smaller than hanc. To obtain a reasonadle estimate of ha*p’ wa

-

mast force the code to work within its region of absolute stability.
Thus a critical issus is to obtain a.géod estimate or a reliable bound
for hstablef .

Most explicit Runge-Kutta methods have stability regions which
contain a (half) disc of radius P. (Vaa der Houven calls p ths
generalized stability boundary [12, p. 83].) If )is aay eigenvalne of -
the Jacobian £, with 82()) 0 ard |nh|sp, the method is absolutely
stable with step size h. We obtain a computable relation from the

bouad

lal =< g,

1 noru which for a matrix Mz(Mij) is .

In DEGRK we ﬁse the L
Il = m?le: \Mijl .

This is a simple, cheap computation. Both the Fehlberg (4,5) formulas

are stable if we require
(1) - o 'thyH < 2.4,

This condition is forced on the step size when the explicit Runge-Kutta
method is used so as to guarantee the computation is stable. Then we
can be sure that the step size estimated by ths formila palr as appropriate
for the requested accqracy actually approximates hacc‘and can bes used to
decide when to switch.

DEGRK 1s organized as follows: There is a step size to be attempted
which was estimated in a special module for the first step (see section 9)

or in the module usad to attempt the previc:s step. This step size may

o’
®

reduced so as to produce output ak desired points. This matter is

23



2k

described in [24,25]. Unlike RKF45, DEGRK does not use the "stretching"
device, but it does use a '"look-ahzad." As dsscribed in section 5, the
step size might be reduced to improve the conditioning of the matrix E
in (4.1). Taese adjustmants to the step size are done before the method
is selected bzcause the choice is critically dependent on the step size,
In a module it is decided which method to us= and the step size ié
possibly reduced further, Next coatrol goess to one of the two modules
for attempting a step by the two methods. If thes step is a success,

the module used estimates what step size is appropriata for the nsxt
step. If the slep ls a Tailure, a step size for another Lny.is salected,
After a fallure cointrol is returnad to the point where this dascription
began. This is reazon we gald "tn atbempt' Ll previvus step.

There are threec cases. Thas first step is always taken with the
explicit Range-Kutta method so as to get om scale, Also it may e
nzacessary to try several times if the estimated step size is badlly
off, and this is much cheapesr to do with the explicit formula, The
other two cases depend on the method used for the preceding step.

Suppose the preceding step was taken with the Rosenbrozk mathod,
If the step size satisfies (1), we switch to the Fshlberg schemz and
otharwlise continae with the Rosenbrock method, This implies that bhe
expliclt Ringe-Kutta formula will bz used for all sufficiently small
step sizes, sre is a question a3 to how Lo ajfjust the step size on
the change of formila. WHers we do mot adjust 1t abt all, The Fehlberg
pair is of higher order and is an accurate pair of more stages. We
postulate that 1f it is stable, it is more accurate than the Rosenbrock
pair, Indeed, because we might be well within the stability regiom of
the method, the F(4,5) pair might be a lot more accurate than necessar;
with this step size. Because we adjust step size at every step it is
not nezessary that we have a good scheme for altering the step size
when we change formula., On the other hand, we do need to prevent
frequent changes so as to allow the code time to match the step size

to the sccuracy required,



If ths precedlnv STep was baken with the Fehlberg Tormula, we
reduce the step size as decessary so thab (1) holds. If the step
size had to be more thai halved for this reason, wa switch to the
Rosenbrock mathod. Our hypothesis when switching to the Rosenbrock
method is that the step size is being hz1ld back pretty significantly
because of etaolllty and 1t, rather than av,urauy, is probably the
dominant consideration. We expvct, then, that the Rosenbrock method
will succeed at this step sizs which is half (or less) of what will
worx for the Fehlberg'method.

It is not very likely that a problem would cdll for a step size
h such th “ p for many st@ps, but to make frequ=dJ switches less
likely, we have madé it easier to awitch to the ehlberg formula
than vice-versa., In point of fact, frequent switches would not
be important at all except for the crudity of tﬁc "adjustment" of
step size on a switch. ' ' ' . .

To hold dowa the ovprhcad esp CLally for non-s%iff problems,
we do not evaluate the Javoblan nor 1ts norm at every step. We

kesp track of whether ths Jacobian haa oeen ‘evaluated at the current
step ani whether its norm has beel °va1uated In the module for
selecting the meéthod, ww h°ck 1f the step size 1is c¢lose to the(

critical ‘point, spoc1flcally 1f
2 P b:-a“f_‘y”old S L"p .

If it is, we fom, if necessary,'a surrent fy and we form, if nscessary,
a current Hf H for our dseision., 1In any eveat we form a current valus
o* nyH every 5 steps. With the Rosenbrock scheme, this saves a number
of matrix norm COmputati01s. With the Fehlberg scheme, this saves a

vooi many unnec essa:y JaﬂUJLan °va¢ua*1on>. If the problem is

25



26

wnegaivoecally non-stiff, we shall evaluate the Jacobian every five
steps. For the six stage F(L4,5) mathods this represeants 30 function
evaluations. We are presuning of the class of problems that evalua-
tion of the funectloan and the Jacobian togethesr is not a lot more
exp2inaive than evaluating the function alonz, To get some idea of
the costs, suppose that thz evaluation -of both fuaction and Jacoblan
is 2% times the cost of evaluating a funchion alons, In such a case,
evaluaiting the Jacobian to test for stiffness increasss the cost in

fuaction evaluations of solving an unequivocally nom-s5iff problem

by only 5%. W= consider this to be a negligible cost for the convenience

of a type-insansitive code. Ws remark that, roughly speaking, DEGRK
behawras 1lke the cffislent node RIS when it 1o coufronted with an
wunagquivozally non-stiff problen, '

Clecarly the 5nsh of vesting goes up when the code is workihg close
to the switching ooint. On= might evaluate the Jacobian at evéry'step,
even thouzh the integreation is carried out with the explicit formula
pair., On the other hand, the coaservative nature of the algorithm
magns that a problem may be treated as stiff when it would actually be
more efficient to use the explicit Ruage-Kutta acheme, Thals strikes
us as an unavoidable price which should not b2 a large one,

We shall consider a few examples to illustrale the uascfulnsss of
switching, Fivst let us counsider the problem F2 of tha test set [8].
This is van der Pol's eyuabion, but it is nat uadergoing relaxation
oscillations aad w2 consider it not to b2 stiff, According to the
auchors nf thes test set, the maximma magnitude of aa eigenvalue is
at most 15 and the length of the interval is only 1. Wa=zn solvead
with DE3RK at a pure absolute error toleranze of‘,lO'2 the problem is
marginal, Four of the 6 (!) steps nseded to solve thz problem were
taken with the F(L4,5) pair. The maximum value of‘h”fy“-encouatered
was about 4. The Jacobian was evaluated at every step becauss this
is a borderline problem, At the toleranze 10 = all 10 steps wars
taken with the F(4,5). The maximun valus of thyH was ahout 2 and the

Jazcobian had to bz evaluabed at 7 of ths 10 steps. At the tolerance



10'6 all 19 steps were taken with the F(4,5) pair. The maximum value

of thyH was again about 2 and the Jacobian had to be evaluated at
7 of the 19 steps. At the crudest tolerance when the problem was most
ambiguous, the code made 35 function evaluations so that the 6 esvalua~-
tions of the partial deri#atives (the associated f evaluation is included
in the 36 reported) was a s1cn1f1vant but acceptable cost. At the most
stringent tolerance there were 121 f evaluations and the munber of partial
derivative evaluations approaches the 5% we expect in a clear-cut case.
For the sake of variety we shall vreport some results with the Kaps-
Rentrop pair GRKUA advanced with the third order formula. The code is
DEGRK with the pair given in section 6 replaced by GRKhA. The B fémily
of problems in the test set [8] are linear with non-real eigenvalues.
B2-B5 is a family of one paramster with the eigsnvalues gétting larger
and moving closer to the imgginary axis 23 one goes from B2 to B5. BS
is a trap for high'order BDF formulas which suffer a stability restriction
with this problem, The Rossnbrock formulas wes have implemented are all

A-stable., We solved Bt and BS at the pure absolute tolerancss 10-2, lO-u,

lO"6 ani measured the cedtral processor time for the solution of each
problem, Waen we forced thn code to solve B4 without using the Fehlberg
forinmulas, it cost 1. h89 tlmP dAltS to do the integration at all three
tolerances, With the Fehlb=rg formulas, this fell to 0.527. The corresponding
figures for B5 are 4,366 and O 950 respe: ctively. Waen thz Fehlbnfg
formulas were used, more function evaluations ware made, e.g., at 10 -4
on B5 the function evaluatidns>ihéraased from 652 to 768, but the

numbar of partial derivaLLye evaluabions dropped as did th= LU dscom-
positions and solutions of 1ineér systems. The real times considerations
make it impossible to define an optimal switching point betwzen formulas,
but our results suggest that we have'made an adequate choice. By way of
indicating the possibilities of the kind of code we investigate, we maie
the same computabions with the BDF code of the NAG library [17] given
analytical Jacobian and th2 sgme tolerances, All the numerical results
obtained were of azcuracy comparable to DE3ZRK., The cost of solving B4

was 1.30L time units and of solviag B3, 18.689 units.

27



28

ILest the reader Shink that the results reported for B4 and B3
be somehow Jue solely to the oscillatory nature of the solutions and
the non-real eigenvalues, we mention similar results for the A family
of linear problems with real eigenvalnes. When solving A3 with the
1070 the total cost was
1,141 time units if the F(4,5) formalas were not used in %he
Rosenbrock code and 0.831 if thay were. Taz BOF code required 1.025

-2
pure absolute error tolerances 10 —, 10

units. Wa2sn solving A4 the cost was 1.509 if the F(L,5) formulas were
not used in the Rosenbrock coda aadl 1,104 if they Were. "Th2 BDF code
reqaired 2,791 units.

Evidently switching foraulas tu account for a lack of stiffnass
is of significant valu= for these exzample problems, even though they are
considared o bz "stiff" test problems,

A further family of stiff and non-stiff problems will bz analyzed

in section 13,

9. Initial Step Size -

The initial step sgize is a critical one becanse it determines whether

whather the cods "sses" the scale of the problem, Tae algorithms
for estimating local error and adjustment of step size do well pro-
viding thab oaly small adjustments are needzd at =ach siep,

We have long felt it important that the code select the initial
step 8lze gatomatically. This is obviously a comvenience for the user,
A suitable initial step size depends on the formula and the problem 30
that 1t is not easy for a ussr to obtain ths information asedad bo make
a good selection, even if ﬁe knsw how. It is comaon that usars solve
a family of problems. Experience with an initial step size applied to
one mamber of a fanily way provide wvaluable information about the
integeation of another. For thls reasoax and beoxuse even the most
careful agatomatic procadirre can break dowa, we did provide thes user
a way to supply a guess in DEPAC. Tals 1s done by limitinz the first

step so that it do2s not go past the first output point.



In DEGRK w2-inazist that thes first step be taken with the explicit
Runge-Kutta mebthod F(L,5). We reduce the step size as nzeded s0 that
both of the formilas of this palr are stable., Tais is an effective

"

device for assuring ourselves that ws shall "s=2" how Ffast the solution
can change at the initial point., It is accomplished by evaluating the

Jacobian at the initial point and insisting that the step size h satisfy

(1) ”hfyH1 < 2.4

As explainzd in szction 8, this implies thes step size h is stable for
both F(L4,5) formlas. We uote that (1) may be.much more stringent than
necessary. This Lf fine becanses w2 are malnly interested in a step
size which is small enough that we caa trust the start of the integration,
Having evaluabed f, fy, fx’ at - -the initial poiunt, we are in a posi-
tion to taXe a "virtual" step with a Taylor series T(1,2) pair: .
yp =¥, * byl =y, +hf(a,y,)

h2

. 7 hi_ “ - Y :
= ¥ _ = £ puind
Y TV, PG TS Y, 5, *af(asy) + 5 [f(ay) + flayy,) fla,y,)]
As usual, the error control makes this an annoyingly complicated matter,

The error estimated in solution component 1 1is

, > .
(2) lesty | = 15 [£,(a,7,) + £,(a,7,) £(a,y,)];]

¢
DEGRK allows two error control paramneters rtoli and atoli to be specified
for a mixed relative-absolute test on each solution component., The matter
is handled a little differently in the start than at a general step,
For the first step we try to take ths error relative to the solution
at the beglinning of the step:

(3) i ‘esti| < atoli + rtoli‘yo,il = wti.

29



In th2 normal case wti >
2
except for thas factor h™. Thus wz can immnediately deduce the largest h

0. The weight wti is fixed, as is all of esti

suzh that (3) holds. In the usual ercor control of the code, the avcrage
magnitude of the solution at the two ends of the step is used. This
protects against a solution component vanishing "accidentally,"” but it
is inconvenient for the first step. In particular, the waight then
depends on the step size h and selection of h is no longer so siwmple,

It is all too common that a user ask for pure relative error,
a.toli = 0, even though the zolution component yo,i = 0 aht the initial
point. OF course thea wt, = O in (3). In such a case we take the

error relative to ths solution at the end of the step:

Wb, = rtoli|hf(a,yo)|
Again we can sec the largest h such that Iastil < wti, but notice thut
the order is reduced in this situation.

It can happen that the solution component has a double zero at the
initial point, f(a,yo)i = 0, in which case both choices of weight vanish.
The first order Taylor se=ries msthod produces a numerical solution which
is identically zero for such a componeat so pure relative error control
is not possible. We simply szy such & conponeat provides nn scale informa-
tion,

Bxcept for the extramalv rara case thak the user specifies pure rela-
tive error for evéry solution component and every componsat has (a% least)
a double zero at the initial point, we find a step size suitable for the
T(1,2) pair. We do not give up in the extrem= case because it is quite
possible we shall be able to integrate it. It is just that this part of
the step selection provedare provides no usa2ful step size information,

The local error of the first order methsd behyves like nhzd in general
and that of the fourth order method like ~h5¢. As a heuristic to go
from a scale suitable for/T(l,2) to a scale suitable o F(H,S) W assume
that the error of the fourth order method is egqual to that of the first
order method raised to the 5/2 power, " From this we deduczs the largesit
step size which would apparsntly succeed with thé fourth order method.

If it is smaller Shaa the bounds previously stated, w2 use it,



Finally we increase the step size as necessary so that it be meaning-
ful in the precision bazing used, Specifically in DREGRK, we insist it be

at least as large as 26 units of roundoff in the initial point a.

10. D=sign Criteria for One-step‘Methods

Runge-Kutta.and Rosenbrock methods svaluate the differential equation
several times,in the course of a step of length h from xnito Xn+h’ say at
x + A h, i=1,2,... . The author and ais colleagu= H. A. Watts have
po1nted out in connection with explicit Runoe-Kutta methods that it is

desirable that thc evaluations span the interval Fxn,x This is so that

+1]'
dlSﬂontlnultles can bz "seen" by the formula. Some computational results
brought to the author's attentiqn the fa-zt that‘the Kaps-Rentrop Rosenbrock
formulas do not span the interval. On subsequént investigation it was found
that this is common for formulas sim=d at stiff problems., Unfortuﬁatelyu
it is with stiff problems that trouble is most likely,

It is typical of stiff problems that they exhibit smell reglons in
which the solution changes so fast that it is almost discontinuous on a
time scale suitable for the rest of the problem. Wes shall describe these
boundary layers or transition regions hare as quasi-discontinuities,
Relaxation oscillations are a famlllar exanple. Another kini of example
comes fron a forcing function. HLndmarsn and Byrae have coﬂ31der°d a
couple of mobkups of photovatalyzed atmosphmrlc reantlons (sce, €.g.

[5]) waich are 1llusbrat1ve. The simpler has the form
(1) y'(t) = a4 - by + aE(t).

The forcing.funétion_E(t) is zexo during the 12 héﬁr night., At sunrise
it increases in seconds to a valu= almost constant during the day and
reverts to O at sunset. The problem is so stiff that the solutlon is
nearly aiways in stéady state, in partiqular it has ths coustant value
d/b a* night. Thus the forcing fupctidn E(t) and the solution y(t)

are nearly square waves.



32

With the more familiar methods we expact a code to locate a quasi-
discontinuity vary sharply. During a psriod of slow variation a cods

for stiff problems will taXe very large time steps, On such a time scale .

a boundary layer "looks" like a discontinuity. We expect, and find in
ths widely used codess, that codes &ill have rep=zated step failures at
suth a quasi-discontinuity until th= step size is reduced to the point
that the solution is not changing rapidly on the naw time scale., Of
cours= this means that the boundary layer is located accurately and
resolved to the degree necessary.

If thz method do=s not evaluate the differential equation at tn+l?
it can do an exceeadingly poor job of locating a guasi-diccontinuity.
To =xpose the trouble let us consider a simple cxample, the implicit

midpaint rule:

: ; h h
solve Toed = Vp * 3 f(tn + 5 yn+%),
= +hof(t +2 )
advance  Yn+1 T Y Von T30 Youd/e

Suppose the local error is estimated by doubling. Iu order to dsscribe
simply what is going on, let us consider the problem (1) and spzak
loosely as Lhough the tunctilous E(t), y(t) were actually discontinuous,
We teke the time origin at suusét nnd supposa y(t) hag attained its
steady state value d/b. Lul us bry a step size of just less than 8
hours., In the first step we evaluate the differential egquation after
4 hours and we find the numerical solution to be d/b. In the sscond
slep w2 avaluate just short of 12 hours and the formula again says
that the solution is d/b. 1In the double step of 16 hours the evalua-
tion is done at 8 hours where the intermediate solution is d/b and so
apparently confirws the "more accurate" solubion to be d4/b. Of course

1"

the formule doss qaot "see" the discontinuous change ab sunrise. The

result is that the location of suanrise has bzen missed by 4 hours!



Quasi-discontinuities cannot be regarded as pathological for stifr
problems and it is clear that serious errors in thsir solution are

possible with any formula which does not. evaluate at tn Specifically,

+1°
if during a smooth portion of an integration’'a method might use a step
size of h, a gquasi-discontimiity could bs located improperly by as much

as (1 -‘Aj)h waere tr1 + Ajh is' the point closest to'tq at which the

differential equation is evaluaced. "
Tae e=xample of th= midpoint rule is not at all contri&ed. Among
the fully implicit Runge-Kubta methods, considsrable attention has been
directed at those based on the Gaussian points bacause the& achieve
maximal order and A-stahility. They are ali defective in the'waj we
have pointed: out with the midpoint.rule‘being the worst case. Hulme
and Daniel [13] have a code implementing both Ganssian énd Raiag'“
formilas with doubling as an ercor estimator, Our observasion épplies
directly., It is interesting to note that in the recent derivation of
some formulas by Butcher [4] (and implemented by Burrage, Butchar, and

Chipman) the defect is not considered and it is quite possible. However,

the additional coastraints applied to"achieve better stability properties

had the sidz effect of avoiding thz dafect,
Lindberg [30, pp. 201-215] has based an extrapolation code on a
modified midpoint rule R '
VA
. h “n+l Yn
+BE(t, + 5, —5—) .

~

yh+l = yn

IL is ifuleresUing that thers has been somé'discuSSion (10, p. 165] as

to whether the basic formula ought to be this rule or the trapezoidal

Tule

¥y

_ I_l. / cw . 4 A
Yosp =T, t 3 Bl ,7)) + £t PRRANE

n+ n+1°

33



34

One argumsnt advanced in favor of the midpoint rule is that it is

unnscessary to evaluate f£(t In the present context we

n+l’yn4l)'
see that this is an argument against the midpoint rule.

The midpoint rule is an example of a semi-implicit formula.
Some computationally interesting examples of such formulas considerad
by Crouzeix, Alexander [1], and Norsett exhibit one or more defects
arising from an attempt to achieve various other compuatationally
desiradle properties. Crouzeix's (2,3) A-stable DIRK formula doss

not evaluate at t The (3,%) formula evaluates in the future as

n+l*
doss Norsett's formula, It is interesting that Alexander increasad
the numher of stazes to get batbter stability properties., As a

2onsequence of the desired stability properties, he had to svaluate

at tn and. so avolded the dafect.

;ie defect we have .noted is practically standard with Rosenbrock
formulas, see for examnple ths formulas used in the codes of Bui [3],
of Villadsen and Michelsen [29], -and of Kaps and Rentrop [1k4].

In the course of these studies w2 noted that a number of codes are
baszed on one-step methods which evaluate outside the. step, either in
the past, sonme Ai < Of or in the future, some Ai > 1l. This has
traditionally been avolded without any special comment, bu% in view
of thz recent use ot such formilas, a few remarks ssem to be in order.
If a problem arises in auntonomous form, there is nd> obstacle to
evaluating outsids the step, As we have commented earlier, most
theoretical work is done with thes autoaomous form aad it is easy
to understand how a researcher might ovérlook an =valuation outside
the interval., Several of Bul's Rosenbrock formalas evaluate in the
past. Thils is not greatly Jdifferent from a mathod with memory. Taszre
is an obvious difficulty with starting and after (effectively)
restarting diae to discontinuities. Bai's code apparently assumes
that evaluation in the past will cause no problem, but this is not
always true. Alexanider [1] notes that a semi-implicit formula of

Crouzeix evaluates in the future. WNorszett's pair as implemented by



Houbak and Thomsen [11] does this too., There is not then a starting
problem, but there is a termination problem. It is not uncommon that

it is not possible to evaluate the differential eqguation past some

point, or its definition changes thasre. The DEPAC [26] software design
spacifically provides users a way to warn the code that this is the case,
Any formula which evaluates in the future needs to take special action
in such a zase,

We have not thought of any .easy and reliable remedy Ffor the defect
of not evaluating at the end of the step when solving stiff problems,
Perhaps we should remerk is that it is the combination of formula and
error estimator that counts., If the formula did not evaluate at the
end but ths estimator did, there would be no difficulty. We take
a serious view of this defect. Evaluating outside the step is not
80 serious, For many problems no special action is needed. Easy
remedies seem feasible because the difficulty is similar to a familiar
one, but this doss get away from the (relative) simplicity of ons-step
methods; We feel that as an absolute minimum of protection to the user,
the prolog of any code based on such a formula should warn the user of

ths situation so that h2 can recognize when the code is not applicable,

11. Adjustment of Step Size
The principles of the adjustment of step size for explicit Runge-

Kutta methods are discussed at length in [24,25]. We have followed

them in the portion of DEGRK concernsd with the F(4,5) formulas. However,

if a step gize should fall more than onee, we reduce the step size by
the fixed factor 0.2, This is because the asymptotic behavior expected
is not evident, else we would nob have multiple failures., With no other
information wes resort to the fastest reduction ordinarily allowed.

There are some new ilssues whan solving stiff problems that we have
noL seen discussed., One is losing the scale of tha problem, For soms
particularly difficult problems, thz Rosenbrock formulas we= have imple-

mented have need=d to restart repsatedly. The code would be integrating

35



36

a smooth solution with a very large step size and suddenly find it
necessary to reduce the step size to the point that the problem is
non-stiff., It would then move back to the smooth solution at which
times it would begin to increase the step size rapidly. We believe
this is partly due to the stability properties which we take up in
section 12, It would not be particularly inefficient except for
another phenomenocun. We observed several cases when the algorithm
for step size adjustment appropriate to fhe F(4,5) formulas required
more than 25 reductions of step size to finally obtain a successful
step.

The problem with the rasults mentioned is a gensral oue. When
solving stiff problems the observed order myy not be that of the
formula applied to nonstiff problems. Prothero and Robinson [19]
have taken up this matter. Ueberhuber [28] has tried to cope with
it in another context. It is easy to see that there is a difficulty
by considering a on=-step method applied to the spscific scalar esqua-

tion

If at X owe have a comput=d solutiom VA the typical one-step method
leads to

yu'i'l - R(h)\)yn

whera R is a rational function. The local error

le = y(x  +h) -y, = (exp(hr) = R(hN))y, -



When |hk| << 1, we have
+1
exp(h\) = R(h)\) + 6(Inn?™)y
S0

321 = sCim ™"y,

as a condition that the method be of order p. However, when solving stiff
systems we are interested in this differential equation for Re(\) < O,

|[ax| >> 1 and the situation is radically different. First we noSe that

12 = _ rmn) ; ,

Tae behavior of R in the neighborhéod of_infinity‘must be investigated
anyway because of the stability implications as in section 12, but here
we are interested in the impliecations for accﬁracy. For methods stable
at o, |R(x) | < 1. Writing

c .

1 2_ ‘
R(h)\) = ¢ + == + -s t oeee

we see that if the 1lozal error is not acceptabie, it may require large

changes of step size to reduce it significantly, The Rosenbrock methods
we lmpletiented all have SR % 0.3, Ones of ths problems we integrated had
Inx| ~ 20%°

like a third order formula., Many common formulas have e, = 0, but none

, so it is not surprising that the local error did not behave

of the popular ones have c, = 0., Taus this difficulty with the asymptotic
behavior is of some gensrality, It 'is surprlsing to many that the local
error may w2ll be g gggxgggiqg'functién of n for Lnxl >> 1. This illus-~
trates that our understanding of the control of error by adjustment of

step size is not complete,

37



38

We have: responded to the situation in two ways. On a failed
step we are pessismistic about the assumed asymptotic behavior, Because
of the work iuvolved it is better to‘attempt a stepsize too small and
succeed, than one too large aid fail. Oa a first failure, we simply halve
the step size. Should this fail, we reduce the step size attempted by
a factor of 0.2. Should this step size fail, we, in effect, restart by
reducing the step size so that thy” = p, thus forcing the code to change
to the explicit Runge-Kutta formula, Tals drastic action is bzcaise we
have accumulased evidence that the scale of thz2 prublem has bean.logt.
TFor raliahility we reduse the stcp size to the point that any integral
cuarve can bs resolved. »

On a2 successful step we esltimate an appropfiate step sizz for
contimiing, but limit it depending on how stiff the problem is, The
explicit formula for non-stiff regions permits a step size increase
as large as a factor of 5. The larger ”hfy” is, the more conservative
we choose to be bscause we are working in a region where our theoretical
underpinnings are shaky. Specifically in DEGRX, we limited the increase

of step size to

3.8
1.2 —-—-—-1 Hff—”- .

1.0 + S
5

Thus if the problem is barely stiff, the increase is limited o a factor

of 5, and if it is extremely stiff, to a factor of 1l.2.

7. St&bility Properties

The stability of methods for thz solution ot stiff prublems han
been the subject of intensive research, Neverthaless, our undsrstanding
of the matter is far from answering Lhz necds ol prackicc. Early wory
rigorously applies only to problems of thz form y' = Jy with a constant
J which can be diagonalized by a similarity transformation, Th2 common
numarical methods cair Ye analyzed by ths same transformation so that

one can test stability by considering the method as applied to y' = Ay



for )\ a (complex) eigenvalue of J,. Rosénbrovk methods applied to this

test equaflon lead to a rathqal funstion R(hx) of th= step SLZ° h and

A If |R(M)\)| s 1, the computaflon is stable and otherwise, unstable.

The applicatiqn of this analysis to more compllcated problems 1is heuristic.
Although experiences shows it to be useful, one should not put too much
faith in it.

The reason we give this background is that the Kaps—Rentrop formala
pairs have |R(o)| = 1 for the formula they intended for advancing the
solution, Wh@n solv1nc stiff problems we are vefy interested. in step
sizes h such that for some eigenvalue A of ths Jaﬂoblan, |hx| >> 1,

Thz2 author umic h prefers to use formulas for whlch the stability is naot
so marginal, so as to be a little more confident that they will be
applicable to problems less arthL01al than the test e1ua*1on.

Bzsides the matter of staalllty, there is the related matter of
how accurate formulas are for ]hk] >> 1, At least for the test equation, .
this can be studied in detail in termé of how well R(hk) approximates
exp/h)). If |R(»)| # 1, there is no qualitative agreement for |nn] > 1,
If |R(=)]| is significantly less than 1, the numerical solution is at
least damped. | - A

We preferred to advance thé solution with the third order fomaula
of the GRKUA pair because it has |R(»)| 2 0.31, We s.ctu.auy,trieri
proceeding with both formuilas. Kaps has told us that in the tests
of MY it was more efficient to use the fourth order formula. This is
easy to understand becanse the test set [8] is not particularly demanding
and rewards high order, Our expefience'was somewhat different bscanse |
our code used the Fehlbsrg schems part of tha'time. When=var the Fehlberg
scheme could be used, one would expzact that the higher order formula of the
Rosenbrock pair would be advaltaveous. In our computations with the test
set [8] there was no important distinction due to which fofmula of the
Rosenhbrock palr was used, The matter was differant when harder problems

wzare tried,

39



Lo

A good example of our experience, though not the most dramatic,
is the problem of Buli [2] integrated to x=5. We made runs in which
the solution was advanced with the third order formula and corresponding
ruans with the fourth order formula of the GRKYA pair. With the pure
absolute error tolerances 10’2, lO‘LL therz was no striking difference.
The number of steps gives a fair impression of the relative work. The
numbers of steps at the two tolerances were 24, 90 with the third order
formula and 28, 11% with the fourth order formula. Although not negligible,
the difference does not compare to that oObserved when pure relativs error
tolerances of 10'2, lO-u'were used. Then the numbers of steps were 158,
769 and 253, 922 respactively. Considering the cost of a step,. this
represents an important difference in the performance of the formulas and
caused ns to prefer the more damped formula.

We would prefer that both formulas of the (3,4) pair be strongly
damped at infinity. Also, we would prefer to advance the solution with
the fourth order formala to take advantaze of the higher order. This is
partly why ws made g different selection of formula pair in section 6
than did Keps and Rentrop. With our choice both formulas are A-stable
and both have lR(m)| 2 0.33. This is very nearly the same damping at
infinity as that of the third order formula of GRK4A, but now we can
alvancce the solution with the highesr order formula (which by censtraation

is a relatively ascurale furmnle of ordsr 4).

13. More Numerical R=asults

As we said in ths introduction, it is not our object to compare the
parformance of the codz DEGRK to popular BDF codes. Some results were
reported in ssctions 8 and 12. We shall present here a few aiditional
results intended to ssy something aboul the algorithms us2d in DEZRK
and to suggest that Rosenbrock methods might be competitive in suitable

circumstances,



In section 2 we stated a problem from the chemical engineering
literature which depends on three parameters K, é, Nf. In the article
refersnced a set of computations is reported for the nine problems
resulting from the choices K = 5; £ = 0.1, 5, 500; Nf = 0.1, 5, 50.
The solutions are well scaled so an absolute error test is reasonable,
W2 solved all nine problems at a given tolerance with DEGRK and then
with the BDF code of the NAG library [17]. At tolerance lO-2 the
respective central processor timss ware 0.205 and 0,497 units. At
tolerance lO-h they were 0.754 and 1.02. At”tolerance 10“6 they were
4,34 and 1.67. Spot checking of ths apparent accuracies suggests that
DEGRK is producing a somewhat more accurate result, but that the
accuracies are rouzhly comparable, These results and others of the
kind show that DAGRK may be more efficient in a real time sense for
suitable problems provided on= does not ask for a great deal of

accuracy. Kaps and Rentrop came to a similar conclusion in [1h].

The parameter choice X =5, § = 0.1, Nf = 0,1 results in the
least stiff problem. At all three toleraazes the F(L,5) formulas are
used a% every step. At tolerance lO"2 there are only 3 steps, and
3 Jacobian evaluabions were made. At toler@nce l(v)",'F the decision
is less ambiguous because of the smaller step size needed to g2t the
accura~y. There were then onl& 6 steps and 2 Jacobian evaluatioas.
At tolerance 10"6 there ware 12 steps and 3 Jacobian evaluations.
Because so few steps ars made in solving this problem the numnbher
of Jacobian evaluations is relatively large. As we would expect,
the more stringent thec tolerance, the less stiff the problem looks
and the fewer Jacobians are needed in our test. It is no surprise
that DEGRK is more efficient than the BbF code in terms of function
and Jacobian evaluations. At tolerance 10" ° DEGRK raquirad 21
function evaluations along with the 3 Jacobian evaluations whereas the
BOF code needed 35 function evaluations and 8 Jazobian evaluations.
Tne diftTerence of performance iu this msasure increases rapidly as

the tolerance becomes more stringent for a nou-stiff problem.

L1



Yo

The parameter choice K = 5, £ = 500, I\Tf = 50 results in the stiffest
problem. Thz maximea valus of hy||fy|| encountered by DEIRK in the integra-
tions at tolerances 10-2, loau, 107" are raspectively, 7353, L4478, 1734.
Aczcording to the results of section 5 this implies some fairly ill-
condlitioned systems in the evaluation of ths Rosenbrock formula. As is
typical, mors stringent azcuracy requests lead to smaller step sizes amd
better conditioned systems. Tmiz, in a way, w2 can expsct more accurate
solutions when we really n=zed them, A significant mumber of steps were
taken with the explicit method at each tolerance, AL toleranca 10'2, 2
of the 21 steps were taken with the F(4,5) pair; at tolerance 1o'h, 12 of 77;
and at tolerance 10 , 35 of 6356. Notice the rapid inzrease in the number
of steps as the tolerance is made more stringent. Tals 1s charazteriaztic
of a fixed order method, The results sugzest the code quite inappropriate
at the tolerance 10'6. This is also suggested by the numnber of rejected
steps which were respectively O, 8, and 111. At thz crudast toleraace
DEGRK 1is somewhat compztitive even in terms of fuhction and Jazobian
evaluations. Then it nead=d 90 function and 21 Jacobian =2valuations
whareas the BDF code nzeded 78 function and 15 Jacobian evaluations.

The differsnce of performance in this m=asure increases rapidly as
the tolerance becomes more‘stringent for a stiff problem,

It is especially hard to compare codes on difficult problems, hut
we shall present one example which has its iuteresting points. S3ott
and Watts (16, pp. 197-227] report a difficult iunitial value problem
arising from the solution by shooting methods of a boundary value problem
describing a kidney function. The systew of 5 ejuations shows a dramatic
difference in cost when using the Adams suite ODE/STEP, INTRP on varia-
tion of ome initial value from 0.93025 to 0.99000, In large measure the
differanca in bzhavior is due to stiffness, although in anothzr study
w2 found that both problems are stiff., The integrations are very sensitive
so high accuracty was necassary in the application. Such high azcuracy
makes DEGRX inappropriate, but we thought it interesting to explore the

problem a% relatively crude tolerances becauses of the differing stiffness.



For each of thes two different initial values cited, we solved the
problem at the two pure rela*ive error tolerances 10-2, lO-h. DEGRX
miast take ths first step of an integration with the explicit Runge-
Kutta pair, but for these integrations the problems wers so stiff that
it took no other steps with the explicit formula, The problem with
initial value 0.99000 is significantly stiffer. We computed in every
case the maximum value of hy”fyH as an indication of the stiffness.

For the initial valus 0.99000 this maximun was abou’ L4000 at tolerance
10_2 aad 7000 at tolerance 1o'u. For the initial value 0,99026 this
. maximum was about 50 at tolerance lO"2 and 20 at tolerance lO-u.

We also solved the problems with the- BOF cods from-the NAG -
library. A difficualty is that the computed results are of differing
accuracies., We computed solutions at the puare rzlative error tolerance
of 10'6 with the BDF code and regard=d them as the "true" solutions
in what follows. 1In ths application it is the value of the solution
at the end of the integration which is critical, so we concentrated
on it.

For the problem with initial value 0.99000, the BDF code couputed
a solution cheaply at tolerance 13-2, 0.049 units of central processor
time, but it was worthless. For example it reported the first two
solution components to be about 1.89 xAlOO, 5.81 x lO_l when they
in fact are about 1,38 x.lO2 and 7.21 x 10_3, At the tolerance ld'u
the cost was 0.295 units and the maximum rslative error was about
1.3 x 1071, When DEGRK was given the tolerance 1072 it took more
time, 0,180 units, but it produced a result almost as good as that
with toleraﬁce lO-+ in the BDF code, namsly a maximun error of 1.7 x lO-l,
When DEGRK was given the tolerance J.O-L‘L it took less time, 0,248 units,
than the BDF code and got a lot more accuracy, namely a maximam error
of 2.0 x 10-3. The situation was similar, though rather léss dramatic,
for the initial condition 0.,99026. Ths cost in central processor time
at thz tolerances 10“2, Ll.()mu were 0,054, 0,221 with the BDF cods and

0.148, 0.223 with DEGRK. The result at tolerance 10"2 was not so bai

43



L

with the BDF code as with the other problem, but one component was off
by a fTactor of more than 3 so thz solution was not very helpful. At
toleranze 1o'u the maximum error with the BDF code was 4.0 x 10-1. The
error at tolerance lOcz‘was not very good with DEGRX either, 8.6 x 10-1,

although closer in psrformance to the tolerance lO-u than 10-2'with tha

BDF code. The error at tolerance 10"u with DECRX was 7.1 x 10-3.

The kind of results seen on this problem did not surprise the author
bacause he adopted rather conservative tactics in DEGRXK and furthermore
some of the aigorithms have a tendency to result in more accuracy than
required. Th2 line of BDF codes starting with DIFSUB [9] are not so
conservative. The situation maxes it hard to compare DICRK directly
to BDF codes, but this is not the object of the present papar. We do
think the results presented show that Rosenbrock codes arz competitive
with BDF codes in appropriate circumstances and that DIGRK, in particular,

is in some respects successful,

14, A Personal Assessment

In the course of this investigation the anthor has forimz2d some
opinions ahout production codes based on Rosenbrock methods. A lew
will he mentioned because thay suggest certain lines of development,

Taz mnhst stralghtforward improvemeut to DECRK would he th=z
davelopmant of a Rosenbrock formula with bstter propertles. Spevillically,
it seems that maximal damping at infinity (R(e) = 0) und a higher order
are n=2ded. Higher order, maximdlly damp=d formulas havre alrealy been
given [15). Unfortunately they are not accompanied by an error estima-
tor. The gensral principle of dovubling ia applicahle, but does not
strik~ the author as promising., It involves two matrix factorizations
and a conglderable mmber of stages per step. Very recent work [18]
suggests that perhaps ths approach is practical, Th= history of
explicit Runge-Kutta hethods suggests that too much emphasis is being
placad on a minimal number of stages, In view of ths significant
linear algebra costs and the partial derivatives evaluation at every

step, it appears babtter to aim for fewer steps with more stazes.



In some circumstances the Rosenbrock methods appsar to enjoy an
alvantage with respzct to the BDF in terms of overhead. The anthor
suspects that this is partly due to the different assumptions made about
the problem class addressed rather than bzinz intrinsic. The Roaenbrock
methods are being implemented as fixed order codes while the BOF are
usually implemented as variable order codes., The distinction has
important implications indep=zndent of the underlying methods. The
situation is analogous to the relative merits of explicit Ringe-Kutta

and variable order<Ama33‘methods.

We have seen that a crude, but useful, way to recogaize ani respond
to stiffns=ss ﬁutomatically is poséible. The autho} believas that other
techniques he is currently developing will prove at least as effective
for the BDF. L

The Rosenbrock mzthods handle gracefuliy stiff problems with
Jacobians that change pretty often. It is not clear ‘at this time the
practical significance of this differencze.,  Part of the difficulty is
that there is not enough information'availéple about‘"t&pical" problems,
Just how constant are thes Jazobians? Do we focus our athbention on
problems with nearl& constant Jacobiané bacausa our'theoretical nnder-

svanding of them is better, or ars they truly represantative? Another

difference difficult to evaluate is the differeat role of ill-conditioning

in the linzar systems to bs solved, This appears a worrisoms matter for
accurate integrations with high order Rossnbrock methods, but it is
poeelble that severe 11l-conditioning is not common or, for some reason

not taken up in this paper, doess not greatly affect the results.

45



L6

2
.

References

l.

10.

11,

Alexandsr, R. Diagonally implicit Runge-Kutta methods for
stiff 0.D.E.'s. Siam J. Numer. Anal, 6 (1977), 1006-1021.

Bui, T. D. Some A-stable and L-stable methods for the
numerical integration of stiff ordinary differential equa-

tions. J. ACM 26(1979), 483-433.

Bai, T. D. and Bui, T. R. Numerical methods for extremely .
stiff systems of ordinary differential equations. Appl.
Math. Modelling 3 (1979), 355-358.

Butcher, J. C. A transformed implicit Runge-Kutta method.
J. ACM 26 (1979), 731-738.

- Byrne, G. D., Hindmarsh, A. C., Jackson, K. R., and Brown,

H. G. A compurison of two QDE codées: GEAR and EPISODE.
Comp. aand Chem. Eng. 1 (1977), 133-1k47.

Cline, A.VK., Moler, C., B., Stewart, G. W., and Wilkinson,
J. H. An estimate for the condition of a matrix. SIAM J.
Numer. Anal. 16 (1979), 368-375.

Dongarra, J. J., Banch, J. R., Moler, C. B., and Stewart,
G. W. LINPACK User's Guide. Soziety for Industrial and
Applied Mathcmatics, Philadelphia, 1979.

Enright, W, H., Hull, T. E., aad Lindberg, B. Comparing
numerical methods for stiff systems of 0.D.E.'s. BIT 15
(1975), 10-h3.,

Gear, C. W. Numerical Initial Value Prohlems in Qrdinary
Differential Equations. Prentice-Hall, Englewood Cliffs,
NJ, 1971.

Hall, G. and Watt, J. M. Modern Numerical Methods for
Ordinary Differential Equations. Clarendon Press, Oxford,
19706, ‘

Houoak, N., and Thomsen, P, G. SPARKS a FORTRAN subroutine
for the solution of large systems of stlfl ODE's with
sparse jacobians. NI-79Y=02. Tugt. for Numer, Anal.,
Tech, Univ. of Denmark, Lyngby, Deamark, 1979.

van der Houven, P, J. Construction of Integration Formulas
for Initial Valn= Problems. North-Holland, Amsterdam, 1977.




13.

14,

15.

16.

17.

18,

19.

20.

21,

22,

23.

2k,

Hulme, B, L. and Daniel, S. L. COLODE: a colocation subroutine
for ordinary differential equations., SAND74-0380. Sandia
National Laboratories, Albugquerque, NM, 1974,

Kaps, P. and Rentrop, P. Generalized RungeAKﬁtta methods of
order four with stepsize control for stiff ordinary differential
equations. Numer. Math. 33 (1979), 55-68.

Kaps, P. and Wanner, G. A study of-Rosenbrock-type methods
of high order. Inst. fur Math. and Geometrie, Universitat
Innsbruck, 1979.

Lapidus, L. and Schiesser, W.E. Nunierical Methods for
Differential Systems. Academic, New York, 1976.

NAG Marual, Mark 7. NAG Central OffiCe,?i Banbury~Road,
Oxford, England, 1979. ' ’

Poon, S., Kaps, P., and Bui, T. D. A Comparison of ROW"
methods for stiff 0.D.E.'s using Richardson extrapolation
and embedding techniques for stepsize control. Dept., Comp.
Sei., Concordia Univ., Montreal, 1980,

Prothero, A. and Robinson, A. On the stability and accuracy
of one-step methods for solving stiff systems of ordinary
differential equations. Math. Comp. 28 (1974), 1u5-162.

Rodrigues, A, and Beira, E., C., Staged approach of percola-
tion processes. AIChE J. 25 (1979), L416-423.

Shampine, L. F. Stiffness and nonstiff differential equation
solvers, II: detecting stiffness with Runge-Kuta mathods,
AM Trans. Math, Software 3 (1977), LL-53,

Shampine, L, F. Implementation of implicit forinulas for the
solution of 0.D.E.'s. SIAM J. Sei, Stat. Comp. 1 (19930),
103-118.

Shampine, L. F. Typs-insensitive ODE codes oased on implicit
A-stable methods. Math., Comp., to appear.

Shampine, L. F. and Watts, H. A, Tae art of writing a Ruage-
Kutta cod=s, Part I, in J. R, Rice, ed, Mathematical Software
ITI. Academle, Nsw York, 1977.

L7



L8

27.

28,

e9.

30.

Shempine, L. F, aad Watts, H. A. The art of writing a Rungs-
Kutta code, IL. Appl. Math. Comp. 5 (1979), 93-121.

Shampine, L. F. and Watts, H, A. DEPAC - design of a user
oriented package of ODE solvers. SAND79-2374. Sandia
National Laboratories, Albuquerque, WM, 1930.

Stoer, J. and Bulirsch, R. Introductlon to Namerical Analysis.
Springer, New York, 1980. '

Ueberhuber, C. W. Implémentatibn of defect correction method s

for stiff differentisl equations. Computing 23 (1979), 205-232,

Villadsen, J. and Michelsen, M. L. Solution of Differential
Equation Models by Polynomlal Approximation. Prentice-Hall,
Englewood “llffs, NJ, 1978, -

Willoughby, R. A. Stiff Difrferential Syetems. Flenum Press,
New York, 197k,




Distribution:

Prof, R. Alexander

Rensselaer Polytechnic Institute
Mathematical Sciences Dept,
Troy, NY 12181

Prof. D. G. Bettis

TICOM :
University of Texas at Austin
Austin, TX 78712

Prof. T. A. Bickart

Elec. and Comp. Engr. Dept.
Link Hall ’
Syracuse University
Syracuse, NY 13210

Dr. T. D. Bui

Dept. of Computer Science

1455 de Maisonneuve Blvd. West
Montreal, Quebec H3G 1M8
CANADA

Prof. Dr. R. Bulirsch
Mathematisches Institut der
Technischen Universitat

8 Minchen 2

Arcisstrasse 21

Postfach 20 2420

West Germany (BRD)

Prof. J. C. Butcher

Dept. of Computer Science
University of Auckland
Private Bag

Auckland

NEW ZEAT.AND

Dr. G. D. Byrne

Computer Technology and Services Div.

Exxon Research and Engineering Co.’
P.O. Box 45 .
Linden, NJ 07036

Prof, F. Chipman
Department of Mathcmatics
Acadia University
Wolfville, Nova Scotia
CANADA  BOP 1XO

Dr. Alan Curtiss

AERE Harwell

Computer Science and Systems Div.
Didcot, Berkshire OX 11 ORA
ENGLAND

Prof. G. Dahlquist '
Department of Numerical Analysis
Royal Institute of Technology
S-1004k Stockholm

SWEDEN

Prof. Dr. P. Deuflhard

Universitat Heidelberg

Institut fur Angewandte Mathematik
Im Neuenheimer Feld 294

6900 Heidelberg 1

West Germany

J. R. Dormand .

Dept. of Mathematics and Statistics
Teesside Polytechnic

Middlesbrough Cleveland TSI 3BA
England . '

Dr. R. England
I.I.M.,A.S.

Universidad Nacional
Autchoms de Mekico
Apartado Postal 20-726
Mexico 20, D. F.

MEXICO '

Dr. W. H. Enright

Department of Computer Science
University of Toronto

Toronto, Ontario ’

CANADA M5S 1A7

Prof. C. W. Gear

Department of Computer Science
University of Illinois at U-C
Urbana, IL 61801

Dr. I. Gladwell
Department of Mathematics
University of Maunchester
Manchester M13 GPL
ENGLAND

49



1

Prof. G. K. Gupta

Division of Computer Applications
Asian Institute of Technology
P.0. Box 2754 '
BANGKOK, THAILAND

Dr. George Hall
Department of Mathematics
University of Manchester
Manchester M13 9PL
ENGLAND

Dr. J. P. Hennart
I.T.M,A,S.

Universidad Nacional
Autdnoma de México
Apartado Postal 20- 726
Mexico 20, D.F. :
MEXTCO

Dr, A. C. Hindmarsh

L-310 '

Lawrence Livermore Laboratory
Livermore, CA 94550

Prof. P. J. Van Der Houwen
Stichting Mathematisch Centrum
7Ze Boerhaavestresat 49
Amsterdam 1005

The Netherlands

Prof, T. E. Iull

NDepartment of Computer Science
University of Toronto

Toronto, Ontario

CANADA M58 1A7

Dr. K. R. Jackson

Dept. of Computer Scilence
Yale University

New Haven, CT 06520

Dr. R. Jeltsch
Mathematicsg Department
Ruhr-Universitat Bochum
4630 Bochum 1

Postfach 102148

West Germany (BRD)

Dr. P. Kaps

Institut flir Mathematik T
Universitat Innsbruck
Technikerstr., 13

A-6020 Innsbruck

AUSTRIA

Dr. R. W. Klopfenstein
RCA Laboratories
Princeton, NJ 03540

Dr. F. T. Krogh

125/128

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91103

Prof. J. D. Lambert
Department of Mathematics
University of Dundee
Dundee DD1 LHN

SCOTLAND

Dr. B. Lindberg
Dept. of Computer Science
Royal Inatitute of Technology

Stockholm 70

SWEDEN

Dr, W. Liniger

IBM T, J. Watson Research Center
P.,0. Box 218

Yorktown Heights, NY 10598

Dr. sc. R. Marz

Bereich Num. Mathematik
Sektion Mathematik '
Humboldt-Universitdt zu Berlin
DDR 1086 Berlin, PSF 1297
rast Germany (DDR)

Dr. O. Nevanlinna
bepartment of Mulliematics
Faculty of Technology
University of Oulu
SF=-90570 OULU 57

FINLAND

Dr, S. P. Ngrsett

Universitet I Trondheim

Norges Tekniske Hggskole
Institutt for Numerisk Matematikk
N 7034 Trondheim

NORWAY

Dr. A, Prothero
Thornton Research Centre
P.0. Box No, 1

Chester CHI 3 SH
ENGLAND



Dr. P. Rentrop

Institut fir Mathematik
der Technischen Universitidt
D-8 Munchea 2
Arcisstrasse 21

Postfach 20 24 20

West Germany (BRD)

Prof., J. Rosenbaum

Virginia Commnonwealth University
Mathematical Sciences Dept,
Ricumond, VA 23284

Dr. R. Sacks-Davis

Dept. of Computer Science
Monash University
Clayton, Victoria 3168
AUSTRALIA

Dr. A. E. Sedgwick
Dept. of Mathematics
Dalhiousie University
Halifax, NS B3H 4H8
CANADA

Dr. P, Seifert

Technischen Universit&t Dresden
Sektion Mathematik
Wissenschaftsbereich

Numerische Mathematik

DDR-8027 Dresden, Mommsenstr., 13
East Germany (DDR)

Prof., Dr. H. J. Stetter

Institut fur Numerische Mathematik
Technische Hochschule Wien

A-1040 Wien, Gusshausstr. 27-72
AUSTRTA

Dr, P, G, Thomsen

Inst. for Numerical Analysis
Technical University of Denmarx
DX 2300 Lyngby

DENMARK

C. W. Ueberhuber

Institut tiir Numerische Mathematik
der Technischen Universitét
Gusshausstr, 27

A-1040 Wien

AUSTRIA

Dr. M. van Veldhuizen
Wiskundig Semarium
Vrijs Universitett

de Boelelaan 1011
Amsterdam

the Netherlands

Dr. J. H. Verner
Dept. of Makthematics
Queen's University
Kingston K7L 3N6
CANADA

J. G. Verwer

Stichting Mathematisch Centrum
P.0. Box 4079 1009AB
Amsterdamn

the Netherlandis

Dr. G. Wanner,

Dept. de Mathematique
Universite de Geneve
2-4 Rue du Lievre
CH-1211 Geneve 2L
SWITZERLAND

Dept. of Computer Sciences
Report Section

Royal Institute of Technology
5-100 L4

Stockholm 70, Sweden

2646 M. R. Scott
2646 H, A. Watts
5600 D. B. Shuster
Attn: 5610 A, A, Liebher
5620 M. M. Newsom
5630 R. C. Maydew
5640 G. J. Simmons
5641 R, J. Thompson
5642 1L, F. Shampins (50)
8266 E. A. Aas
8332 R. E. Huddleston
8332 L. Petzold
3141 T. L. Werner (5)
3151 w. L. Garner (3)
For DOE/TIC (Unlim. Release)
3154~3 R. P, Campbell (25)
For DOE/TIC

51-52



Org. Bldg. Name Rec'd by * | Org. Bldg. Name Rec’'d by

* Recipient must initial on classified documents.





