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ABSTRACT 

Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated 
and the coefficients in these linear equations identified The generalization from a single porosity model increases 
the number of independent coefficients from three to six for an isotropic applied stress In a quasistatic analysis, 
the physical interpretations are based upon considerations of extremes in both spatial and temporal scales The 
limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and 
fractures behave in an undrained fashion For the very long times more relevant for reservoir chawdown, the double 
porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent 
parameters (such as the total compressibility) may be determined by appropriate field tests At the mesoscopic 
scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on 
core, and the compressiblity can be measured for a single fracture We show explicitly how to genaalize the 
quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt 
flow under partially saturated conditions ran be explained alternatively in terms of the double-polo&y model 
The result is therefore a theory that generalizes, but is completely consistent with, Biot’s theory of poroelasticity 
and is valid for analysis of elastic wave data from highly fractured reservoirs 

1 INTRODUCTION 

It is well-known in the phenomenalogy of earth materials that rocks are generally heterogeneous, porous, and 
often fractured or cracked In situ, rock pores and cracks/fractures often contain fluids These fluids are often 
of great practical interest to us, since they are very often oil, gas, or water Distinguishing these fluids from 
their seismic signatures is often the key issue to be addressed in seismic exploration and reservoir monitoring 
Understanding their flow characteristics is often the responsibility of the reservoir engineer 

Traditional approaches to seismic exploration have often made use of Biot’s theory of poroelasticity [Biot, 
1941, 1956, 1962, Gassmann, 19511 This theory has always been limited by an explicit assumption that the 
porosity itself is homogeneous Although this assumption is known to be adequate fol acoustic studies of many 
lock core samples in a laboratory setting, it is probably not a very good assumption for applications to realistic 
heterogeneous reservoirs One approach to dealing with the heterogeneity is to construct a model that is locally 
homogeneous, z e , a sort of finite element approach in which each block of the model satisfies Biot-Gassmann 
equations This approach may be adequate in some applications, and is certainly amenable to study with large 
computers However, such models avoid the question of how we are to deal with heterogeneity on the local scale, 
i e , much smaller than the size of blocks typically used in the codes 

Although it is clear that porosity in the earth can and does come in virtually all shapes and sizes, it is also 
clear that two types of porosity are most important (1) Matrix porosity that occupies a finite and substantial 
fraction of the volume of the reservoir This porosity is often called the storage porosity, because this is the 



volume that stores the fluids of interest to us (2) Fracture or crack porosity that may occupy very little volume, 
but nevertheless has two very important effects on the reservoir properties The first effect is that fractures/cracks 
drastically weaken the rock elastirally, and at very low effective stress levels introduce nonlinear behavior since 
very small changes in stress can lead to large changes in the fracture/crack apertures (and at the same time 
change the fracture strength for future changes) The second effect is that the fractures/cracks often introduce 
a high permeability pathway for the fluid to escape from the reservoir This effect is obviously key to reservoir 
analysis and the economics of fluid withdrawal 

it is therefore not surprising that there have been many attempts to incorporate fractures into rock models, 
and especially models that try to account for partial saturation effects and the possibility that fluid moves (or 
squirts) during the passage of seismic waves [Bud&sky and O’Connell, 1975, O’Connell and Budiansky, 1977, 
Mavko and Nur, 1979, Mavko and Jizba, 1991, Dvorkin and Nur, 19931 P revious attempts to incorporate 
have generally been rather ad hoc in their approach to the introduction of the fractuxs into Biot’s theory, if 
Biot’s theory is used at all The present authors have recently started an effort to make a rigorous extension of 
Biot’s poroelasticity to include fractures/cracks by making a generalization to double-porosity/dual-permeability 
modeling [Berryman and Wang, 19951 The previously published work concentrated on the fluid flow aspects of 
this problem in order to deal with the interactions between fluid withdrawal and the elastic behavior (closure) of 
fractures during reservoir drawdown 

It is the purpose of the present work to point out that a similar analysis applies to the wave propagation 
problem We expect it will be possible to incorporate all of the important physical effects in a very natural way 
into this double-porosity extension of poroelasticity for seismic wave propagation The price we pay for this rigor 
is that we must solve coupled equations of motion locally Within traditional poroelasticity, there are two types 
of equations that are coupled These are the equations for the elastic behavior of the solid rock and the equations 
for elastic and fluid flow behavior of the pore fluid In the double-porosity extension of poroelasticity, we will have 
not two types of equations but three The equations for the elastic behavior of the solid rock will be unchanged 
except for a new coupling term, while there will be two types of pore-fluid equations (even if thae is only one 
fluid present) depending on the environment of the fluid Pore fIuid in the matrix (storage) porosity will have one 
set of equations with coupling to fracture fluid and solid, while fluid in the fractures/cracks will have another set 
of equations with coupling to pore fluid and solid Although solution of these equations is no doubt more difficult 
than for simple acoustics/elasticity, it is probably not significantly more difficult than traditional single-porosity 
poroelasticity We are not going to solve these equations in the present paper We will instead derive them and 
then show that the various coef%cients in these equations can be readily identified with measurable quantities 

2 EQUATIONS OF MOTION 

The seismic equations of motion for a double-porosity medium have been derived recently by Tuncay and 
Corapcioglu [1996] using a volume averaging approach (Tl lese authors also provide a thorough review of the 
prior literature on this topic ) We will present instead a quick derivation based on ideas similar to those of Biot’s 
original papers [Biot, 1956; 19621, wherein a Lagrangian formulation is presented and the phenomenological 
equations derived 

Physically what we need is quite simple-just equations embodying the concepts of force = nuwsx acceleration 
and dissipation due to viscous loss mechanisms The forces are determined by taking a derivative of an energy 
storage functional The appropriate energies are discussed at length later in this paper, so for our purposes in this 
section it will suffice to assume that the constitutive laws relating stress and strain are known, and so the pertinent 
forces are the divergence of the solid stress field ~cj,j and the gradients of the two fluid pressures p!:) and p!? for 
the matrix and fracture fluids, respectively (In this notation, i, j index the three Cartesian coordinates Al, 22, ~3 
and a comma preceding a subscript indicates a derivative with respect to the specified coordinate direction ) 
Then, the only work we need to do to establish the equations of motion for dynamical double-porosity systems 



concerns the inertial terms arising from the kinetic energy of the system 

Generalizing Biot’s approach [Biot, 19561 to the formulation of the kinetic energy terms, we find that for a 
system with two fluids the kinetic energy T is determined by 

2T = pllti ri + pz&‘) U(l) + pa&J@) UC’) + 2~121.1 U(l) + 2p13u ir(‘) + 2p23iT(‘) U@), (1) 

where u is the displacement of the solid, U ck) is the displacement of the kth fluid, and the various coefficients ~11, 
plz, etc , are mass coefficients that take into account the fact that the relative flow of fluid through the pores is 
not uniform, and that oscillations of solid mass in the presence of fluid leads to induced mass effects Clarifying 
the precise meaning of these displacements is beyond our current scope, but recent publications help with these 
interpretations [Pride and Berryman,lSSS] 

Dissipation plays a crucial role in the motion of the fluids and so cannot be neglected in this context The 
appropriate dissipation functional will take the form 

20 z b,,(,i - U(l)) (u-U(‘)) + b13(,i - ti@)) (; - ti@)) + b&J(‘) - ti@ )) (UC’) - U@)) (2) 

This formula assumes that all dissipation is caused by motion of the fluids either relative to the solid, or relative 
to each other We expect the coefficient b23 will generally be small and probably negligible, whenever the two 
fluid model is appropriate for the system under study 

Lagrange’s equations then show easily that 

for i= 1,2,3, 

and that 

a aT 

i > 
+ aD -~ __ 

at a@) 
au!“) =-pp, for i= 1,2,3,k=l,2 

These equations now account properly for inertia and elastic energy, strain, and stress, as well as for the specified 
types of dissipation mechanisms, and are in complete agreement with those developed by Tuncay and Corapcioglu 
[1996] using a diffeent approach In (4), the parts of the equation not involving the kinetic energy can be shown 
to be equivalent to a two-fluid Darcy’s law in this context, so big and bn are related to Darcy’s constants for two 
single phase flow and b23 is the small coupling coefficient Explicit relations between the b’s and the appropriate 
permeabilities (see Eqs (53) and (54) of Berryman and Wang [1995]) are not difIicult to establish The harder 
part of the analysis concerns the constitutive equations required for the right hand side of (3) The remainder of 
the paper will therefore be devoted to addressing .some of these issues 

3 SINGLE POROSITY AND LONG TIME ASYMPTOTICS 

In the absence of driving forces that can maintain pressure differentials over long time periods, double porosity 
models must reduce to single porosity models in the long time limit when the matrix pore pressure and crack 
pole pv~ssure become equal It is therefore necessary to remind ourselves of the basic results for single porosity 
models in poroelasticity One important role these results play is to provide constraints for the long time behavior 
in the problems of interest A second significant use of these results (see Berryman and Wang [1995]) arises when 
we make laboratory measurements on core samples having properties characteristic of the matrix material Then 
the results presented in this section apply specifically to the matrix stiffnesses, porosity, etc 

For isotropic materials and hydrostatic pressure variations, the two independent variables in linear mechanics 
of porous media are the confining (external) pressure p, and the fluid (pore) pressure p, The differential pressure 
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pd E p, - pf is often used to eliminate the confining pressure The equations of the fundamental dilatations are 
then 

6V -++$f 
V (5) I 

for the total volume V, 

-3 _ 6Pd b 
v4 P -rc+; m 

(6) 

for the pore volume V, = 4V, and 

for the fluid volume VJ Equation (5) serves to define the various constants of the porous solid, such as the drained 
frame bulk modulus I’; and the unjacketed bulk modulus Ka for the composite frame Equation (6) defines the 
jacketed pore modulus KP and the unjacketed pore modulus K+ Similarly, (7) d e fi 
the pore fluid 

nes the bulk modulus IfJ of 

Treating 6p, and 6pJ as the independent variables in our poroelastic theory, we define the dependent variables 
6e = 61//V and SC = (SV4 - 6vJ)/l/, both f h’ h o w 1c are positive on expansion, and which are respectively the 
total volume dilatation and the increment of fluid content Then, it follows directly from the definitions and from 
(5), (6), and (7) that 

Now we consider two well-known thought experiments the drained test and the undrained test [Gassmann, 
1951, Biot and Willis, 1957, Geertsma, 19571 (F or a single porosity system, these two experiments are sometimes 
considered equivalent to the “slow loading” and “fast loading” limits respectively However, these terms are 
relative since, for example, the fast loading - equivalent to undrained - limit is still assumed to be slow enough 
that the average fluid and confining pressures are assumed to have reached equilibrium ) The drained test assumes 
that the porous material is surrounded by an impermeable jacket and the fluid is allowed to escape through a 
tube that penetrates the jacket Then, in a long duration experiment, the fluid pressure remains in equilibrium 
with the external fluid pressure (e 9 , atmospheric) and so 6p~ = 0 and hence 6p, = 6pd, so the changes of total 
volume and pore volume are given exactly by the drained constants I/K and l/Iip as defined in (5) and (6) 
In contrast, the undrained test assumes that the jacketed sample has no passages to the outside world, so pore 
pressure responds only to in confining pressure changes With no means of escape, the increment of fluid content 
cannot change, so 6C = 0 Then, the second equation in (8) shows that 

0 = -4lI(,(b& - ~PJ/B), 

where Skempton’s pore-pressure buildup coeffZent B [Skempton, 19541 is defined by 

BEsp, 
&PC a(=0 

and is therefore given by 

(9) 

(10) 

B= 
1 

1 + &(,(1/I<J - l/I<+) 
(11) 

It follows immediately from this definition that the undrained modulus I(, is determined by (also see Carroll 

PQW 
I<, = K 

1-aB’ (12) 



where we introduced the combination of moduli known as the Biot-Willis parameter LY = 1 - KfK, This 
result was apparently first obtained by Gassmann [1951] for th e case of microhomogeneous porous media (i e , 
Ii, = ICp = Ii,, the bulk modulus of the single mineral present) and by Brown and Korringa [1975] and Rice 
[1975] for general porous media with multiple minerals as constituents 

Finally, we condense the general relations from (8) together with the reciprocity relations [Brown and Korringa, 
19751 into symmetric form as 

(13) 

The storage compressibility, which is a central concept in describing poroelastic aquifer behavior in hydroge- 
ology, is related inversely to one defined in Biot’s original 1941 paper by 

SEX =01 
@J 6p,=o BK (14) 

This storage compressibility is the change in increment of fluid content per unit change in the fluid pressure, 
defined for a condition of no change in edema1 pressure It has also been called the three-dimensional storage 
compressibility by Kiimpel [1991] 

We may equivalently eliminate the Biot-Willis parameter (I and write (13) in terms of the undrained modulus 
so that 

-(l - I&,,),B 
-(l -K/&)/B 
(1 - KfIi,)fB2 

Equation (15) has the advantage that all the parameters have very well defined physical interpretations, and are 
also easily generalized for a double porosity model Finally, note that (13) shows that I’$, = dI</a, which we 
generally refer to as the reciprocity relation 

The total strain energy functional (including shear) for this problem may be written in the form 

2E = 6rij6e<j + 6pJ6(, (1’5) 

where 6e;j is the change in the average strain with 6e;i z 6e being the dilatation, 67ij being tbe change in the 
average stress tensor for the saturated porous medium with ;67;( = -6pC It follows that 

aE 
6pc = -a(se) 

and 

BE 
6pJ = a(&) ’ (18) 

both of which are also consistent with Betti’s reciprocal theorem [Love, 19271 since the matrices in (13) and (15) 
are symmetric The shear modulus p is related to the bulk modulus and Poisson’s ratio by f~ = 3(1-2v)K/2(l+v) 
Then, it follows that the stress equilibrium equation is 

Tiij,j = (Ku + $fb)e,i + /LUi,jj - BKuC,j = 0 (19) 

and Darcy’s law takes the form 

where 7 is the single-fluid shear viscosity 



Figure 1 The double porosity model features a porous rock matrix intersected by fractures Thlee types of 
macroscopic pressure are pertinent in such a model external confining pressure pCx internal pressure of the 
matrix pore fluid py), and internal pressure of the fracture pore fluid py) A single porosity medium is one in 
which either matrix or fracture porosity are present, but not both 

4 COEFFICIENTS FOR DOUBLE POROSITY MODELS 

We now assume two distinct phases at the macroscopic level a porous matrix phase with the effective 
properties I<(‘), II(‘), I&‘, 4(l) occupying volume fraction V(‘)/V = v (I) of the total volume and a macroscopic 
crack or joint phase occupying the remaining fraction of the volume V”)/V = a(‘) = 1 - u(l) The key feature 
distinguishing the two phases ~ and therefore requiring this analysis - is the very high fluid permeability !z(“) of 
the crack or joint phase and the relatively lower permeability kc”) of the matrix phase We could also introduce 
a third independent permeability k (I’) = L@) for fluid flow at the interface between the matrix and crack phases, 
but for simplicity we assume here that this third permeability is essentially the same as that of the matrix phase, 
80 gw = k(“) 

We have three distinct pressures confining pressure 6pC, matrix-fluid pressure bpy), and joint-fluid pressure 

6py) Treating 6p,, dpy’, and 6py) as the independent variables in our double porosity theory, we define the 



dependent variables 6e 5 61//V (as before), 6<(‘) = (6Vj1’ - 6V/‘))/V, and 6((s) = (S$“’ - 6Vj2))/V, which are 
respectively the total volume dilatation, the increment of fluid content in the matrix phase, and the increment 
of fluid content in the joints We assume that the fluid in the matrix is the same kind of fluid as that in the 
cracks or joints, but that the two fluid regions may be in different states of average stress and therefore need to 
be distinguished by their respective superscripts 

Linear relations among strain, fluid content, and pressure then take the general form 

By analogy with (13) and (15), it is easy to see that ~~12 = a21 and (113 = a31 The symmetry of the new 
off-diagonal coeficients may be demonstrated by using Betti’s reciprocal theorem in the form 

(he -b@') -6C@)) = ( 6e -@J -qtZ ,,) 

where unbarred quantities refer to one experiment and barred to another experiment to show that 

Hence, ~123 = as2 Simila arguments have often been used to establish the symmetry of the other off-diagonal 
components Thus, we have established that the matrix in (21) 1s completely symmetric, so we need to determine 
only six independent coefficients To do so, we consider a series of thought experiments, including tests in both 
the short time and long time limits The key idea here is that at long times the two pore pressures must come to 

0) - (2) - equilibrium (p, - pf - pf as t + co) as long as the cross permeability k (12) is finite However, at very short 
times, we may asume that the process of pressure equilibration has not yet begun, or equivalently that k(“) = 0 
at t = 0 We nevertheless assume that the pressure in each of the two components have individually equilibrated 
on the average, even at short times 

4.1 Undrained joints, undrained matrix, short time 

There are several different, but equally valid, choices of time scale on which to define Skempton-like coefficients 
for the matrix/fracture system under consideration Elsworth and Bai [1992] use a definition based on ihe idea 
that fol very short time both fluid systems will independently act undrained after the addition of a sudden change 
of confining pressure This idea implies that 6((l) = 0 = 6<@) which, w h en substituted into (21), gives 

r 

Defining 

we can solve (24) for the two Skempton’s coeficients and find the results 



(27) 

The effective undrained modulus is found to be given by 

These definitions will be rompared to others 

4.2 Drained joints, undrained matrix, intermediate time 

Now consider a sudden change of confining pressme on a jacketed sample, but this time with tubes inserted 
in the joint (fracture) porosity so Spf (‘I = 0, while 6@‘) = 0 W e will call this the drained joint, undrained matrix 
limit The resulting equations are 

6e = -a116p, - alz$) 

-6(Q) = -as16p, - a326py), 

showing that the pore-pressure buildup in the matrix is 

(29) 

(30) 

Similarly, the effective undrained modulus for the matrix phase is found from (29) to be determined hy 

Notice that if a23 = 0 then (26) and (30) are the same 

4.3 Drained matrix, undrained joints, intermediate time 

(31) 

Next consider another sudden change of confining pressure on a jacketed sample, but this lime the tubes are 
inserted in the matrix porosity so 6py) = 0, while 6<(z) = 0 We will call this the drained matrix, undrained joint 
limit The equations are 

(2) 6e = -au6p, - amp, 

-@) = -az16p, - a236#’ 

0 = -aa16p, - a336$), 

showing that the pore-pressure buildup in the cracks is 

(32) 

(33) 



Similarly, the effective undrained modulus for the joint phase is found 

1 6e -z-- 
IQ@ - 6pc s<c++,:“=o 

= all + a13B[TP)] 

We may properly view Eqs (30), (31), (33), and (34) as “defining” relations among these parameters 

(34) 

Notice that if az3 = 0 then (27) and (33) are the same 

4.4 Drained test, long time 

The long duration drained (or “jacketed”) test for a double porosity system should reduce to the same results 

as in the single porosity limit The conditions on the pore pressures are 6pf (I) = Spy) = 0, and the total volume 
obeys 6e = -a116p, It follows therefore that 

1 
a11 = E’ (35) 

where I< is the overall drained bulk modulus of the system including the fractures 

4.5 Undrained test, long time 

The long duration undrained test for a double porosity system should also produce the fame physical results as 
a single porosity system (assuming only that it makes sense at some appropriate larger scale to view the medium 
as homogeneous) The basic equations are 

6Pf (1) = 6$) = &If, 

6C 5 SC(l) + 6<(‘) = 0, 

(36) 

assuming the total mass of fluid is confined Then, it follows that 

6e = -a116p, -(an + am)6pf, 
0 = -(a21 + a31)6pc - (a~ + am + aa + ass)6pf, 

showing that the overall pore-pressure buildup coefficient is given by 

Similarly, the undrained bulk modulus is found to be given by 

(37) 

(38) 

(39) 

4.6 Fluid injection test, long time 

The conditions on the pore pressures for the long duration, single porosity limit for the three-dimensional 
storage compressibility S are 6py) = 6p@) = 6pf, while the confining pressure remains constant It follows f 

r 



therefore that 

ss 3 
apl 6ps=n 

= a22 + a23 + a32 + a.33 (40) 

This completes the main analysis of the elastic coefficients for double porosity Further details may be found 
in Berryman and Wang [1995] 

TABLE 1 Material Properties 

Parameter 
K (GPa) 
I<, (GPa) 
L? 
I{(‘) (GPa) 
“0) 

I$ (GPa) 

ICf (GPa) 
@I 
B(l) 

SC’) (GPa-‘) 
.m 

Chelmsford 
Granite 

8 0” 
54 50 

0 85” 
17 0” 

0 25 

L 
55 5” 

0 69” 
33 
0 0011 
0 992 
0 0409 
0 011” 

“- 
“M-am Coyner [lS 

I 
I84 

Weber 
Sandstone 

4 0” 
37 0” 

0 89” 
10 0” 

0 15 
38 OQ 

0 74” 
33 
0 0950 
0 355 
0 208 
0 0095 

1 

5 EXAMPLE 

Table 1 presents data for Chelmsford granite and Weber sandstone taken from laboratory measurements by 
Coyner [1984] Coyner’s experiments included a series of tests on several types of laboratory scale rock samples 
at different confining pressures The values quoted for K and I<, are those for a moderate confining pressure 
of 10 MPa (values at lower confining pressures were also measured but we avoid using these values because the 
rocks generally exhibit nonlinear behavior in that region of the parameter space), while the values quoted for 
I<(‘) and I<!‘) are at 25 MPa, which is close to the value beyond which the constants cease depending on pressure 
~ and therefore for which we assume all the cracks were closed Thus, based on the idea that the pressure 
behavior is associated with two kinds of porosity in the laboratory samples - a crack porosity, which is being 
closed between 10 and 25 MPa, and a residual matrix porosity above 25 MPa, we assume the available data are 
IC, Ii,, K(l), Id”, IC,, +(I), and u(‘) We find that these data are sufficient to compute all the coefficients In 
Table 2, we find for both types of rock that this coefficient is positive and small - about an order of magnitude 
smaller than the other matrix elements The only other unusual feature of the results computed using these 
laboratory data is the occurrence of values larger than unity for B[u(l)] in Chelmsford granite and for B[u(‘)] 
and Bgi m Weber sandstone Note also that a(‘) for both rocks is very close to unity In this example, seven 
measurements (together with Poisson’s ratio) are sufficient to determine completely the mechanical behavior of 
the double-porosity model Having a direct measurement of I< eliminates the necessity of assuming a23 = 0, 
which we have found is sometimes necessary when dealing with field data [Berryman and Wang, 19951 



TABLE 2 Double porosity parameters computed from material properties in Table 1 

Parameter 
ail (GPa-‘) 
a12 (GPa-‘) 
a13 (GPa-‘) 
an (GPa-‘) 
an (GPa-‘) 
a33 (GPa-‘) 
G)(GPa-‘) 

B 
B(l) 

B[u@)] 
B& 
Ii, (Gl’a) 
I<(‘) (GPa) 
S (GPa-I) 
5’ci) (GPa-‘) 

>helmsford Weber 
Zranite jandstone 

0 125 0250 
-0 0413 -0076 
-0 0649 -0 141 

0 0405 0 206 
0 00119 0 00270 
00664 0 145 
00630 0 142 
0 997 0 994 
0 973 0 624 
0 992 0355 
1022 0368 
0 993 0355 
0 950 0 980 
0 978 1011 
0 961 1 004 

16 3 8 99 
0 179 0 0666 
0 1092 0 357 
5 87 15 24 
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