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ABSTRACT

Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated
and the coefficients in these linear equations identified The generalization from a single porosity model increases
the number of independent coefficients from three to six for an isotropic applied stress In a quasistatic analysis,
the physical interpretations are based upon considerations of extremes in both spatial and temporal scales The
limit of very short times is the one most relevant for wave propagaiion, and in this case both matrix porosity and
fractures behave in an undrained fashion For the very long times more relevant for reservoir diawdown, the double
porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent
parameters (such as the total compressibility) may be determined by appropriate field tests At the mesoscopic
scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on
core, and the compressiblity can be measured for a single fracture We show explicitly how to generalize the
quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt
flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model
The result is therefore a theory that generalizes, but is completely consistent with, Biot’s theory of poroelasticity
and 1s valid for analysis of elastic wave data from highly fractured reservoirs

1 INTRODUCTION

It is well-known in the phenomenology of earth materials that rocks are generally heterogeneous, porous, and
often fractured or cracked In situ, rock pores and cracks/fractures often contain fluids These fluids are often
of great practical interest to us, since they are very often oil, gas, or water Distinguishing these fluids from
their seismic signatures is often the key issue to be addressed in seismic exploration and reservoir monitoring
Understanding their flow characteristics is often the responsibility of the reservoir engineer

Traditional approaches to seismic exploration have often made usc of Biot’s theory of poroelasticity [Biot,
1941, 1956, 1962, Gassmann, 1951] This theory has always been limited by an explicit assumption that the
porosity itself is homogeneous Although this assumption is known to be adequate for acoustic studies of many
1ock core samples in a laboratory setting, it is probably not a very good assumption for applications to realistic
heterogeneous reservoirs One approach to dealing with the heterogeneity is to construct a model that is locally
homogeneous, ¢ ¢, a sort of finite element approach in which each block of the model satisfies Biot-Gassmann
equations This approach may be adequate in some applications, and is certainly amenable to study with large
computers However, such models avoid the question of how we are to deal with heterogeneity on the local scale,
¢ ¢ , much smaller than the size of blocks typically used in the codes

Although it is clear that porosity in the earth can and does come in virtually all shapes and sizes, it is also
clear that two types of porosity are most important (1) Matrix porosity that occupies a finite and substantial
fraction of the volume of the reservoir This porosity is often called the storage porosity, because this is the



volume that stores the fluids of interest to us (2) Fracture or crack porosity that may occupy very litile volume,
but nevertheless has two very important effects on the reservoir properties The first effect is that fractures/cracks
drastically weaken the rock elastically, and at very low effective stress levels introduce nonlinear behavior since
very small changes in stress can lead to large changes in the fracture/crack apertures (and at the same time
change the fracture strength for future changes) The second effect is that the fractures/cracks often introduce
a high permeability pathway for the fluid to escape from the reservoir This effect is obviously key to reservoir
analysis and the economics of fluid withdrawal

Tt is therefore not surprising that there have been many attempts to incorporate fractures into rock models,
and especially models that try to account for partial saturation effects and the possibility that fluid moves (or
squirts) during the passage of seismic waves [Budiansky and O’Connell, 1975, O’Connell and Budiansky, 1977,
Mavko and Nur, 1979, Mavko and Jizba, 1991, Dvorkin and Nur, 1993] Previous attempts to incorporate
have generally been rather ad hoc in their approach to the introduction of the fractuies into Biot’s theory, if
Biot’s theory is used at all The present authors have recently started an effort to make a rigorous extension of
Biot’s poroelasticity to include fractures/cracks by making a generalization to double-porosity /dual-permeability
modeling [Berryman and Wang, 1995] The previcusty published work concentrated on the fluid flow aspects of
this problem in order to deal with the interactions between fluid withdrawal and the elastic behavior (closure) of
fractures during reservoir drawdown

It is the purpose of the present work to point out that a similar analysis applies to the wave propagation
problem We expect it will be possible to incorporate all of the important physical effects in a very natural way
into this double-porosity extension of poroelasticity for selsmic wave propagation The price we pay for this rigor
is that we must solve coupled equations of motion locally Within traditional poroelasticity, there are two types
of equations that are coupled These are the equations for the elastic behavior of the solid rock and the equations
for elastic and fluid flow behavior of the pore fluid In the double-porosity extension of poroelasticity, we will have
not two types of equations but three The equations for the elastic behavior of the solid rock will be unchanged
except for a new coupling term, while there will be two types of pore-fluid equations (even if theie is only one
fluid present) depending on the environment of the fluid Pore fluid in the matrix (storage) porosity will have one
set of equations with coupling to fracture fluid and solid, while fluid in the fractures/cracks will have another set
of equations with coupling to pore fluid and solid Although solution of these equations is no doubt more difficult
than for simple acoustics/elasticity, it is probably not significantly more difficult than traditional single-porosity
poroelasticity We are not going to solve these equations in the present paper We will instead derive them and
then show that the various coeflicients in these equations can be readily identified with measurable quantities

2 EQUATIONS OF MOTION

The seismic equations of motion for a double-porosity medium have been derived recently by Tuncay and
Corapcioglu [1996] using a volume averaging approach (These authors also provide a thorough review of the
prior literature on this topic ) We will present instead a quick derivation based on ideas similar to those of Biot’s
original papers [Biot, 1956; 1962], wherein a Lagrangian formulation is presented and the phenomenclogical
equations derived

Physically what we need is quite simple — jusi equations embodying the concepis of force = massx acceleration
and dissipation due to viscous loss mechanisms The forces are determined by taking a derivative of an energy
storage functional The appropriate energies are discussed at length later in this paper, so for our purposes in this
section it will suflice to assume that the constitutive laws relating stress and strain are known, and so the pertinent
forces are the divergence of the solid stress field 7;; ; and the gradients of the two fluid pressures p(l) and p(z) for
the matrix and fracture fluids, respectively (In this notation, 1, j index the three Cartesian coordinates T1,%9, L3
and a comma preceding a subscrlpt indicates a derivative with respect to the specified coordinate direction )
Then, the only work we uneed to do to establish the equations of motion for dynamical double-porosity systems



concerns the inertial terms arising from the kinetic energy of the system

Generalizing Biot’s approach [Biot, 1956] to the formulation of the kinetic energy terms, we find that for a
system with two fluids the kinetic energy 1" is determined by

2T = p11l:l 11 + pggU(l) U(l) -+ pagU(z) U(z) -|- 2p12{1 U(l) -|- 2,01311 ‘j(Z) —|— 2p23U(1) U(Z), (1)

where u is the displacement of the solid, U} is the displacement of the kth fluid, and the various coefficients p1y,
piz, ete , are mass coefficients that take into account the fact that the relative flow of fluid through the pores is
not uniform, and that oscillations of solid mass in the presence of fluid leads to induced mass effects Clarifying
the precise meaning of these displacements is beyond our curreni scope, but recent publications help with these
interpretations [Pride and Berryman,1998]

Dissipation plays a crucial role in the motion of the fluids and so cannot be neglected in this context The
appropriate dissipation functional will take the form

20 = bya(h — UMY (u = UMDY 4 b15(a — UD) (@1 — UP) 4 boy(UW — 0Py (U — UD) (2)

This formula assumes that all dissipation is caused by motion of the fluids either relative to the solid, or relative
to each other We expect the coefficient by will generally be small and probably negligible, whenever the two
fluid model is appropriate for the system under study

Lagrange’s equations then show easily that

8 (8T\ 8D .
ol (E;) + oy = T for i=12.3, )
and that
] or oD _ -
o (augw) + o = A fr =123 k=1,2 )

These equations now account properly for inertia and elastic energy, strain, and stress, as well as for the specified
types of dissipation mechanisms, and are in complete agreement with those developed by Tuncay and Corapciogiu
[1996] using a diffeent approach In (4), the parts of the equation not involving the kinetic energy can be shown
to be equivalent to a two-fluid Darcy’s law in this context, so byy and byg are related to Darcy’s constants for two
single phase flow and by is the small coupling coeflicient Explicit relations between the d’s and the appropriate
permeabilities (see Eqs (53) and (54) of Berryman and Wang [1995]) are not difficult to establish The harder
part of the analysis concerns the constitutive equations required for the right hand side of (3) The remainder of
the paper will therefore be devoted to addressing some of these issues

3 SINGLE POROSITY AND LONG TIME ASYMPTOTICS

In the absence of driving forces that can maintain pressure differentials over long time periods, double porosity
models must reduce to single porosity models in the long time limit when the matrix pore piessure and crack
pote piessure become equal It is therefore necessary to remind ourselves of the basic results for single porosity
models in poroelasticity One important role these resulis play is to provide constraints for the long time behavio
in the problems of interest A second significant use of these results (see Berryman and Wang [1995]) arises when
we make laboratory measurements on core samples having properties characteristic of the matrix material Then
the results presented in this section apply specifically to the matrix stiffnesses, porosity, etc

For isotropic materials and bydrostatic pressure variations, the two independent variables in linear mechanics
of porous media are the confining (external) pressure p. and the fluid (pore) pressure p; The differential pressure



Pd = pe — py is often used to eliminate the confining pressure The equations of the fundamental dilatations are
then
&V 4 &
B TON )
vV K K,

for the total volume V,

6V¢, . 51)@ 6})1
Vo K, Kg ©

for the pore volume V = ¢V, and

5Vf _ 5pf
vV, K ¢

for the fluid volume V; Equation (5) serves to define the various constants of the porous solid, such as the drained
frame bulk modulus X and the unjacketed bulk modulus K, for the composite frame Equation (6) defines the
Jacketed pore modulus Kp and the unjacketed pore modulus Ky Similarly, (7) defines the bulk modulus K; of
the pore fluid

Treating dp, and &p; as the independent variables in our poroelastic theory, we define the dependent variables
be = 6V/V and & = (6V; — 6V;)/V, both of which are positive on expansion, and which are respectively the
total volume dilatation and the increment of fluid content Then, it follows directly from the definitions and from

(5), (8), and (7) that
se \ _ [ 1/K /K, — 1/K —6p
(—sz) = (—es/Kp B Ky + 1Ky 1/1@)) (—6pf) (8)

Now we consider two well-known thought experiments the drained test and the undrained test [Gassmann,
1951, Biot and Willis, 1957, Geertsma, 1957] (For a single porosity system, these two experiments are sometimes
considered equivalent to the “slow loading” and “fast loading” limits respectively However, these terms are
relative since, for example, the fast loading — equivalent to undrained — limit is still assumed to be slow enough
that the average fluid and confining pressures are assumed to have reached equilibrium ) The drained test assumes
that the porous material is surrounded by an impermeable jacket and the fluid is allowed to escape through a
tube that penetrates the jacket Then, in a long duration experiment, the fluid pressure remains in equilibrium
with the external fluid pressure (e ¢ , atmospheric) and so ép; = 0 and hence ép. = 6py, so the changes of total
volume and pore volume are given exactly by the drained constants 1/K and 1/K, as defined in (5) and (6)
In contrast, the undrained test assumes that the jacketed sample has no passages to the outside world, so pore
pressure responds only to in confining pressure changes With no means of escape, the increment of fluid content
cannot change, so 6¢ =0 Then, the second equation in (8) shows that

0 =—¢/Kp(bp. — 6ps/B), (9)
where Skempton’s pore-pressure buildup coefficient B [Skempton, 1954] is defined by

7 (10)
épe |50
and is therefore given by
1
B = 11
1+ K (1/Kp —1/Ky) (1)

It follows immediately from this definition that the undrained modulus K., is determined by (also see Carroll
{1980])

K

“1—aB’

Ky (12)



where we introduced the combination of moduli known as the Biot-Willis parameter « = 1 — K/K, This
result was apparently first obtained by Gassmann [1951] for the case of microhomogeneous porous media (i ¢,
K, = K4 = K, the bulk modulus of the single mineral present) and by Brown and Korringa [1975] and Rice
[1975] for general porous media with multiple minerals as constituents

Finally, we condense the general relations from (8) together with the reciprocity relations [Brown and Korringa,

1975] into syminetric form as
e Y_1 /1 -—« —bp,
() =x (e o) (o) @

The storage compressibility, which is a central concept in describing poroelastic aquifer behavior in hydroge-
ology, is related inversely o one defined in Biot’s original 1941 paper by

6¢
5= >
éps

(84
_ 14
BK (14)

Spe==0

This storage compressibility is the change in increment of fluid content per unit change in the fluid pressure,
defined for a condition of no change in exiernal pressure It has also been called the three-dimensional storage
compressibility by Kimpel [1991]

We may equivalently eliminate the Biot-Willis parameter o and write (13) in terms of the undiained modulus

so that
ge \ _ 1 [ —(1 = K/K)/B\ { —6pc (15)
~6¢) T K\-(1—-K/KJ,)/B (1-K/K.)/B* ]\ —bps

Equation {15) has the advantage that all the parameters have very well defined physical inteipretations, and are

also easily generalized for a double porosity model Finally, note that (13) shows that K, = ¢K/«, which we
generally refer to as the reciprocity relation

The total strain energy functional (including shear) for this problem may be written in the form

2F = §my56eq; + bpy6C, (16)
where $e;j is the change in the average strain with de;; = e being the dilatation, é7; being the change in the
average stress tensor for the saturated porous medium with %67‘;5 = —fép. It follows that

ar
bp, = ——
Pe = T 5(5e) (17)
and
OF
bpp = ——o\ 18
54 3(6{) (18}

both of which are also consistent with Betti’s reciprocal theorem [Love, 1927] since the matrices in (13} and (15)
are symmetric The shear modulus  is related to the bulk modulus and Poisson’s ratio by ¢ = 3(1—-2v)K/2(14v)
Then, it follows that the stress equilibrium equation is

Tijg = (Ku+ sp)e; + pg jj —~ BEu(i = 0 (19)
and Darcy’s law takes the form
b .
;_;P.ﬁ =, (20)

where 7 is the single-fluid shear viscosity




Figure 1 The double porosity model features a porous rock matrix intersected by fractures Thiee types of
macroscopic pressure are pertinent in such a model external confining pressure p., internal pressure of the
matrix pore fluid pf,l), and internal pressure of the fracture pore fluid pg.z) A single porosity medium is one in
which either matrix or fracture porosity are present, but not both

4 COEFFICIENTS FOR DOUBLE POROSITY MODELS

We now assume two distinet phases at the macioscopic level a porous matrix phase with the effective
properties K1), p1) KD (1) occupying volume fraction V(D /V = v(1) of the total volume and a macroscopic
crack or joint phase occupying the remaining fraction of the volume V[V = »(*) = 1 — »(1) The key feature
distinguishing the two phases — and therefore requiring this analysis — is the very high fluid permeability £(*%) of
the crack or joint phase and the relatively lower permeability k(1) of the matrix phase We could also introduce
a third independent permeability £(1?) = £ for fluid flow at the interface between the matrix and crack phases,

but for simplicity we assume here that this third permeability is essentially the same as that of the matrix phase,
so £(12) = p(11)

We have three distinct pressures confining pressure ép., matrix-fiuid pressure 5p§-1), and joini-fluid pressure

5p5.2) Treating 6pc,6p§,1), and 6p52) as the independent variables in our double porosity theory, we define the

i
|
]
|
|
|
|
|
!



dependent variables 8¢ = 6V/V (as before), 6¢(1) = (6" — 6V )V, and 6¢® = (6V;? — 6V*)/V, which are
respectively the total volume dilatation, the increment of fluid contenf in the matrix phase, and the increment
of fluid content in the joints We assume that the fluid in the matrix is the same kind of fluid as that in the
cracks or joints, but that the two fluid regions may be in different states of average stress and therefore need to
be distinguished by their respective superscripts

Linear relations among strain, fluid content, and pressure then take the general form

be a1y a1z dia _61?'.‘1:)
—6((1) = | @31 U3 Qo3 —5Pf (21)
_5C(2) 31 a3z 33 _51_;5,2)

By analogy with (13) and (15), it is easy to see that a2 = @2; and a3 = @1 The symmetry of the new
off-diagonal coeflicients may be demonstrated by using Betti’s reciprocal theorem in the form

0 0
(be —6¢® —6¢D) | -5 | = (6z —sT" —67? o) 0, ] (22)
0 —6pf

where unbarred quantities refer to one experiment and barred to another experiment to show that
| A 2 .
55{”517(;1) = aggépg.z)ép?) = aszép(fl)épgez) =& }6p§2) (23)

Hence, ugs = a3z Similar arguments have often been used to establish the symmetry of the other off-diagonal
components Thus, we have established that the matrix in (21) is completely symmetric, so we need to determine
only six independent coefficients To do so, we consider a series of thought experiments, including tests in both
the short time and long time limits The key idea here is that at long times the two pore pressures musl come to
equilibrium (pg.l) = p&z) = py as t — 00) as long as the cross permeability £(1?) is finite However, at very short
times, we may assume that the process of pressure equilibration has not yet begun, or equivalently that &2 =
at t =0 We nevertheless assume that the pressure in each of the two components have individually equilibrated
on the average, even at short thmes

4.1 Undrained joints, undrained mafrix, short time

There are several different, but equally valid, choices of time scale on which to define Skempton-like coefficients
for the matrix/fracture system under consideration Elsworth and Bai [1992] use a definition based on the idea
that for very short time both fluid systems will independently aci undrained after the addition of a sudden change
of confining pressure This idea implies that §¢() = 0 = §¢(*) which, when substituted into (21), gives

—be = ay116p. + a1251?§=1) + (3136195«2)

0= (ngffpc + ()‘.2251)5,1) + (1236])5-2)

0 = aiz6p. + 6235135:1) + 1133513(;2) (24)
Defining

5}9(1) 5 (2)

Bg‘% = ?L— and Bgz)a = (;Df (25)
Pe d =0 (D=0 Pe SCY=4¢ D=0
we can solve (24) for the two Skempton’s coefficients and find the results
i 223d13 — &12033

B} = BT IR (26)

2
Q32433 — Uag




and

B(z) _ Qa3d12 — a13822
EB — 2
Q3233 — G53

The effective undrained modulus is found to be given by

1 de 2
Roon = —*S'p—h(a(x)zac('z)=0 =dai1+ a12BEE}f)) + 313B(E1)3
3 c

These definitions will be compared to others

4.2 Drained joints, undrained matrix, infermediate time

(27)

{28)

Now consider a sudden change of confining pressuie on a jacketed sample, but this time with tubes inserted
in the joint (fracture) porosity so 6p5.2) =0, while 6¢{t} = 0 We will call this the drained joint, undrained matrix

limit The resulting equations are

be = —a11bpe — alZP_(fl)
—5(:(2) = —az16p. — 332527}1);

showing that the pore-pressure buildup in the matrix is

1
T bpe 4 @22
t5g(1)=<§p} Y=p

Similarly, the effective undrained modulus for the matrix phase is found from (29) to be determined by

1 be

——— - — — B ¢5)]
K] =~ & a + e12Blu]

s =gp =0

Notice that if agz = 0 then (26) and (30) are the same

4.3 Drained matrix, undrained joints, intermediate time

(29)

(31)

Next consider another sudden change of confining pressure on a jacketed sample, but this time the tubes are
inserted in the matrix porosity so 6p§,1) =0, while ¢(*) =0 We will call this the drained matrix, undrained joint

limit The equations are

be = —a116p; — a13p5'2)
—6¢) = —agp. — azaépff)
0 = —ag1bp. — 613351352),

showing that the pore-pressure buildup in the cracks is

5}7(2) a
Biu@n = P _
[ ] bpe 33

5((2)=6p§1)=0

(32)

(33)




Similarly, the effective undrained modulus for the joint phase is found

1 be

= = ayq + a1 Bu® 34
K[u(?)] &p. 50@)=5p=0 a1y + a1aBlu'?] (34)

We may properly view Egs (30), (31), (33), and (34) as “defining” relations among these parameters

Notice that if ass = 0 then {27) and (33) are the same

4.4 Drained test, long time

The long duration drained {or “jacketed”) test for a double porosity system should reduce to the same resulis
as in the single porosity limit The conditions on the pore pressures are 6p§,1) = 6p§,2) = (), and the total volume
obeys e = —ay116p. It follows therefore that

1
U411 = E, (35)

where K is the overall drained bulk modulus of the system including the fractures

4.5 Undrained test, long time

The long duration undrained test for & double porosity system should also produce the same physical results as
a single porosity system (assuming only that it makes sense at some appropriate larger scale to view the medium
as homogeneous) The basic equations are

1 2
5p§) = 5p§)=5pf,
§¢ = 8¢ 4 8¢ = 0,
(36)
assuming the total mass of fluid is confined Then, 1t follows that
be = —a116pc — (@12 + a13)bpy,
0 = —(az1 + a31)6p. — (@22 + @23 + azz + aza)épy,
(37)
showing that the overall pore-pressure buildup coefficient is given by
p=m (38)
apc 8¢ =0
Similarly, the undrained bulk modulus is found to be given by
1 be
=== =an + 4 a13) 8 39
I{u 5Pc 8(=0 H (a12 13) ( )

4.6 Fluid injection test, long time

The conditions on the pore pressures for the long duration, single porosity limit for the three-dimensional
storage compressibility S are 6p(f1) = 6p§.2) = 6py, while the confining pressure remains constant It follows




therefore that

_s

= = g2 + azz + asz + aas (40)
8pf dpe.=0

This completes the main analysis of the elastic coefficients for double porosity Further details may be found
in Berryman and Wang [1995]

TaBLE 1 Material Properties

Chelmsford | Weber
Parameter Granite Sandstone
K (GPa) 80" 40°
K (GPa) 54 54 37 0@
o 0 857 0 894
KW (GPa) | 170° 10 0¢
) 025 015
KM (GPay | 555¢ 38 0°
all) 069* 0 748
K; (GPa) 33 33
) 0 0011 0 0952
B 0 992 0 355
S (GPa~t)y | 00409 0 208
v(2) 0011¢ 0 0095

“From Coyner [1984]

5 EXAMPLE

Table 1 presents data for Chelmsford granite and Weber sandstone taken from laboratory measurements by
Coyner [1984] Coyner’s experiments included a series of tests on several types of laboratory scale rock samples
at different confining pressures The values quoted for K and K, are those for a moderafe confining pressure
of 10 MPa (values at lower confining pressures were also measured but we avoid using these values because the
rocks generally exhibit nonlinear behavior in that region of the parameter space), while the values quoted for
KM and K are at 25 MPa, which is close to the value beyond which the constants cease depending on pressure
— and therefore for which we assume all the cracks were closed Thus, based on the idea that the pressure
behavior is associated with two kinds of porosity in the laboratory samples — a crack porosity, which is being
closed between 10 and 25 MPa, and a residual matrix porosity above 25 MPa, we assume the available data are
K, K, KO, g Kg, ¢, and v'?) We find that these data are sufficient to compute all the coefficients In
Table 2, we find for both types of rock that this coefficient is positive and small — about an order of magnitude
smaller than the other matrix elements The only other unusual feature of the results computed using these
laboratory data is the occurrence of values larger than unity for B[«(!)] in Chelmsford granite and for B[u(?)]
and Bg% in Weber sandstone Note also that a{®) for both rocks is very close to unity In this example, seven
measurements (together with Poisson’s ratio) are sufficient to determiine completely the mechanical hehavior of
the double-porosity model Having a direct measurement of K eliminates the necessity of assuming aq3 = 0,
which we have found is sometimes necessary when dealing with field data [Berryman and Wang, 1995]




TABLE 2 Double porosity parameters computed from material properties in Table 1

Chelmsford | Weber
Parameter Formula Granite Sandstone
a1 (GPa~T) | 17K 0125 0 250
a1z (GPa~!) | —aWKM /KM, -0 0413 -0 076
a3 (GPa_l) ﬁﬂi/I{ — Q13 -0 0649 - 147
azy (GPa~l) | oW/ B 1) 0 0405 0 206
ass (GPa~1) | —usMaM/KM) — gy, 0 00119 0 00270
ags (GPa~1) | oA/K; + v/ KM _ (1 - 2a)/K + 2a15 0 0664 0 145
@33 (GPa™1) | aza — v/K; 0 0630 0142
(_]:(2) (5330112 - (113(123)/((1110‘.23 - a13a12) 0 997 0994
B —(012 -+ (113)/(322 + 26893 + 0.33) 0973 0624
B —(a12 + az3)/aq 0 992 0 355
Blut] —a1a/azs 1022 0 368
B‘(E,-I% (a23a13 - a12a33)/(a22a33 - a%3) 0 993 0 355
B (@zaa1y — a13023)/[ass(a12 + azs) — aza(a1s — s3)] | 0950 0 980
Bfu) —a13/ass 0978 101t
BZ) (c3012 — G13022)/(@23033 — als) 0961 1004
Ky (GPa) [a11 — (@12 + a13)% /(agz + 2a23 + az3)] ™! 46 3 8 99
K® (GPa) | v™(a1z+ a13)/(a11a23 — ay3a12) 0179 0 0666
S (GPa~1) o/BK 01092 0 357
52 (GPa™1) | of®)/BRI K (@) 587 15 24
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