
i-7291 -MS
Informal Report

TV \°i%
UC-34

Issued: June 1978

Breakup of an Accelerated Shell Owing to

Rayle.nh-Taylor Instability

8. R. E<jydam

scientific laboratory
of the University of California

LOS ALAMOS, NEW MEXICO 87545

\\
An AHirmotive Action/Equal Opportunity Employer

UNITIO tTATB*
DltPARTMCNT OP KNKROV
CONTRACT W-740I-CNC. «•



Pnnlcd in Ihe United Slates of America. Available from
National Technical Information Service

U.S. Department of Commerce
S28S Pan K.tyjl Roud
Springfield. VA 22161

1101-025
026050
051-075
076-100
101-125

4.00
4 50
5.25
6.00
6.50

126-150
•51-175
I76JGO
201-225
226-250

7.25
8.00
9.00
9.25
9.50

Mumlicln-

251-375
276-Mill
301-325
326-340
351-375

S 3.0(1

1(1.75 .
11.00

_ 11.75
12.00
12.50

376-400
401-425
426-450
451-475
476-500

13.00
13.25
14.00
14.50
15.0(1

SOI-S25
526-550
551-575
5 76-600
60t-up

15.25
15.50
16.25
16.50
— 1

1. Add S2.3O for each additional lOO-pige increment from 601 pagei up.

This report was prepared as an account of work sponsored
by the United SUM* Government. Neither Uie United Stutri
nor the United States Department of Enertv, nor any oi theit
employees, nor any nf their contractors, tubcontractors, or
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or utefulneis of any information, apparatus,
product, or pitoceu disclosed, or represents that its us* would
not infringe Privately ownad rights.



BREAKUP OF AN ACCELERATED SHELL OWING TO
RAVLEIGH-TAYLOR INSTABILITY

by

B. R. Suydam

ABSTRACT

We examine a simplified model for the
Rayleigh-Taylor instability of an accelerated
shell and find the most dangerous wavelength
to be about that of the shell thickness. The
shell material is assumed to be an inviscid, in-
compressible fluid. Effects of finite com-
pressibility and of surface tension are found to
be negligible, but the effects of viscosity are
shown to be \/ery large. The need for better
knowledge of viscosity at high pressure is
pointed out.

- NOTICE-
Ihis report v/as prepared as an account of work
sponsored by the (Jnrted States GoYcrrjnent. Neither the
United Sutet nor the United States Department of
Energy, nor any of their employees, nor a:ty of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any tnforrnstton, apparatus, product or
process disclosed, cr represent that its tit: would not
;nfringe privately owned rights. |

1. Introduction

In discussing the Rayleigh-Taylor instabi l i ty of accelerated shells,
i t is conventional f i r s t to write down the growth rate

v = /2irg/X , (1.1)

where g is the acceleration, X is the wavelength of the perturbation, and we have
assumed the density of the material accelerating the shell to be negligible com-
pared with that of the shell material. Equation (1.1) is derived under the
assumption that the shell is a perfect inviscid incompressible liquid with no
surface tension. Thus as W o the growth rate v -*• °°.. In spite of this obvious
pathology, it is common to employ Eq. (1.1) together with the assertion: "Really,
the most dangerous wavelength is that equal to the shell thickness A; thus in
Eq. (1.1; we should set

A * A . (1.2)
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With this value of A we can evaluate Eq. (1.1) for breakthrough time." It is
our object to discover whether a physical basis can be found for such lore.

One could argue that Eq. (1.1) is derived for a semi-infinite medium,
i.e. a shell for which A > > X. In Appendix A we present the conventional
Rayleigh-Taylor analysis done for a dense shell between two tenuous semi-infinite
layers. The result is that, when the density of the tenuous media can be neg-
lected, the growth rate and the mode structure are both totally independent of
the thickness of the dense shell being accelerated. Thus finite shell thickness
cannot be envoked to alter Eq. (1.1). Rather, we shall see from a simple
phenomenological model that the nonlinear phase is responsible for singling out
modes described by Eq. (1.2) as being the worst.

2. Simplified Rayleigh-Taylor Breakthrough Model

Rayleigh-Taylor instability has been described in terms of three
phases:

(1) The early phase of small amplitude perturbations that grow
exponentially in time as exp[vt]. For an inviscid incom-
pressible medium v is given by Eq. (1.1).

(2) An intermediate or transition period, followed by:
(3) The asymptolic "bubble and spike" period. In this phase the

spike grows with constant acceleration equal to g and the
bubble rises at constant velocity proportional to J$k.

We shall simplify first by eliminating phase (2) above. Thus our disturbance grows
during phase (1) as

C = £0 e
v t , v = vEfg7A , (2.1)

where £. is the displacement from equilibrium. According to Appendix A, this
expression holds for a shell of arbitrary thickness. At time t , the acceleration

and velocity
7 vt, vt,

, 5 , = v £ e ' = (2Trg/X)£ e ' ,
1 0 0 . (2.2)

\>t, v t ,
= v£_ e = /2TTQ/X £_ e ,

are attained.
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As we are eliminating the transition phase, we are to identify the spike
acceleration at t, with its asymptolic value g; thus the first of Eqs. (2.2)
gives

Co e
 ] = X/(2TT) , ^ = /X/(27rg) log U — l . (2.3)

Similarly we are to identify the velocity at t, with the bubble rise velocity.
This gives

= v = ./glT^T = 0.40 /§\ . (2.4)

All theories and observations of bubble rise agree on a law of the form v a

The predicted values of b are rather uncertain; observed values range roughly
from 0.30 to 0.35. Our crude model agrees with this reasonably well. It will,
if anything, be slightly pessimistic, but not at all badly so.

Now the computation is straightforward. Let A represent the shell
thickness. During stage (1), 0<t<t,, the "bubble" penetrates a distance X/2ir,
by Eq. (2.3). Thus for the second stage there remains A-A/2TT to penetrate, and
this at a velocity v given by Eq. (2.4). Thus the duration of the second phase,
t2> is given by

The total breakthrough time t. = t, + t2 or

'1+ l0g (A / Co }]

Assuming all wavelengths to be present in the initial perturoation, the worst one

wil

by

will ultimately prevail. This is the one for which x = xM, where xM is determined

(l/xM)
2 = 1 + log (A/Co) + log ( x / , (2.7)

3



and where £ is the amplitude of the initial perturbation. Clearly the worst
wavelength depends on A/£Q, but not very strongly. A value of A/£Q of order 10
seems reasonable. Setting log (A/£ ) = 7, Eq. (2.7) can be solved numerically

2U M ) > giving

|(xM)
2 = 0.162 ,

M (2.8)
A M •= 1.02 A .

This is in good agreement with the traditional lore, Eq. (1.2). Actually, the
worst wavelength depends on the initial perturbation £ , but when £<<A this
dependence is quite weak.

What happens, of course, is that during phase (1) the shortest wave-
lengths grow the fastest whereas during the bubble and spike phase the worst wave-
lengths are the longest. These combine, as we have shown, to make X « A the
worst wavelength for the full composite phenomenon.

Having found xM, we can substitute back into Eq. (2.6) to find the
corresponding breakthrough time, namely

tb = 4.17 /STg" (worst mode) . (2.9)

In this time the shell will have moved a distance s., given by

s = j 9 (t b)
2 = 8.7 A , (2.10)

provided g is constant over this period. This is a bit less pessimistic than
setting X = A into Eq. (1.1) and writing

A = f e V b or t b = / A f 1o9 lr) ' { 2 J 1 )

Using the same value of £ as before, namely A x 10" , we get t. - 2.8v/S7g and

and s = 3.9 A.

3. Real Fluid Effects

So far we have considered our shell to be a perfect, inviscid,and
incompressible fluid without surface tension. We now shall consider, in order,



the effects of surface tension, of compressibility, and of viscosity.

If the fluid possesses a surface tension T, the wavelength of maximum

growth rate during the exponential phase is given by

XM = 2ir/3T/(gp) , (3.1)

now for normal metals T is of order 500 to 1000 in cgs units. Thus taking

T = 10 , p = 10, g = 10 we get A.. » 10 cm. This is so short compared with

the worst nonlinear wavelength, namely A = A, that we can safely neglect surface

tension.

Next we must consider compressibility. Normal sound speed, c , in
fi o

metals is around 0.5 x 10 cm/s. If we simply equate this with Eq. (2.4),
v = 0.4v̂ iA, and take A = 1 mm., we find v = c at g = 1.56 x 10 cm(s) .

13This suggests that at accelerations exceeding 10 .compressibility effects might
be important. In fact they are not as we shall now show. A reasonably realistic

equation of state for a metal is

p=SpY-p o (3.2)

from which we get for the sound speed c,

'z*$-ii'*'o> • <3-3)

If we denote by ^ the density at zero pressure then

p. • s"2 <3-")

and at this pressure sound speed is

c20-yp0/p0 • (3-5)

For metals,y actually varies slowly with the pressure from about 5 at low

pressures to around 3.5 at a megabar or so. From Eq. (3.5) and known values for

Y and c we find that p is about 1/2 to 3/4 Mbar. Now from Eq. (3.3) we

have clearly



C > /yp/p . (3.6)

But, to accelerate a shell of normal density pQ and thickness A to an accelera-

t ion g a pressure

P = PQAg (3.7)

is required. Thus

] to
c > (YP O /P ) /Ag . (3.8)

Comparing this with'Eq. (2.4) evaluated for X = A, we see that the bubble rise
velocity is always well subsonic, provided only

YPn ,
~ >2^• • (3-9)

Now even for y as small as 2, Eq. (3.9) holds for all reasonable compressions.
Thus we can safely neglect compressibility.

Chandrasekhar discusses the effect of viscosity on the exponential
growth phase of Rayleigh-Taylor instability. He gives* ' for the worst wave-
length, *M, and the associated most rapid growth rate, vM ,

[AM = 12.80 (y
2/gp2)1/3 ,

(3.10)
= 0.4599 (Pg

2/y)1/3 , ',

where y is the viscosity. If we .ubstitute into these formulas normal values of
viscosity for metals, around a centipoise at one bar, we would conclude that
viscosity effects are completely negligible. However Mineev ec al have
measured viscosities at high pressures produced by shock waves and have found y
is about 100 kilo poise at 1 Mbar. If we eliminate g with Eq. (3.7), the
first of fqs. (3.10) becomes

1/3
i =12 8 l11-^ 1*M U-° \p p /



12 7 5Setting in A = 0.1 cm, p = 10, p = 10 dynes/cm, y = 10 poise we get
AM = 0.59 cm. Thus with such a viscosity, the exponential phase is very different
from that of the inviscid case and growth times are greatly extended.

For the same numbers as above

vM = 2.13 x 10
6 (3.12)

whence, estimating breakthrough time as 7 generations [Eq. (2.11)]

tb = 3.3 x 10'
6 s (3.13)

and the total distance travelled before breakup is

s = \ g(t b)
2 = 5.4 cm = 54A , (3.14)

a result very different from Eq. (2.10).

Finally let us consider the bubble and spike phase. The Reynold's

number is defined as

R = avp/y (3.15)

where a is a typical length and v a typical velocity. Setting a = A and the

bubble rise velocity, Eq. (2.4), for v we have

o pA /~QE _ pA / p ,o ,,.v

i ',,. :•-. i Eq. (3.7). Using p = 10, A = 10'1, y = 105 and p - 10 1 2 gives
R - •• .'' the Reynold's number is roughly the ratio of inertial to viscous
forces, 'nus these two forces are of about the same magnitude, so viscosity will
very noticeably affect the bubble rise as well as the exponential growth before
the bubble and spike phase.

Unfortunately, viscosities at shock pressures exceeding a megabar
have not been measured. Up to this pressure,viscosity seems still to be rising
with increased pressure, but theory would lead one to expect a turnover at some
finite shock pressure. This should occur when the temperature rise from shock



heating overwhelms the effect of greater shock compression. The correlation of
theory with experiment is, however, at present quits unsatisfactory, so what is
really needed is more measurements, especially in the 1 to 100 Mbar range.
We have no1" made a serious attempt here to access accurately the effects of
viscosity, but we have shown them to be important in tie stability problem.
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APPENDIX A

RAYLEIGH-TAYLOR INSTABILITY OF AN INVISCID FLUID PLATE.

The equations of motion of an inviscid, uncompressible fluid are

(A.I)

where if is the direction of "gravitation" which, by the principle of equivalence
mocks the acceleration. This has the static solution u = 0 and p = p , p = P 0,
where

V P 0 = pQg, (A. 2)

which we perturb by setting

= P~. + 5p , p = p + 6p ,
0 0

(A. 3)

u = at/at .

Clearly £ represents a displacement from the static equilibrium. We suppose f
and its derivatives to be so small that we can neglect nonlinear terms. Then
the first of Eqs. (A.I) integrates to give

6p = - (|.V)pQ (A.4)

and the second equation becomes

- p ow
2| = v(fip) - g(|.Vp0) . (A.5)

We have already Fourier analyzed in time, writing f(x;t) = f(x)exp[iu>t]. As we
have no rule for calculating Sp from f for an incompressible fluid, we eliminate



it by taking the curl of Eq. (A.5), obtaining the equation of motion for f ,

- u)2 curl(pf) = - [V(f.Vp)] x g . (A. 6)

As only p enters explicitly, it causes no confusion to drop the zero subscript,
as we do from here on. Now set

9 = (0,0,-g) ; g = const.

p = p (z alone) (A'7)

|(x,y,z) -> f(z) exp {i

and the z-component of Eq. (A.6) becomes

kxWx = 0 (A. 8)

which, together with

V.£ = (kxCx + kyCy) + 3ZC2 = 0 , (A. 9)

gives

Sc^V^z •
(A. 10)

Setting these values into the x- and y-components of Eq. (A.6), the two reduce
to the single equation

k [P»2 f ] - k2 [p.2 + g ̂ J « - 0
where we have written E, in place of ?2.

Boundary conditions are that £ be everywhere bounded and that it be

continuous. Thus across any surface that bounds two different materials we must

have

I S 1 » 0 (A.12)
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where I ....I means the jump in (....) across the boundary. One other condition is
needed which we get from Eq. (A.IT). In each medium p is constant, but it jumps
across boundaries. Let us replace the jump by a gradual transition zone, say
extending from z - ̂  to z + |- . Now integrate Eq. (A.11) between these limits.
We get

r 2 2 l V f
(A.13) pu£ ' - k pg? + 0(e) = 0 (A.13)

L J V f
whence, allowing e to tend toward zeros we get

(A. 14) I pu>V - k2pg£ I = 0 (A. 14)

as our other boundary condition. Inside each medium, p is a constant and

Eq. (A.11) therefore has the general solution

(A.15) £ = Aekz + Be"kz . (A.15)

Now consider a three layered medium. For z < - ̂  we have medium zero
(density p Q ) ; in this region

= (A + BekA)ekz for z < - 4 - (A.16a)

Next, for - 4 <z<4we have medium 1 (density p,) in which

= Aekz + Be"kz for - | < z < | . (A.i6b)

11



Finally for z > j we have medium 2 (density p?) and in this medium

(AekA + B)e~kz for z > f (A. 16c)

We have chosen the constants so that condition (A.12) is satisfied at both
interfaces and so that £-K) as z -> ± °°. It remains to satisfy condition (A. 14)
at both interfaces, z = ± «-. These conditions may be written as

When 2~

kg(p2-P])]Ae
k # - k 2̂

C = 0
. k A k A

kg(P]-p0)]Ae 2+ [ (P1+PO)OJ2 + kg(p1-pQ)]Be 2 = 0

(A.17)

enough that we may drop the terms in exp[-k 4] the two
surfaces decouple and we have the usual dispersion relation. We are primarily
interested in a relatively thin plate and in media 0 and 2,which are very
tenuous, i.e.,p and p« « p-. • Thus neglecting p and p_, Eqs. (A.17) have a
nontrivial solution only if

[ e k * - e - k A ] = 0 . (A.18)

kAAs ̂  is not identically zero, this yields

= + (A. 19)

the upper sign gives the unstable modes. When these values of w are substituted
into Eqs. (A.17) we find that they reduce to



A = 0 , C = Be"kz (-f < 2 < |) for w2 = - kg,

B = 0 , C = Ae + k z (- |- <z < |) for a.2 = + kg.
(A.20)

Thus in the case of instability, u = - kg, exactly as though the medium p, were
semi-infinite. Moreover the mode structure within medium 1 (density p=p->) is
also completely independent of the thickness of the layer, A. For the stable
modes, w = + kg, we again have a dispersion relationship and a mode structure
independent of the layer thickness A. The unstable modes are the Rayleigh-
Taylor modes on the bottom surface,whereas the stable modes are gravity waves on
the top surface.

13


