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HEATING OF FIELD-REVERSED PLASMA RINGS ESTIMATED WITH TWO SCALING MODELS 
J. W. Shearer 

ABSTRACT 
Scaling calculations are presented of the one temperature heating of a 

field-reveled plasma ring. Two sharp-boundary models of the ring are 

considered: the long thin approximation and a pinch mode!. Isobaric, 
adiabatic, and isovoiumetric cases are considered, corresponding to various 
ways of heating the plasma in a real experiment by using neutral beams, or by 
raising the magnetic field. It is found that the shape of the plasma changes 
markedly with heating. The least sensitive shape change (as a function of 
temperature) is found for the isovolumetric heating case, which can be 
achieved by combining neutral beam heating with compression. The 
complications introduced by this heating problem suggest that it is 
desirable, if possible, to create a field reversed ring which is already 
quite hot, rather than cold. 
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1. Introduction: The methods under consideration for producing a field 
reversed plasma ring (in a mirror machine) usually create a plasma whose 
temperature is lower than the desired fusion reaction temperatures.' ' 
The subsequent heating to elevated temperatures would then procede either via 
adiabatic heating* " ^ and/or neutral beam heating.' ' This report is 
an approximate scaling calculation of this subsequent heating process. 

Suppose one starts with a stationary field-reversed plasma ring of major 
radius R, minor radius a, length 2L, average density n, and temperature T 
contained in a magnetic field B. Then one would like to know what happens to 
these parameters as the plasma is heated. In addition the FLR stability 
parameter s = a/p^ is cf interest, where p^ is the ion gyro-radius. 
Also, changes in the neutral beam adsorption parameter M = / < a > n d r may 
be important for some of the cases. 

Two simplified field-reversed plasma models are used to consider the 
gross effects of heating a plausible plasma target. The heating time is 
assumed to be short compared to the lifetime of the plasma ring; thus, 
diffusion and stability questions are ignored. The heating time is assumed 
to be long, however, compared to the acoustic ringing time, so that one can 
use equilibrium models. 

2. Long Thin Model (Figure la). 
This is a two-dimensional model in which end effects are neglected. The 

plasma has sharp boundaries, and p= 1. Pressure equilibrium is: 

P = 2nkT (1) 
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in the single temperature approximation. In the absence of field diffusion, 
the reversed field f1uxqj R is conserved: 

<D R= v (R-a) 2 B = (2ir) 3 / 2 (R-a) 2 P 1 / 2 (2) 

A third relation 1s needed; we choose conservation of particles N (per unit 
length L) 

£ = it [{R+a} 2 - (R-a)2] n = 4iraRn (3) 

Particle conservation is a reasonable condition for the case of adfabatic 
heating; for neutral beam heating it is reasonable for cases where charge 
exchange 1s the dominant absorption process. Otherwise, equation (3) 1s an 
assumption of balance between particle injection and losses. 

For scaling purposes equations (l)-(3) are recast in the following forms: 
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where the initial conditions are indicated by the zero subscripts. These 
three equations are solved for the thres unknowns a, R, and n, with P and T 
is written 1n the form: 

P = GJ (7) I 
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For adiabatic compressional heating: 

Gad1ab. a Y / Y " 1 (8) 

On the other hand, if the pressure is held constant, then G = 0, 
corresponding to the case of neutral beam heating in a constant magnetic 
field. Intermediate values of G correspond to heating by both neutral beams 
and adiabatic compression. 

Simultaneous solution of equations (4)-(7) leads to the following 
equations: 

rvrh('*ftrn » 
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from which the auxiliary variables S and M can be found. 
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(13) 

These equations will be used for the examples given later in this report. 
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3. Pinch Model of the R1ng(Fiqure lb) 
Conceptually this second approach is a "pinched bicycle tire" geometry; 

its best accuracy should be for large aspect ratio rings (R » a). Pressure 
equilibrium in this case corresponds to the Dennett pfnch equation: 

I 2 = 4wa 2 n kT (14) 

The flux equation is derived from the expression for the inductance L of a 
current ring.^ ' 

^H['4(t)>H)*k(!)!-M <»> 
The quadratic terms are small and are neglected in this treatment; thus the 
flux * i s : 

»« IL*4ir I R l l i . f G i n - 4 [ (16) ••(•*WI 

The third equation Is the conservation of particles in the volume of the 
torus: 

U = 4ir2 nRa 2 (17) 

This relation is analogous to equation (3) of the previous model; similar 
comments are applicable here. 

In order to derive scaling relations similar to the previous model, one 
first expresses the current I in terms of the plasma pressure P: 

I = \ aB„ = a dSFF ( 1 8> 
2 p 
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where 8 1s the poloidal field at the plasma boundary. Then, by invoking 
the previous condition on P and T (equations (7) and (8)), one derives from 
equations (14-18) the following scaling equations: 

In 8 R/a - 7/4 
In 8 R„/a0-7/4 

(19) 

(20) 

(21) 

(22) 

The solution of these scaling equations is conveniently written in the 
following form: 
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from which the following auxiliary variables can be obtained: 

6- 1 
So t (fcH* 
M . - - * 6 - l ft(t) (Z7) 

In addition, one must know how the external magnetic field B, must be 
varied for this scaling. In this model, B is given by: 

Be = f B p = h m (28) 

From which one can obtain the scaling relation: 

J 8 - - ( S - J (* - )* '" ' »» 
eo v o' v o ' 

Comparison of equation (23) with equation (29} demonstrates that there is no 
simple algebraic relationship between the temperature T and the external 
field Bfi in this scaling. This is a consequence of the non-linearity of 
the flux equation in the pinched geometry. If one defines the plasma beta in 
terms of the pressure ratio: 

-(£) 2 •(*)' »• Jf -iiM - m w 
then in this scaling model we have: 

t-(W ,(t)"" 
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These results are useful for adiabatic compression calculations, but 
they are not helpful for the case of neutral beam heating in a constant 
external field* Far the neutral beam heating case a different set of scaling 
equations can be obtained. Constancy of B f i implies (from equation (28)) 
the following scaling relation. 

Equation (32) then replaces equation (22); the other equations (19-21) 
remain unchanged. The results are then: 

a <» o o 
/ L \ 1 / 3 " { 7 / 4 + (1n8r""7/4) w y 2 / 3 } 

0 ' 0' 

(33) 

h - (U ' / 3 

t - ( t f (fc)"1/3 

k-tfitf1 

The auxiliary variables are also simply expressed: 

i- <*-)-"« 
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t-(*ntr 
•(trctr k2/3 

B 0 1 a J i f ) O 9 ) 

Note that as the aspect ratio changes, the pinched plasma pressure changes 
during the heating, *>ven though the external pressure is constant in this 
case. 

4. Heating without Compression (Isobaric) 
For a first example consider a field-reversed plasma immersed in a 

constant magnetic field whose temperature is being raised solely by neutral 
beam heating. Such would be the case, for example, for neutral beam heating 
of a field-reversed plasma confined by the magnetic field of a constant 
current cryogenic coil. 

For the initial conditions the following plasma parameters were chosen: 
R Q = 10cm 

afl = 2.5cm 

s Q = 2.5 

R 0/a 0 = 4 (40) 

The large aspect ratio, R„/a corresponds to a generous amount of 
Initially field-reversed flux. 

In the long thin model, constancy of pressure implies 6 = 0 (equation 
(7)). Then for this example equations (9-13) can be written: 
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a = 3.75 { - 1 + 1 + (16/9) ( T / T 0 ) 1 / 2 \ 

R = (25/a) (T/T 0) 

s » a ( T 0 / T ) 1 / 2 

{W%) = (a/2.5) (T 0 /T) (47) 

The pinch model scaling equations for this case were just derived 

(equations 33-39); for these in i t ia l conditions (equation (40)) , one finds: 

1 , - . { 1 . 7 5 + (1.716) ( T / T D r * / 3 t a = 80 (T/T 0) i e 

R ' 1 0 ( T / T 0 ) 1 / 3 

(Vn_) - (6; .5/a 2R) 

(P/P 0) - (n/n 0) (T/T 0) 

S * (a) ( n / n 0 ) 1 / 2 ( T / T o ) 1 / Z 

(W%) = (0.4a) (n/nft) 

B ={100/a 2) ( T / T 0 ) 2 / 3

 ( 4 2 ) 



* " * * A **f ** A*TT. I 
-11 

Hb\r 



Ff <rUti, t t*t • 1 2 -
rt /•»/>" 

18 

! I 

- fVffr 
-•i » . i i i 

I . U 

14L«?.&JIJW ...w/&. ..GpytfiU 
4-4 



-13-
/ //*(tr+J 

h l*L-\A re. H fttJcHrfi W/A £y»if?J<£tyi*. 



-14-

Figures 2, 3, and 4 present the results of applying equations (41) and 
(42) to the initial conditions of equation (40). It is found that heating 
the plasma lowers its aspect ratio drastically (figure 2), The change fn the 
pinch model is especially dramatic; its plasma e drops from 8Q =16 to a 
value close to unity {figure 3). On the other hand, the FIR parameter s is 
rather Insensitive to the heating process (figure 3). The density n and the 
neutral beam absorption parameter M both decrease with heating, especially 
for the pinch model (figure 4). 

The calculations are not extended to higher temperatures (T > 10T), 
because it is believed that the changes in plasma parameters (such as the 
aspect ratio R/a) would be too great to be physically realistic. The 
decrease in density makes it difficult to match the absorption efficiency of 
the neutral beams to the plasma geometry over a wide range of temperatures. 
The analysis of stability questions becomes more involved. 

As long as the rise in temperature with heating is not too great 
(T < 10T 0), figures (2-4) indicate that the shape changes may be tolerable. 
5. Heating by Compression (Adiabatic) 

As a second example consider a field-reversed plasma ring which is 
r 

compressed by a slow "adiabatic" increase in the magnetic field. Such an 
increase might be produced by liner compression/ ' by increasing the 
current in external coils, or by projecting the plasma ring into a higher 
magnetic field region.' ' The same initial conditions are used as for the 
previous example (equation (40)). The specific heat ratio a is set equal to 
5/3, corresponding to a collislonal fully Ionized plasma. Thus, for equation 
(8) one finds G = 2.5. Substitution of this value in equations (9-13) and 
equations (23-31) leads to a set of scaling relations similar to equations 
(41-42). This will be left as an exercise for the reader; the results are 
plotted in figures 5-7. 
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The aspect ratio of the pinch model {figure 5} decreases even more 
drastically in this case than it does for neutral beam heating; in fact, 
this model is not applicable for a temperature increase greater than a factor 
of three. Calculations of the external field B g (equation (29), with 
G = 2.5) show that B e / B e 0 = 15 when T/T Q = 3. Thus, this modest 
increase In plasma temperature requires a more than 200-fold increase in the 
external magnetic field pressure. As one might expect, the parameter e 
(figure 6) shows a corresponding sharp drop. 

The long thin model, on the other hand, is found to be well-behaved over 
a much wider range of temperatures and pressures, as shown in figures (5-7). 
The aspect ratio increases slightly, and the whole plasma shrinks. These 
results are in substantial agreement with recent liner compression 
calculations done eisewhere.' ' 

It seems possible from these estimates that an Initial "bicycle tire" 
geometry might evolve into a long thin plasma layer during compression. But 
this is still a speculative thought. 
6. Heating at Constant Density (Isovolumetric) 

In this third example both the temperature and the pressure are linearly 
increased together. Then G = 1 (equation (7)), and the density n is constant 
(equations (4) and (19)). This is an intermediate case to the two previous 
examples; experimentally, it would require programming of the neutral beam 
intensity and the external magnetic field so that they act together. 

In this example, as in the last one, the numerical work is omitted; the 
pertinent results are displayed in figures 8 and 9. The density ratio n/n Q 

is not plotted because it fs unity for this case. The absorption parameter M 
1s likewise omitted, because 1t changes by less than a factor of 1.6 over 
this temperature range. 

Inspection of the results of this case show that both plasma models are 
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better behaved for the constant density case than for either of the two 
previous extremes. It is thus evident that it is necessary to increase both 
the pressure and the temperature in some programmed fashion, 1n order to heat 
the field-reversed plasma ring without drastic distortion of its shape. This 
example may not be the optimum programming for minimum shape distortion, but 
it is obviously more stable than the two previous methods of heating. 

The programming of the external field that is needed for the adiabatic 
and constant density examples has been calculated from equations (2) and 
(29), and is presented in figure 10. In particular, for the constant density 
case, the external pressure {<*B|) is seen to vary approximately as the 
square of the temperature for both plasma models. The practical problems of 
raising the field over such a range would have to be studied for each 
experimental configuration. 

7. Conclusions 
Although these scaling relations are approximations to the real geometry 

of a field-reversed ring, it is hoped that they will bracket the true 
behavior. An additional simplification in the analysis is the neglect of any 
possible toroidal magnetic field (B^). 

The results indicate that heating a field-reversed plasma ring by 
neutral beam injection in a constant external magnetic field is possible over 
a modest tenperature range (T£ 10T 0), but that achievement of larger final 
temperatures (T- > IOTQ) appears problematical due to distortion of the 
shape of the plasma ring (changes in the aspect ratio R/a) - if larger 
temperature ratios are required, 1t appears to be necessary to raise the 
external magnetic field as well as the temperature. 

Experimentally, the simplest approach appears to be to try to create the 
field-reversed plasma ring at a sufficiently high temperature so that it can 
be heated 1n a constant external magnetic field. This implies that the 
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temperature of the trapped plasma ring should be greater than one tenth of 
the final desired temperature. 
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