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PARAMETRIC STUDY OF THE DYNAMIC JWL-EOS
FOR DETONATION PRODUCTS*

Paul A. Urtiew and Bernard Hayes UCRL-JC—103218
Lawrence Livermore National Laboratory
Livermore, CA 94550 DE90 013486
Abstract

The JWL equation of state describing the adiabatic expansion of detonation products is
revisited to complete the description of the principal eigenvalue, to reset the secondary eigenvalue
to produce a well-behaved adiabatic gamma profile, and to normalize the characteristic equation of
state in terms of conventional parameters having a clear experimental interpretation. This is
accomphshed by inteijecting a dynamic flow condition concerning the value of the relative specific
volume when the particle velocity of the detonation products is zero. In addition, a set of generic
parameters based on the statistical distribution ofthe primary explosives making up the available
data base is presented. Unlike theoretical and statistical mechanical models, the adiabatic gamma
function for these materials is seen to have a positive initial slope in accord with experimental

findings.
Introduction

Equations of state of detonation products are mathematical expressions which characterize
particle streamlines following the chemical reaction zone. They are used by research groups and

laboratories to predict, simulate, and compare natural flow trajectories associated with energetic

materials.

Presently, there are several renowned equations of state (EOS) for the detonation
products. Each of'these state equations was developed specifically to satisfy certain criteria and is
used primarily by its originator. When it comes to choosing one EOS over another there are no
clearly established rules. The choice usually is based on the ability to accommodate the algorithm
into a computer program and its adaptability to desired changes and modifications. As an example,
in his early review of compressibility of water, MacDonald") described four different polynomial
and seven exponential equations of state that were applicable to solids and liquids. While

demonstrating their usefulness he found none of them to be superior to any of the others.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48. O
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The Jones-Wilkins-Lee equation of stated2-4) (JWL-EOS) is an empirical mathematical
expression used at this Laboratory and elsewhere to describe the pressure-volume relationship
associated with chemical detonation products. It is used to calculate the state of the products as
they expand from a certain high-pressure, high-density condition just after the chemical reaction to
some terminal state at normal pressure and gaseous density. The JWL-EOS comprises two
Mumaghan and one Tait equation of state. It represents pressure as a function of volume and
energy P = P(V,E). In this normal form it satisfies the mechanics of the detonic flow problem but
is incomplete for the thermodynamic description of the system and does not take into account
explicit chemistry. The JWL is an EOS that is based on the Gruneisen principle but is fitted to
experimental data. As with most other empirical equations of state, viscosity, conductivity, friction
and body forces such as gravity are considered secondary effects. These transport properties are

so small compared to the principal momentum of the system that they can easily be neglected.

The advantages of the JWL-EOS is its practical nature and the fairly large data base of
experimental and popular explosives it supports. In addition, it is formulated on the basis of its
two well-recognized predecessors: Mumaghan and Tait. However, after reviewing the literature
on the subject and subjecting the JWL-EOS to a rigorous mathematical scrutiny, we recognized that
the original set of coefficients and eigenvalues can be determined from well-defined boundary
values associated with static and dynamic conditions. Thus, in revisiting the subject of the JWL-
EOS it is the purpose of this communication to introduce a dynamic condition into the development
of this equation which would not only eliminate guessing the principal eigenvalue but would also
reduce the leading pressure coefficients to their primary dependents: the eigenvalues, the relative
specific volume at the Chapman-Jouguet (CJ) plane, and the value of the reduced internal energy.
This study will also reveal the small variance in governing parameters among various explosive
systems. It will also show the effect of small changes in these parameters on the gamma profile,

the most sensitive parameter of the detonic system.
IM,.rWL-EQS

Parametric studies are usually carried out with normalized equations where all parameters
appear in a nondimensional form. The JWL-EOS, as is familiar to all its users, is a mixed-
dimensional equation, and for this study it must be brought into a normalized form. However,
before doing that, let us first briefly review the relationship between various forms of this equation

when the parameters and coefficients still represent dimensional quantities.



The most general form of the original JWL pressure algorithm, with all its boundary and

initial (CJ) conditions appropriate to the dynamic detonic flow, is written as

)

This expression relates pressure P to the relative specific volume V = v/v( and energy E.
Here, specific volume v0 is the inverse of the initial density of the explosive, and the specific
volume v is the independent variable. The energy term E contains chemical bond energy as well as
kinetic energy associated with the momentum aspect of the flow. A, B, and C are the pressure
coefficients, Ri and R2 are the principal and secondary eigenvalues, respectively, and co is the

fractional part of the normal Tait equation adiabatic exponent.

To simplify Eqn. | the energy dependance can be consolidated by imposing the restriction
that the flow be adiabatic. Then, from the first law of thermodynamics.
dE = Tds - Pdv; @)
neglecting entropy changes, we find
dE = -Pdv. (3)

As a consequence, this also means that the temperature T plays no significant role in characterizing

the expansion process following the release of chemical energy within the reaction zone of the

detonation wave.

Differentiating Eqn. 1, applying the restricting condition of Eqn. 3, and solving the
resulting differential equation by quadrature, one can show that the usual isentropic form of the

JWL-EOS becomes
P = Ae"RIV + Be'Rav + CV (o) )
where the two inside terms are Mumaghan expressions and the last term is the usual Tait

expression. By integrating Eqn. 3, with Eqn. 4 substituted for P, one gets the expression for

energy

©)



The above expressions for pressure and energy are applicable along the isentropic release adiabat
as well as at the initial CJ state point. In addition, by introducing the tangency condition at the CJ

point where the isentrope is tangent to the Rayleigh line
dVJCj - POD2 ' (6)

we can get a set of three equations (4, 5, and 6) which can be solved to determine the three

pressure coefficients A, B and C:

140) - ~2 ] = E¢(1+C0 — VCR2)R2 — p0D2Vef1 — VeR2

R! Pc .
A= ——eRIVe, (7a)
RI-R2 1 +0) = VC(RI + R2) + VARjRyo)
/ VIRI) " 4 ge(1+C0 - V.RJR, + p0D2Ve( 1-——~i
R7 -P. I+co - co J
B= e eR2Ve, and  (7b)
RI-R2 1+0) - VC(RI+R2) + VARj/0)

-Pc(R1+12) + ECRIR2 + p0OD" 2+¢co
C= V; (7¢)
1 +0) - VARj + R2) + VCR*/G)

Here the subscript 0 denotes initial conditions and the subscript ¢ designates the Chapman-Jouguet
state, which is a physically and mathematically acceptable transition point between a steady wave

(the reaction zone) and the isentropic release wave, also known as the Taylor wave.

Up to this point all the expressions were written in the customary JWL mixed-dimensional
form. To carry out our parametric study, these expressions must be transformed into a

nondimensional format.

The most useful normalization factor is the "dynamic pressure," poD2, (Eqn.6) which
normalizes both pressure and energy. Thus, when so normalized all of the parameters become

nondimensional and are designated with a tilde(~) above them,; i.e.,

F——r. (8)

Transforming the isentropic JWL-EOS (Eqn. 4) into its nondimensional form, we get



P = Ae"R>V + Be~R2V +CV (1+co), 9)

where coefficients A, B and C from Eqn. 7 become

R,
A-VJ l+o) - [1/72(1-Ver + EJ (1+co — VCR2)R2-Vel 1-Ve—
0 J .
-———=Rivs (10a)
RI-R2 (1+co) — VC(RI+R2) +

R? —d—Vj \I: 1+co------ c. (;-.

B= -
RI-R2 (1+¢c0) - VC(RI+R2) + VARJRIA

I — 1-VO)(RI+R2) + 1A=V I+ E0 Rigy
C= 2O (10c)
(1+c0) - VC(RI+R2) + VCRIR2/2

During this transformation we have also made use of the nondimensional identities described

earlier™S) for the CJ state, namely:

Pc=1-V¢ (11)
and
Ec=E0 + Pc(1-V¢)/2 =E0 + 1V2, (12)

where the energy value of'the CJ state has been augmented by the flow condition and now

represents the sum of the normal energy density and the kinetic energy.

These identities are the ordinary jump conditions. They allow us to suppress pressure

dependency at the CJ plane by substituting pressure terms with the more important independent

relative specific volume term Ve.

Two important features about the normalized JWL-EOS can be noted at this point:



*  When Eqn. 9 is evaluated at the CJ point it must reduce to Eqn. 11. This means that the
initial condition of the EOS is completely independent of energy, a point that will be

verified later.

*  The normalized pressure coefficients A, B, and C depend not only on the two primary
explosive parameters Vc and E0 but also on the entire set of eigenvalues Ri, R2 and co.

The values of Ve and E0, along with their variances for the explosives taken from the
available data bas.i$/6) have already been established/5) For thirty-one different explosives the
values of V¢ and E0 are 0.7347+0.0065 and 0.0826+0.0125, respectively. For greater accuracy,
the energy value can be considered density-dependent and can be written as E0 = 0.204 -
0.0734po.

The Eigenvalues

The beginning of the adiabatic expansion process for detonation products, initially
accelerated into motion in the reaction zone, starts a deceleration phase at the CJ plane. These
particles will quickly slow down, stop, and, depending on the rear boundary, will most likely
reverse their direction as the products expand. For a point-initiated spherical wave, the particles
are more likely to just stop. For cylindrical and plane waves, the particles will reverse their
direction of motion. Thus, along a streamline there is a point at which the mass motion stops and
the particle velocity is zero. This point in space and time provides an additional condition to

determine the principle eigenvalue Ri and in turn the remaining unknown quantities.

To utilize this additional state of zero particle velocity along the release streamline, we shall
invoke the dynamic relationship between the principal detonic variables/7") where, as before, the

transport properties are neglected. This dynamic relationship can be written as:

Pv+u2=0, (13)
where the dot above the symbols refers to total temporal differentials. After normalizing and
rearranging of terms, we can write
V=0> r——m7F -
-+=1-V(=1] V -(dP/dVMV, (14)
Ve
which represents conditions along a streamline involving detonic variables between the CJ plane

and the location where the particle velocity is zero.



The utility of the above expression can be demonstrated by considering the classical case
of the constant-gamma equation of state, PVr = const, for which this integral can easily be

evaluated to yield the expression

r-i (15)

For the usual F=3 case, we find
V(@u=0,r=3) = 9/8 =1.125. (16)

However, the JWL is not a constant-gamma EOS. It is designed to account for the gamma
range between a certain value near 2.77 (Ref. 5) at the CJ plane and the adiabatic exponent of the
final polytropic gaseous products. When the isentropic JWL-EOS (Eqn. 9) is substituted into Eqn.
14, there is no closed-form solution to the integral, and one must resort to a close approximation.
There are several ways to approach the problem, among which are the Adams-Boshforth
technique, the three-eights rule, or Simpson's method/9) The latter was selected for this work
after testing it for stability and accuracy. The method is described in more detail in the Appendix.
In essence, the solution involves determining the approximate relative specific volume of the
reacted products at the point where the particle velocity is zero and then iterating to a unique final

value.

Such a procedure was followed to determine V(u=0) for all the explosives listed in the
data base/6) These values are given in Table | together with the corresponding values of p0, D,
Ve and EO. Also shown in the Table are arithmetic averages with their respective variances and
standard deviations. The results were both interesting and significant. For all listed explosives,
the value of V(u=0) is nearly a constant Vave(u=0) = 1.1189+0.0050, with a standard deviation not
exceeding 0.5%. This observation allowed us to use this unique value of V(u=0) in the iterative

process to solve for Ri and R2.

During this procedure an estimate had to be made of the relationship between the two
eigenvalues Ri and R2.. One could either make an estimate of R2 and treat it as a constant or
establish R2 as a function of Rj and recompute its value during the iteration procedure. One could
also require that R2 serve some other specific purpose, such as matching a certain value of gamma

with the value of V(u=0). This latter assumption would require justification and more extensive



Table 1. Selected properties of the major primary explosives.

Explosive

BTF
Comp A-3
Comp B
Comp C-4
Cyclotol
DIPAM
EL-506A
EL-506C
Expl. D
FEFO
HMX
FINS
FINS
LX-01
LX-04-1
LX-07
LX-09-1
LX-10-1
LX-11
LX-17-0
NM

Octol 78
PBX-9010
PBX-9011
PBX-9404
PBX-9407
Pentolite
PETN
PETN
Tetryl
TNT
average
variance

std. dev.

P
(g/cc)

1.859
1.650
1.717
1.601
1.754
1.550
1.480
1.480
1.420
1.590
1.891
1.400
1.650
1.230
1.865
1.865
1.840
1.865
1.875
1.900
1.128
1.821
1.787
1.777
1.840
1.600
1.700
1.500
1.770
1.730
1.630

D

(mm/jis)

8.480
8.300
7.980
8.193
8.250
6.700
7.200
7.000
6.500
7.500
9.110
6.340
7.030
6.840
8.470
8.640
8.840
8.820
8.320
7.600
6.280
8.480
8.390
8.500
8.800
7.910
7.530
7.450
8.300
7.910
6.930

vClJ

0.730703
0.736074
0.730197
0.739456
0.731952
0.741303
0.732805
0.731108
0.733311
0.720475
0.732378
0.742331
0.736340
0.730651
0.745883
0.745010
0.739199
0.741526
0.745747
0.726636
0.719015
0.738829
0.729709
0.735178
0.740331
0.735288
0.735453
0.735747
0.725264
0.736703
0.731734
0.734720
0.000042
0.01%

0.006536
0.89%

Eo

0.086025
0.078297
0.077739
0.083746
0.077063
0.089106
0.091237
0.085493
0.090007
0.089447
0.066905
0.106621
0.091361
0.106001
0.071003
0.071827
0.073024
0.071683
0.069341
0.062873
0.114641
0.073311
0.071547
0.069320
0.071584
0.085906
0.084032
0.102818
0.082830
0.075755
0.089421
0.082579
0.000155
0.19%

0.012488

15.12%

V(up = 0)

1.12655
1.11734
1.11774
1.11566
1.11885
1.11969
1.11589
1.11431
1.1176
1.12279
1.11629
1.12073
1.12002
1.12648
1.11407
1.11392
1.11853
1.11697
1.11197
1.11146
1.13192
1.11739
1.11586
1.11399
1.11762
1.12112
1.12116
1.13107
1.1259
1.11671
1.11598
1.118889
0.000024
0.00%
0.004989
0.45%



programming for solving simultaneous differential equations. Therefore, for the purpose of this

communication we have chosen the second estimate, which states that

R2 = KR! (17)

where k is a constant. This relationship is relatively easy to handle, and, judging from the existing

data base/6) it is also a very reasonable one. For most of the H-C-N-0 explosives in the data base,

k = 0.27 with a standard deviation from an average of not more than 2%.

The final parameter value needed for the solution of Eqn. 14 is related to the ground-state
adiabatic exponenty. Ofthe three terms in the JWL-EOS (Eqn. 9), the third term containing co

dominates at the far end of the expansion; i.e., when the products approach some normal state at
atmospheric conditions. Thus, the exponent (I+co) represents the terminal value of the adiabatic
exponent gamma, which for polytropic gases, such as the products of an explosive reaction, would
be near the value of'4/3. This results in co having the value of 1/3, the value chosen for the

solution of Eqn. 14.

Thus, with all the unknowns in the Eqn. 14 either determined or properly estimated, the
iterative process, although tedious, can easily be performed to yield a unique set of eigenvalues and
coefficients required to carry out calculations with the JWL-EOS. These then, together with the
results reported earlier/5) form a complete set of characteristic values which fully describes a

generic explosive in a nondimensional form. The list of these characteristic values is given in

Table 2.

Table 2. List of characteristic values for a generic explosives.

Pc = Pc/poD2 =0.2653 co=y-1=1/3

Uc =Uc/D =0.2653 K= R2/Rl =0.27

Ve =v/v0 =0.7347 Ri = 4.41604

V(@u=0) = 1.119 A = A/p0OD2 = 5.35545
rc = Ve/(1-Ve) = 2.77 B0 = B/p0D2 = 0.094983
Eo = Eo/poD2 = 0.204 - 0.0734po or C =C/p0D2 =0.0112292

Eoave = 0.0826

Normally, the expansion of the detonation products is shown on the pressure-specific

volume plane. However, the behavior of the products on this plane is always a monotonically



decaying function with a very steep slope at the beginning. The release adiabat is therefore best

illustrated by a profile of the system gamma, defined as

dinP
dinV (18)

Both the normalized pressure and the system gamma curves are shown in Fig. | for our
generic explosive whose characteristic values are listed in Table 2. In this figure the pressure curve
drops quickly from its nondimensional CJ value 0f0.2656 to less than 10% ofthat value at the
relative specific volume of 1.6. Thereafter, the curve decays only gradually to some final normal
state. The gamma function, on the other hand, forms a profile with a positive slope at the CJ point
and two distinct humps during the expansion process. As we will see in the following sections,
both humps can be controlled and varied but at a cost of loosing the validity of the experimental

data which generated the original fitting process..

Effect of Internal Energy E»

From the list of characteristic values for a generic explosive only one, the normalized
energy - E0, could not be stated as a constant. Rather, it turns out to be a simple linear function of
the initial density.”) To see the effect of this value on the products EOS it is best to look at the
profile of the system gamma. This effect is illustrated in Fig. 2, where the value of E0 is varied by
+12% from the average normalized value 0f0.0826. The remaining variables which accompany
this change are listed in Table 3 below

Table 3. Generic JWL-EOS coefficients with corresponding
values of the relative energy

Constants unaffected by the change in EO:

Ve = 0.7347
V(u=0) = 1.119
K = 0.27
o = 1/3
Curve in
Fig. 2 Eo R1 A B C
| 0.0726 4.4298 5.4202 0.11103 6.621E-3
2 0.0826 4.4160 5.3555 0.09499 0.011229

3 0.0926 4.4025 5.2915 0.07909 0.015844



Figure 2 clearly shows that there is no effect on the initial CJ point for energy changes that
are different from the generic value of E0. Even in the central region of the plot, where the energy
term is most effective in displacing the gamma profile, there is very litde change. The effect of E0
is reflected in the size of the second hump; i.e., the smaller E0 oflarger initial explosive density,
the higher the second hump. The second hump may altogether vanish if'the energy value is

increased.

Although not direcdy associated with the energy term, Lee and Homig"3) have studied the
effect on the gamma profile by varying the loading density of PETN charges. Ifone takes into
account the linear relationship between normalized energy and charge density/5) then PETN results

confirm our finding of the effect of E0 on the shape of the gamma profile.

Effect of Relative Specific Volume V(u=0)

As mentioned earlier the value of V(u=0) controls the eigenvalue R]. This is illustrated in
Fig. 3 which shows the profile of gamma for three different values of V(u=0). The remaining

coefficients corresponding to these three profiles are listed in Table 4.

Table 4. Generic JWL-EOS coefficients with corresponding values of the relative
specific volume at zero particle velocity.

; unaffected by the change in V(u=0):

Ve 0.7347

Eo 0.0826

K = 0.27

0 = 1/3
Curve in
Fig. 3 V(u=0) Ri A B C
4 1.109 3.89695 4.43962 7.619E-4 0.0173148
2 1.119 4.41604 5.35545 0.094983 0.0112292
5 1.129 10.83395 88.59385 1.849790 0.0123951

Note: The large value of A for Curve 5 shifts the whole waveform to the left, dropping off the
usual first hump.



The sensitivity of this parameter is immediately evident. By varying the value of V(u=0)
by less than 1% above and below the established generic value, we see a dramatic change in the
profile of the system gamma. Also, both deviations (Curves 4 and 5) cause the gamma profile to
loose its second hump and attain the normal state at a much higher density than the original generic
case (Curve 2). By increasing the value of V(u=0), we also notice that the initial slope of gamma
at the CJ point becomes negative. This condition is similar to statistical mechanical and other
equations of state in general use. However, this negative initial slope of the gamma profile does

not agree with experimental evidence, as will be shown later.

The Effect of Eigenvalue Ratio x ~ R->/Ri

While evaluating Ri and R2 it was postulated that they are related through a proportionality
constant k (Eqn. 17). The generic value of this constant was chosen on the basis of the existing
data base/6) However, this value may not be correct, and therefore one needs to know what effect

this constant has on the gamma profile. Again, as before, the effect of k is illustrated in Fig. 4
with all corresponding constants listed in Table 5.
Table 5. Generic JWL-EOS coefficients with corresponding

values of the eigenvalue ratio K.
Constants unaffected by the change in k:

Ve = 0.7347
V(u=0) =1.119
Eo = (0.0826
) =1/3
Curve in
Fig. 4 V(u=0) K R1 A B C
6 1.119 0.23 4.36546 5.30387 0.074540 9.9634E-3
2 1.119 0.27 4.41604 5.35545 0.094983 0.0112292
7 1.119 0.31 10.91562 55.58986 2.69632 0.0149773
8 1.109 0.23 3.98664 4.46918 6.202E-4 0.0173026
6 1.119 0.23 4.36546 5.30387 0.074540 9.9634E-3
9 1.129 0.23 4.78633 6.41625 0.150261 5.1677E-3

As is evident from Fig. 4a, raising the value of K by about 15% produces the previously

noted effect of enlarging the first hump, eliminating the second, and reaching its normal state
isentropic gamma value at a much higher density. However, lowering the value of K by 15% one



can see almost no change in the gamma profile. At the lower k the effect becomes evident when

variation in V(u=0) is also introduced. This is seen in the adjacent Fig. 4b, where K = 0.23 and
V(u=0) is varied between 1.109 and 1.129. Here, depending on the value of V(u=0), the second
hump of the gamma profile can be either greater or less than the first hump. Also, as in the other

extreme cases, the second hump can disappear all together.

Slone of Gamma at the C.T Point

Completely independent of any EOS, the plane wave hypothesis is used to express the

normalized system gamma as

where X is the location of the detonation front in Cartesian coordinates with the origin placed at the
surface of’initiation, Xc is the specific location of the CJ plane that is on the same streamline along
which the particle velocity is being considered, and U is the normalized particle velocity. We
emphasize that the above expression is EOS-independent and applies to all plane-wave detonic

systems whether they are steady, self-similar, or isentropically expanding.

The relationship between V and X/Xc is quite complex, since it involves not only the
streamline position but also the particle velocity. Nevertheless, near the CJ point this relationship
can be simplified by letting the dynamic motion be sufficiently small that the positional ratio can be

considered unity. Then, in the near proximity of the CJ plane, we get

) \Y%
rve<v«i ~ |y 20y
and the initial slope can be expressed as
dT 1 o1
) @20
dv (1-vy

which is positive because any increase in V will lead to an increase in F.

Summary

The present list of known explosives has a fairly large data base. Examining the data
base, we noted that when each listing was normalized by its dynamic pressure, p0D2, all available



H-C-N-0 type explosives statistically converged to a single generic prototype, whose characteristic
values are listed in Table 2. This generic explosive can then be used to fully describe the behavior
of any new material when only the values of’initial density (p0) and detonation velocity (D) are

available.

The products equation of state describes the isentropic expansion of the reaction products
from their initial CJ state to some terminal state at atmospheric pressure and gaseous density.
Among the currently popular equations of state used to describe expansion of the detonation

products, the JWL-EOS was found to be the most practical and descriptive.

Although the JWL-EOS was originally proposed as an experimental EOS requiring a
certain amount of fitting to experimental data , the normalization procedure and the introduction of
an additional dynamic condition for the specific volume at the state where particle velocity is zero
revealed that all characteristic values in a nondimensional form are either unique or interrelated to
such an extent that very little or no guessing at all is necessary to fill the complement of parameters
and coefficients needed to evaluate the algorithm. The list of nondimensional values pertaining to
the generic explosive should be sufficient to describe the behavior of any explosive and in

particular the behavior of the reaction products.

The three terms making up the JWL-EOS control the whole adiabatic expansion region,
and that control is reflected in the shape of the gamma profile. The principal eigenvalue Ri
dominates the wave shape at and near the beginning of the gamma profile near the CJ plane . Its
dominance extends to about where particle velocity becomes zero. Following this region the
secondary eigenvalue R2 along with the energy value E0 controls the transition region before the
adiabatic exponent takes over. The energy value EO(Po) depends on the initial density, p0, but
does not influence initial CJ conditions. However, the value of energy does affect the size and
shape of'the second hump in the gamma profile. Together with the value of R2, the energy value
can be used to eliminate the second hump altogether, if'it is deemed objectionable. In the present
analysis we selected the secondary eigenvalue to be linearly dependent on the primary eigenvalue to
preserve the waveform shapes of the existing data base. After the second hump the gamma profile
asymptotically approaches the atmospheric state at some very large expansion. For this work the

state chosen is the usual one described by the adiabatic exponent associated with a polytropic gas.

The gamma profile for the materials making up the published JWL-EOS data base has an

initial positive slope starting at the CJ plane. To our knowledge no other equation of state follows



this description. Rather, they all start out in a negative direction and monotonically decay to some
atmospheric condition. Very little experimental evidence supports this positive slope contention,
but what is available does confirm the plane wave theoretical evidence. For this reason it is
deemed desirable, notwithstanding statistical mechanical results to the contrary, to implement JWL
equation of state which supports these limited observations, as opposed to nondynamic equations

of state, which concern only pressure-volume conditions.

At the present state of our understanding, the second hump of'the gamma profile has no
apparent reality. It is still an artifact of the old curve-matching technique that required a particular
pressure-volume relationship. This hump is still present with the description of the generic
explosive. However, one should bear in mind that its existence is not absolute, and it can be
eliminated by a proper choice of energy E0 and secondary eignevalue without affecting other

characteristic features of the expansion.

From Tables 3, 4 and 5 one should also notice two distinct regions of the primary
eigenvalues: those around 4.4 and those around 10. The former result in the familiar gamma
profile with the double humps while the latter have no second hump. This change to high values
affects the initial slope at the CJ plane even to the extent that a negative initial slope is a distinct
possibility. This type of profile decays much more rapidly and attains the value of polytropic

gamma at significantly higher densities.

In most respects, the JWL-EOS is a well-behaved expression ranging over a wide choice
of gamma profile features. It is well-identified by Mumaghan and Tait, and above all it conforms
to theoretical expectations for plane waves and experimental observations that the slope of the

gamma function for the expanding products at the CJ plane is positive.



Appendix

After invoking the dynamic relationship among the principal detonic variables
2
Pv+u =0 (A-D)

and normalizing it with the dynamic pressure, p0D2 , we arrive at Eqn. 14 in the text:

D - Vc -(dP/dV)dV (A-2)
This equation represents the condition under which one can evaluate the relative specific volume at

the state where the particle velocity is zero.

Taking the derivative of Eqn. 9 and substituting it into Eqn. A-2, we get

_ V=0 e Rvi 12
1-Ve = £ RIAe-RV + R2ie-Rv-in-C 7y (A-3)

7 l 1 , 240)
which has no direct solution but can be solved by approximation techniques. We have used the

Simpson's Rulef10) with the result

[ fV)AV = | [f(Ve) + 4f(Verh) + f(Ver2h)] (Ad)

where V(u=0) = Vc + 2h. By letting this limit equal to | + A, we can introduce A as the fractional
increase in the specific volume over unity at the location where the particle velocity is zero. This
method of handling the coefficient h reduces the propagation of computational errors and allows a

convenient way to enter the fraction part of volume into the iterative program.

Replacing the integrand of Eqn. A-3 with its functional counterpart in Eqn. A-4 and

simplifying the resulting expression, we find
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SA-VO-A, 1 RiAe RI+ver)2 + R2ie-Ry(1+verwp + (1Heo)C

1-vi+» [(1+Vet20/2

2+co
]

~1/2
Rxde R'(14W + R2Be Ry(1+w + (17¢0) €

2+co
(A-5)

Using the available data base(5'6) with reported values of Ri, R2, V¢, E0, and co, one can easily
determine the value of X and in turn the value of V(u=0) for each explosive in that data base.
These values are listed in Table 1. As one can easily note, the value of V(u=0) for all the
explosives listed in that table remains the same within a standard deviation of less than 0.5% from
an average value of 1.119. Having established the uniqueness of this value for most of the H-C-
N-O explosives, we can use it in Eqn. A-5 to determine the value of Ri and R2 for any new
explosive. This procedure is somewhat more involved because now each iteration for the principal
eigenvalue of Rj will require reevaluation of all coefficients R2, A, B and C; i.e., one has to

recalculate all normalized pressure coefficients after each pass through the algorithm.
(R"NIMR™n-F/F' (A-6)

Here, F symbolizes Eqn. A-5 when the left-hand side of the equation is moved to the right-hand

side so that the value of F represents the remainder to be nulled out by the iteration scheme and

F = aF/aRj (A-7)
This procedure is in effect the steepest prescription for convergence and will yield the full

set of eigenvalues and pressure coefficients which are described in the text.
Acknowledgements

The authors wish to express their gratitude to their colleagues for valuable discussions on

the subject and to Karen Spurlin for her patience in typing several drafts of the manuscript.

References

1.  McDonald, J. R., "Review of Some Experimental and Analytical EOS", Review of Modem
Physics, 41, No. 2, pp. 316-349, April 1969.



Kury, J. W., Homig, H.C., Lee, E. L., McDonnel, J. L., Omellas, D. L., Finger, M.,
Strange, F. M. and Wilkins, M. L., "Metal Acceleration by Chemical Explosives", Fourth
Symposium (International) on Detonation, pp. 3-13, ACR-126, Office of Naval Research,

October 1965.

Lee, E. L., Homig, H. C. and Kury, J. W., "Adiabatic Expansion of High Explosive
Detonation Products", UCRL-50422, Lawrence Livermore National Laboratory, Livermore,

CA, May 1968.

Lee, E. L. and Homig, H.C., "Equation of State of Detonation Product Gases", Twelfth
Symposium (International) on Combustion, pp. 493-499, The Combustion Institute, 1969.

Urtiew, P. A. and Hayes, B., "Empirical Estimate of Detonation Parameters in Condensed
Explosives", UCRL—JC103219; Lawrence Livermore National Laboratory, Livermore, CA ,
March 1990.

Dobratz, B. M., "LLNL Explosives Handbook - Properties of Chemical Explosives and
Explosive Simulants", UCRL-52997, Lawrence Livermore National Laboratory, Livermore,
CA, March 1981.

Hayes, B. and Tarver, C. M., "Interpolation of Detonation Parameters from Experimental
Particle Velocity Records", Seventh Symposium (International) on Detonation, pp. 1029-
1039, NSWC MP82-334, White Oak, Silver Spring, MD, 1982.

Urtiew, P. A., Erickson, L. M., Hayes, B. and Parker, N. L., "Pressure and Particle
Velocity Measurements in Solids Subjected to Dynamic Loading", LLNL UCRL-93213,
Combustion, Explosion and Shock Waves, 22, No. 5, pp. 597-614, 1986.

Hamming, R. W. Numerical Methods for Scientists and Engineers. McGraw Hill Book Co.,
Inc. N.Y. 1962.

Kaplan, W. Advanced Calculus, p. 171, Addison-Wesley Publ. Co., Reading, MA 1956.



Figure Captions

Fig. 1 Adiabatic expansion of the reaction products of'a generic explosive whose characteristic
values are listed in Table 2.

Fig. 2 The effect of E0 on the JWL gamma profile.
Fig. 3 The effect of V(u=0) on the JWL gamma profile.
Fig. 4 The effect of k and V(u=0) on the JWL gamma profile

a) V(u=0)=1.119  K=027+.04
b) V(@u=0) = 1.119£01 x =023
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Adiabatic expansion of the reaction products of a generic explosive whose characteristic
values are listed in Table 2.

Pressure,



Relative specific volume, V

MI024-U-9764-02(ill) Fig. 2 The effect of E0 on the JWL gamma profile.
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MI024-U-9764-03 Fig. 3 The effect of V(u=0) on the JWL gamma profile.
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MI024-U-9764-04a Fig. 4a  The effect of K on the JWL gamma profile.
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Fig. 4b  The effect of V(u=0) with k = 0.23 on the JWL gamma proﬁle
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