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PARAMETRIC STUDY OF THE DYNAMIC JWL-EOS 
FOR DETONATION PRODUCTS*

Paul A. Urtiew and Bernard Hayes UCRL-JC—103218
Lawrence Livermore National Laboratory

Livermore, CA 94550 DE9 0 013 486

Abstract

The JWL equation of state describing the adiabatic expansion of detonation products is 
revisited to complete the description of the principal eigenvalue, to reset the secondary eigenvalue 
to produce a well-behaved adiabatic gamma profile, and to normalize the characteristic equation of 
state in terms of conventional parameters having a clear experimental interpretation. This is 
accomphshed by inteijecting a dynamic flow condition concerning the value of the relative specific 
volume when the particle velocity of the detonation products is zero. In addition, a set of generic 
parameters based on the statistical distribution of the primary explosives making up the available 
data base is presented. Unlike theoretical and statistical mechanical models, the adiabatic gamma 
function for these materials is seen to have a positive initial slope in accord with experimental 
findings.

Introduction

Equations of state of detonation products are mathematical expressions which characterize 
particle streamlines following the chemical reaction zone. They are used by research groups and 
laboratories to predict, simulate, and compare natural flow trajectories associated with energetic 
materials.

Presently, there are several renowned equations of state (EOS) for the detonation 
products. Each of these state equations was developed specifically to satisfy certain criteria and is 
used primarily by its originator. When it comes to choosing one EOS over another there are no 
clearly established rules. The choice usually is based on the ability to accommodate the algorithm 
into a computer program and its adaptability to desired changes and modifications. As an example, 
in his early review of compressibility of water, MacDonald^) described four different polynomial 
and seven exponential equations of state that were applicable to solids and liquids. While 
demonstrating their usefulness he found none of them to be superior to any of the others.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-48.
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The Jones-Wilkins-Lee equation of stated2-4) (JWL-EOS) is an empirical mathematical 
expression used at this Laboratory and elsewhere to describe the pressure-volume relationship 
associated with chemical detonation products. It is used to calculate the state of the products as 
they expand from a certain high-pressure, high-density condition just after the chemical reaction to 
some terminal state at normal pressure and gaseous density. The JWL-EOS comprises two 
Mumaghan and one Tait equation of state. It represents pressure as a function of volume and 
energy P = P(V,E). In this normal form it satisfies the mechanics of the detonic flow problem but 
is incomplete for the thermodynamic description of the system and does not take into account 
explicit chemistry. The JWL is an EOS that is based on the Gruneisen principle but is fitted to 
experimental data. As with most other empirical equations of state, viscosity, conductivity, friction 
and body forces such as gravity are considered secondary effects. These transport properties are 
so small compared to the principal momentum of the system that they can easily be neglected.

The advantages of the JWL-EOS is its practical nature and the fairly large data base of 
experimental and popular explosives it supports. In addition, it is formulated on the basis of its 
two well-recognized predecessors: Mumaghan and Tait. However, after reviewing the literature 
on the subject and subjecting the JWL-EOS to a rigorous mathematical scrutiny, we recognized that 
the original set of coefficients and eigenvalues can be determined from well-defined boundary 
values associated with static and dynamic conditions. Thus, in revisiting the subject of the JWL- 
EOS it is the purpose of this communication to introduce a dynamic condition into the development 
of this equation which would not only eliminate guessing the principal eigenvalue but would also 
reduce the leading pressure coefficients to their primary dependents: the eigenvalues, the relative 
specific volume at the Chapman-Jouguet (CJ) plane, and the value of the reduced internal energy. 
This study will also reveal the small variance in governing parameters among various explosive 
systems. It will also show the effect of small changes in these parameters on the gamma profile, 
the most sensitive parameter of the detonic system.

IM,.rWL-EQS

Parametric studies are usually carried out with normalized equations where all parameters 
appear in a nondimensional form. The JWL-EOS, as is familiar to all its users, is a mixed­
dimensional equation, and for this study it must be brought into a normalized form. However, 
before doing that, let us first briefly review the relationship between various forms of this equation 
when the parameters and coefficients still represent dimensional quantities.
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The most general form of the original JWL pressure algorithm, with all its boundary and 
initial (CJ) conditions appropriate to the dynamic detonic flow, is written as

(1)

This expression relates pressure P to the relative specific volume V = v/v0 and energy E. 
Here, specific volume v0 is the inverse of the initial density of the explosive, and the specific
volume v is the independent variable. The energy term E contains chemical bond energy as well as
kinetic energy associated with the momentum aspect of the flow. A, B, and C are the pressure 
coefficients, Ri and R2 are the principal and secondary eigenvalues, respectively, and co is the 
fractional part of the normal Tait equation adiabatic exponent.

To simplify Eqn. 1 the energy dependance can be consolidated by imposing the restriction 
that the flow be adiabatic. Then, from the first law of thermodynamics.

(2)dE = Tds - Pdv;

neglecting entropy changes, we find

dE = -Pdv. (3)

As a consequence, this also means that the temperature T plays no significant role in characterizing 
the expansion process following the release of chemical energy within the reaction zone of the 
detonation wave.

Differentiating Eqn. 1, applying the restricting condition of Eqn. 3, and solving the 
resulting differential equation by quadrature, one can show that the usual isentropic form of the 
JWL-EOS becomes

(l+co)P = Ae"RlV + Be'R2V + CV (4)

where the two inside terms are Mumaghan expressions and the last term is the usual Tait 
expression. By integrating Eqn. 3, with Eqn. 4 substituted for P, one gets the expression for 
energy

(5)
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The above expressions for pressure and energy are applicable along the isentropic release adiabat 
as well as at the initial CJ state point. In addition, by introducing the tangency condition at the CJ 
point where the isentrope is tangent to the Rayleigh line

_2dvJcj- P°D ’

we can get a set of three equations (4, 5, and 6) which can be solved to determine the three 
pressure coefficients A, B and C:

(6)

A =
R! Pc

1+0) - ^2 ] - Ec(l+C0 - VcR2)R2 - p0D2Vcf 1 - VcR2
co

Rl-R2 1 + 0) - VC(R1 + R2) + V^RjRyo)
——-eRlVc, (7a)

/

B =
R7 -P.

\
1+co -

V2ri) "
co J

Rl-R2

+ Ec(l+C0 - V.R.JR, + p0D2Vc( l--^i

-----------eR2Vc, and (7b)
1+0) - Vc(R1+R2) + V^Rj/o)

C =
-Pc(ri+r2) + EcR1R2 + p0D" 2+co

1 + 0) - V^Rj + R2) + VcR^/G)
v; (7c)

Here the subscript 0 denotes initial conditions and the subscript c designates the Chapman-Jouguet 
state, which is a physically and mathematically acceptable transition point between a steady wave 
(the reaction zone) and the isentropic release wave, also known as the Taylor wave.

Up to this point all the expressions were written in the customary JWL mixed-dimensional 
form. To carry out our parametric study, these expressions must be transformed into a 
nondimensional format.

The most useful normalization factor is the "dynamic pressure," poD2, (Eqn.6) which 
normalizes both pressure and energy. Thus, when so normalized all of the parameters become 
nondimensional and are designated with a tilde(~) above them; i.e.,

F
F =----- r. (8)

PoD2

Transforming the isentropic JWL-EOS (Eqn. 4) into its nondimensional form, we get
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(9)P = Ae"R>V + Be~R2V +CV (1+co),

where coefficients A, B and C from Eqn. 7 become

A =
R, (1-VJ l+o) -

CO J

R1-R2

[1/2(1-Vcr + EJ (1+co - VcR2)R2-VcI 1-Vc—
----—eRivs (10a)

R,

(1+co) - Vc(R1+R2) +

B =
R? -d-vjr

1+co---------- +
V co _

i(l-Vc)2 + E0

Ri-R2 (1+co) - Vc(R1+R2) + V^RjRj^

(l+co-V^^Rj+V^l-V^^

--------- and (10b)

C =
1 - (1-Vc)(R1+R2) + i(l-Vc)2 + E0 R,Rl1'2

(1+co) - Vc(R!+R2) + VcRiR2/2
■v:2-ko (10c)

During this transformation we have also made use of the nondimensional identities described 
earlier^5) for the CJ state, namely:

Pc=l-Vc (11)

and

Ec = E0 + Pc(l-Vc)/2 = E0 + IV2, (12)

where the energy value of the CJ state has been augmented by the flow condition and now 
represents the sum of the normal energy density and the kinetic energy.

These identities are the ordinary jump conditions. They allow us to suppress pressure 
dependency at the CJ plane by substituting pressure terms with the more important independent 
relative specific volume term Vc.

Two important features about the normalized JWL-EOS can be noted at this point:
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• When Eqn. 9 is evaluated at the CJ point it must reduce to Eqn. 11. This means that the 
initial condition of the EOS is completely independent of energy, a point that will be 
verified later.

• The normalized pressure coefficients A, B, and C depend not only on the two primary 
explosive parameters Vc and E0 but also on the entire set of eigenvalues Ri, R2 and co.

The values of Vc and E0, along with their variances for the explosives taken from the 
available data base/6) have already been established/5) For thirty-one different explosives the-N*
values of Vc and E0 are 0.7347+0.0065 and 0.0826+0.0125, respectively. For greater accuracy, 
the energy value can be considered density-dependent and can be written as E0 = 0.204 - 
0.0734po.

The Eigenvalues

The beginning of the adiabatic expansion process for detonation products, initially 
accelerated into motion in the reaction zone, starts a deceleration phase at the CJ plane. These 
particles will quickly slow down, stop, and, depending on the rear boundary, will most likely 
reverse their direction as the products expand. For a point-initiated spherical wave, the particles 
are more likely to just stop. For cylindrical and plane waves, the particles will reverse their 
direction of motion. Thus, along a streamline there is a point at which the mass motion stops and 
the particle velocity is zero. This point in space and time provides an additional condition to 
determine the principle eigenvalue Ri and in turn the remaining unknown quantities.

To utilize this additional state of zero particle velocity along the release streamline, we shall 
invoke the dynamic relationship between the principal detonic variables/7’^) where, as before, the 
transport properties are neglected. This dynamic relationship can be written as:

P v + u 2 = 0, (13)

where the dot above the symbols refers to total temporal differentials. After normalizing and 
rearranging of terms, we can write

V(u=0> r—_------------
-+ = 1-VC = J V -(dP/dVMV, (14)

Vc

which represents conditions along a streamline involving detonic variables between the CJ plane 
and the location where the particle velocity is zero.

6



The utility of the above expression can be demonstrated by considering the classical case 
of the constant-gamma equation of state, PVr = const, for which this integral can easily be 
evaluated to yield the expression

r-i (15)

For the usual F=3 case, we find

V(u=0,r=3) = 9/8 =1.125. (16)

However, the JWL is not a constant-gamma EOS. It is designed to account for the gamma 
range between a certain value near 2.77 (Ref. 5) at the CJ plane and the adiabatic exponent of the 
final polytropic gaseous products. When the isentropic JWL-EOS (Eqn. 9) is substituted into Eqn. 
14, there is no closed-form solution to the integral, and one must resort to a close approximation. 
There are several ways to approach the problem, among which are the Adams-Boshforth 
technique, the three-eights rule, or Simpson's method/9) The latter was selected for this work 
after testing it for stability and accuracy. The method is described in more detail in the Appendix.
In essence, the solution involves determining the approximate relative specific volume of the 
reacted products at the point where the particle velocity is zero and then iterating to a unique final 
value.

Such a procedure was followed to determine V(u=0) for all the explosives listed in the 
data base/6) These values are given in Table 1 together with the corresponding values of p0, D,
Vc and E0. Also shown in the Table are arithmetic averages with their respective variances and 
standard deviations. The results were both interesting and significant. For all listed explosives, 
the value of V(u=0) is nearly a constant Vave(u=0) = 1.1189+0.0050, with a standard deviation not 
exceeding 0.5%. This observation allowed us to use this unique value of V(u=0) in the iterative 
process to solve for Ri and R2.

During this procedure an estimate had to be made of the relationship between the two 
eigenvalues Ri and R2.. One could either make an estimate of R2 and treat it as a constant or 
establish R2 as a function of Rj and recompute its value during the iteration procedure. One could 
also require that R2 serve some other specific purpose, such as matching a certain value of gamma 
with the value of V(u=0). This latter assumption would require justification and more extensive
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Table 1. Selected properties of the major primary explosives.

Explosive
P

(g/cc)
D

(mm/jis) vCJ Eo V(up = 0)

BTF 1.859 8.480 0.730703 0.086025 1.12655
Comp A-3 1.650 8.300 0.736074 0.078297 1.11734
Comp B 1.717 7.980 0.730197 0.077739 1.11774
Comp C-4 1.601 8.193 0.739456 0.083746 1.11566
Cyclotol 1.754 8.250 0.731952 0.077063 1.11885
DIP AM 1.550 6.700 0.741303 0.089106 1.11969
EL-506A 1.480 7.200 0.732805 0.091237 1.11589
EL-506C 1.480 7.000 0.731108 0.085493 1.11431
Expl. D 1.420 6.500 0.733311 0.090007 1.1176
FEFO 1.590 7.500 0.720475 0.089447 1.12279
HMX 1.891 9.110 0.732378 0.066905 1.11629
FINS 1.400 6.340 0.742331 0.106621 1.12073
FINS 1.650 7.030 0.736340 0.091361 1.12002
LX-01 1.230 6.840 0.730651 0.106001 1.12648
LX-04-1 1.865 8.470 0.745883 0.071003 1.11407
LX-07 1.865 8.640 0.745010 0.071827 1.11392
LX-09-1 1.840 8.840 0.739199 0.073024 1.11853
LX-10-1 1.865 8.820 0.741526 0.071683 1.11697
LX-11 1.875 8.320 0.745747 0.069341 1.11197
LX-17-0 1.900 7.600 0.726636 0.062873 1.11146
NM 1.128 6.280 0.719015 0.114641 1.13192
Octol 78 1.821 8.480 0.738829 0.073311 1.11739
PBX-9010 1.787 8.390 0.729709 0.071547 1.11586
PBX-9011 1.777 8.500 0.735178 0.069320 1.11399
PBX-9404 1.840 8.800 0.740331 0.071584 1.11762
PBX-9407 1.600 7.910 0.735288 0.085906 1.12112
Pentolite 1.700 7.530 0.735453 0.084032 1.12116
PETN 1.500 7.450 0.735747 0.102818 1.13107
PETN 1.770 8.300 0.725264 0.082830 1.1259
Tetryl 1.730 7.910 0.736703 0.075755 1.11671
TNT 1.630 6.930 0.731734 0.089421 1.11598
average 0.734720 0.082579 1.118889
variance 0.000042 0.000155 0.000024

0.01% 0.19% 0.00%
std. dev. 0.006536 0.012488 0.004989

0.89% 15.12% 0.45%
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programming for solving simultaneous differential equations. Therefore, for the purpose of this 
communication we have chosen the second estimate, which states that

R2 = kR! (17)

where k is a constant. This relationship is relatively easy to handle, and, judging from the existing 
data base/6) it is also a very reasonable one. For most of the H-C-N-0 explosives in the data base, 
k = 0.27 with a standard deviation from an average of not more than 2%.

The final parameter value needed for the solution of Eqn. 14 is related to the ground-state 
adiabatic exponent y. Of the three terms in the JWL-EOS (Eqn. 9), the third term containing co 
dominates at the far end of the expansion; i.e., when the products approach some normal state at 
atmospheric conditions. Thus, the exponent (1+co) represents the terminal value of the adiabatic 
exponent gamma, which for polytropic gases, such as the products of an explosive reaction, would 
be near the value of 4/3. This results in co having the value of 1/3, the value chosen for the 
solution of Eqn. 14.

Thus, with all the unknowns in the Eqn. 14 either determined or properly estimated, the 
iterative process, although tedious, can easily be performed to yield a unique set of eigenvalues and 
coefficients required to carry out calculations with the JWL-EOS. These then, together with the 
results reported earlier/5) form a complete set of characteristic values which fully describes a 
generic explosive in a nondimensional form. The list of these characteristic values is given in 
Table 2.

Table 2. List of characteristic values for a generic explosives.

Pc = Pc/poD2 =0.2653
Uc = Uc/D = 0.2653 
Vc = v/v0 = 0.7347
V(u=0) = 1.119
rc = Vc/(1-Vc) = 2.77
Eo = Eo/poD2 = 0.204 - 0.0734po or

Eoave = 0.0826

co = y-l = 1/3
K = R2/R1 = 0.27 
Ri = 4.41604
A = A/p0D2 = 5.35545
B0 = B/p0D2 = 0.094983
C = C/p0D2 = 0.0112292

Normally, the expansion of the detonation products is shown on the pressure-specific 
volume plane. However, the behavior of the products on this plane is always a monotonically

9



decaying function with a very steep slope at the beginning. The release adiabat is therefore best 
illustrated by a profile of the system gamma, defined as

dlnP
dlnV (18)

Both the normalized pressure and the system gamma curves are shown in Fig. 1 for our 
generic explosive whose characteristic values are listed in Table 2. In this figure the pressure curve 
drops quickly from its nondimensional CJ value of 0.2656 to less than 10% of that value at the 
relative specific volume of 1.6. Thereafter, the curve decays only gradually to some final normal 
state. The gamma function, on the other hand, forms a profile with a positive slope at the CJ point 
and two distinct humps during the expansion process. As we will see in the following sections, 
both humps can be controlled and varied but at a cost of loosing the validity of the experimental 
data which generated the original fitting process..

Effect of Internal Energy E»

From the list of characteristic values for a generic explosive only one, the normalized 
energy - E0, could not be stated as a constant. Rather, it turns out to be a simple linear function of 
the initial density.^) To see the effect of this value on the products EOS it is best to look at the 
profile of the system gamma. This effect is illustrated in Fig. 2, where the value of E0 is varied by 
±12% from the average normalized value of 0.0826. The remaining variables which accompany 
this change are listed in Table 3 below

Table 3. Generic JWL-EOS coefficients with corresponding 
values of the relative energy

Constants unaffected by the change in E0:
Vc
V(u=0)
K

CO

= 0.7347
= 1.119
= 0.27
= 1/3

Curve in
Fig. 2 Eo Rl A B C

1 0.0726 4.4298 5.4202 0.11103 6.621E-3
2 0.0826 4.4160 5.3555 0.09499 0.011229
3 0.0926 4.4025 5.2915 0.07909 0.015844



Figure 2 clearly shows that there is no effect on the initial CJ point for energy changes that 
are different from the generic value of E0. Even in the central region of the plot, where the energy 
term is most effective in displacing the gamma profile, there is very litde change. The effect of E0 
is reflected in the size of the second hump; i.e., the smaller E0 of larger initial explosive density, 
the higher the second hump. The second hump may altogether vanish if the energy value is 
increased.

Although not direcdy associated with the energy term, Lee and Homig^3) have studied the 
effect on the gamma profile by varying the loading density of PETN charges. If one takes into 
account the linear relationship between normalized energy and charge density/5) then PETN results 
confirm our finding of the effect of E0 on the shape of the gamma profile.

Effect of Relative Specific Volume V(u=0)

As mentioned earlier the value of V(u=0) controls the eigenvalue R]. This is illustrated in 
Fig. 3 which shows the profile of gamma for three different values of V(u=0). The remaining 
coefficients corresponding to these three profiles are listed in Table 4.

Table 4. Generic JWL-EOS coefficients with corresponding values of the relative
specific volume at zero particle velocity.

Curve in
Fig. 3 V(u=0)
4 1.109
2 1.119
5 1.129

Ri
3.89695
4.41604
10.83395

; unaffected
Vc
E0
K =
CO =

by the change in V(u=0):
0.7347
0.0826
0.27
1/3

A B C
4.43962 7.619E-4 0.0173148
5.35545 0.094983 0.0112292
88.59385 1.849790 0.0123951

Note: The large value of A for Curve 5 shifts the whole waveform to the left, dropping off the 
usual first hump.



The sensitivity of this parameter is immediately evident. By varying the value of V(u=0) 
by less than 1% above and below the established generic value, we see a dramatic change in the 
profile of the system gamma. Also, both deviations (Curves 4 and 5) cause the gamma profile to 
loose its second hump and attain the normal state at a much higher density than the original generic 
case (Curve 2). By increasing the value of V(u=0), we also notice that the initial slope of gamma 
at the CJ point becomes negative. This condition is similar to statistical mechanical and other 
equations of state in general use. However, this negative initial slope of the gamma profile does 
not agree with experimental evidence, as will be shown later.

The Effect of Eigenvalue Ratio k ~ R->/Ri

While evaluating Ri and R2 it was postulated that they are related through a proportionality 
constant k (Eqn. 17). The generic value of this constant was chosen on the basis of the existing 
data base/6) However, this value may not be correct, and therefore one needs to know what effect 
this constant has on the gamma profile. Again, as before, the effect of k is illustrated in Fig. 4 
with all corresponding constants listed in Table 5.

Table 5. Generic JWL-EOS coefficients with corresponding 
values of the eigenvalue ratio k.

Constants unaffected by the change in k:

Vc = 0.7347
V(u=0) =1.119
Eo = 0.0826
co = 1/3

Curve in
Fig. 4 V(u=0) K Rl A B C
6 1.119 0.23 4.36546 5.30387 0.074540 9.9634E-3
2 1.119 0.27 4.41604 5.35545 0.094983 0.0112292
7 1.119 0.31 10.91562 55.58986 2.69632 0.0149773

8 1.109 0.23 3.98664 4.46918 6.202E-4 0.0173026
6 1.119 0.23 4.36546 5.30387 0.074540 9.9634E-3
9 1.129 0.23 4.78633 6.41625 0.150261 5.1677E-3

As is evident from Fig. 4a, raising the value of K by about 15% produces the previously 
noted effect of enlarging the first hump, eliminating the second, and reaching its normal state 
isentropic gamma value at a much higher density. However, lowering the value of K by 15% one



can see almost no change in the gamma profile. At the lower k the effect becomes evident when 
variation in V(u=0) is also introduced. This is seen in the adjacent Fig. 4b, where K = 0.23 and 
V(u=0) is varied between 1.109 and 1.129. Here, depending on the value of V(u=0), the second 
hump of the gamma profile can be either greater or less than the first hump. Also, as in the other 
extreme cases, the second hump can disappear all together.

Slone of Gamma at the C.T Point

Completely independent of any EOS, the plane wave hypothesis is used to express the 
normalized system gamma as

where X is the location of the detonation front in Cartesian coordinates with the origin placed at the 
surface of initiation, Xc is the specific location of the CJ plane that is on the same streamline along 
which the particle velocity is being considered, and U is the normalized particle velocity. We 
emphasize that the above expression is EOS-independent and applies to all plane-wave detonic 
systems whether they are steady, self-similar, or isentropically expanding.

The relationship between V and X/Xc is quite complex, since it involves not only the 
streamline position but also the particle velocity. Nevertheless, near the CJ point this relationship 
can be simplified by letting the dynamic motion be sufficiently small that the positional ratio can be 
considered unity. Then, in the near proximity of the CJ plane, we get

rvc<v«i ~
V

1-V

and the initial slope can be expressed as

dT
dV

l

(i-v)2

(20)

(21)

which is positive because any increase in V will lead to an increase in F.

Summary

The present list of known explosives has a fairly large data base. Examining the data 
base, we noted that when each listing was normalized by its dynamic pressure, p0D2, all available



H-C-N-0 type explosives statistically converged to a single generic prototype, whose characteristic 
values are listed in Table 2. This generic explosive can then be used to fully describe the behavior 
of any new material when only the values of initial density (p0) and detonation velocity (D) are
available.

The products equation of state describes the isentropic expansion of the reaction products 
from their initial CJ state to some terminal state at atmospheric pressure and gaseous density. 
Among the currently popular equations of state used to describe expansion of the detonation 
products, the JWL-EOS was found to be the most practical and descriptive.

Although the JWL-EOS was originally proposed as an experimental EOS requiring a 
certain amount of fitting to experimental data , the normalization procedure and the introduction of 
an additional dynamic condition for the specific volume at the state where particle velocity is zero 
revealed that all characteristic values in a nondimensional form are either unique or interrelated to 
such an extent that very little or no guessing at all is necessary to fill the complement of parameters 
and coefficients needed to evaluate the algorithm. The list of nondimensional values pertaining to 
the generic explosive should be sufficient to describe the behavior of any explosive and in 
particular the behavior of the reaction products.

The three terms making up the JWL-EOS control the whole adiabatic expansion region, 
and that control is reflected in the shape of the gamma profile. The principal eigenvalue Ri 
dominates the wave shape at and near the beginning of the gamma profile near the CJ plane . Its 
dominance extends to about where particle velocity becomes zero. Following this region the 
secondary eigenvalue R2 along with the energy value E0 controls the transition region before the 
adiabatic exponent takes over. The energy value E0(Po) depends on the initial density, p0, but 
does not influence initial CJ conditions. However, the value of energy does affect the size and 
shape of the second hump in the gamma profile. Together with the value of R2, the energy value 
can be used to eliminate the second hump altogether, if it is deemed objectionable. In the present 
analysis we selected the secondary eigenvalue to be linearly dependent on the primary eigenvalue to 
preserve the waveform shapes of the existing data base. After the second hump the gamma profile 
asymptotically approaches the atmospheric state at some very large expansion. For this work the 
state chosen is the usual one described by the adiabatic exponent associated with a polytropic gas.

The gamma profile for the materials making up the published JWL-EOS data base has an 
initial positive slope starting at the CJ plane. To our knowledge no other equation of state follows



this description. Rather, they all start out in a negative direction and monotonically decay to some 
atmospheric condition. Very little experimental evidence supports this positive slope contention, 
but what is available does confirm the plane wave theoretical evidence. For this reason it is 
deemed desirable, notwithstanding statistical mechanical results to the contrary, to implement JWL 
equation of state which supports these limited observations, as opposed to nondynamic equations 
of state, which concern only pressure-volume conditions.

At the present state of our understanding, the second hump of the gamma profile has no 
apparent reality. It is still an artifact of the old curve-matching technique that required a particular 
pressure-volume relationship. This hump is still present with the description of the generic 
explosive. However, one should bear in mind that its existence is not absolute, and it can be 
eliminated by a proper choice of energy E0 and secondary eignevalue without affecting other 
characteristic features of the expansion.

From Tables 3, 4 and 5 one should also notice two distinct regions of the primary 
eigenvalues: those around 4.4 and those around 10. The former result in the familiar gamma 
profile with the double humps while the latter have no second hump. This change to high values 
affects the initial slope at the CJ plane even to the extent that a negative initial slope is a distinct 
possibility. This type of profile decays much more rapidly and attains the value of polytropic 
gamma at significantly higher densities.

In most respects, the JWL-EOS is a well-behaved expression ranging over a wide choice 
of gamma profile features. It is well-identified by Mumaghan and Tait, and above all it conforms 
to theoretical expectations for plane waves and experimental observations that the slope of the 
gamma function for the expanding products at the CJ plane is positive.



Appendix

After invoking the dynamic relationship among the principal detonic variables

2Pv + u = 0 (A-l)

and normalizing it with the dynamic pressure, p0D2 , we arrive at Eqn. 14 in the text:

— = 1 - V D c -(dP/dV)dV (A-2)

This equation represents the condition under which one can evaluate the relative specific volume at 
the state where the particle velocity is zero.

Taking the derivative of Eqn. 9 and substituting it into Eqn. A-2, we get

1-VC = f 
J\

.V(u=0)r R1Ae-R>v + R2ie-R’v-i^-C
1 1 , .2+0)

1/2
dV (A-3)

which has no direct solution but can be solved by approximation techniques. We have used the 
Simpson's Rulef10) with the result

C f(V)dV = | [f(Vc) + 4f(Vc+h) + f(Vc+2h)] (A-4)

where V(u=0) = Vc + 2h. By letting this limit equal to 1 + A, we can introduce A, as the fractional 
increase in the specific volume over unity at the location where the particle velocity is zero. This 
method of handling the coefficient h reduces the propagation of computational errors and allows a 
convenient way to enter the fraction part of volume into the iterative program.

Replacing the integrand of Eqn. A-3 with its functional counterpart in Eqn. A-4 and 
simplifying the resulting expression, we find



1/2
5(1-VC)-A,

1-VC+^ = 4 R! Ae_R 1 (1+vc+^)/2 + R2ie-R2(1+vc+W/2 + (l+co)C

[(l+Vc+?0/2] 2+co

~t 1/2

RxAe R'(1+W + R2Be_R2(1+W + (1+co) C
2+co

(A-5)
Using the available data base(5’6) with reported values of Ri, R2, Vc, E0, and co, one can easily 
determine the value of X and in turn the value of V(u=0) for each explosive in that data base.
These values are listed in Table 1. As one can easily note, the value of V(u=0) for all the 
explosives listed in that table remains the same within a standard deviation of less than 0.5% from 
an average value of 1.119. Having established the uniqueness of this value for most of the H-C- 
N-O explosives, we can use it in Eqn. A-5 to determine the value of Ri and R2 for any new 
explosive. This procedure is somewhat more involved because now each iteration for the principal 
eigenvalue of Rj will require reevaluation of all coefficients R2, A, B and C; i.e., one has to 
recalculate all normalized pressure coefficients after each pass through the algorithm.

(R^iMR^n-F/F' (A-6)

Here, F symbolizes Eqn. A-5 when the left-hand side of the equation is moved to the right-hand 
side so that the value of F represents the remainder to be nulled out by the iteration scheme and

F = aF/aRj (A-7)

This procedure is in effect the steepest prescription for convergence and will yield the full 
set of eigenvalues and pressure coefficients which are described in the text.
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Figure Captions

Fig. 1 Adiabatic expansion of the reaction products of a generic explosive whose characteristic 
values are listed in Table 2.

Fig. 2 The effect of E0 on the JWL gamma profile.

Fig. 3 The effect of V(u=0) on the JWL gamma profile.

Fig. 4 The effect of k and V(u=0) on the JWL gamma profile
a) V(u=0) = 1.119 k = 0.27±.04
b) V(u=0) = 1.119±.01 k = 0.23
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Fig. 1 Adiabatic expansion of the reaction products of a generic explosive whose characteristic 

values are listed in Table 2.
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MI024-U-9764-02(ill) Fig. 2 The effect of E0 on the JWL gamma profile.
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MI024-U-9764-03 Fig. 3 The effect of V(u=0) on the JWL gamma profile.



J____________ I____________ I____________ I____________ I____________ I____________ 1____________

1 2 3 4 5 6 7 8
Relative specific volume, V

MI024-U-9764-04a Fig. 4a The effect of k on the JWL gamma profile.
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Fig. 4b The effect of V(u=0) with k = 0.23 on the JWL gamma profile
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