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Introduction

Spatially distributed estimates of regional ground
water recharge rates under both current and potential
future climates are needed to evaluate a potential
geologic repository for high-level nuclear waste at Yucca
Mountain, Nevada, which is located within the Death
Valley ground-water region (DVGWR)'. Determining
the spatial distribution of recharge is important for
regional saturated-zone ground-water flow models®. In
the southern Nevada region, the Maxey-Eakin method
has been used for estimating recharge based on average
annual precipitation®. Although this method does not
directly account for a variety of location-specific factors
which control recharge (such as bedrock permeability,
soil cover, and net radiation), precipitation is the primary
factor that controls in the region. Estimates of recharge
obtained by using the Maxey-Eakin method are
comparable to estimates of recharge obtained by using
chloride balance studies**. The authors consider the
Maxey-Eakin approach as a relatively simple method of
obtaining preliminary estimates of recharge on a regional
scale. :

Methods

Estimates of present-day average annual
precipitation were obtained for the DVGWR by using a
multivariate geostatistical model, which accounts for
orographic effects on the spatial distribution of
precipitation®”. The model was developed using
geostatistical analysis of the spatial cross-correlation
between average annual precipitation and elevation for
precipitation stations located in the south-central Great
Basin. The geostatistical model was applied using
available digital elevation data® and the method of
cokriging to produce a spatially detailed average annual
precipitation map for present-day climate. A continuous
function was visually fitted to the original Maxey-Eakin
step function, which defines recharge as different
percentages of average annual precipitation depending
on the magnitude of average annual precipitation.
Estimates of recharge obtained by using the chloride

173

Alan L. Flint
U.S. Geological Survey
Placer Hall, 6000 J Street
Sacramento, CA 95819-6129
(916)-278-3221

balance method* were also considered in fitting the
model. The modified Maxey-Eakin model was applied
using the detailed present-day average annual
precipitation map to obtain an average annual recharge
map for the DVGWR under present-day conditions.

Simulations of the regional distribution of average
annual precipitation for two potential future climate
scenarios were provided by the National Center for
Atmospheric Research NCAR) (S.L. Thompson, C.A.
Shields, D. Pollard, C.A. D’ Ambra, National Center for
Atmospheric Research, written commun., 1996; S.L.
Thompson, C.A. Shields, D. Pollard, National Center for
Atmospheric Research, written commun., 1996). The
two climates consist of a double carbon-dioxide climate
(potential greenhouse near-future climate) and a
paleoclimate which was simulated using boundary
conditions for the glacial period of 21,000 years ago
(potential long-term future climate). The level of detail
provided by the NCAR estimates of average annual
precipitation for the 50 km grid spacing of the nested
general circulation model used by NCAR was considered
insufficient for the 0.2785 km grid spacing needed for
creating a recharge map over the DVGWR. To analyze
the relative differences in future versus present day
precipitation predicted by the NCAR results, the NCAR
simulation of average annual precipitation for each
potential future climate was divided by the
corresponding NCAR simulation of baseline (present-
day) average annual precipitation. Calculated sample
variograms provided evidence of strong spatial
correlation in the ratios of average annual precipitation
for distances less than 50 km. By using a simple
spherical variogram model and the method of kriging,
the calculated ratios were interpolated onto the denser
grid (0.2785 km spacing) of the available digital
elevation data (figure 1). The kriged ratio maps, which
indicate the relative changes in precipitation for the
double carbon-dioxide climate (figure 1) and the 21,000
year paleoclimate relative to present-day climate, were
multiplied with the cokriged present-day average annual
precipitation map (obtained by using the multivariate
geostatistical model) to provide spatially detailed
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average annual precipitation maps for the potential
future climates. These results were applied using the
modified Maxey-Eakin relation to obtain spatially
detailed recharge maps for the potential future climates.

Results

Estimates of average annual precipitation for the
DVGWR under current climate resulted in a region-wide
average precipitation rate of 176 mm/year, with a
maximum of 591 mm/year and a minimum of 62
mm/year. The corresponding estimates of recharge
resulted in a region-wide average of 3.8 mm/year, with
a maximum of 195 mm/year and a minimum of 0
mm/year. For the double carbon-dioxide climate,
estimates of precipitation resulted in a 21 percent
increase (relative to present-day climate) in total
precipitation for the DVGWR, with a region-wide
average rate of 213 mm/year, a maximum of 643
mm/year, and a minimum of 78 mm/year (figure 2). The
corresponding estimates of recharge resulted in a 107
percent increase in total recharge, with a region-wide
average of 7.9 mm/year, a maximum of 254 mm/year,
and a minimum of 0 mm/year (figure 3). For the 21,000
year paleoclimate, estimates of precipitation resulted in
a 68 percent increase in region-wide precipitation, with
an average rate of 297 mm/year, a maximum rate of 961
mm/year, and a minimum rate of 79 mm/year. The
corresponding estimates of recharge resulted in a 648
percent increase in total recharge, a region-wide average
recharge rate of 29 mm/year, maximum recharge rates in
excess of 600 mm/year, and a minimum rate of 0
mm/year. For both potential future climates, maximum
recharge estimates occur at elevations that exceed 3,000
m, whereas minimum estimates of 0 mm/year occur for
elevations of 1,000 m and less in Death Valley.
Maximum recharge estimates in excess of 500 to 600
mm/year were questionable because of extrapolation of
the modified Maxey-Eakin relation, which was
developed in an arid environment, to such wet
conditions. :

Summary and Conclusions

Spatially detailed estimates of recharge were
obtained for the Death Valley ground-water region
(DVGWR) by use of a geostatistical model of average
annual precipitation, simulations of regionally
distributed average annual precipitation which were
provided by NCAR for two potential future climates
along with the corresponding baseline simulations of
present-day conditions, and by use an empirical Maxey-
Eakin type model for estimating recharge based on
modeled average annual precipitation. Although the 50
km grid spacing used in the NCAR simulations did not
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provide sufficient detail in terms of orographic
influences on precipitation throughout the DVGWR, the
calculated ratio of potential future climate to present-day
precipitation indicated strong spatial correlation was
interpolated onto the denser 0.2785 km grid spacing of
available digital elevation data for the DVGWR.
Multiplying the calculated ratios with the cokriged
present-day average annual precipitation map resulted
in spatially detailed average annual precipitation maps
for potential future climates, which were used for
modeling recharge based on the empirical Maxey-Eakin
type model. The results indicate that recharge
magnitudes for the DVGWR are likely to increase
substantially for potential wetter future climates, with a
107 percent increase in total recharge for the double
carbon-dioxide climate, and a 648 percent increase in
total recharge to the DVGWR for the 21,000 year
paleoclimate.
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Figure 1. Kriged ratio of average annual precipitation for NCAR simulated double carbon-
dioxide (greenhouse) climate and NCAR simulated present-day climate
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Figure 2. Cokriged average annual precipitation for NCAR simulated
double carbon-dioxide (greenhouse) climate. (black indicates
estimates greater than 530 mm)
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Figure 3. Estimated ground water recharge for double carbon-dioxide (greenhouse)
climate. (black indicates recharge estimates greater then 150 mm/year)
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