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1. Introduction

In this paper we are concerned with the numerical solution, based on iterative
methods, of large sparse systems of linear algebraic equations of the type which
arise in the numerical solution of elliptic and parabolic partial differential equations

by finite difference or finite element methods. We consider linear systems of the

form
(1.1) ' Au=1b>

where A is a given N x N matrix which is large and sparse and where b is a given
N x 1 column vector. We will assume that A is symmetric and positive definite
(SPD). We consider iterative algorithms™** for solving (1.1) which consist of a “basic
iterative method,” such as the Richardson, Jacobi, SSOR or incomplete Cholesky
method, combined with an acceleration procedure such as Chebyshev acceleration
or conjugate gradient acceleration.

It is often possible to achieve parallelism for iterative algorithms by subdividing

the matrix problem into blocks and assigning each processor the task of handling

“*The work was supported in part by the Department of Energy, under Grant DE-AS05-81ER10954,
and by the National Science Foundation, under Grant MCS-8214731, with The University of Texas
at Austin. Some of the work was done during the fall semester of 1987 while the author was visiting
the Oak Ridge National Laboratory and the University of Tennessee under the Special Year on
Numerical Linear Algebra.

**For a discussion of these procedures, see, e.g., Hageman and Young [5].




one or more blocks. For problems arising from partial differential equations this
corresponds to subdividing the region into subregions. Such procedures lead to block
iteration procedures and domain decomposition procedures, for example. One can
often greatly increase the convergence of iterative algorithms by the use of multigrid

techniques wherein one focusses on the use of several grids.

The object of this paper is, however, to examine some “high-level” methods
for achieving parallelism. Such techniques involve only matrix/vector operations
and do not involve working with blocks of the matrix, subdividing the region, or

- using different meshes. It is expected that if effective high-level methods could be
developed, they could be combined with block and domain decomposition methods,
and related methods, to obtain even greater speedups. It is also expected that by
working at a higher level it will eventually be possible to develop general purpose
software for parallel machines similar to the ITPACK software packages which have

already been developed for sequential and vector machines; see Kincaid and Young
[8].

Our discussion here is primarily devoted to describing various techniques which
we and others have considered for obtaining high-level parallelism. We plan to
continue research on these techniques and eventually to develop algorithms and

programs for multiprocessors based on them.

In Section 2 we describe some “parallel iteration” techniques. Here several
iteration procedures are applied in parallel and the results are combined periodi-
cally to yield (hopefully) faster convergence than that produced by any one of the
individual procedures used. Similarly in Section 3 we consider “residual decom-
position” techniques wherein an initial residual, corresponding to a given starting
vector, is decomposed into the sum of several subresiduals. An iterative procedure
is then applied to all of the subresiduals in parallel and the results combined to yield
(hopefully) faster convergence. If the decomposition of the residual is carried out

according to the eigenvalue spectrum of the matrix A then we refer to the procedure
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as a “spectral decomposition fnethod.”*

For the methods used in both Section 2 and Section 3 several corrections to
the initial approximation vector u(?) are obtained. A linear combination of these
corrections is used in order to minimize a certain norm of the error. A procedure
doing this is described in Section 4. This procedure is related to the conjugate
direction method which is also described in Section 4 and which is contrasted to the
conjugate gradient method.

The discusson of Section 4 is then applied, in Section 5 to the problem of solving

a family of linear systems
(1.2) (A+pDu=1">

where the scalar p and the vector b may vary. It is shown how, by the use of

Arnoldi vectors and the conjugate direction method, only one set of matrix/vector

multiplications involviﬁg the matrix A is required to solve all of the derived systems.
In Section 6 we consider the time-dependent problem defined by

du(t)
dt

(1.3) = —Au(t)+b

where A is a fixed N X N SPD matrix and where b is a fixed N X 1 column vector.
We consider the use of the backward difference method and the Crank-Nicolsen
method. Each scheme involves the repeated solution of systems of the form (1.2).
Moreover it is shown that by the use of partial fraction representations of rational
functions, several time steps can be carried out in parallel provided that the time
steps are of different sizes.

It is well-known that there is a close relation between the solution of time-
dependent ’problems of the form (1.3) and “steady state” problems of the form (1.1).
This suggests the use of “rational” iteration techniques, described in Section 7. For

these techniques we have (™ = R,(A)e(® where ¢(® is the initial error vector.

*Originally, this paper was to be primarily devoted to spectral decomposition methods. The title
of the paper was originally “Spectral Decomposition Methods for the Numerical Solution of Partial
Differential Equations Using Vector and Parallel Processors.”
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The function R,(A) is a rational function. For polynomial iteration, also called
“polynomial acceleration,” R,(A) is a polynomial in A. Rational iteration often
converges very rapidly and has many other desirable properties. However, to carry
out each iteration requires the solution of a linear system of the form (1.2), which
may be very costly if p is small. It is hoped that techniques can be developed,
possibly based on the use of the procedures developed in Section 4, to overcome

this difficulty.

2. Parallel Iteration

Let us consider the following procedure for solving (1.1). We choose an initial
approximation u(®) to the true solution @ = A~'b of (1.1). If u(® # 0 we may

replace u(® by cul®) where ¢ is a scalar chosen to minimize the error norm
(2.1) llcw® — @[ 4172
where, in general, the A/2-norm of a vector v is given by
(2.2) ”U”A1/2 = (v, AU)1/2 .
The choice of ¢ to minimize (2.1) is
b. (0
(2.3) cm Bu?)
w®, 4z®)

In the following discussion we will assume that ¢ = 1.

The idea of parallel iteration is to carry out several iteration procedures starting
with u(®), thus obtaining u(, 4, ..., u{*). One then chooses constants ¢y, ca, . . . , cs

so that ||ju — @[] 4172 is minimized, where

s

(2.4) » u= Z ciut® |

=1
A procedure for finding the ¢; is given in Section 4. Having determined u one
can repeat the process, replacing u(® by u. The hope would be that, by using s
iterative methods in parallel, the rate of convergence of the overall procedure would

be increased, ideally by a factor close to s.
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Adams [1] considered “additive M-step preconditioners.” Two iterative proce-
dures were used — one based on the foward SOR method and the other based on
the backward SOR method. The resulting iterative process, which could be carried
out in parallel, was combined with polynomial preconditioning, [3] and [7]. The
results obtained compared favorably with those obtained using the SSOR method.
We note that the SSOR method can be regarded as a multiplicative, rather than
an additive, preconditioning procedure since it involves a forward SOR iteration
followed by a backward SOR iteration.

Very little appears to be known in general about the speedup attainable by
parallel iteration. However, O’Leary and White [11] have proved some convergence
results for iterative methods based on multi-splittings. Other results are given by
Frommer and Mayer [4]. Research is needed to determine whether, for a given
problem or class of problems, significant speedups are possible and, if so, how the

iterative methods should be chosen.

3. Residual Decomposition

The idea of residual decomposition is somewhat similar to that of parallel
iteration. Suppose we are given an initial approximation to u(® to the true solution
% = A™'bof (1.1). We decompose the residual r(®) = b— Au(® into s “subresiduals”

r@D) (0.2)  p(8:9) such that

(3.1) r0) = p(01) 4 (02) 4 4 (0

We then solve the sgrstems

(3.2) AAD =00 12 s

to obtain the corrections A A®@) Al If (3.2) is solved exactly then

(3.3) G=Ab=u® + AD L A® 4. AO

However, if the A are solved only approximately we choose as our new approxi-

mate solution

(3.4) 4 = u(® + 1AW 4 e AD 4 .o 4 ¢ AL
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where, for each 7, Al) is an approximate solution of (3.2). We choose c1,¢2,...,¢s
to minimize ||& — @|| 41/2. Procedures for choosing the {c;} are given in the next

section.

Spectral Decomposition

Let us now consider the possibility of decomposing r(®) on the basis of a de-’

composition of the spectrum of the coefficient matrix A of (1.1). As an example,
let us consider a decomposition into three parts. As in Figure 3.1 we subdivide the
interval [m(A), M(A)], where m(A) and M(A) are, respectively, the smallest and
largest eigenvalues of A, into three subintervals, namely, IT1 = [ao, 1], I2 = [a1, 2],

and Iz = [ag, a3] where ag = m(A) and az = M(A). We write the residual r(®) in

the form
N -
(3.5) r(® = Z civ®
=1

where v(? is the eigenvector of A associated with the eigenvalue v;. We seek to

choose r((_”k), k =1,2,3 so that if
N

(3.6) : 08 _ Z cgk)v(i)
i=1

then all values of cgk) are small except for values of 7 such that v; € Iy. ¥ v; € I

we desire that cgk) = ¢;. The advantage of this is as follows. If we use the conjugate

gradient method to solve
(3.7) AA = r(®

the number of iterations is of the order of v K(A) where K(A) = M(A)/m(A) is

the condition number of A
Qo o Qa &3
} | | | |
I I l {
0 m(A) M(A)

Figure 3.1. Decomposition of the Spectrum of A
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On the other hand if we let
(3.8) a; = K(AYV? | ay = K(A)?*®

then we have

(3.9) SR I (VA

Q2 ay Gy

If we apply the conjugate gradient method to solve each of the systems
(310) AA("’) — T(Q:k) ,

which can be done in parallel, then the number of iterations will be on the order of
K(A)'/5. This would be true if all of the cgk) were to vanish ezactly for all ¢ such
that v; ¢ I). Thus the procedure has considerable potential.

We have developed a program for splitting r(%). This program is based on
the construction of orthogonal polynomials using a three term relation and on the
determination of the characteristic function of each of the subintervals I;, I, and I3.
By operating on r{®) by each of these characteristic functions, which are polynomials
in A, we can get fairly good subresiduals r(®1), #(%2) and r(®3)  Unfortunately

however, the components cgk) are not ezactly zero outside of the k-th interval Ij.

(k)

Our numerical experiments indicate that unless the ¢;’ are extremely close to zero
outside of Ix, then the number of iterations required is on the order of K(A)'/?
rather than K(A)'/8. Thus the procedure, as it stands, does not appear to be
practical. We are however, continuing our research on the development of practical
methods for decomposing (%,

We note that rather than using residual decomposition we can choose sev-
eral starting vectors, say, u(®1) 4(®2) ,u{®%  We can then carry out m steps

.of a given iterative procedure using each of the starting vectors, obtaining, say
ulmD) y(m2) (™) This can be done in parallel. We can then choose scalars

ki,k2,...,ks so that ||u — @|| 4172 is minimized, where

(3.11) u=>Y kul™) .

i=1




For the case where the iterative procedure used is the conjugate gradient method this
scheme is related to the block conjugate gradient procedure described by O’Leary,
[9], [10].

Research is needed to determine whether a significant speedup can be achieved
by the use of several different starting vectors, and, if so, how the starting vectors
should be chosen. One possibility for problems arising from partial differential equa-
tions might be to let the {u(%} correspond to those elements of a hierarchical basis
with large support. Alternatively, for the standard five-point finite difference repre-
sentation of the Dirichlet prc:blem in the unit square, for example, we might choose
the comparatively “smooth” functions sin 7z sin 7y, sin2nrz sin 7y, sinwz sin 27y,

ete.

4. Minimization Procedures: The Conjugate Direction Method

Let us assume that we wish to solve the system (1.1), where A is SPD and that
we have an initial approximation u(?) to the solution vector %@ = A~1b. Let us also
assume that we have s+1 linearly independent, “direction vectors” v(®), v(1) . v(s),

We seek to determine a vector u* of the form

(4.1) w* =u® 4 Z civ®

i=0

such that F'(u*) is minimized, where
(4.2) Fu)=lu—ul%:: = (u—a, A(u — %)) .

To minimize F(u) we first construct a set of s 4+ 1 modified direction vectors

p®, p(M) . () which are mutually A-orthogonal, or “conjugate,” in the sense "
that
(4.3) PP, 4pP) =0, i#j.
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To do this we use the Gram-Schmidt procedure. We have
o p® =@

1
W =y _ @A)
(p®, Ap(®)

@ =y _ (02 A40) ) (0@, 4pT) )
? (@, 4p®) 7T (p™, 4p)

p
(4.4) g

\
We then determine u* by

8 .
(4.5) u* =40 4 Z kip®®
k=0

where

(6,7 ®)

4- ki — N 4 7 N\
(£6) (p(9, Ap(D)
and
(4.7) r(0 = b— Au(® |

This follows since A(u® — 7) = Au® —p = —r(® and since (4.3) holds.

Conjugate Direction Method

Let us again assume that we wish to solve the linear system (1.1) where
A is SPD and that we have a set of N linearly independent (direction) vectors
p@,pM . pVN-D,which are mutually A-orthogonal. (If we have NV linearly inde-
pendent vectors which are not mutually A-orthogonal then one can, in principle at
least, obtain mutually A-orthogonal vectors by the Gram-Schmidt process described

above.) The conjugate direction method can be defined by

((u(® s arbitrary

r(® =p— Au©
(4.8)

A\

u M+ =y (®) L) p(m)

\_ B,r)
L (p(n), Ap(n))




We remark that the conjugate gradient method [6] is a special case of the
conjugate direction method where the direction vectors are /computed sequentially.

Thus for the conjugate gradient method we have

[ w{® is arbitrary
r(® =p— Au®
(n+1) _ o (n) (n)
U =u'™ + A\,
(4.9) < P
r(™ = p — Au™
(r(m) pn))

O = D) o m=D)
\ (r(™, p(n))
p= L
L (p(™, 4pt™)

The direction vectors and residuals are computed in the order 7(9, p(® (1) 53

5. The Solution of Related Linear Systems

Let us suppose that we wish to solve a family of linear systems of the form (1.2).
We assume that A is a fixed SPD matrix and that the nonnegative constant p and
the vector b may vary. If all of the p’s and b’s were known.in advance the solutions
could be obtained in parallel using the conjugate gradient method. However, we
assume that we need to solve the systems sequentially so that p and b are not known
in advance.

We propose the following strategy. We first choose a vector w(®) and a value
of p, say p,. For a given integer, s, we construct a set of vectors w, w®@ L w®
called “Arnoldi vectors,” which span K (w(®, A4 poI) = Sp(w®, (A+pe Dw ...,
(A+ poI)*~1w(?) and which are mutually orthogonal but not, in general, mutually
(A + poI)-orthogonal. We then show that the {w(?} are independent of py. Then,
for any given p we construct a set of direction vectors p(®, p() ... p(*) which are
mutually (A + pI)-orthogonal. The conjugate direction method is then applied to

obtain an approximate solution of (1.2).
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The Arnoldi Vectors

Given w(®) and py we construct the Arnoldi vectors using the formula

(5.1) w® = (A + po D)Wl + B ;1w + B ; w2

where

((A + po w1, w(i_l))

Biji-1 = — (w(z‘—l),w(i—-l))

(5.2) . .
By = — (A + poD)wli—1,w(-2)

him2 T (w2 1(i=2))

It can easily be shown that the {w{?} are mutually orthogonal. It can also be shown

that the {w()} are independent of py since we have
{ Bi,i—1(po) = Bi,i—1(0) — po
Bi i—2(po) = Bi,i—2(0)

It should be noted that only sq + 1 vectors can be obtained by the process where s

(5.3)

is the smallest integer such that the vectors w(®, (A4 poDw(®, ... (A + poI)*° w(®
are linearly dependent. Evidently so < N — 1.

The Direction Vectors

Let us now construct the direction vectors p(®,p, ... p{®) corresponding to

a given value of p which will differ from py. We define p(®,p() ... by

P = 4®

(5.4) pM = w® 4 a;p®
p® = @ 4 gy

‘where

55) o (), (4t ppnD)

(™D, (A + pD)p(r-D))

We first show that (w(®, p(?) = 0 for j < i. But p¥ is a linear combination of
w® w® | wl so that the result follows from the orthogonality of the {w(?}.
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We next show that (p(™, (A + pI)p?) =0 for 1 = 0,1,...,n — 1. This is true for
i=n—1by (5.5). For i <n — 2 we have

(p™, (A + pDp?) = (w'™ + anp" ™V, (4 + pI)p?)

(5.6) ‘

= (W, (4 -+ 1)
since ¢ < n — 1. But p(! is a linear combination of w(?, w1 . . w® . Hence
(A + pDw® is a linear combination of w(+tD w® .. 1® Sincei < n — 1 the

result follows from the orthogonality of the {w(¥}.

Suppose now that we wish to solve a specific linear system (1.2) and that we
have already computed and stored the Arnoldi vectors as well as the {{A+poI)w(}.
We use the conjugate direction method with direction vectors given by (5.4). We
show that this does not require any additional matrix/vector multiplication involv-

ing A. This is possible since by (5.4) we have
(5.7) (4+ PI)P(i) =(A+ PI)w(i) +(A+ pI)a;p(i"l) .

Thus we can compute (A+pI)p(?, (A-I;pI)p(l), etc. recursively using (A+pI)w(®, (A+
pDw), ete. (We note that (A + pDw® = (A + pow® + (p — po)w®.)
For a given initial approximation u(®) to the true solution & we compute r(®) =

b—(A+ pDu® and u®,u®, ... by
(5.8) (P = (™ ) p(™) n=0,1,2,...

where

(5.9 A = )
' " (™, (4 + pI)p™)

We remark that the above scheme may break down if only sg linearly indepen-
dent Arnoldi vectors {w} can be generated and if the conjugate direction method
does not yield sufficient accuracy within sg iterations. If this happens one could
generate a new set of Arnoldi vectors based on (% = b — (4 + pI Yul®). However,

the savings of the matrix/vector multiplication by A + pI would be lost.
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6. Time Dependent Problems

Let us now consider the time dependent problem (1.3). Such a problem arises,
for example, from the standard five-point difference equation representation, with

respect to the space variables, of a problem involving the diffusion equation

) Ou 0BO*u O%*u
(6.1) '5;=555+6—w+f($7y)

over a rectangle where the values of u are given and fixed for all ¢ on the boundary

of the rectangle.

We consider two alternative descretizations for solving (1.3). The first corre-

sponds to the so-called backward difference method defined by

u(t + At) — u(t) _

(6.2) At —Au(t+ At) + b
or
(6.3) (A + pDu(t + At) = pu(t) + b
where

1

The second corresponds to the Crank-Nicolson method defined by

®

u(t + At) — u(t) u(t + At) + u(t)
o9 RERCNEC RSO
(6.6) (A4 pDu(t + At) = 2b— (A — pDu(t)
where
(6.7) | p= Zz—t- :




"Let us now focus on the backward difference equation (6.2). Suppose we use

the time steps (At); and (At), where (At); # (At);. We have by (6.3)

u(t+ (A8 + (At)) = (A+ paI) ™ (A + prI)™ {prpau(t) + pab}

6.8
(62) +(A4pD)7M0 .

We now consider the partial fraction representation of (z + p2)~!(z + p1)~?}, which

is given by

1 1 1 1
6.9 = - .
(6.9) (z + p2)(z + p1) p1»—pz{:v+pz w+p1}\

Thus we have
(6.10)

u(t + (At + (Ad)g) = —

o1 — P2 {(A+ poI)™! — (A + p1I) "1} p1p2u(t) + p2b}
+ (A+pD)7Mh.

Evidently to carry out the above process we have to solve two systems of the
from (1.2) for two sets of values of p and b. These systems can be solved in parallel
using the techniques of the previous section. The idea can be extended to allow for
several time steps (At)y, (At)s,...,(At), provided that the {(At);} are distinct.

We remark that the idea of using partial fractions for the parallel solution of a -

system of the form

(6.11) H(A +plz=y

i=1

has been - used by Sweet [13] in connection with the cyclic reduction procedure.
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7. Rational Iteration

Since A is SPD, the solution u(t) of (1.3) converges to the steady state solution
4 = A™1b as t — co. Moreover, we can regard the time dependent schemes con-
sidered in the previous section as iterative procedures for solving the linear system
(1.1). Thus, corresponding to the backward difference method and the Crank-

Nicolsen method, respectively, we have the iterative methods

(7.1) (A+ pDu™D = pu™ 4
and
(7.2) (A+ pDu™Y) = —(4 — pDu™ + 25 .

These two “rational” iterative methods correspond to the matrix splittings

(7.3) - A=(A+pI)—pI

and

(7.4) A=31(A+pD) - [-1(4 - pD)]
respectively.

One can also consider non-stationary iterative methods where p varies. Thus,

for example, one could apply (7.1), first with p; and then with ps obtaining

(7.5) (A+ py Du™t) = pu(™ 4
and
(7.6) (A + paDu™t? = pou ("t 4 p

From this it follows that

(7.7) ul*? = (A + p2I)7H(A + p1I) " (prp2u™ + p2b) + (A + p2I) 710

and

(7.8) ul™) — g = (A + pI) (A + p1 ) prpa(u™ — T)
.8
= R(A)(u™ — a)

15




where R(z) is the rational function

_ P1p2
(7.9) Re) = e

Since R(z) is a rational function we refer to the above procedure as “rational iter-
ation.” In the case of polynomial acceleration R(z) would be a polynomial.
At this point we note that the ordinary extrapolated Richardson’s method can

be derived by applying the forward difference method to (1.3). Thus we have
| u(t+ At) = u(t) _

(7.10) ~ —Au(t) +b
(7.11) u(t + At) = (I — (At)A)u(t) + dAt .

This corresponds to the extrapolated Richardson’s method defined by

w(ntl) — (I - 7A)u(") + b
(7.12) .
= Gpyu'™ + by

where v = At is the extrapolation factor. If the eigenvalues v of A lie in the range
0 <m(A) £ v £ M(A) then the optimum extrapolation factor 4* is given by
. 2
7T M) + m(A)
and the corresponding spectral radius of G[,+jiis
M(A)-m(A) K(A)-1
7.14 S «) = =
(7.14) (Glrp) M(A) +m(A) K(A)+1
where K(A) = M(A)/m(A) is the condition number of A. The number of iterations

- (7.13)

needed for convergence using the extrapolated Richardson’s method is asymptoti-
cally proportional to K(A). If conjugate gradient acceleration is used the number
of iterations is asymptotically proportional to K(A)!/2.
In Figure 7.1 we plot the eigenvalues of the extrapolated Richardson’s method,
(A1 = 1 — qv), the eigenvalues of the iterative method of (7.1), (A; = p/(p + v)) .
and the eigenvalues of the iterative method of (7.3), (As = (1 —v/p)/(1 +v/p)). It
should be noted that A; vanishes for v = v~! but if 7 is very large |\1] is greater g
than one for large v. On the other hand, A3 vanishes for v = p but |A3] £ 1 for all v
in the range m(A) < v £ M(A). It should be noted that A, is a positive monotone

decreasing function of v for ¥ 2 0 and that A;(0) = 1.

16




[}

backward difference (/\2 =_r )
pt+v

W

o - - — — — —

> v

—

—-— pom—————

. M(AY Eigenvalues
m(A) Crank-Nicolson i (4) of A
. L// _ p—Vv
'(/\3 - P+ 1/)
_ Extrapblated
Richardson (A =1 —qv)

- g

Figure 7.1. Bigenvalues of Iterative Procedures
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Let us now consider the iterative method defined by s iterations of (7.3) with

variable p. The eigenvalues A of the method are given by

L B B A i R4
p2+v p2a+v  petuv’

The rational function given above is the same as that frequently used in the anal-
ysis of the Peaceman-Rachford [12] alternating direction implicit scheme, see e.g.,
Birkhoff, Varga and Young [2]. It can be shown that for a suitable choice of the {p;}
the number of iterations required for convergence is asymptotically proportional to
log K(A).

Let us consider the case where the linear system is derived from the standard
five-point finite difference representation of the Poisson equation uzz+uyy = f(z,y)
in the unit square 0 £ ¢ < 1, 0 £ y < 1 with Dirichlet boundary conditions. In this

case the eigenvalues v of A lie in the range
. o ®h o Th
(7.15) m(A) = 8sin - S v < 8cos 5 = M(A)

where h is the mesh size. The condition number K(A) of A is given by

M(A4) = cot? -ﬂj +

) = N —— = O(h™2) .

(7.16) K(A) = T~

Thus using the extrapolated Richardson’s method the number of iterations is O(h~2)

whereas if conjugate gradient acceleration is used the number of iterations is O(h~1).
Using the Peaceman-Rachford scheme with good parameters the number of itera-
tions is O(log A™1).

Evidently rational iteration has many attractive properties as compared with
polynomial acceleration. Unfortunately there is one serious drawback, namely, the
amount of work needed to carry out each iteration. Thus if p is very small, the

amount of work required to solve a system of the form
(7.17) (A+plz=y

for z, given y, may be comparable with that needed to solve the original system

(1.1).
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As an example, consider the use of a single value of p. It can be shown, see,

e.g., Birkhoff, Varga and Young [2] that the optimum single value of p is given by

(7.18) ' p* = V/M(A)m(A) .

For the model problem p* = 4sinwh = O(h). It can be shown that for the model
problem defined above if conjugate gradient acceleration is applied, the number
of iterations is O(h~!/2) instead of O(h~!) as with the Richardson’s method with
conjugate gradient acceleration. However, the number of iterations needed to solve*

each system of the form
(7.19) (A+p*Dz=y

for z, given y, is also O(R~1/2). Thus with O(h~1/2) systems each taking O(h~/2)
iterations we again have O(h™!) for the overall process.

We are now investigating several procedures for overcoming this difficulty. One
possibility for solving the system (A+pl)z =y for z, given y, would be to do so for a
relatively large value of p and then to let p decrease using some kind of continuation
method. Another procedure would be a sort of nesting procedure involving a set
of increasing values of p. Whatever procedure is used would involve the solution of
many systems of the form (A + pI)z = y where p and y vary. It is hoped that the
procedures given in Section 4 will reduce the time needed to solve each system to

the point that the overall scheme will become practical.
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