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Abstract

High-performance scientific computing relies increasingly on high-level large-scale object-
oriented software frameworks to manage both algorithmic complexity and the complexities of
parallelism: distributed data management, process management, inter-process communication,
and load balancing. This encapsulation of data management, together with the prescribed
semantics of a typical fundamental component of such object-oriented frameworks—a parallel
or serial array-class library—provides an opportunity for increasingly sophisticated compile-
time optimization techniques. This paper describes a technique for introducing cache blocking
suitable for certain classes of numerical algorithms, demonstrates and analyzes the resulting
performance gains, and indicates how this optimizating transformation is being automated.

1 Introduction

Current ambitions and future plans for scientific applications, in part stimulated by the Accelerated
Scientific Computing Initiative (ASCI), practically mandate the use of higher-level approaches
to software development, particularly more powerful organizational and programming tools and
paradigms for managing algorithmic complexity, making parallelism largely transparent, and more
recently, providing methods for code optimization that could not be reasonably expected of a
conventional compiler.

An increasingly popular approach is the use of C++ object-oriented software frameworks or
hierarchies of extensible libraries. The use of such frameworks has greatly simplified (in fact, made
practicable) the development of complex serial and parallel scientific applications at Los Alamos
National Laboratory (LANL) and elsewhere. Examples from LANL include Overture [3] which sup-
ports complex geometries, adaptive mesh refinement (AMR), and overlapping grid computations
in addition to more basic single logically rectangular grid computations. Concerns about perfor-
mance, particularly relative for FORTRAN 77, are the single greatest impediment to widespread
acceptance of such frameworks.

Our past and current work has demonstrated three broad areas where potential performance
(relative to theoretical machine capabilities) is lost: language implementation issues (which we




address for C++ elsewhere [2]); communication issues (which may be algorithmic, or communica-
tion library problems); and perhaps most important, with the trend toward ever-deeper memory
hierarchies and the widening differences in processor and main-memory bandwidth, poor cache
utilization. This lattermost issue is the subject of this paper. Our ultimate goal is to produce
FORTRAN 77 performance (or better, in a sense described later) from the computationally in-
tensive components of such C++ frameworks, though the transformation we describe is language
independent.

This paper presents a transformation for improving cache utilization, and demonstrates it ap-
plication in Overture. The transformation improves temporal locality in the execution of stencil
operations; we refer to the transformation as temporal blocking. Though relatively complex in its
implementation for general array objects, temporal blocking can be fully automated.

2 Array Classes

In scientific computing arrays are the fundamental data structure, and as such compilers attempt
a large number of optimizations for their manipulation. For the same reason, array class li-
braries are ubiquitous fundamental components of object-oriented frameworks. Examples include
A++/P++ [7] in Overture, valarray in the C++ standard library [8], Template Numerical ToolKit
(TNT) [6], and the GNU Scientific Software Library (GNUSSL) [4]. Typically, in an application
using a framework such as these, the bulk of the computation is performed by the underlying array
class library; such array computations are the focus of this work.

The target of transformation is the A++/P++ array class library which provides both serial
and parallel array implementations. The temporal blocking transform is a serial transformation but
applies to the parallel case with slight modification. Transformation of A++/P-+ array statements
is practicable because, by definition, they have no hidden or implicit loop dependence (and thus can
easily have their execution distributed over multiple processors). Indeed, it is common to design
array classes so that optimization is reasonably straightforward—this is clearly stated, for example,
for valarray. Such statements vectorize well, but our focus is on cache-based architectures because

they are increasingly common in both large- and small-scale parallel machines.
An example of an A++/P++ array statement is

for (int n=0; n != N; n++) // Outer iteration
A(I) = ( A(I-1,J) + A(T+1,7) + A(T,J-1) + A(I,J+1) ) * 0.25;

The statement may represent either a serial or parallel implementation of Jacobi relaxation. In
the parallel case the array data represented by A is distributed in some way across multiple proces-
sors and communication (to update the ghost boundary points along the edges of the partitioned
data) is performed by the “=” operator. The equivalent (serial) C code is

for (int n=0; n < N; n++) // Quter iteration
{
for (int j=1; j < SIZE_Y-1; j++)
for (int i=1; i < SIZE_X-1; i++) _
anewl3j10i] = ( a(jI1(i-11 + alj10i+1] + alj-110i1 + alj+11{i1 ) = 0.25;

for (int j=1; j < SIZE_Y-1; j++)
for (int i=1; i < SIZE_X-1; i++)
alj10i1 = a_new[jI{il;




Figure 1: Compiler blocking, depicting the order of Figure 2: Temporal Blocking, depicting order of
traversal. Only one iteration over each block is per- traversal, in which several interations over each block

formed per iteration over the whole array data. are performed while cache-resident.

3 Cache blocking

We distinguish two kinds of cache blocking: blocking done by a compiler (also called tiling) which we
will refer to as compiler blocking (Figure 1), and our more effective technique (Figure 2). Blocking
is also often introduced by hand, but it is usually not substantially different than that introduced
by a compiler. For both, the context in which the transformation may be applied is in sweeping
over an array, typically in a simple regular pattern of access visiting each element using a stencil
operator. Such operations are a common part of numerical applications, including more sophis-
ticated numerical algorithms (e.g. multigrid methods). What we describe is independent of any
particular stencil operator, though the technique becomes more complex for higher-order operators
because of increased stencil radius. Temporal blocking is also applicable to a loop over a sequence
of statements. -

On the basis of performance data and analysis of cache usage, we argue that the transformation
is worthwhile, that a compiler could not reasonably be expected to perform such a transformation,
but that the transformation is nonetheless practically automatable.

4 The Temporal Blocking Transformation

The problem with loops multiply traverse an array (as in the given code fragment) is that when
the array is larger than the cache, the data cycles repeately through the cache. This is common
in numerical applications. In the case of e.g. stencil operations, compilers can’t do the kinds of
optimizations we propose because of the dependence between outer iterations. A compiler may still
perform blocking, but to a lesser effect.

Our transformation achieves greater temporal locality by performing multiple iterations on a
block while it is in cache. Where a hierarchy of caches are present the data may fit in the L2 cache,




but we are particularly interesting in the cases where the L2 cache is similarly flushed and reloaded
from either main memory or from non-local memory (as would be the case for DSM). The presence
of multiple cache levels requires no special consideration, as, in our experience, optimization with
respect to L1 cache is all that is required.

On the Origin 2000 (the machine for which we present data), the cost of accessing L1 cache is one
clock cycle; 10 clock cycles for L2, 80 clock cycles for main memory, and for non-local memory 120
clock cycles plus network and cache-coherency overhead. These figures motivate the targetting the
L1 cache for blocking. For problem sizes exceeding the size of L2 (usually the case for meaningful
problems), a straightforward implementation gives rise to a number of cache misses proportional
to the number of iterations; with our tranformation the number of misses is effectively constant for
a moderate numbers of iterations.

For simplicity, we describe only one-dimensional blocking (or decomposition) of a two dimen-
sional problem. The temporal blocking transformation comprises three parts and requires some
additional storage (a transitory array for storing the elements on the sides of the blocks, one di-
mension smaller than that of the problem). These parts are: the special handling of the first block,
the uniform handling of the interior blocks, and the special handling of the last block.

We describe the processing of the interior blocks and then comment on the special handling
of the first and last blocks. The details of the transformation for the parallel case, which is more
complex, is omitted. Choosing an appropriate block size is described later. The processing on each
interior block is as follows:

1. Apply the stencil to each point on the edge of the cache block, but for the left edge of the
stencil use the data stored previously in the transitory array. Note that the special handling
of the first cache block initializes the transitory array.

2. Apply the unmodified stencil in the interior of the range of elements within the block over
which the stencil is of the cache block (the rest of the cache block).!

3. Save the values on the edge of the cache block into the transitory array. These are used in
the subsequent cache block’s processing.

4. Copy the new solution to an 01d_Solution array (this preserves the semantics of loop inde-
pendence).

In the case of the processing of the first cache block the first step is not required, and in the
case of the processing of the last cache block the third step is not required. Complete example
code may be found at http://www.c3.lanl.gov/fose/transformations/pdcs98.html. The interaction
of the stencil, array, and transitory array is depicted in Figure 12.

5 Performance Analysis

Before discussing experimental performance data we give an analysis of the problem from the point
of view of performance. This is further elaborated with the presentation of the performance data.

As mentioned, memory latency is one of the primary performance bottlenecks in today’s archi-
tectures, and blocking seeks to improve performance by hiding memory latency. The effectiveness
of this technique depends on the amount of memory reuse. Reuse is categorized as spatial or tem-
poral. Spatial reuse or spatial locality is present when a memory reference is related to some other

}For simplicity the precise effect of a particular stencil width is omitted.




memory references by a regular access pattern. In most scientific codes spatial locality is implicit
in the design of the algorithm. The class of stencil computations represents a wide range of codes
that have potential to exploit spatial locality. The pattern of access of memory is regular, and the
references are to memory locations close together.

Temporal reuse or temporal locality is present when a memory reference to the same location
occurs more than once during the execution. Again, the class of stencil computations has also
potential for exploiting temporal locality in the form of memory-element reuse. In fact, across
multiple stencil applications a subset of elements can be reused. In modern architectures the
possibility of reuse allows a reduction of access to a lower level of the memory hierarchy. In
particular, cache-based architectures have a small amount of memory that can be accessed at very
high speed; the limitation is the size of that memory. Thus, the possibility of reusing data in cache
is an opportunity for improving performance.

The objective of blocking, as presented in the previous section, is to exploit the potential for
reuse present in a code. In scientific computing, which is the target of this work, the blocking
performed by a compiler is capable of exploiting both spatial and temporal locality. From the
previous sections should emerge the fact that the amount of locality, temporal locality in particular,
can be significantly increased.

First we consider compiler blocking. It is possible to estimate the number of generated cache
misses for a given code. For Jacobi relaxation there are two stages: the first iteration, and all
subsequent iterations. In the first iteration the elements of the array are accessed in blocks (tiles)
as depicted in Figure 1. Each time there is a transition between blocks the new block is loaded
* into cache, pushing out the previous block, so generating cache misses. Misses of this sort are
called compulsory since they must occur for any pattern of access. Thus the number of misses for
‘the first iteration is of the order of the problem size. There are also what are known as conflict
misses, but we can assume that the conflict misses are a small fraction of the total, given that
most of today’s caches are associative, and that the block size can be chosen to allow free space in
the cache to accomodate them. Once the first iteration is completed the process restarts and first
block needs to be loaded again. The misses in the second stage can be classified as capacity misses
since they are a result of the problem size exceeding the cache size. Thus for compiler blocking
the number of misses is proportional to the problem size multiplied by the number of iterations.
For the same reasons the actual execution time will be affected by the same two quantities, though
the factor might be smaller than their product (the effective miss penalty can be reduced on some
architectures). .

The temporal blocking presented in this paper has been conceived to explicitly take advantage
of the great potential of temporal locality in certain classes of codes, particularly stencil codes. The
temporal blocking implementation of the Jacobi code is roughly depicted in Figure 2. Just as for
compiler blocking there are two stages, with the first iteration having exactly the same behavior: a
number of compulsory misses of the order of the problem size. With compiler blocking the multiple
iterations are over the entire array, while with temporal blocking they are performed on a per
block basis. Thus, once a block has been completed only a small fraction of that block needs to
be used by the successive block. Most of the elements that are replaced in the transition between
blocks are never needed again for the remainder of the computation. Temporal blocking decouples
the capacity misses from the compulsory misses, making the first negligible and making the total
number of misses largely independent of the number of iterations.

Unfortunately, temporal blocking does not yield an improvement in performance linear in the
number of iterations, as might be hoped; there are some bounds that limit achievable speed-up:
the number of iterations is limited by the block size which is directly dependent on the actual cache
size. There are solutions to correctly handle cases where a larger block is needed, but they lead to
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6 Performance Results

An instance of Jacobi relaxation is used to demonstratethe temporal tiling technique. Performance
data were collected on the Silicon Graphics Inc. Origin 2000 which is based on the MIPS R10000
processor with 32K of primary data cache and 4M of secondary unified cache. The performance
results were collected using on-processor hardware performance monitor counters; the programs
were compiled at optimization level 3 using the MIPSpro C++ compiler.

Figures 3 and 4 contrast the performance of compiler blocking and temporal blocking in terms
of CPU cycles. The block size as well as the number of Jacobi iterations varies on the x-axis.
Figure 3 shows results for a problem size that fits in the secondary cache, while Figure 4 shows
results for a problem size that does not.

Figure 3 shows that the temporal blocking version is twice as fast as the compiler blocking
version until the block size exceeds the size of primary cache, beyond which temporal blocking and
compiler blocking generate a similar number of cache misses. Figures 5 and 6 confirm our hypothe-
ses: the graph describing the primary misses has the same proportion of the overall execution time.
The miss count for the secondary cache shows that the problem fits in cache and the misses are
only the compulsory ones. The spikes can be attributed to anomalies of the hardware counters that
cannot capture results absolutely free of errors.

When the problem size exceeds the size of the secondary cache the improvement induced by
temporal blocking is apparent at every point (eventually a similar scenario as the one seen for the
smaller problem size if the block size exceedes the size of the secondary cache; however, having a
block size larger than cache size is a poor choice for achieving good performance). The same factor
of improvement in the cycle count appears in the count of primary and secondary misses, shown in
Figures 7 and 8.

In all the experiments for which results are given in Figures 3 through 8 the block size is the
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same as the number of iterations. In this implementation of temporal blocking the number of . -
possible iterations is limited by the block size. However, in most cases the number of iterations is -
dictated by the numerical algorithm. The choice then becomes that of the best block size given

a fixed number of iterations. For a Jacobi problem a good rule of thumb is to have the number

of elements in the transitory array be a small fraction of the number of elements that could fit in

a block that fits in primary cache. Figures 9 and 10 show results obtained by fixing the number

of iterations and varying the block size for a problem size larger than the secondary cache. The

first observation is that the number of primary cache misses determines the behaviour of the cycle

count, shown in Figure 9. The second observation is that for greater than a characteristic block size

the cache gets close to saturation and the number of conflict misses increases. The results suggest

that the best performance is obtained when the number of iterations is half of the block size, which

agrees with the given rule of thumb. Overall, however, variations in block size have little impact

on performance so long as the block fits in cache.

It seems clear that blocking for primary cache gives better performance than blocking for sec-
ondary cache, and it appears that blocking for secondary cache comes as a consequence of blocking
for primary cache. In Figure 11 blocking for primary cache and blocking for secondary cache are
compared for a problem size that doesn’t fit in secondary cache. This shows that blocking for
secondary cache is significantly worse then blocking for primary cache, but still better then the
compiler blocking. This can be explained with reference to cache misses. There is no difference
in the number of misses for the secondary cache between blocking for primary cache and blocking
for secondary cache, but the number of primary cache misses is significantly higher in the case of
blocking for secondary cache.

7 Limits and Improvement of Temporal Blocking

As demonstrated, temporal blocking can give a factor of two improvement in performance over
compiler blocking. What has not yet been shown is the dependency of performance improvement
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on the number of iterations for a fixed block size. The goal has been to reduce the number-of :-
capacity misses to a negligible value. Figures 13 and 14 show the result of varying the number of : -
iterations for a fixed block size for a problem that doesn’t fit in secondary cache. The figures show *
that achieved performance improvement is not as good as predicted—performance improves with
the number of interations, but never exceeds a factor of two. At this stage the ideal performance
is a crude estimate; in future this estimate will be improved. Figure 14 makes clear that the
improvement factor is determined by the reduction in the number of misses. The figure shows that
the achieved miss behavior is not relatively constant, but depends on the number of interations.
The problem appears to be an artifact of the test code, which assumes that the transitory array it
is always resident in cache, which is ideally correct. The assumption is based on an implementation
that ensures that there is always enough space in cache for the tramsitory array and a subset of
the other arrays. The test code currently ignores the fact that permanent residency in cache for
the transitory array cannot be guaranteed just by ensuring that-there is always enough cache space
for all the subsets of the arrays. Different subsets of the other arrays would map to the same
locations as does the transitory array, resulting in a significant increase in the number of conflict
misses. Various solutions are being evaluated under the assumption that there is still room for
improvement before reaching some physical architecture-dependent limitations.

8 Automating the Transformation

An optimizing transformation is generally only of academic interest if it is not deployed and used.
In the context of array classes, it does not appear possible to provide this sort of optimization
within the library because the applicability of the optimization is context dependent—the library
can’t know how its objects are being used. Two mechanisms for automating such optimizations are
briefly discussed: the use of expression templates, which seems too limited; and a source-to-source
tranformational system (a pre-processor), which is currently under development.
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'8.1. Expression Templates R Lo

The C++ class template mechanism has given rise to a programming idiom known as ezpression
templates(9]. In essence the technique is sophisticated macro expansion, based on the C++ type
system. In restricted scenarios it can be used to considerably improve performance of e.g. array
operators defined as overloaded binary operators. As a methodology for improving performance it
has two limitations: first, the nature of the expansion is such that it hides information required by
a compiler to perform the optimizations that would be applied to equivalent ‘hand written’ code
(this is described at length elsewhere [1]). Second, it is context-independent, so that, for example,
there is no practicable means of detecting that an array statement is the body of a for loop.2

8.2 The ROSE Optimizing Preprocessor

The ROSE preprocessor is a mechanism for (C++) source-to-source transformation, specifically
targetted at optimizing the use of statements manipulated array class objects. It is based on the
Sage II C++ source code restructuring tools and provides a distinct (and optional) step in the com-
pilation process. It recognizes the use of the A++/P-++ array class objects, and is ‘hard-wired’ with
(later parameterized by) the A++/P-++ array class semantics, so obviating the need for difficult
or impossible program analysis. There are in principle no limits on the types of transformations
that can be performed using this mechanism.

Figure 15 shows the programming model associated with the development of an application
using the language/compiler mechanism. It shows the addition of the framework/library as a tool
to simplify the application and isolate and reuse code common to multiple applications. This
figure also shows the use of the optimizing preprocessor as a mechanism to contain the semantics
of the framework and process the application to perform transformations based on the context
of how the framework’s abstractions are used together within the application. Also shown is the

2The C++ class template mechanism has been shown to be Turing complete, however, using it for general-purpose
programming is difficult and utterly impractical.

10




Optimization Mechanisms

Figure 15: The OVERTURE/ROSE programming model.

comrri_uhiéatipn of the optiﬁiii_ing preprocessor to obta_in hardware specific informz’it”ion (cache size,
communication latency data, etc.) so that the transformation can be made a highly tuned to the
hardware as possible.

9 Conclusions

Previous work has focused on the optimization of the array class libraries themselves, and the use of
techniques such as expression templates to provide better performance than the usual overloaded
binary operators. We posit that such approaches are inadequate, that desirable optimizations
exist that cannot be implemented by such methods, and cannot reasonably be expected to be
implemented by a compiler. One such optimization for cache architectures has been detailed and
demonstrated.

A significant part of the utility of this transformation is in its use to optimize array class
statements (a particularly simple syntax for the user which hides the parallelism, distribution, and
communication issues) and in the delivery of the transformation through the use of a preprocessing
mechanism.

The specific transformation we introduce addresses the use of array statements or collections of
array statements within loop structures, thus it is really a family of transformations. For simplicity,
only the case of a single array in a single loop has been described. Specifically, we evaluate the
case of a stencil operation in a for loop. We examine the performance using the C++ compiler,
but generate only ”C” code in the associated transformation. We demonstrate that the temporal
blocking transform is two times faster than the standard implementation. It can be considered that
this work introduces an attempt to get the best possible performance on a specific type of code
fragment, albeit a common one in scientific computing.

The temporal blocking transformation is language independent, although we provide no mech-
anism to automate the transformation outside of the Overture object-oriented framework. Such
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work could conceivably be used within FORTRAN 90 array syntax equally well.

Finally, the use of object-oriented frameworks is a powerful tool, but limited in use by the
performance being less than that of FORTRAN 77, we expect that work such as this to change
this situation. We expect that in the future one will use such object-oriented frameworks because
they represent both a higher-level, simpler, and more productive way to develop large-scale applica-
tions and a higher performance development strategy. We expect higher performance because the
representation of the application using the higher level abstractions permits the use of new tools
(such as the ROSE optimizing preprocessor) that can introduce more sophisticated transformation
(because of their more restricted semantics) than compilers could introduce (because of the broader
semantics that the complete language represents).
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