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Power Spectrum Calculation for the Cornell Wiggler A SASE Experiment at
BNL
Li Hua Yu

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, N.Y.11973

Abstract

Recently we showed [1] that the widely used simulation code TDA3D, ‘even though a
single frequency code, can be used to determine the power spectrum in the SASE process
with excellent approximation in the exponential growth regime. In this paper, we apply this
method to the BNL Cornell Wiggler A SASE experiment as an example.

When the gain is not very high, there are many modes in the radiation, which seems to
make the analytical calculation very difficult. However, we show that the increment of the
radiation due to SASE over the spontaneous radiation can be expanded in terms of guided
‘modes with rapid convergence. Thus when the spontaneous radiation is substracted from the
SASE power during the calculation, there is a good agreement between the analytical theory

and the numerical simulation .
1. Introduction

Recently, we showed [1] that the TDA3D code, which has been modified to include har-
monic generation calculation, can be used to calculate the power spectrum. One reason that
made this possible is that in the linear regime there is a very simple scaling relation between
the number of simulation particles and the output power: the output power is inversely pro-
portional to the number of simulation particles. Hence, the number of simulation particles
can be made much smaller than the actual number of electrons in the beam, making the
simulation practical.

This method uses an entirely different approach to reduce the number of simulation parti-

cles as compared with the simulation codes such as GINGER. We shall briefly compare these
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two approaches. The codes such as GINGER use an artificial initial distribution to simulate
the SASE .start—up process. To suppress the increased shot noise due to the limited number
of simulation particles, the codes are based on a distribution with equally spaced particles.
To introduce a controlled noise, they generate a random deviation from the equally spaced
distribution with a controlled rms value of the displacements. The rms displacement is chosen
to reproduce the same mean and variance of the bunching parameter. While the mean and
variance of the bunching paranieter simulate the initial status of the system, it is not evident .,
that the higher moments of this quantity would not affect the high gain process, it is also not
evident that the mean and variance of the relevant quantity would remain to be the same as
the realistic distribution duﬁng the high gain process, even thoﬁgh the simulations did show
an agreement with the linear high gain theory. |

As compared with these codes, our method uses a realistic distribution instead of an
artificial evenly spaced distribution. We do not attempt to suppress the noise due to the
limited number of simulation particles. Rather, usé the scaling relation to go from the
simulation case with increased start-up noise (due to the reduced number of simulation
particles) to the realistic case. In this manner, we obtain the correct radiation pbwer in the
linear regime.

Another reason that we can use a single frequency code such as TDA3D to calculate the
intrinsically broad band SASE process is the following. In the original TDA code, all the
simulation particles are limited to within one optical wavelength, or, one cell. During a later
modification of the'code for harmonic generation calculation, we extended the code such that
the simulation particles could be in an arbitrary number of wavelengths. It is easy to see that

if the number of cells 1s n;, then the code is describing a fictitious electron beam distribution

with longitudinal periodic structure of n; optical wavelengths. That is, we artificially set a
periodic boundary condition on the electron beam with period equal to 7; optical wavelengths.

In this case, the radiation spectrum has a line structure with frequency spacing w,/n;, where




wy 1s the optical frequency.

We denote the slippage distance by I, = N, ), , and the distribution period by [ = ny\,,
then when [ > [, , the line spacing ws/n,; is much narrower than the spontaneous radiation
width w,/N,, and the dense line structure gives a profile of the spontaneous spectrum. When
we choose the period to be equal to the slippage distance | = I, , i.e., when n; = N,,, the line
spacing is equal to the radiation spectrum width, and hence there is only one line. The slippage
NyAs is equal to the spacing. between the periodic boundaries of the electron beam. Hence
there is no interaction between any two of the idealized periods of the electron distribution.
The calculated output energy within one idealized period of the electron distribution is the
same as it would be from a non-periodic structure in the electron beam, i.e., the same as for
the realistic case for SASE process. The output power is shown to be Fl,; (i‘%_%) .

Now from the 1D analytic theory of SASE, we know that the full bandwidth of the SASE
spectrum is [1] (1/Ny) - /Lu3/4mLe = (1/Ny) - /Luw/ALc. This width is narrower than
2/N,, as long as L,, < 16 Lg. So when the wiggler length is much shortef than 16 power gain
lengths, if we choose n; to be equal to the number of periods V,,, to good approximation there
is only one line within the bandwidth centered around the resonant frequency.- Therefore,
when the wiggler length is much shorter than 16 power gain lengths TDA3D serves as a good
approximation to the output power even though it handles only one single spectral line. In
this paper we assume the electron bunch is much longer than the slippage and the bunch
shape is sufficiently smooth.

In section 2, we shall apply the new method to simulate the spontaneous radiation power
spectrum in the BNL Cornell Wiggler A experiment as an example and a check of the calcu-
lation. In section 3, we apply the method to the SASE calculation of the same experiment,

and describe the analytical calculation.

2. The calculation of the spontaneous radiation spectrum




We consider the parameters for the BNL Cornell Wiggler A SASE experiment: the radia-
tion resonant wavelength is A, = Sum, the wiggler‘period 1s Ay = 3.3cm, the wiggler leng'th 1s
Ly, = 1.98m, the number of period is IV, = 60, with wiggler parameter K., = 1.44, and the
e-beam energy is v = 82. We take a small current Iy = 10 ampere to calculate spontaneous
radiation. Our analytical calculation based on the well-known spontaneous radiation theory
shows that the power spectrum, integrated over the full solid anglé of the radiation, is as
shown by the solid curve in Figure 1. Because when the radiation angle is deviating from the
forward direction, the wavelength is always shifted to longer, even though for a very small
solid angle the radiation spectrum is a simple sinc function of width 1/N,,, the integrated
spectrum over all angle is more like a step function with rising width 1/N,, near the resonant
wavelength ;. We can show that the peak of the power spectrum, integrated over the full

solid angle, 1s given by:

Pspon
(ai ) = 762 By, (1)
peak -

where 6, = 1/2);/L,, is defined as the opening angle of the spontaneous radiation within a
sufficiently narrow bandwidth, and By is the brightness in the forward direction and at the

resonant frequency, given by:

82f1 ont » 62%]6 }{2
Bo = (‘au,—p—) = —— Ny s, 2)
TBQ =0 w=w, dm (1 + _x;ax)2

with Zy = 3770 the vacuum impedance, and [JJ]| the Bessel factor. We can also show that
at the resonanf wavelength A, the power spectrum is half of the peak height, and the peak
is positioned at a longer wavelength, away from X, by a space of order but less than A;/N,,.
For our example, these formulas give 8, = 2.2mrad and ﬁl; (éﬁ%"&)peak = 0.043watt.

As explained before, to calculate the power spectrum, we choose the number of wavelength

cells in the TDA3D calculation to be N,, = 60. The number of electrons in one wavelength is
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then N = Ip\,/ec = 1.1 x 10°. Because the algorithm used by TDA3D [5], we must always

specify an input power to normalize the calculation, we. choose the input power to be 10710

watt, which is small enough that the output is entirely determined by the shot noise of the
simulation particle, and not affected by this number. When the number of simulation particles
is N = 1200? for the given parameters, we found that at A = 5.05um, the radiation power
reaches the peak value of P/ =40 watt, afte; averaging over many runs. Thus, using the

scaling relation, we find that the real radiation power spectrum is

1 [ 0Pyon. N 1200
( ) =W <P >= e X 40 = 0.04 watt 3)
pe

To test the convergence of the simulation, the figure 1 gives the results for several sets of
simulation of the power spectrum as a function of the wavelength A and compare them with
the analytical theory. The figure also indicates the number of runs of TDA3D for each of the

average points. The figure shows that when the number of radial mesh points NPTR=360

and .average over 20 runs, the simulation is converging to the analytical theory.
3. The simulation of SASE

To simulate SASE, we assume an idealized distribution used in [2]. The transverse distri-
bution is a step function profile with a constant current density within a radius of V60, where
oz = 170pum is the rms radius, the current density is zero outside this radius. We assume
all the electron momentum is parallel to the wiggler axis. We assume both the horizontal
and vertical focusing is zero. Use the method described in section 2, we plot in figure 2 the
power spectrum at the resonant frequency w; as a function of current, varied from zero to 110
ampere, every point is an average over 10 run with different initial random number seeds. In
this calculation we used 5 azimuthal modes with m=0,41, +2.

For this idealized model, the SASE power in the guided modes is explicitly solved [2,3].

The power spectrum in a mode n={j, m} ( j is the radial node number, m is the axial node




number) is:

Ly

(_dP,m> = —1~eLGn Cn(a)
W )sasp 9

where Lg, is the power gain length, and @ is the scaled beam size defined by a2 = 8k.k,p0,,

= ()] ®

Spon.

with ks, ky, the wavenumber for the radiation and the wiggler respectively. p is the Pierce

parameter [4] given by

2 2
_ noZoe’K;

[7J]”
2my3k2c

(2p)° (5)

where ng is the peak current density, in our case it is just the current density within the
edge radius \/501., since it is a constant. K,,,; is the rms Wigglerb parameter. The gain
length is given by Lg, = Ay/87pIm(An(&)). Thus the power spectrum Eq.(4) is completely
determined by the scaled beam size @ through two functions: the coupling coefficient C,, and
scaled growth rate A,. The physical meaning of Eq.(4) is clear now: the SASE input noise is
the spontaneous radiation power spectrum within two power gain lengths [MT:E %);;’m] ,
and this input noise is coupled by the coupling C,, , and then amplified by a factor éefLGn: to
give the output power spectrum.

The two functions C, and ), are calculated and given in detail by [1], and to a good

approximation when @ > 0.25, the calculated result are fit with:

3 - 1 ag+ay =k
Im()\,n) = %.»e a"l+’&2( o+ a2)’ and (6)
3 - 1 L
Cn(a) = %%e T (Botrgr) .

where for the mode {1,0}, we have g = 0.397, oy = —0.0067, By = 1.093, B; = —0.02; while
for the mode {1,£1} we have ag = 1.2625, oy = —0.14%4, G, = 5.082, 5; = —0.5707.
As an example, let us take Iy = 110 ampere. Using Eq.(5), we find that the Pierce

parameter p = 8 X 10"3; and the scaled beam size @ = 0.95. Applying these to Eq. (6), and

6




Eq.(7), we find the power gain lengths and coupling coefficients for the mode n={1,0} to be
Le =0.26 m, C = 0.24 , and for mode m = {1,%1}, Lg = 0.43 m, C = 0.021.

Using Eq.(4), we can calculate the power spectrum in each mode, and sum over modes.
However, empirically, we find it is convenient to calculate the increment of SASE power over
spontaneous radiation power ratio by summing over the corresponding ratio increments for

all the modes. Thus we have

(Q) 1 1 2 x0.26
Adw SASE _ 1 _ |Zc0% — 1| x 0.24 X ——
T v
w / Spon.
. 1 K ' .
+2x {56%%_1] ><0.021><g%§~8ilé
=136+02+. ~14. ®)

The 1 in each term in the square parentheses is the subtraction of the contribution from the
spontaneous radiation. The extra factor 2 in the second term is due to the two modes with
m==%1. For higher modes, the gain factor %eZLJGHr: is rapidly reduced to nearly one or even
smaller than one, and the formula eq.(4) is not valid. However, the gain for these higher
modes are negligible, this means that they only contribute to the spontaneous radiation, so
(%e%é: - 1) for these modes can simply be replaced by 0 as an approximation. The SASE
over spontaneous radiation ratio is then 14+1=15. The SASE power spectrum calculated this
way is plotted against the simulation results in Figure 2, showing a good agreement.
Naturally, one familiar with one dimensional high gain FEL theory would raise a ques{;ion.
When the gain is not very high there are three longitudinal terms, i.e., in addition to the
growth term, there are other two terms comparable with the growth term: one is exponentially

decaying, the other is oscillating, and the formula Eq.(4) is not valid. Why we can still use

this formula even the total SASE over spontaneous radiation ratio is rather small, as shown

in figure 37




The answer is that, for the two modes we wrote down in Eq.(8), the gain factor is indeed
much larger than one. In three dimensional theory, the corresponding decaying mode and and
oscillating mode should be calculated as other transverse modes. They are neglected because
we are only calculating gain, and these modes only contribute to the spontaneous radiation,
which is subtracted from SASE calculation. If we do not subtract the spontaneous radiation
from the SASE, the series would converge very slowly. In addition, for the higher modes, the
growth term is not large enough to dominate over the other decaying and oscillating terms,
so the calculation becomes very difficult. In short, using guided modes to calculate sponta- -
neous radiation is very difficult and unnecessary. By subtracting the spontaneous radiation,
and only calculating the gain, we avoid this difficulty, and obtain an empirically excellent
approximation.

Up to now, we used an idealized step function beam profile to test the calculation. To
compare with experiment, we use a more realistic waterbag model. We choose the same rms
beam size ¢, = 170um. This corresponds a normalized emittance &, = 4mm — mrad for our
case with a focusing betatron wavelength Ag = 3.7m. We take the local energy spread to be
(-A,—f‘)rms = 4 x 107*. These parametefs lead to a power gain length with Watefbag model
Lg = 0.26m, same as the step function model case before.

The calculated results are shown in Figure 3. The dots are the simulation with the wa-
terbad model, and the solid line is the calculation using the analytical method Eq.(8) for the
step function model with the same rms beam size. The agreement is very good considering
the crude nature of the approximation.

A recent SASE experimental result is plotted on Figure 4. We did not have enough time
to characterize the e-beam before this conférence. However, the plot clearly shows that the

beam quality is better than our originally designed parameters used for our calculation in this

paper (110 amp, 4mm-mrad).
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Figure 1. Output power spectrum for spontaneous radiation as a function of wavelength

Figure 2. Output power vs current for the step function model

Figure 3. Output power vs current for the waterbag model

Figure 4. Radiation energy vs e-beam charge in the Cornell Wiggler A SASE experiment
at BNL
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