SEP 11 1998

SANDIA REPORT

SANDS8-0755 « UC—401

Unlimited Release
Printed April 1998

Two-Dimensional Green’s Function
Poisson Solution Appropriate for
Cylindrical-Symmetry Simulations

Merle E. Riley

Prepared by
Sandia National Laboratones
Albuquerque, New Mexico. 87185 and Livermore, Cahforma 94550

Sandla Corporatlon

Sandia is a multlprogram laboratory o
a Lockheed Martm Company, fer th s Ly

SF2800Q(8-81)




Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
QOak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: AO3
Microfiche copy: A01




- DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




SAND98-0755 Distribution
Unlimited Release Category UC-401
Printed April 1998

Two-Dimensional Green’s Function Poisson Solution
Appropriate for Cylindrical-Symmetry Simulations

Merle E. Riley
Laser, Optics, and Remote Sensing Department
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1423

Abstract

This report describes the numerical procedure used to implement the Green’s
function method for solving the Poisson equation in two-dimensional (r,z) cylindrical
coordinates. The procedure can determine the solution to a problem with any or all of
applied voltage boundary conditions, dielectric media, floating (insulated) conducting
media, dielectric surface charging, and volumetric space charge. The numerical
solution is reasonably fast, and the dimension of the linear problem to be solved is that
of the number of elements needed to represent the surfaces, not the whole
computational volume. The method of solution is useful in the simulation of plasma
particle motion in the vicinity of complex surface structures as found in
microelectronics plasma processing applications. This report is a stand-alone
supplement to the previous Sandia Technical Report SAND98-0537 presenting the
two-dimensional Cartesian Poisson solver.




I. Introduction

The fields about a prescribed distribution of electric charge are solved by
superposition once Coulomb’s law is introduced. In general though, fields are
specified in terms of known voltage boundary conditions, not charge distributions,
which requires the solution of partial differential equations or integral equations.’
Finite difference techniques for solving the Poisson or Laplace equations are standard
fare. They require numerical solutions covering the whole computation volume of the
problem. An alternative method is to use the Green’s function for an unknown source
distribution, with sources localized to the surfaces, and to formulate the solution as a
Fredholm integral equation of first kind,” which becomes a linear algebra problem
once discretized. The advantage of the Green’s function technique is the smaller
dimension of the array of surface unknowns as compared to the number of volume |
elements filling the whole computation volume. This is illustrated by considering a
square of N elements on a side. The Green’s function method has 4N unknowns and a
4N by 4N coupling matrix. A finite difference formulation would have N? unknowns
and a N? by N® matrix. However the latter matrix is sparse and numerical methods
exist to take advantage of the sparseness. Another advantage of the Green’s function
method is that volume grids are unnecessary in the absence of space charge and that
the points of evaluation of the fields within the volume can be arbitrarily positioned.

The Poisson equation (PE) in three dimensions (3D) for the potential field V
due to a distribution of charge p is

V2V(R)=—p(R) !¢, (1)

where SI units are used: namely, distance is in m, V is in volts (V), p is in C/m’, and
the vacuum permittivity &, is in C%J m. The PE can be resolved by use of the free-

space Green’s function: "

k4

G,(R,R)=—1/4n|R-R’

(2)
VG, (R,R)=6%R-R"),

as
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= [dR’ p(R')/ 4ne,|R-F’
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The form of G, is chosen to vanish at large distance analogous to the Coulomb field

of a charged particle. Homogeneous solutions of the Laplace equation are not
superimposed with the PE particular solution, because all fields are due to, or
represented as, the superposition of real charges. This carries over to the
representation of dielectric media, which are replaced by charged surfaces rather than
a space-dependent permittivity, €(R) .

A point of importance in the application of the Poisson solver to plasma
physics problems is the stiffness that is associated with the light electron mass and
relatively high temperature. This is discussed in the Appendix of this report.

II. The Tweo-Dimensional Poisson Equation in Cylindrical Symmetry

The 2D PE in cylindrical coordinates with imposed rotational symmetry about
the z axis may be obtained by introducing a restricted spatial dependence into the PE
in Eq.(1) or the Green’s function solution as given in Eq.(3). The result is the
conversion to 2D coordinates:

p(R) = p(r,2) = p(F),

_ . “)
V(R) > V(r,2) =V(F).

Lower case 7 is used to denote a vector in (r,z) space. The new 2D Green’s function
is the solution of
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Note that the 2D integration and delta function have been defined with the 27
included in the volume element. The last integral in Eq.(5) can be done analytically,
resulting in a complete elliptic integral of the first kind.> This is only useful because
these elliptic integrals have convenient numerical representations as low order -
polynomial approximations.’

The 2D Green’s function defined in Eq.(5) may be reduced to |

1

G(r,zr',2) === Dax K(m) , -
2

Dr%mx = (z——z')2 +(r+717)? =Dr%1in +4rr’,
Diin=(z~2)? +(r=r"?, ©)
m=4rr'/DI%%IX ,

m=1-m= Dr%ﬁn / Drznax.

D,.., and D,,;, are the maximum and minimum of the separation of the source and
observation points as the azimuthal integration angle in Eq.(5) sweeps about the z
axis. K is the complete elliptic integral of the first kind, m is the “parameter,” and m;
is the “complementary parameter.” The limits of the elliptic integral are known,’
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These are useful in reconciling the formulae with the Cartesian Green’s function and
in evaluating the near-field limit. As an example one finds:

1 (-2 +a=-r)?
In| s
Am? 8r @®)

r-r,z—-7.

G(r,z;r', 7)) =

This is similar to the 2D Cartesian Green’s function®, differing only by a factor of
27r, and with the R; constant therein replaced by 8r in the present relation. The 2D
cylindrical Green’s function does not have the same singular properties at both large
and small argument as the 2D Cartesian Green’s function: at large separation the
cylindrical Green’s function decays like 1/R just as the Coulomb potential due to a
point source.

The potential due to a volume distribution of charge is given by the 2D version
of Eq.(3), namely:

1 S s
V(F)z——é—jdzr'G(F,r,)p(r ). 9)

This distribution and potential are independent of the 8 coordinate. In the case thata
surface charge is present, say o'(7), in units of C/m? the appropriate potential is
given by taking a zero-thickness or surface-delta-function limit of a volume charge.
Let ¢ be the local coordinate normal to the surface, which is located at z,, then the
substitution of

p(F)=0(r)6(r — 1) (10)




will convert the volume charge integration in Eq.(9) to a surface integration. The
solution to the surface-charge problem is given as the 1D integral covering all
surfaces:

V(r>=—-jds G(F.F(s)) 2 ($HOF(s), (D)

where the 2D vector 7' =7’(s”) traces out the surfaces. The path of integration is

along the surface, perpendicular to the local surface normal.

It is also necessary to evaluate the electric field produced by all the charges.
As the electric field is the negative gradient of the potential, the field can be evaluated
from Egs.(9) and (11). For the volume sources:

E(=— |44 V,GEF) P (12)

Of course the gradient must be evaluated in terms of the elliptic integrals in order to
be useful. The general expression for V ,G is found to be:

v,G(F,F')E(e 5’ a)G(r zir’,z")

o “%

| (13)
=— (r -—2r E(m)— —5 (E(m)— K(m)) J
27" Dpax \ Din 2r?

where the notation is as defined in Eq.(6) except that E(mn) is the complete elliptic
integral of the second kind.> The limiting values of E(m) are known:

(14)

Egs.(9) and (11) for the potential, and Eq.(12) for the field together with its analogous
surface charge form, constitute all that is needed for the Green’s function Poisson




solution. The remaining items to discuss are numerical representations and imposition
of boundary conditions.

I11. Overall Structure of Solution

The specification of the solution is done by means of voltage boundary
conditions on conductors, typically metal surfaces. Metals are at a constant Volta_ge,1
but with an unknown charge distribution at the surface. These also include highly
conductive plasma interfaces. All metals will have an unknown total and surface
distribution of charge, except that floating or insulated metal parts will have a fixed
total charge and an unknown charge distribution and voltage. Dielectrics will have
unknown surface charges to modify the fields inside the media. This takes the form of
jump conditions in the normal electric field at the dielectric interface surface.
Boundaries that are markers for periodic reflections of the solution will have zero
normal field conditions (periodic boundary conditions).

One can see that it is necessary to break all surfaces into finite elements or
increments in order to obtain an accurate numerical representation of the quantities
that vary along the surfaces. Let all the elements be indexed by j, with the
understanding that two materials in contact with a region of their surfaces in common
will have just one set of elements in the common region. Each surface element will
have a centroid at ?j , alength ds j»and a unit normal ) j The total area of a surface

element is 27L‘rj ds j»as the element is swept about the z axis. If there is a volume

charge, the volume elements, which are really incremental cross sectional areas that

are rotated about the z axis to form a solid ring, will be specified by the centroids Fj

and the areas dA i of incremental volume 27rrj dA i No surface or volume element

will be allowed to be centered on the z axis. It should not be necessary to do so.

Some labels or partitionings will be introduced for the surface elements.
Volume elements will be labeled by a “v” in all cases. The surface elements will be
labeled with either an “m,” denoting a voltage boundary condition as on a metal
including floating metals, a “d,” denoting a dielectric interface, or an “s” denoting an
element in any of the surface partitions. The total number of elements in these
partitions is Ny, Ny, Ng, and Ny = N, + Ny,

Consider a system of voltage-specified metal surfaces with a given space
charge in the volume. Together Egs.(9) and (11) relate voltage at the metal surface
elements to charges in the volume and on the metal. Without loss of generality, the




integrals can be replaced by numerical quadratures or by sums over finite elements of
the surfaces and volume to give the linear algebraic version of the system:

vire SoIpar-Sope
Jjem Jjev . (15)

iem

It is seen that the only unknowns in this linear system of equations are the charges on

the metal elements, q?’ . All the q}c are defined as being the total charge (in C) on

either a surface or a volume element, which are both 3D figures of revolution obtained
by rotation about the z axis of the problem:

g; =2mr;ds; o(7;),

(16)
g; =2mr; dA; p(7}) .
It is to be noted that the charges are no longer being represented as charge per length
as in the 2D Cartesian method.* There are as many unknowns, N, as equations in
this system described by Eq.(15). The exact procedure of discretizing Eqgs.(9), (11),
and (12) will be discussed in the next sections. Eq.(15) constitutes a complete
definition of the problem as formulated with potential boundary conditions and space
charge. The solution of the linear system of equations for the unknown charges on
each of the metal elements determines the fields everywhere in space. Note that the
number of points involved in evaluating the space charge is not involved in inverting
the coefficient matrix in Eq.(15). The accuracy of the solution will be determined by
the number and density of elements chosen on the surfaces and volume. The
numerical solutions should converge to the exact solution as the density and number
of elements increase everywhere.
In contrast to the 2D Cartesian situation, there are no provisions made for
periodic boundary condition to be applied in the 2D cylindrically symmetric case.
“r” or reflective subset of the boundary finite elements.
The remaining illustration is the dielectric match condition. This takes the
form of an inhomogeneous condition on the normal field at each element on a
dielectric interface:

Thus there is no




V= 368 a7+ 376 of + 3160

Jjem jed jev
d d
jes Jjev
ied

The quantity V-d is of physical dimension V/m, the same as the electric field. Note
that the matrix G; ; ; 1s not the same physical dimension as the Green’s function G in

Eq.(6), as the — 1/ €, constant in the PE is now included. G; 1s dimension of V/C

and G is 1/m. Also " Gsx is dimension V/mC. In addition to descnbmg the dielectric

match, the d partition also contains the effects of known added amounts of charge to
the faces of dielectrics. This details of this will be given later. At the moment, the
purpose is to illustrate the form of the total system of equations determining the
solution.

Write Egs.(15) and (17) in vector matrix notation, suppressing the indices:

Vm Gms va qS
(Vd] = (nGds nde](qu' (18)

This can immediately be rearranged to solve for the unknown charges, q°:

1 (03 M (4 AR

It is to be noted that the partition s contains the partitions m and d, all of which are
surface elements with unknown charges. Only the partition m contains known
voltages. The volume charges are known, as are added dielectric surface charges

which will show up in the V¢ terms. The dimensions of the vector-matrix quantities

appearing in Eqs.(18) and (19) are evident: the vectors V” and q” are columns of

length N,, and matrices G™ are N, by N,. The partitioned matrix on the LHS of
Eq.(19) is thus square, with an equal number of unknowns and equations.




IV. Discrete Approximation of the Green’s Functions

In this section the details of the formation of the linear system 111ustrated in
Eq.(19) are given. The first item to be discussed in Section IV.A is typically the most
universal of all the coupling terms. One should note that the evaluation of the
potential or field at any particular surface element requires summation over all of the
known and/or unknown charges in the system Thus the coupling matrices are
typically full, but also well conditioned,” due to the nature of the Coulomb interaction.

IV.A. Surface Potential Response to Surface Charge

Consider the potential at a surface element labeled i due to a surface charge
distribution. The point in question is a part of the surface itself. Begin with Eq.(11)
and write the integral as a sum over surface elements. Within each elemental region
of the ds” integral, treat the charge as constant. At each point where the potential is
to be evaluated, average the potential over the linear element. This leaves:

V.~—Eo_§ = stds jds G(F.7) ;- (20)

The total charge on element j, g ; j 27rr ds o (r ) has been introduced for each
surface element as given in Eq.(16). Write Eq.(20) as

V"= G5 qj
jes (21)

iem

to correspond to the vector-matrix notation introduced in Eqs.(15),(17)-(19). Since

the potential is only needed at the metal (m) elements, the range of i is restricted to the
m partition. For i # j the sum-and-average integrals of the Green’s function over the

finite element can be approximated as

Gms~_'— G 92';r',Z' s
€ Unaiiry2) (22)

iEM,jES, I .

10




The RHS of Eq.(22) is to be evaluated from the formulae in Eq.(6), making use of the
approximate numerical representation of the elliptic integral.” This is valid if the

surface is smooth, meaning that, approximately, Ii*; - FJI 2 ds; or ds;. A surface with
sharp bends may need refinement of the incrementation. For i = j, the diagonal term

in Eq.(20) requires a more precise evaluation because of the self-interaction
singularity.

The surface element self-interaction term can be approximated as follows.
First, since the Green’s function is in the near-field limit, the form given in Eq.(8) can
be used. Second, the integration and average over the surface element can be done as
in the 2D Cartesian case if the dependence on the factor “r” is assumed to be weak
compared to the variation of 7 = 7 in the argument of the log function. The diagonal
coupling term can now be reduced (with some algebra) to

Gl =-— ln(dsf)—g . 23
Ar“re, 8r,) 2

In the case of a collinear line of equal-length surface elements, the largest relative
errors introduced by approximating Eq.(20) by Eq.(22) are 10% for nearest neighbors
and 2% for next-nearest neighbors, as derived by analysis of the sum-and-average
integrals in Eq.(20). Although it is possible to improve the accuracy by use of
coupling terms which depend on the orientation of the individual elements, it does not
seem worthwhile, since a systematic reduction in error can be achieved by increasing
the number and density of the finite elements.

IV.B. Surface Potential Response to Volume Charge

~ If there is a space charge in the system, the potential of that charge must be
computed from Eq.(9) just as indicated in Egs.(15) and (17). This involves no self-
interaction terms in order to evaluate the potential on the metal surfaces, so the result
can be approximated as previously done for the non-diagonal surface-surface terms:

11
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~ Any improvement in this result would involve incorporating information about the
shape of the volume elements next to the surface. As it stands, one might refer to the
result in Eq.(24) as a “wire-wire” interaction appropriate for the far-field of the
interaction between the finite elements.

IV.C. Imposition of Dielectric Matching Conditions

The match conditions require the evaluation of the normal electric field at the
boundaries of dielectrics. For this one must be able to compute the electric field from
the surface and volume charges. Consider the field due to all charges in the system,
both on surface and in volume, as given by Eq.(12) and its generalization for surface
charge similar to Eq.(11):

E(r)——jds V. GF.7)2mr’ o(F’)

(25)
+ ;;Idzr' V,G(F,F)p(F") .

The gradient of the Green’s function is given in Eq.(13). Choose 7 to be arbitrarily
close to the surface of point i, and dot the field with the unit normal of element i to
find the component of field normal to that surface element. The result is:

A;- E(F) =—jds' % -V, G(F,F")2nr' o(F")
(26)
+ L [d2r 49,67 ).
80

12




Approximate the integrals in Eq.(26) as sums of terms assuming that the charges are
constant within each of the surface and volume intervals, as before. This allows the

introduction of the elemental charges q; and q}f . The result is precisely as

symbolized in Eq.(17) with:
1 1 - =y
"Gy = f i V.G F)
1, =
(0] .

i*¥j, ied, jes

and
n .d".-_—_l_________J' i,V GG
Bg, 2mr
dA
|
zg—n G( WZ3Tj,25) (28)
ied,jev

The volume sources are not concerned with self-interaction, but the surface-
surface coupling in Eq.(26) must be evaluated for that case. The integral is
discontinuous as 7 is carried through the plane of the element. The analytic
evaluation of the self-interaction term using the near-field approximation in Eq.(8)
gives:

11
"G =— | ds’ VG 7.7 (s
i I (7, 7(s") .
1 =
—47527",-80 ds;

o~

13




with the positive sign when the unit normal points toward the “computational side” of
the element. This is the same as knowing that the electric field about a sheet of
positive charge points away from the sheet on both sides and has the magnitude

o/ 2¢, on each side."”” The averaging that was done previously in order to obtain an
improved self-interaction term is not necessary here as the limiting values in Eq.(29)
are obtained anywhere along the finite surface element. The * sign in Eq.(29) will be
fixed at + by setting up the unit normal vectors such that they point towards the
computational side of the periodic boundary.

Eqs.(27)-(29) fill in the definitions of the G™ partitions of the matrices as they. |
appear in Eqs.(15) or (17). A detail is the specification and storage of the unit normal
vectors. Specifically arrays of the sin and cos of the unit normals are stored at the
solution outset and used in the evaluation of the dot products when needed.

The treatment of dielectrics provided here for the purposes of field calculation
is that they are replaced with charged boundary layers at their actual surfaces.! These
charged layers serve to modify the applied fields in order to obtain the correct field
strength within the dielectric medium. It is true that there are fundamental reasons
why the presence of dielectrics can be analyzed as a vacuum problem with inserted
bodies of matter.' Since the problems being addressed here are in electrostatics with
homogeneous and isotropic media throughout, the formulation is particularly simple.
Of course the whole problem is not homogeneous and isotropic. All dielectric media
will be free of internal charge. The only distributed charge density occurs in the
vacuum regions which can contain plasma space charge. The dielectric surfaces,
whether between two dielectrics in contact or between a dielectric and the vacuum,
will have an unknown amount of surface charge that is sufficient to produce the
normal electric field discontinuity required by the macroscopic descriptions. In
addition, a prescribed amount of deposited surface charge may be added to represent
such charging of dielectric media in contact with a plasma.

Consider, without loss of generality, the following 1D problem in coordinate

x. On the right side of the boundary, say for x > 0, there is material 1 with
permittivity (dielectric constant) &; ; on the left, for x <0 there is material 2 with

permittivity £, . Let the (x-component) electric field for x — 0~ be E_ and the field

for x — 0" be E_ . The fields are space dependent, so the values near the boundary

are to be used. First consider the case with no added surface charge; the dielectric
match condition is!

14




& E< =& E> . (30)

A “polarization charge” o ¥’ ! will be added to the surface to reproduce the jump. Let
the field near the boundary be the sum of the fields due to all other sources evaluated

at that point, say, E°"" , and the field due to 6P%. E°™*" must be continuous
across the boundary. Substituting into Eq.(30) gives:

pol \
& E '92( Eother o J

2¢,
’ (31)
: 570
=£1 E> —_ 81 Eother .
2¢,
from which one solves for o P% :
c pol _ &~ & 28 Eother (32)

&+ &

Now write down the expression for the normal component of the electric field at the
above boundary, say element i, due to all other charges in the system:

Eother =7 E(l_’;) _ 2 nGld_] q] 2 nGl_‘f‘J’. q‘; . 33)
Jes Jev
JFl

In order for the sign of Eq.(33) to be correct, the unit normal must point towards

positive x, in other words, from medium with &, to medium with &;. The nGixii

matrices have been defined in Egs.(27)-(29). Combining Egs.(32) and (33) and
replacing &P ol = q,d / ds; gives

0= 1 Ul 81"'82 d EnGds qJ +2nde

2 .
47 i€ ds’ & - jes jev

Jj#i

) (34)

ied
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which is a homogeneous equation in the surface charges similar to the reflective
boundary condition partition defined in Section IV.C. A convenient way of
expressing Eq.(34) is to define the diagonal of the coupling matrix as:

1 T §+& .
4m’re, ds; -8 . (35)
ied

n~dd __
Gii =

The limit of & — &; gives a diagonal non-singular system in Eq.(34) and forces all

q,-d — 0, as it should. This completes the dielectric match, except for the inclusion of
added surface charge.

add

Let a deposited surface charge density, c“ = qadd {/ 27 r; ds; , be present on

the boundary element. This added charge can be displaced away from the boundary
surface by a infinitesimal amount and the previous solution for a dielectric match of
an uncharged surface can be used again. The displacement must be fowards the
vacuum side of the interface to be consistent with a plasma charge deposition

mechanism. In the 1D model above this displacement is characterized by a . Thus
if the top sign is chosen, dielectric medium 1 is vacuum and &; =€, ; if the bottom

sign, & =¢€,. The field symbolized by E Other s now the field due to the charges on
all other surface and volume elements, plus the field due to the infinitesimally-
displaced added charge layer, namely + o4 | 2¢&,. The charge on the surface

element in question is the sum of the polarization and added charges:

pol+qadd= d

q qg; - (36)

After eliminating g? % and using the permittivities to remove the * sign, one obtains
Eq.(34) with an inhomogeneous term:

16
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Of course the diagonal term on the RHS can be defined into the coupling matrices.
The LHS of Eq.(37) is the 1’th element of the column vector called V% in Eqgs.(17)
and (18).

This completes the construction of the linear algebraic equivalent of the
integral equation to be solved for the surface charges. Still to do is the case alluded to
as the most subtle of the tasks. |

IV.D Insulated (Floating) Conducting Bodies

In the study of plasma interaction with surfaces, part of the conducting material
in contact with the plasma can be with prescribed voltage and unknown charge, as
dealt with earlier in Section IV.A. However a conductor that is electrically insulated
will have a known (or determinable) total charge and an unknown voltage and charge
distribution on its surface. This would seem to be a formidable problem in potential
theory, but the numerical resolution in the context of the surface Green’s function
methods is quite simple once unveiled.

Rewrite Eq.(19) as

ZAi,j Xj =bi : (38)
J

where A denotes the square matrix of G™ coefficients, X denotes the unknown
surface charge vector q°, and b the whole RHS vector. Let each insulated

conducting body be a subset of the “m” partition in the problem. Give each body a
unique label say “k”. Let the total charge per length on body k be Q. The
incorporation of this information into the solution proceeds as follows:

(1) Calculate all of the elements in A and b as if the insulated bodies are of
specified voltage boundary conditions, as usual in the m partition.

(ii) Search through the rows of A to find the first member of subpartition k. Say
this happens to be row i.




(ii1) Find the next member of subpartition k. Say that this is row n.
(iv) Replace row i in A and b with

Ai,j _'>Ai,j—An,j ’
for all j

This relation incorporates the condition that the voltage difference between row i and
row n (surface elements i and n) is zero, as must be true for a conductor. Remove row
i from examination. ‘

(v) Redo the search for members of k, treating row n as the new row i. Repeat (iii)
through (v) as long as members of k are found.

(vi) If there is not another member of subpartition k, then replacerowiin A and b
with:

bi -0

Ai,jzl, jEk,
Ai,j=0’ ]Ek,
by =0y ,

insuring specification of total charge on the subpartition k.

The above must be repeated for all insulated bodies (all distinct k) in the
system. One proceeds to solve this transformed A and b to generate the charges on
all the surface elements. Note that no change in dimension or redoing of the
interaction matrix element was necessary to carry out the insulated conductor
modification.

V. Evaluation of the Fields from the Charges

The solution of the linear system of equations presented by Eq.(19) is done by a
full-pivoting Gauss-Jordan elimination code given in “Numerical Recipes™. No
problems with the numerical conditioning have been found for any well-formulated
problem with up to 700 surface elements using 64-bit arithmetic. The computational
time is slower with the larger dimensions, of course.

Finding the potential and electric fields is based on evaluation of the integrals
in Egs.(9), (11), and (25) once the unknown surface charges are found. In the 2D
Cartesian procedure* the fields were at first approximated by the same methods as
presented in Section IV. However, it became obvious in that work that the results
were not as smooth as expected near boundary surfaces. One cause of this is that the

18



evaluation “grid” or sample space is not necessarily related to the finite element setup
for the surfaces or the volume charge, if there is one. Thus one can evaluate the fields
very close to the surfaces, on the surfaces, or wherever. This difficulty was remedied
in the context of the 2D Cartesian work by using the exact analytic field of a 2D finite
element with uniform charge as the source term for all the charged surface elements.
The more approximate treatment mentioned above is just a modified far-field
approximation to this procedure. However in the cylindrically symmetric case being
done here, there is no exact analytic solution for the field about a charged finite
element that is a figure of rotation about the z axis.

The resolution to this difficulty for the 2D cylindrically symmetric problem was
to force a combination of the far-field solution of the cylindrical case with the near-
field solution, which is the solution of the uniformly charged Cartesian finite strip.
The far-field solution of a circular finite strip element is given precisely by the
Green’s function in Eq.(6), being the field due to a delta function source (a circular
charged wire). The fields about a uniformly charged Cartesian finite strip can be
evaluated exactly.** As mentioned previously though, the volume elements are of
unspecified shape and thus not so amenable. The surface treatment for the potential is
given now; the electric field is analogous.

Consider a finite surface element strip j which is obtained by rotation about the
z axis. This is a conic surface section. The potential due to this strip at the
observation point 7 is VJ- (F), the strip element’s width is ds iz its unit normal 7 Iz
and it is located at Fj, all specified in cylindrical coordinates. This uniquely specifies

the cylindrical charge source element. Denote the functional dependence of the
potential on the element parameters by

Vj(r,erj,Zj,de,ﬁj)EVCS. (39)

where cs denotes “cylindrical strip.” Now set up a local 2D Cartesian coordinate
system on the element with the positive y axis along 7 ;j and the x axis along ds j and

the origin at Fj. These (x,y) coordinates are a translation and rotation (by the angle 6

of the unit normal) of the cylindrical (r,z) ones. Thus V¢ can equally well be written

in these coordinates. For convenience, replace the radius of the strip by the curvature,
C; =1/r;, and denote the dependence of the potential explicitly on C; and ds;:
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v EV“(C]-,ds]—). (40)

In terms of these parameters, there are two useful limits. Consider the limit of small
surface element width where the finite element reduces to a “circular wire” (cw) of
charge:

Vcs(Cj,de)chs(Cj,O)EVCW. (41)
: J

This is the far-field limit of the potential when |7 — Fj | is much greater than ds ;but

not necessarily greater than r;. The other limit is that of an “unrolled” cylindrical

strip where the curvature is taken to zero:

VE(Cods))—g—=5V (0ds)) =vyb. 42)

What results here is a “linear strip” (Is) of finite width and infinite depth (in the local z
coordinate), for which the exact field solution is known simply in terms of the local
(x,y) coordinates. This is a near-field limit which has a constant to be calibrated. The
limit of the “linear wire” (Iw) must also be used:

Ve(Cj.ds;) =V (0,0) =y, (43)

Cj,dS}‘—-)

The linear wire is the far-field solution to the linear strip when the observation-source
separation is much greater than the strip width.

The approximation to be used for the field is to correct the near field of the cw
by using the near field of the Is:

VCS vaW +VIS __VIW (44)

V" is known exactly as given by the Green’s function in Eqs.(6) and (24).

V'’ is known®* and the V™™ can be obtained from it by taking the limit of zero
width. If the (x,y) coordinates are scaled with ds » the result is:
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j€o _
(I—ZxJ (1+2x)
+ yarctan + yarctan
2y 2y (45)
412 1n((1/2—x)2 +y2)
1+2x
+

1n((1/2+ 02+ yz):].

q; is the total charge on the cylindrical element and R is the constant that sets the

zero of the potential field about an infinitely long (in z) x-y strip.* The linear wire or
far-field limit of Eq.(45) is found to be:

2
471' rj

1 7 -7l
VY o= ———— 8 ln( ’) (46)
g, Ry

The difference of Eqs.(45) and (46) is localized in space to the vicinity of the strip and
is the near-field correction. The correction contains quadrupole and higher terms
arising from a multipole expansion. Before using this, however, the constant R; must
be determined as it is no longer valid for the cylindrical geometry. This is done by
comparing Eq.(46) with Eq.(8), which is the Green’s function giving the field of the
circular wire in the limit that the distance from the wire is much less than the radius:

1 7 -7l
V¥ = ———gj ln( d },
vib s rjgo 8r]

47

|7 —rjl<< ri.

Thus Ry is set to &; in order that the two limits agree. These formulae are used for

the evaluation of the potential due to surface sources.

~ The potential and field about a space charge element in the volume are difficult
to evaluate because of the arbitrary shape. If the volume elements are modeled as
being tori of circular cross section, the fields can be approximated using the far-field
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limit in which the separation of the evaluation point and the torus is greater than some
factor times the effective radius of the elemental cross sectional area dA j- Define the

effective radius 7, as:

nr, = j-

For IF —F;1> 7y, set the potential due to volume element j to

1

0

based on Eq.(6). For I —7;1< r,, the potential is approximated as a constant:

N 1 | 1 v
Vi) 4n? 7€ (h{Srj J 4qu ’ 50)
based on previous analysis, using the near-field limit in Eq.(8).

The electric field is evaluated by much the same analysis as done for the
potential. In other words the near-field correction to the “circular wire” is made by
using the analytic formulae of the finite strip in (x,y) coordinates.* Thus there is a
correction of the same form as Eq.(44) made for each component of the electric field.
The field about the cw is essentially given by Eq.(13) and the correction is given by
the gradients of Eqs.(45) and (46). The electric field due to volume (space) charge is
represented by the cw solution when the separation from the volume element exceeds
its radius as given in Eq.(48), and by a linearly decreasing function of separation when
the separation from the centroid is less than the radius. This is not a perfect solution,
but it is found to work well if one is careful about the location of the evaluation grid
compared to the grid used to represent the volume charge.

VI. Example Solutions and Discussion

A few examples are given here show the good (and some not-so-good) features
of the Green’s function method. The prior study of the 2D Cartesian solver* contains
illustrations that are also representative of the cylindrically symmetric solver.
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The first set of computations illustrated in Figs. 1-6 gives the potential and
field around a disk capacitor as the number of finite elements is varied on the disks.
The disk separation is 1.0m, the disk radii are 1.0m, the plotting field is 2m on a side
with 50 points in r and 100 points in z, and the specified voltage is +0.5V on the upper
disk and -0.5V on the lower disk. Fig. 1 shows a “wire mesh plot” of the potential for
ten finite elements on each disk radius. Note that the total number of unknown finite
elements is just twenty, and also that it was not necessary to include any elements on
the cylindrical axis since the solution is done in cylindrical symmetry. Some spurious
ripples are noted in the potential at the charged elements near the central axis and near
the outer edge. A more accurate solution is found by including more elements within
each disk radius. In Fig.2 the number of divisions on each disk radius is raised to 25.
One notes that the ripples have disappeared. Convergence is confirmed by the results
in Fig. 3 where the number of finite elements on each disk is raised to 50.

In Fig. 4 the E, component of the electric field is shown for the 50-element-per-
disk case whose potential is given in Fig. 3. The small “bumps” in the field near the
central axis are in fact errors due to the evaluation of the field in a region of both
discontinuity in z and near r=0. Fig. 5 shows E, for this case with 50 elements per
disk. In Fig. 6 the magnitude of the field is shown as a contour plot to illustrate how
the field is concentrated about the edges of the disks. The absolute value of the field
in the central region approaches 1V/m.

The second set of computations is illustrated in Figs. 7-12. A spherically
symmetric space charge with a Gaussian distribution in radius is used as the source.
The 1/e radius of the charge is 0.25m. The evaluation region is 1m in radius, 2m in
height z, and the elements for representation of the volume charge are on a 50 by 100
grid in r and z. Fig. 7 shows the potential over the evaluation volume and Figs. 8 and
9 show the components of the electric field, E, and E,. In Fig. 10 the potential is
evaluated on a 50 by 100 grid with reduced spacing in the center of the full scale
region. This is equivalent to a 2X magnification. The same is shown for E, in Fig. 11
and E, in Fig. 12. To be noted is that the evaluation grid in the volume is twice as
dense as the gird used to represent the space charge. This forces the potential and
field evaluation to vary from the center to edge of the incremental volume elements as
seen in Eq.(49) and (50) and their generalizations for the electric field components.
The oscillation is primarily due to the replacement of the actual square cross section
volume elements by the circular approximation as discussed in Section V. The
practical rule to avoid the ripple shown in Figs. 11 and 12 is to simply evaluate the
potential and/or the electric field on the same grid in the volume as used for the




representation of the charge density, with intermediate values obtained by

interpolation. Figs. 7-9 show that this procedure gives smooth and eye-pleasing
results.

Any or all of the features of the PE solution discussed in Section I'V can be

combined in a single problem, including the presence of dielectric media and floating-
potential, conducting bodies.

Fortran implementation of this study as well as the prior4 Cartesian method is
available from the author. Contact meriley @sandia.gov by email for information.
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Appendix

There is one complication in using any PE solver with a space charge that must
be discussed. Consider a parallel plate system with a space charge p between the
plates, separated by L. This space charge will almost always be the difference
between a positive ion density and an electron density -- a plasma in other words.

Suppose for the moment that the positive and negative charge densities are equal; thus
there is no macroscopic charge and p is zero. Now solve the PE with a potential

difference AV imposed on the plates. The field is just E =— AV / L, constant

between the plates. Now consider the solution for the response of the particles to this
field. The electrons will respond quickly, on a time scale of the electron plasma
frequency,’

O pe =nee® [ £,m, (A1)

which, if the plasma density is high, creates an extremely fast motion which must be
resolved with a small time incrementation. Standard notation is used for the symbols
in this Appendix. The system will eventually converge to a slowly evolving (quasi-
steady-state) solution in which the bulk of the plasma has a very small electric field,
with the presence of plasma charge separations near the plates (sheaths) which cancel
out the bulk electric field. The thickness of the regions of charge separation is the
Debye length,’

Ap =€, KT, 1 é*n, . (A2)

which can be very small compared to the size of the bulk plasma region. In bulk high
density plasmas, the electron mobility and diffusion may be shown to drive the electric
field to an asymptotic value (ambipolar field),
. KT,V |
Ex-Zele (A3)
e n,

This is a well known effect and numerical methods exist to help stabilize the
7.8

solution.
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Figure 1. This is a “wire mesh plot” of the potential around a disk capacitor whose
plates of 1.0m radius are separated by 1.0m.The potential boundary condition is +0.5V
on the upper disk and -0.5V on the lower disk The plotting field is 2m on a side with
50 points in r and 100 points in z. Here there are just ten finite elements on each strip.
The small ripples in the potential near the center axis on the disks and at the outer
edge of the disks is due to the limited resolution of the ten elements. These ripples in
the potential cause even more noticeable ripples in the field (not shown).
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Figure 2. Same as Fig.1 except in the resolution of the charged disks. Here there are
twenty-five finite elements on each disk. The potential at each disk is now more

constant in accord with the imposed boundary conditions.
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Figure 3. Same as Figs.1 and 2 except in the resolution of the charged disks. Here

there are fifty finite elements on each strip. The potential at each strip is essentially |
the same as in Fig.2 and demonstrates convergence at eye-resolution level.
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Figure 4. The radial component of the electric field for the same physical problem as
illustrated in Figs.1, 2, and 3. Here there are fifty finite elements on each disk, the
same as used for the potential shown in Fig.3. The small ridges that extend outward
from the central axis are in fact errors near the axis due to the evaluation of the field in
a region of both discontinuity in z and near r=0.
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Figure 5. The z component of the electric field for the same physical problem as
illustrated in Figs.1-4.
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Figure 6. A contour plot of the magnitude of the electric field given in Figs. 4 and 5.
The value in the center of the plates approaches 1V/m.

38



] !‘I i ] 1 ] [ 1 } | \ | 1 | ! I
! o -
©
Z—-axXis

0.5 =

0.0 - —

! . i

n @) _

‘0.5 ] { l | I ! ] I I 1 l | | | /l 1 | I | |

0.0 0.5 1.0 1.5 2.0

r-axis

Fig. 6



Figure 7. This is a “wire mesh plot” of the potential due to a spherically symmetric
space charge distribution whose radial dependence is a Gaussian with 1/e radius of
0.25m. The evaluation region inr and z is a Im by 2m box. The grid used for the
representation of the space charge and for the evaluation of the potential is 50 in r by
100 in z. The important point here is that the potential evaluation and the grid used to
compute the space charge in the linear solution are the same.
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Figure 8. This is a “wire mesh plot” of the r-component of the electric field
corresponding to the potential of Fig. 7. The field is due to a spherical-Gaussian space
charge distribution of characteristic radius 0.25m. The evaluation region is a Im by
2m box. The evaluation grid is 50 by 100, the same as the grid used to represent the
volume charge distribution. The important point here is that the grid used to compute
the field evaluation and the space charge are the same.
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Figure 9. This is a “wire mesh plot” of the z-component of the electric field
corresponding to the potential of Fig. 7. The field is due to a spherical-Gaussian space
charge distribution of characteristic radius 0.25m. The evaluation region is a Im by
2m box. The evaluation grid is 50 by 100, the same as the grid used to represent the
volume charge distribution. The important point here is that the grid used to compute
the field evaluation and the space charge are the same..
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Figure 10. This is the same potential as shown in Fig.7 evaluated and shown on a 2X
magnified scale in the center of the charge distribution. The point here is that the |
potential evaluation by Eqs.(49) and (50) use a finer grid than used to represent the
space charge in the linear solution. This evaluation forces evaluation of the “self-
interaction” volume terms to alternate between points near the volume centroid and
the edge. This shows most dramatically in the field.

46






Figure 11. This is the r-component of the field corresponding to the potential as
shown in Fig.10. It is evaluated on a 50 by 100 grid and shown on a 2X magnified
scale in the center of the charge distribution. The point here is that the potential
evaluation by Eqs.(49) and (50) use a finer grid than used to represent the space
charge in the linear solution. The field ripples are due to the alternate evaluation of
the field at the center and at the edge of the finite elements, which are assumed to be
of circular cross section, but are really squares. In the text it is recommended that
field evaluations in the presence of significant amount of space charge be done on the
same grid as used for the representation of the space charge. This avoids the effect
shown here and, at least, gives a more eye-pleasing result.
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Figure 12. The z-component of the field corresponding to the potential as shown in
Fig.10. It is evaluated on a 50 by 100 grid and shown on a 2X magnified scale in the
center of the charge distribution. The point here is that the potential evaluation by
Eqgs.(49) and (50) use a finer grid than used to represent the space charge in the linear
solution. The field ripples are due to the alternate evaluation of the field at the center
and at the edge of the finite elements, which are assumed to be of circular cross
section, but are really squares. In the text it is recommended that field evaluations in
the presence of significant amount of space charge be done on the same grid as used
for the representation of the space charge. This avoids the effect shown here and, at
least, gives a more eye-pleasing result
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