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Abstract

A low—dimensional Hamiltonian model is derived for the acceleration of ions in finite
amplitude Alfvén waves in a finite pressure plasma sheet. The reduced low-dimensional
wave—particle Hamiltonian is useful for describing the reaction of the accelerated ions on
the wave amplitudes and phases through the self-consistent fields within the envelope
approximation. As an example, we show for a single Alfvén wave in the central plasma

sheet of the Earth’s geotail, modeled by the linear pinch geometry called the Harris

sheet, the time variation of the wave amplitude during the acceleration of fast protons.




1 Introduction

The acceleration of particles by Alfvén waves is important because the phenomenon is ubig-
uitous in space, astrophysical, and laboratory plasmas. In astrophysical plasmas the ac-
celeration of ions due to continuous Kolmogorov-like Alfvén wave spectra is a source of
energetic ions. See Arons et al. [1] for a wide range of acceleration processes associated with
magnetohydrodynamic waves.

The solar wind contains a rich spectrum of both shear and compressional Alfvén waves
which accelerate ions. In magnetospheres, the dense magnetotail plasma trapped by the
current sheet produced by the solar wind acting on planets with strong dipolar magnetic
fields contains a spectrum of Alfvén waves that is thought to play a role in energizing ions.

The usual method of infinite uniform plasma theory is to make the quasilinear approxi-
mation and use a Fokker-Planck wave-kinetic equation to describe the particle scattering by
the wave spectrum [2, 3]. This method ensures the conservation of momentum and energy
of the system. In many cases of practical interest, however, the waves are stronger and the
correlations between the waves and particles are relatively coherent so that the quasilinear
theory is not applicable. Even in cases where the system is tailored to satisfy the assumption
of quasilinear theory, important wave-particle correlations arise in the long time limit [4)].

Here we develop a new, low-dimensional model, based on the field Lagrangian for the
entire wave-particle system that describes the interaction. In developing the theory we
employ an averaging procedure [5] to reduce the field Lagrangian to a finite-dimensional
one. The resulting Hamiltonian for the closed system of M waves and N particles conserves
the total energy and momentum. Simple functions of the amplitude and phase of each wave
are canonically conjugate variables in this formalism.

We develop the theory for the case of the plasma sheet where the pinch eflect traps the

plasma in a particularly simple configuration called the Harris sheet [6]. The complex orbits




of charged particles in the absence of the waves are well-known in terms of elliptic functions.
The phase space is divided by a separatrix with periodic orbits on one side and non—crossing
orbits on the other side. Alfvén waves mix the orbits producing chaotic motion [7]. Here
we do not dwell on the chaos in the orbits, but present results for the integration of a small
ensemble of ions integrated over many wave periods. We show explicitly the conservation of
energy and momentum for the example.

Consider a high plasma pressure sheet pinch in which the current j,(2) is localized to
the scale |z| < L and the plasma pressure is trapped by the reversed magnetic field B.(z)
created by j,(z). The primary example of this sheet pinch is the Harris sheet. We show how
to derive a reduced low-dimensional Hamiltonian description of the Alfvén wave-particle
interactions by using the standard techniques of the envelope approximation applied to the
total Lagrangian for the system of field and particles.

The Alfvén waves are represented by the eikonal approximation with their slowly-varying
amplitudes a; and phases €;,. The time and space (x only) frequencies of the waves are denoted
by w¢ and k; respectively. The field Hamiltonian transforms to an N-particle Hamiltonian
with A/ new canonically conjugate pairs of wave variables (1, ¥¢)2Z,, where Iy(a;) is the wave
action and ¥ := wyt + 6. The total energy and z-momentum P, = Yo%, ke lp + S0 | P
of the M waves and N particles is conserved in this framework. Thus the system describes
the acceleration of the particles with the corresponding reaction on the wave energy and
momentum. In the terminology of laser-plasma interaction physics the beam loading effect
is fully accounted for in the M + 3 N degree—of-freedom Hamiltonian.

In space physics the acceleration of ions by Alfvén waves is important in many contexts.
The particular situation of interest in this work is the generation of Alfvén waves by currents
connecting the plasma sheet to the nightside ionosphere. Here the waves mediate a coupling

between the near~Earth magnetotail and the ionosphere. The interaction with fast (keV

energy) hydrogen and oxygen ions is important for understanding the energy spectra observed




in the region of the magnetosphere. Here we restrict ourselves to the theoretical formulation

of such problems.

2 Two—-Dimensional Particle-Field Problem

The self-consistent field equations can be derived from the variation of the electromagnetic
field action S which is the space-time integral of the Lagrangian density £. The Lagrangian

density for the particle-field model is

2
L(A,0A,x;,%;): = 529 (%‘%) - 2—;;(V x A)’ 4+ p(A)

N N
+Ze)'ci-A(x,t)é(x—xi(t))+Z%m(:}:?+3}f+z'?) S(x—x(2)), (1)

=1
where A is the vector potential, N is the number of particles, and x;(t) is the trajectory of
the /th particle. When the current j is specified independently, the potential p(A) is replaced
by j- A [8]. The action is

S[A,Xi]: = /dt/d3x£(A,8A,Xi,5{i), (2)

and it is assumed that there are no external sources present so that the electric field can be
given by

19A
E=--7 (3)

It may be verified that the equations of motion obtained upon setting §S/éA and 65/4x;
to zero are consistent with Maxwell’s equations for the particlefield problem, where the
current j is identified with dp/JA.

For the problem at hand, only the y component of the vector potential is non-zero: A =

(0, A(z, z,t),0). The corresponding magnetic field is (~9A/0z,0,0A/0z). Representation




of the potential as a sum of an equilibrium piece Ag(z) and a piece that depends on (z, z, 1),
A(z,2,t) = Ao(2) + Ay(z, 2, 1), (4)

yields an expansion for the Lagrangian density,

L=Lo+ L+ Lo, (5)
where
1 /dAp\?
Lo = p(Ao) — %(-5) (6)
1 dAg dA;
L= Jo 4, — ;572—'32—, (7)

£rom d (o T} () L[ 4 (B2)] 45 o
+g{eyz[Ao()+A(xzt)}+ m(x+y,+22)} (x—x(0). (8

In the above equations we have denoted the equilibrium current dp/dAo by jo, and neglected
terms of order A} and higher. Note that the contribution to the action from £, vanishes
when Aj is an equilibrium corresponding to Lo. In £;, we have also included a term that
gives rise to the polarization current —(mgno/B2) 82A,/dt?, where mg, ng, By represent the
background ion mass, density, and magnetic field, resepectively.

The thermal plasma response in Eq. (8) arises from the adiabatic response given by the

fluid response of plasma, namely

mn GEM) mn %A,

= T T T B o ®)
. d]o
J2 = dAo A;. (10)

Now to reduce the problem to a finite number of degrees of freedom we represent A; by




M waves with slowly varying amplitudes a, and phases 6,:

M

Az, z,t) =Y an(t)folz) cos (kex — wet — 0) (11)

=1
where d, < wya; and §, € wg. This is the eikonal approximation [5]. In this presentation of
Ai(x,t) the a¢, 0, become new dynamical variables determined by the variational principle
for the action S of the system.

Now

04 &L . .
5 = Z Ay fr cos e + Ag fe(we + 0¢) sinapy. (12)
£=1

2
(%?) = A'?f2 COS2I/)—QAAfz(—w—é)cos¢sinw+A2f2(w+H)QSingd) (13)

Now, we compute

/ dd: (%’t’i> - ;A (" + 206+ 67 / f2dz+A / f2dz (14)
ol -] 21
/ drdz%fl? 2 cos? A"' / %0, (15)

Upon averaging over z, and using the eikonal approximation, the action may be written

as

S=/Lenvdt7 ’ (16)




where the envelope Lagrangian is given by
M
1 . mn k?
Lo = 7 [z:; a?[(w? + 2uwey) / 72 (—32 + co) dz — #—i / F2dz

fifg dJo
" ( )“/f‘dAo }L”Ly

N M N
+ 3 e[ Aalai) + 3 aelt)felan) cos(hez — et 0] + Y 3 ml@ + G2 + 2, (1)
£=1 i=1

=1
where L, and L, are the z and y spatial extents of the system.
The dominant term from the variation with respect to a, is required to vanish, which is

true when each wave satisfies the dispersion relation:

/fg ——+eo dz———/fld/.———/<dfe>d+/fg dJOdz:O (18)

We are thus left with the Lagrangian,

N N
L= Z % iy + zf) + Z ey [Ao(zz) + ;_:ag(t ) fe(z:) cos(kez; — wet — 05)]
1 =1 =

+2alw50[L L /f[ +eo) z. (19)

Finally, we note that there is a narrow boundary surrounding the B, = 0 reversal layer
inside of which the polarization current formula (9) breaks down. The calculation of the
kinetic current in this layer requires numerical evaluation of the complex ion orbits [9). Here
we resolve this difficulty by the physical argument that there is effectively a lower bound on
| Bmin| due to other sources of magnetic fields, such as the interplanetary magnetic field. This

allows us to assume that the polarization current is defined through the kinetic boundary

layer.




2.1 Canonical momenta

The generalized momenta p = §L/0q are given by

M
Pyi = myi + e Ao(z:) + ¢ Z ae(t) f(z:) cos(kezi — wet — 0¢),
=1
Pzi = mih Pz = méi? Dot = 07
1,
poc = s agwe Lo LCe =: I, (20)

where we have defined the wave action I, = ps, and the capacitance,

. mg Ny L Mg Mg 2
C. ._< - +eo>[ =/ (—BS +€o) fids. (21)

produced by the polarization currents.

The Euler-Lagrange equations of motion corresponding to variations in 8, and a; are
dpge d 1, /mn oL ) .
ke = 7 13 £w£< 52 +e€ >£ = 5@; = eay Zyif@(zi)51n(kgxi — wet ~ 6,)

dpas oL . /mn .
7 =0 = _874 = agwgﬁg<§2— + 6o> +e Zy,-fg(z,-)cos(kgx,- — wyt — 9[) (22)

2.2 Hamiltonian equations of motion

Introducing v = 6, + wet as the phase variables, the autonomous Hamiltonian may be

written as

2
p.m Pzi
(]l’ @ZJe,pu,x”Pyz,Pzz,Z;) = Z Tewe + Z ( 2m>

£=1

N M ’
+ Z; 5%72. [pyi — e Ao(z:) — ; e ay(le) fe(2i) cos(kex; — vhe) (23)

where the relation in Eqgs. (20) gives a¢(1;), while wy, k¢, and Ag(z;) are considered known.




Equation (23) is obtained by the us.ua,l Legendre transformation (H = g0L/0¢— L) from
the Lagrangian to the Hamiltonian. The terms linear in the generalized velocities, 7,(.)3 and
Iy, drop out of the Hamiltonian. At first glance, it may seem necessary to use (Dirac’s)
constraint theory due to this degeneracy, but it is not required in this case. The phase
variables 1, and I, turn out to be canonically conjugate to each other and the momenta

corresponding to each of them can be ignored. The equations of motion are thus given by

;= 8pri P E p_,m- - —5:1-:-: = - ;eyi af(lf) f[ k( Sln(klmi - ¢'£)’ (24)
. 8H 1 -
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. _OH _p. . _ OH . dA, & df |

A T m Pzi = T8z Y (GEZ +e ;ae(h) dz cos(kez; — 1/)[)), (27)
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i=1

where it is understood that whenever g; appears on the right~hand side, it is an abbreviation
for the expression given by the right-hand side of Eq. (25). It may be verified that the above
equations are equivalent to the Euler-Lagrange equations of motion.
The M + 3 N degrees—of-freedom system has the integrals of total energy H, total z—
momentum P, := Z?_{_l kﬂe-&-Zf\ii Pri, and the N canonical y-momenta p,; for each particle.
A test particle in a prescribed wave corresponds to setting dl,/dt = 0 and df,/dt = 0.
The new system of M waves and N particles has many of the same features of the test

particle problem when the number of particles NV is small. As the energy in the particles




increases, however, phase correlations build up as given by the right-hand side of Egs. (29)
and (30) and limit the total energy available for acceleration. These phase correlations also
present a simple description of the acceleration process.

From the standard calculation of the Alfvén wave energy W, we verify that the wave

action [, and z-momentum P,, can be written as

=% aa p, = (30)

Wy Wy

where W, is the wave energy. The action I, can thus be interpreted as the number of quanta
in the wave packet. This interpretation is useful for making bounds on the maximum energy

particles can gain during the decay of the wave.

3 Example of Self-Consistent Wave—Particle Interac-
tions

Here we relate the present general nonlinear formulation given by the Hamiltonian in Eq. (23)
to the weak quasilinear theory limit. We present thre numerical examples of the interactions
that occur for small and large numbers of particles with one Alfvén wave. We reserve for
later work the case of multiple wave particle simulations.

In general, even with a large number of particles, it is important to assign statisti-
cal weights to each particle. The weights are chosen to represent samples of N particles
taken from the desired distribution function of the particles. Examples are the initial
sech®(z/L) exp(—mu?/2T) distribution, or the typically observed power law distributions
(1+¢/e0)™” that are observed for high energy (¢ = mv?/2 > T') particles in space physics.

The energy density in the waves localized over a volume V = (2n/kL,L, is I,we/V, while

the particle energy density is 2];] w; €;/V, where £; = mv2/2. Both energy densities are

small compared to that of the ambient plasma internal energy p = nT ~ BZ/2u,.




3.1 Quasilinear Limit

The quasilinear limit appears in the case where there is effectively one weighted particle in
the interaction with each wave. In this case the solvability conditions from the conservation

laws reduces to the N =1 problem for each interaction
wli+we(p) =wlf+ we(py),
k1¢+wp,-=k1f+wpf. (31)

For a small change Al = I; — I; in the wave action leads to the quasilinear resonance
condition when the expansion e(ps) = (p;) + (ps — p:)0¢/0p; is used along with v = d¢/Ip;.
The reader may easily verify that the condition for a nontrivial solution to the two equations
(24) with the two unknowns being the final particle momentum p; and wave action Iy, is
the linear wave—particle resonance condition v = 0¢/0p; = w/k. Thus, in the small AT and
Ap limit we recover the quasilinear wave-particle interactions.

A special feature of Alfvén wave quasilinear theory is that the polarization factor van-
ishes at the Landau resonance, i.e. (E, — vz B,)mé(w — k,v;) is zero due to wéB, = k 0E,
polarization relation. For the complex, nonlinear orbits in the self-consistent field this rela-
tion does not apply. The degree of magnetization of particles varies strongly along the orbits
given by elliptic functions in the inner sheet region.

The constraints of energy and momentum conservation allow a range of solutions for the
case of N particles. Perhaps the most important features may be shown by the case of two

weighted particles.

3.2 Accelerated and Recoiled Particles

For strong waves the general situation is that a few particles gain a large amount of energy

from the wave, and a large number of particles recoil to absorb the momentum change. For

11




the N = 2 problem we write Al = I; — I;, which we consider as being negative and rewrite

Eq. (41) for two particles,

w1 (5(1’1 +Ap) - 5(P1)> + wy (5(]?2 + Aps) — E(pg)) = —wAl
wy Ap; + wy Apy = =k AT (32)

where the final momenta are written as p; = p; + Ap. There is a one parameter (Ap,) family
of solutions to the two equations with three unknowns Ap;, Ap,, Al.

The case of most interest is where w; < w,; and particle 2 picks up almost all the lost
wave energy. [n the extreme limit Ap, and Ap, are determined by

2mw| AT\ /2

w2

Ap

_ KA w, (2mw|AI|)1/2

wq wy w2

This is the strong acceleration limit consistent with the conservation laws. To what degree the

system dynamics equations produces these two-particle one-wave interactions is a problem

beyond the scope of this work.

3.3 Numerical Examples with Small N and Large N

We first show the results for N = 10® particles and then consider an example with N = 10*
protons. In Figs. 1 and 2 we show a result for N = 10® with a single wave to make explicit
the capability of the theory to describe the reaction of the particle acceleration on the
waves. We take the simplified model f(z) = fi exp(—k|z|). We take k = 2x/L, and load
the particles uniformly spaced in kz; = 27 ¢/N for i = 1,...,N. We have carried out the
numerical experiment for a range of z and initial energy ¢ values. Here we choose the single,
interesting experiment with z/L = 0.5. That is, we take ions in the high energy tail of the

thermal distribution.
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From the Alfvén wave dispersion relation we find that w/we, = kcfwy = 2re¢/L, wpi.
For the example we take L, = 207 ¢/w,; so that w/we, = 1/10. Working out the equations
of motion for this case and using an adaptive step Runge-Kutta integrator, we obtain results
shown in Fig. 1 for the z-momentum components and Fig. 2 for the energy components. It
is found that the momentum conservation is satisfied to a very high accuracy and the total
energy is conserved to an error of order the truncation integration. In future study we will
examine these particle trajectories in the d = 4 phase space.

In Fig. 3 we show the results for choosing the parameters to correspond to a reversed
equilibrium field of 20 nT and Alfvén wave in the central plasma sheet. At ¢ = 0 we
release N = 10* protons in Fig. 3 at the position z/L, = 0.5 corresponding to the mid-
point of current profile. The initial v,-velocity of the particles is taken as the resonant
value equal to the wave phase velocity. Initial ions gain and lose energy as their phase
relative to how the wave varies. The net particle energy summed over all particles shows the
growth to an oscillatory, saturated state for N = 103. For N = 10* we find a more nearly
monotonic growth and approach to a well-defined saturated state is obtained. We leave the
determination of the parametric dependence of the final particle energy to future studies.
When the simulation in Fig. 3 is repeated with a fixed Alfvén wave (@ = § = 0) the total

particle energy increases by approximately 10% more.

4 Conclusions

We have presented a new description of the Alfvén wave-particle interaction problem that
provides a Hamiltonian formulation of the interactions of the total system consisting of a
finite number of degrees of freedom for the M waves-and N particles. The theory uses the
eikonal approximation for the reduction of the field Lagrangian field density containing the
background thermal plasma and a set of N discrete particles. Consequently, the problem

conceptually parallels that of the electron plasma waves interacting with a weak electron
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beam considered first by Mynick and Kaufman [10]. Due to the more complex form of the
Lagrangian for charged particles in a magnetic field and the structure of the Alfvén wave,
the mathematical structure of the two problems differs considerably.

We discuss the relations that reduce the problem to the weak quasilinear limit without
taking up the issue of long-time wave-particle correlations that may well modify the quasi-
linear problem as in the case of the electron plasma wave problem considered by Doxas and
Cary [4].

We show a few examples of how the self-consistent field problem can produce a secular
increase in the net particle energy while conserving the total energy and momentum of the

wave-particle system.
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Figure 1: X-momentum transfer from the wave to ions. Solid line shows ion momentum;
dotted line shows wave momentum; the sum is preserved.
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Figure 2: Energy transfer from the wave to ions. Solid line shows ion kinetic energy; dotted
line shows wave energy; the sum is preserved.
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Figure 3: The wave heating for the case of N = 10 particles uniformly spread over one
wavelength at the midway position z/L = 0.5 in the current sheet. The parameters for the
initial wave amplitude is § B = 1 nT with the reversed field being By = 20nT.
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