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PROGRESS REPORT 

During the f i r s t  21 months o f  our DOE program, we have constructed a 

"slow f low" h igh temperature f lash photo.lysis-resonance fluorescence apparatus 

which u t i l i z e s  an a l l  quartz reactor .  This apparatus has been used to.measure 

absolute r a t e  constants as a func t ion  o f  temperature and pressure f o r  the re-  

act ions o f  OH r ad i ca l s  w i t h  the fo l lowing prototype aromatic hydrocarbons: 

kl OH + C6H6 - Products 250-981 K 

k2 OH + C6D6 - Products 250-981 K 

OH + C6H5CH3 213-1046 K 

k4 OH + C6H5CD3 ---+ Products 250-966 K 

5 1G + C6D5CD3 ----, Products 250-961 K . 

I n  the fo l l ow ing  sect ions d e t a i l s  o f  the k i n e t i c  i nves t iga t ions  are  described. 

We are, a t  present, analyzing the non-exponential OH decays t h a t  were obtained 

i n  the temperature range o f  325-425 K t o  e x t r a c t  both thermodynamic and k i n e t i c  

in format ion on the OH-Aromatic adduct. Concurrently attempts are  being made 

t o  assign branching r a t i o s  f o r  various r eac t i ve  channels as a func t ion  o f  

temperature using the  measured k i n e t i c  isotope e f fec ts .  

A f l a s h  photo lys i  s-resonance fluorescence system designed f o r  o('P) and 

2 H( S) reac t ion  studies i s  now under construct ion, and i s  expected t o  be i n  

operat ion i n  the next  few weeks. It i s  an t i c ipa ted  t h a t  the opt imizat ion o f  

3 the system followed by data acqu i s i t i on  on O( P) atom react ions w i l l .  be we l l  

underway dur ing the cur rent  year. 



Experimental 

The u t i l i z a t i o n  o f  t h e  f l ash  photolysis-resonance fluorescence tech- 

2 nique t o  study the  reac t i ons  OH( IT) r a d i c a l s  i s  w e l l  es tab l ished and i s  

1,2,3 amply described i n  the  l i t e r a t u r e .  Recently, we have modi f ied  t h i s  

technique t o  permi t  r a t e  constant  measurements up t o  IL 1000K; a d iscuss ion 

o f  apparatus mod i f i ca t i ons  necessary t o  c a r r y  o u t  h igh  temperature measure- 

ments, i s  g iven e l ~ e w h e r e . ~  Hence, we w i l l  1 i m i t  t he  f o l l o w i n g  d iscussion 

t o  a b r i e f  review w i t h  e labo ra t i on  o n l y  on those fea tures  t h a t  a re  neces- 

sary  t o  understand t h i s  work. 

A schematic diagram o f  t h e  experimental apparatus i s  shown i n  Figure 1. 

The p r i n c i p a l  components a re  (1) a thermostated r e a c t i o n  c e l l ,  (2) a spark 

discharge f lashlamp perpendicular  t o  one face o f  t h e  c e l l ,  (3)  a CW OH 

resonance 1 amp perpendicular  t o  the  pho to l ys i  s beam, (4 )  a photomul t i p 1  i e r /  

bandpass f i l t e r  combination f o r  moni to r ing  OH resonance fluorescence perpen- 

d i c u l a r  t o  both the  pho to l ys i s  and t h e  resonance r a d i a t i o n  beams, and 

(5) a s igna l  averager and f a s t  photon count ing e lec t ron ics .  

During the  course o f  t h i s  i n v e s t i g a t i o n  two separate reac tors  were 

u t i l i z e d .  For low temperature studies, i.e., 213-350 Ky an a l l  pyrex- 

3 jacketed reac to r  w i t h  an i n t e r n a l  volume o f %  150 cm was used. The c e l l  

was maintained a t  a known constant  temperature by c i c r u l a t i n g  e i t h e r  

methanol (213-298 K) o r  ethy lene g l y c o l  (298-350 K,) from a thermostated 

bath through the  ou te r  jacket .  For h igh  temperature studies,  i.e., 298- . 

3 1050 K, an a1 1 quar tz  r e a c t o r  w i t h  an i n t e r n a l  volume of % ,300 cm was. used. 

The r e a c t i o n  c e l l  was r e s i s t i v e l y  heated using e l e c t r i c a l l y  i n s u l a t e d  

t a n t a l  um w i r e  windings mounted t o  i t s  graphi te-coated ou te r  surface. The 

2 



AC - Absorption Ce l l  
AD - Amp1 i f i e r -D i sc r im ina to r  
D - D i luen t  Gas 
DVM - D i g i t a l  Voltmeter 
EL - Electrometer 

. . F1 - 253.7 nm Bandpass F i l t e r  
F2 - 309.5 nm Bandpass F i l t e r  

. . FL - Flashlamp 
FT - Flow Transducer 
HC - High Voltage Capacitor 

.HV - High Voltage 
L - Lens 
LS - L i g h t  source (Hg Pen-ray Lamp.) 

MC - Mix ing Chamber 
MCA - Mult ichannel Analyzer 
MG - Microwave Generator 
NV - Needle Valve 
PD - Photo Diode 
PG - Pressure Guage 
PMI - Photomul t ip l ie r  1P28 .. 

PM2 - Photomul t ip l ie r  RCA 8850 
PS ' - High Voltage Power Supply 
R/D - Reactant/Diluent.Gas 
RL - Resonance Lamp 
TC - Thermocouple 
TTY - Teletype 
VH - Vacuum Housing 

Figure 1. Schematic Diagram of a High Temperature 
Flash ~ h o t o l y s i  s-~esonan'ce ,Fl  uorescence 
Apparatus. 



temperature of the gaseous mixtures inside reactor was d i rec t ly  measured 

with a retractable chromel-alumel thermocouple (encased in. a quartz tube) 

which was introduced into the reactor through a cajon ul t ra - tor r  f i t t i n g .  

I t  was found that  temperature gradient in ,  the vicini ty  o f .  the reaction 

zone was very small (i.e.,  AT - 5K a t  Q 1000K). 

OH radicals were produced by f lash photolysis-of H20 a t  wavelengths 

between the onset of absorption a t %  185 nm and the suprasil cutoff a t  

Q 165 nm ( f lash duration; 50psec) .  Following the f lash,  weakly focused 

OH resonance lamp radiation continuously excited resonance fluorescence 
2 in the 0-0 band of the A ~ E +  - X II system; the resulting fluorescence . 

emanating i n  the direction perpendicular to  both the.resonance excitation 

beam and the photolysis beam was collected .by a lens and focused onto a 

photolmul t ip1 i e r  f i t t e d  w i t h  an interference f i l t e r  (309.5 nm peak trans- 

mission, 10 nm FWHM). Signals were obtained by photon counting and then 

fed into a signal averager operating i n  the multichannel scaling mode. 

For each decay rate  measured, suf f ic ien t  flashes were averaged to  obtain 

a well defined temporal prof i le  over a t  l e a s t  a factor  of ten variation 

in [OH]. 

In order to  avoid the accumulation of photolysis or  reaction products, 

a l l  experiments were carried out under "slow-flow" conditions. The flow 

ra t e  through the ce l l  was such tha t  each photolysis f lash encountered a 

fresh mixture (photolysis repet i t ion r a t e  Q 0.3 Hz). The aromatic hydro- 

carbon (RH) was flowed from a 12R bulb containing an RH/diluent mix- 

ture ,  while the water mixture was generated by bubbling diluent gas 

through d i s t i l l e d  water a t  room temperature and a pressure of 800 Torr. 

The RH/diluent mixture, the water mixture, and additional di luent  gas were 

premixed before entering the reaction ce l l .  Concentrations of each com- 



ponent in the reaction mixture were determined from measurements of the 

appropriate mass flow r a t e s .  (measured using cal i brated mass flow meters) : 

and the to ta l  pressure. The fract ion of aromatic hydrocarbon i n  the RH/ 

diluent mixture was checked frequently by simultaneous measurements of the'  

total  pressure (of the mixture) and the aromatic hydrocarbon absorption ' . 

a t  253.7 nm. The measurements were carried out using a mercury pen-ray 

lamp as the l igh t  source, a 70 cm long absorption c e l l ,  and a bandpass 

f i l  ter-photomul t ip1 i e r  tube combination. The absorption cross.  section 

' ( a t  253.7 nm) used t o  determine the concentration o f  each aromatic hydro- 

carbon was measured during the course of the experiments; they were: 

The diluent gases used in this study had the fol.lowing s tated pur i t ies :  

Ar > 99.9995%, He > 99.9999%, SV6 > 99.99%. They were used without fur ther  

purification. ~enzene  (.C6H6) and to1 uene ( c ~ H ~ )  were obtained from J. T. 

Baker, Co. , and each had an analyzed .purity of > 99.99%. The deuterated 

, aromatics were obtained from Merck, Sharpe and bohme, Canada, Ltd. Their . 

. . chemical purity was greater than 99.99% and t h e i r  isotopic purity was as 

~ O ~ ~ O W S :  C6D6 ( >  9.96% D), C6H5CD3 (99.0% D), and ~ ~ ~ ~ c b ~  (> 99.5% D) .. 

All . these hydrocarbons were degassed before use. 
, 



Results 

All experiments were carried out under pseudo-first order conditions 
I 0 

with [ R H I  >> [OH] .  Under such experimenta'l conditions, unless there are 

secondary reaction compl ications,  the rate  of disappearance of OH radical s 

follows a simple exponential ra te  law: 

where kd i s  the f i r s t  order OH disappearance ra t e  i n  the absence of R H ;  

t h i s  loss i s  due t o  diffusion of OH from the viewing zone of the reactor 

as well as reaction with background impurities. k i s  the bimolecular ra te  

constant for  the reaction, 

k 
OH + RH --c products . 

In the temperature intervals  400 to 1000 K and 213 to 320 K ,  we did indeed 

observe exponential OH decays such as those shown i n  Figure 2. .The slope 

of the 1 ine gives k '  . k '  was then measured as a function of [ R H I .  As seen 

from Equation 11, k '  varies l inearly w i t h  [ R H I .  Figure 3 shows a plot of k '  

vs. [ R H I  the slope of which gives the bimolecular ra te  constant k. The 

solid l ines drawn through the points are  the l eas t  squares f i t  of these 

points to  a s t ra ight  l ine.  

In the temperature range 325-425 K ,  two unusual phenomena were 

observed. ( a )  The OH decay curves were non-exponential, with the leading 

part of the decay fas t e r  than the t a i l .  In addition, a t  very long times, 

the decay became exponential with a r a t e  equal t o  kd, the r a t e  constant 

measured i n  the absence of aromatic hydrocarbon (Figure 4 shows one such 



Time (msec) 
Figure 2. Typical OH Temporal Profiles Following Flash Photolysis of HpO/Tol uene/Di luent 

Mixture. Experimental Conditions: T = 793K, P = 100 Torr (Ar), Flash ,Energy = 
88. J ,  [.'H201 = 180 mTorr. Concentration5 of Toluene are given 'next to  the .  decay 
curves. 



Figure 3. Typical Plots of the  Pseudo-First Order Rate Constant vs [toluene] a t  
Four Temperatures. Solid l ines are obtained from linear least-sqyuares 
analyses. 



Figure 4. Typical Non-Exponential OH Temporal Profile Obtained 
Between 325-425 K for Reaction (3). For comparison 
an exponential OH decay 'obtained at 504K is also shown. 



C 
decay curve). (b) The bimol ecul ar  reaction rate coefficient (derived 

from the dependence of the in i t i a l  slope of [RH] ) decreased dramatically 

with increasing temperature. 

Individual values of k '  a10,ng with a l l  pertinent experimental con- 

ditions are l is ted in Tables I-V. The bimolecular rate coefficients a t  

various temperatures are given i n  Table VI, and pictorially represented 

in Figures 5 and 6 as plots of Rnk vs. 1 /T  (the conventional Arrhenius 

approach). 

As seen in Figures 5 and 6 ,  a t  low temperatures i .e. ,  213-325 K ,  the 

bimolecular rate constants are quite insensitive.to changes in temperature 

with the exception of Reaction ( 3 )  ; k3 seems to increase slowly with de- 

creasing temperatures. I t  i s  also apparent that the bimolecular rate co- 

efficients for a l l  three toluenes are, within say 25%, the same. Similar 

behavior i s  observed for C6H6 and C6D6. A t  temperatures greather than 

420K, kl-k5 a1 1 increase monotonically with increasing temperatures. 



Table I. Rate Constant ~ a t a  f o r  t he  React ion o f  OH w i t h  Benzene (C6H6). 

D i l u e n t  Gas 
Temperature Pressure [H201, F lash Energy [CsHs I-, 

K To r r  mTorr . J 1013 cm k '  , S-' -1 -1 k l  , lo - '  ' ~ m - ~ r n o l  ecul  e s 

50 (He) 

250 50 (Ar)  

100 (He) 



Diluent Gas 
Temperature Pressure . . [H201, Flash Energy [ C s H 6 ] - ,  . 

k t  , S-' 
-1  -1 

K Torr mTorr 3 1013 cm kl  , lo- '  cm-'mol ecule s 

100 (Ar) 

200 (He) 

50 (Ar) 



D i l u e n t  Gas 
Temperature Pressure [H201, Flash Energy [ C s H s  I - ,  

K T o r r  mTorr . 3 1013 cm k '  , S-I kl ' ,  1 0 - l 2  cm-9molecule -1 s -1 

270 100 (Ar)  

298 25 (He) 

50 (He) 



Diluent Gas 
Temperature Pressure [HzOI, FlashEnergy I C a H s l - ,  

. K Torr mTorr 3 1013 cm k', s-I k l  , lo-' ~m-~mol ecule -1 s -1 

298 50 (Ar) 120 60 0 2 7 
1.51 . 5 2 
5.74 98 
7.29 120 
9.76 144 
13.13 199 
16.55 228 
19.57 261 

298 100 (He) 150 

2 98 100 (He) 150 7 0 

298 100 (Ar) 120 60 0 2 5 
4.07 6 5 



D i l u e n t  Gas 
Temperature. ' p r e s s u r e  IH201, FlashEnergy  I C I H ~ I - ,  

K Torr  mTorr J 1013 cm k '  , S-' -1  -1 k l  , 10-I cm-smolecule s 

7.02 100 
9.60 158 

10.97 163 
14.80 196 
18.32 250 
20.17 258 
26.45 338 
32.81 444 
47.68 608 . 

298 200 (Ar)  130 70 0 5 2 
7.25 165 

14.44 244 
130 120 14.45 2 58 
260 70 14.76 253 
130 70 23.46 344 

31.47 452 
39.74 523 
44.36 607 

545 100 (Ar)  150 



Dil uent Gas 
Temperature Pressure [HtOl, Flash Energy ICsHsl-, . 

K Torr mTorr J 1013 crn k '  , S-I k l ,  10-l2 cm-3molecule -1 s -1 

620 100 (Ar) 150 90 

719 100 (Ar) 190 

816 101 (Ar) 140 



. . . .  . 

Diluent Gas . . 

Temperature . Pressure [H201, , . Flash Energy [ C s H s  I-; 
K Torr . mTorr 3 ; 1013 cm k '  , S-l k l  , lo- '  cm-3 mol ecul e-' s-' 

917 102 (Ar) 190 80 

98 1 101 (Ar) 182 80 



Table 11. Rate Constant Data f o r  the  Reaction of OH w i t h  Benzene-d6 ( 6 6 ~ 6 ) .  

D i l u e n t  Gas 
Temperature Pressure [H201, Flash Energy [C6H6 1 - 3  

K T o r r  mTorr J 1014 cm ki, s-' k,, lo-' '  cm-'molecule s -1 -1 

250 100 (Ar )  7 5 

20 (Ar)  150 

20 (He) 150 

561 100 (Ar)  190 80 



Di luent  Gas 
Temperature Pressure [ H z ~ ] ,  Flash Energy [C6H6 

K Tor r  mTorr 3 1014 cm k i ,  s-I k,, 1 0 - ' ~ m - 3 m o l e c u l e  -1 s -1 

649 100 (Ar) 190 

734 101 (Ar) 

830 100 (Ar) 190 80 0 58 
0.60 108 

. 1.25 , 150 
2.07 225 

. 2.82 259 
4.13 360 7.20 2 0.46 



Di luen t  Gas 
Temperature Pressure [H201, Flash Energy [CsHsl-, 

K Tor r  mTorr 3 101' cm k:, s-" -1 -1 k,, 10-I' cm-3molecule s 

917 100 (Ar)  190 8 0 0 6 6 
0.50 123 
0.88 159 
1.57 231 
2.35 306 
3.01 386 

981 101 (Ar) 197 8 0 0 7 2 
0.31 113 
0.67 144 
1.20 214 
1.87 272 

250 100 (Ar) 7 5 62 0 3 1 
0.81 126 
1.39 186 
2.33 302 
3.41 414 
4.83 551 

298 100 (Ar) 150 62 0 2 7 
0.63 116 
1.43 209 
2.18 302 
2.99 379 
3.48 450 

20 (Ar) 150 6 2 0 64 
' 0.69 128 

0.86 . I 5 3  
1.74 239 

. . 2.21 3 12 
3.38 425 



. . 

Table 111. Rate ~ o n s t a n t . ~ a t a  fo r  t he  React ion of OH w i t h  Toluene (C6H5CH,). 

D i  1 uent  a as 
Temperature Pressure [H201, F lash ~ n e r ~ ~  € C ~ H S C H ~  1 

K T o r r  mTorr J 1013. cm-3 k;., s-' k, , 10'" cm~'mo1ecu1e s 
-1 -1 

100 (Ar )  

100 (Ar)  

100 (Ar)  

100 ' (Ar )  

100 (Ar)  



Di luen t  Gas 
Temperature Pressure IH201, Flash Energy [ C ~ H ~ C H ~  1 

K Torr  mTorr 3 l o l s  ~ r n - ~  k;., s-' k, , 10-l2 c6 'molecule -1 s -1 

25 (Ar) 150 

25 (Ar)  150 

100 (Ar)  . .  150 

100 (Ar) 150 

100 (Ar )  150 



D i l u e n t  Gas 
Temperature Pressure [HzOI, F lash Energy [c6H5cH3 1 

K T o r r  mTorr. J '  1019. cm-3 k;., s-' kg, 10-l2 cm~9molecu le  s -1 --1 

100 (sF6) 150 62 0 91 
3.83 356 
8.01 593 

11.22. 840 6.55 k 0.49 

20 (He) 150 6 2 3.38 28 1 
6.36 468 
9.52 617 

12.98 748 
15.79 880 4.72 k '0.46 

40 (He) 150 6 2 1.58 222 
3.55 334 
7.12 522 

11.29 757 
15.64 987 5.44 2 0.07 

100 (He) 150 62 . 1.82 193 
4.96 383 
7.27 559 

12.07 788 
15.56 1033 6.00 + 0.43 

320 100 (Ar )  150 

332 PO0 (Ar)  150 62 0 35 
2.06 96 
6.34 317 . . 

8.44 452 
. . 10.61 579 

13.67 734 5.4 + l.la 



. . 
Diluent Gas 

Temperature Pressure [H201, Flash Energy [ C ~ H ~ C H ~  1 
K Torr mTorr J 101s. cm-3 ki:, s-l k, , lo-" crn~~molecule  -1  s -1 

352 100 (Ar) 172 9 7 0 30' 
0.39 166 
0.79 326 3. 61ab 

397 100 (Ar) 170 9 7 0 32 
5 4 1.91 

4.21 8 2 
5.72 102 1 . 3 6 ~ ~  

442 100 (Ar) 170 9 7 0 30 
3.42 92 

504 98 (Ar) 172 

565 100 (Ar) 181 
. . 

567 101 (Ar) 169 



D i l u e n t  Gas 
Temperature Pressure [H201, Flash Energy C C ~ H S C H ~  1 -1  -1 

K Torr  mTorr J 1013. ~ m - ~  k;-, s-' k3 lo-'* cm-s mol ecul e s 

6 94 98 (Ar )  175 

7 93 100 ( A r )  179 

868 103 (Ar)  189 



Diluent Gas 
Temperature Pressure [H201, .Flash Energy [ C ~ H ~ C H ~  1 

-1 -1 K Torr .mTorr J 101s. cm-3 k , s k, , 10'12 cm-9molecule s 

958 101 (Ar) '182 88 0 5 6 
0.93 132 . . 

1.91 193 
3.73 320 
5.63 447 6.87 * 0.23 . 

1046 100 (Ar) 183 

a) Non-exponential OH Temporal Profile; k i  - initial slope. 
b) Non-Linear Dependence of k; on [RH] ; ks = initial slope of k; vs. [RH] Plot. 



. . 

Table I V .  Rateconstant  Data f o r  the Reaction o f  OH w i th  Toluene-d8 (CsDsCD3). 
- 

Di luent  Gas 
Temperature Pressure [H201, Flash Energy [ C 6  0 5 ~ ~ 3  3 

K Tor r  mTorr J l O l 3  cm-3 k;, s-I 14 , 10-l2 c m ~ s m ~ l e c u l e  -1 s -1 

250 20 (Ar)  110 6 0 

250 100 (Ar)  110 6 0 

270 100 (Ar)  

20 (He) 120 

20 (Ar)  170 



Diluent Gas 
Temperature Pressure IH201, Flash Energy [ C ~ D ~ C D ~  3 

K Torr rnTorr J 1019. ~ r n - ~  k;., s-' -1 -1 
k5,  1 0 - l ~  cm-9rnolecule s 

20. (Ar) 

35 (Ar) 



Oi luent  Gas 
Te~npera tu r e  , Pressure [H,0Is Flash Energy ~ C ~ D ~ C D ~  1 

K Torr  nlTorr J 101s cmm3 ki - ,  s-' ks , 10-I.2 cm-srnolecule -1 s -1 

298 100 (Ar) 150 6 0 0 3 0 
1.29 136 
2.19 180 
3.37 262 
4.93 363 
5.98 423 
6.76 468 

466 100 (Ar) 197 90 



D i l u e n t  Gas 
Te~riperature Pressure [ H z O l ,  . Flash Energy C C ~ D ~ C D ~  1 

K Torr  mTorr 3 101s. ~ r n - ~  k t ,  s-I -1 -1 ks. lo-'* cm-3molecule s 



Table V. Rate constant  Data f o r  the  Reaction O H  w i t h  Toluene-d3 (C,H,CD,). 

D i l u e n t  Gas 
Teln~erature Pressure [HtOl, Flash Energy [ ~ 6  H~CDI 1 

K T o r r  mTorr 3 1013 .  ~ m - ~  k;., s-' k + ,  10-l2 cm-3molecule -1 s  -1 

250 100 (Ar)  120 6 0 0 70 
2.59 204 
3.03 234 
4.92 369 
5.61 3 58 
7.24 525 
7.40 476 
9.03 625 
9.70 589 

12.57 765 
13.91 849 

269 100 (Ar)  120 , 60 0 3 3 
2.40 179 
4.39 303 
6.86 466 
8.92 579 

298 100 (Ar)  150 6 0 
120 

60 
6 0 



Diluent Gas 
Temperature Pressure IHpOl, Flash Energy €CsH sC& 1 

K Torr mTorr J 1019. ~ r n - ~  ki, ,  s-' -1  -1 kt,, 10-l2 crn-smolecule s 

560 101 (Ar) 180 80 0 
4.66 
9.08 
13.86 
17.33 
23.70 

563 100 (Ar) 185 80 0 
4.96 
10.31 
14.61 
19.89 
25.70 

565 102 (Ar) 185 80 



Di luent  Gas 
Temperature Pressure [HLOI, Flash Energy [ C d  5CDa 1 

K Torr  mTorr J 1019. ~ r n - ~  kk,, s-' -1 -1 k 4 ,  ' 1 0 - l ~  crn-9molecule s 

101 (Ar)  185 8 0 

103 (Ar) 200 90 

104 (Ar) 212 90 



Di luent  Gas 
Temperature Pressure IH201, F lash Energy L C G H ~ C D ~  I 

K Tor r  mTorr J 1013. ~ m - ~  k;., S-I -1 -1 k,, 1 0 - l ~  c i 3 m o l e c u I e  s 

891 102 (Ar) 220 9 0 0 6 1 
1.88 138 
3.06 214 
4.15 270 
6.32 352 
8.64 451 

966 103 (Ar) 220 90 



Table V I .  Rate Constan ts ' fo r  the  Reactions o f  OH w i t h  Aromatic 
Hydrocarbons as a Funct ion o f  Temperature. 

Temperature 



Temperature 
K 

NOTE: a )  Below 350K, the numbers quoted are for 100 Torr Ar, i .e., a t  the high pressure 
limit of the reactions 

b) A1 1 errors are + 20 



Figure 5. Arrhenius P l o t s  o f  knk vs. 1000/T (K) f o r  React ion o f  OH . 
w i t h  C6H6 and C6D6. Data obta ined between 320-450 K 
(where pseudo- f i r s t  o rder  bahavior was n o t  observed) 
are  n o t  shown. 



Figure 6a. Arrhenius P l o t  of Enk vs. 1000/T fo r  Reaction o f  OH w i t h  Three Subst i tu ted  
. , Toluenes. X represents data obtained under non f i r s t - o r d e r  condi t ions.  



'OoO (K) 

Figure 6b. High Temperature Data f o r  the  Reaction o f  OH w i t h  Toluenes. 



Discussion 

A l l  experiments were ca r r i ed  ou t  under pseudo-f i rst  order condi t ions 

w i t h  [RH]/[OH] > 100. The. concentrat ion o f  the reactant  RH was var ied by 

a t  l e a s t  a f a c t o r  o f  f ive .  A t  most tempe.ratures the [OH] decays were 

exponential and k '  vs. [RH] p l o t s  1 inear, thereby conf i rming.  the existence 

o f  pseudo-f i rst  order condit ions. (The exceptions are discussed l a t e r ) .  

I n  previous OH reac t ion  k i n e t i c  inves t iga t ions  i n  our laboratory,  
5 

under condi t ions s i m i l a r  to the  present measurements, i t  was demonstrated 

t h a t  rad ica l - rad ica l  rbeactions o f  the type H + OH and OH + OH were of 

negl i g i  b l e  importance. Moreover, both ca lcu la t ions,  as we1 1 as experimental 

va r ia t ions  o f  the OH concentrat ion i n  t h i s  study, conf i rm the n e g l i g i b l e  ' . 

con t r ibu t ion  o f . t h e  above processes, as wel l  as others such as OH + R o y  

t o  the measured r a t e  constants (see Table I - V ) .  

. Aromatic hydrocarbons absorb qu i t e  s t rong ly  i n  the wavelength range 
, '  

165 hm (supras i l  c u t o f f )  - 280 nm6   heref fore i t  i s  possib le t o  f l a s h  

photolyze RH leading t o  the formation o f .  some reac t i ve  photofragments. 

which could then reac t  w i t h  OH. Bo.th modeling ca lcu la t ions and the 

independence o f  the measure. r a t e  constant t o  va r ia t ions  i n  photo lys is  

f l u x  showed t h a t  the react ions o f  aromatic hydrocarbon photofragments . . 

were neg l ig ib le .  Absorption o f  l i g h t  i n  the wavelength region Q 230, 
. . 

t o  280 nm by benzene and to1 uene induce f 1 uorescence. We checked to.  

see ii t h i s  fluorescence was being detected through the 310 nm bandpass 

f i  1 t e r ;  the fluorescence s ignal  was absent. 



Comparison w i t h  Previous Studies 

Tables VII and V I I I  l i s t  the 298K values o f  kl and k3 which have 

now been reported. Our resu l t s ,  as seen i n  the table,. are i n  remarkably 

good agreement w i t h  r esu l t s  o f  Perry et.al .7 and Ha'nson et .a l  .8 We found 

l i t t l e  evidence f o r  a pressure dependence o f  kl. This pressure 

in.dependence ind icates t h a t  Reaction (1)  i s  a t  i t s  h igh pressure l i m i t i n g  

value even a t  25 Torr  He, i n  cont rast  t o  the . f ind ings o f  Davis et.al.  9 

Davis et.al. 's 100 Torr  He value of kl i s  s i g n i f i c a n t l y  h igher than t h a t  

measured i n  the present study. There i s  no apparent reason f o r  t h i s  d i s - '  

crepancy, since k2 values o f  Davis et.al. agree q u i t e  wel l  w i t h  our measure- 

ments ' ( v ide  i n f r a ) .  We be l ieve t h a t  now i t  can be sa fe ly  concluded, based 
, 

on the independence o f  the measured value o f  kl on pressure (20-200 Torr)  

and i d e n t i t y  (He, A r ,  SF6) o f  the d i l uen t  gas, t h a t  Reaction (1) i s  a t  

i t s  h igh pressure l i m i t  above 25 Torr. 

The value o f  kg measured by us i s  i n  e x c e l l e n t  agreement w i th  a l l  pre- 

,v ious measurements, as seen i n  Table VIII. We confirm the s l i g h t  pre.ssure 

dependence f o r  Reaction (3) over the'  pressure range 20-100 Torr. These 

res.ul t s  ind ica te  t h a t  Reaction (2)  is .  a t  i t s  h igh pressure l i m i t  a t  pres-: 
. . 

sures above 100 Torr. 

There i s  on ly  one previous inves t iga t ion  where kl and k3 were measured 

as a func t ion  o f  temperature. Perry e t  a1 measured kl and k3 over a 1 i m i  ted 

temperature range o f  296-473 K. Our observations are qua1 i t a t i v e l y ,  very 

s i m i l a r  t o  those o f  Perry et.a.7. However, since t h e i r  data d i d  no t  extend 

t o  temperatures 1 ess t h a t '  298K o r  greater.. than 475K, t h e i r  Arrheni us 

parameters had 1 arge errors.  Therefore, i t  i s  no t  worthwhi 1 e t o  quan t i t a t i ve l y  

compare data except to '  mention t h a t  the agreement i s  qu i t e  good w i t h i n  the 

stated errors.  



Table V I I .  Cornparis-on o f  Our Resul ts  f o r  OH + Benzene Reaction w i t h  
Previous Measurements a t  298K. 

. . 
-1 -1 

Pressure k, 1612 cm3molicu;e s D i l u e n t  Torr 
This' Work Davis e t  a1 . Ref. ( 9 ) Per ry  e t  a1 . Ref. ( 7 ) Hansen e t  a1 . Ref. ( 8 ) 

He 3 0.85' 0.08 



. . 

Table V'ZII .  Comparison o f  Our Results f o r  OH + Toluene Reaction 
w i t h  Previous Data a t  298K. 

-1 -1 k, 1612 cm3mo~ecu~e s , 

D i  1 uent  Pressure 

Th is  Work Davis e t  a1 . Ref. ( 9 ) Perry e t  a1 . Ref. ( 7 ) Hansen e t  a1 . Ref. ( 8 ) 



Reaction Mechanisms 

OH rad ica ls  can reac t  w i t h  aromatic hydrocarbons v i a  e i t h e r  add i t i on  

t o  the aromatic r i n g  o r  v i a  abst ract ion o f  an hydrogen atom. Using 

toluene as an example, the react ion pathways could be represented as fol lows: 



For convenience, the  add i t i on  and r i n g  hydrogen abst rac t ion are shown t o  

occur i n  the o r tho  pos i t ion ;  i n  r e a l i t y  they could occur a t  meta o r  para 

pos i t i ons  also. The uns tab i l i zed  complex can undergo rearrangement o r  

e l im ina te  a  fragment: 

Reaction (g), i n  our experiment, yould merely lead t o  a  slower OH reac t ion  

r a t e  constant. The s t a b i l i z e d  add i t i on  complex could a lso  undergo thermal 

bimolecular decomposition, 



The thermal decomposition occurs on the same time scale as the decay of 

OH reactant when the temperature i s  between 325K and 425K, as evidenced 

by the non-exponential OH temporal profile. The extent of deviation of 

the temporal profile from exponential decay indicates t h a t  the 1 i fetime 

of the stabilized addition complex' i s  in the range of a few msec a t  these'. 

tempueraures. A t  higher temperatures,. the' unimolecul a r  decomposition 

becomes so fast  t h a t  i t  i s  instantaneous on the .time scale of the experi- 

ment and hence merely decreases the rate of OH reaction with aromatic 

hydrocarbon through theaddition channel. A t  lower temperatures, i.e., 

< 298K, the complex has lifetimes in the range of seconds and therefore 

decomposition i s not  observed. 

OH can react with benzene via either ring hydrogen abstraction or 

addition t o  the ring. If the ring hydrogen abstraction occurs t o  a 

significant extent, a primary kinetic isotope effect would be expected 

when al l  hydrogen atoms are replaced by deuterium atoms. Since kl ,  i s ,  

within experimental error, the same as k2 a t  temperature below 298K, i t  

can be concluded t h a t  the addition reaction i s  the dominant pathway a t  

low temperature. Again, the temperature independence of k l  and k 2  (below 

298K) confl rms this conclusion. 

A t  temperatures greater than 400K, kl i s  a t  least a factor of 2 

faster t h a n  k2,  as t o  be expected when hydrogen atom transfer (i.e.,  

abstraction) 5 s involved in the reaction. The temperature dependence of 

k l  and k2 are very slmllar t o  t h a t  observed for reactions involving a 

primary hydrogen ~ L U I I I  abstraction by OH. 

Over the temperature interval 298to 400 K, kl and k 2  decrease by 

almost an order of magnitude giving a clear break in the Arrhenius plots. 



This break s i gn i f i es  a  t r a n s i t i o n .  i n  reac t ion  mechanism from add i t i on  

channel domination a t  T  < 298 t o  abst ract ion channel domination a t  T  < 400K. 

I n  the case of toluene the conclusions noted f o r  the case o f  benzene 

are va l id ;  k3 % k4 = k5 a t  T  < 298K where add i t i on  i s  dominant and kg 

> k4 2. kg i n  the temperature range o f  400-700 K where abst ract ion i s  domi- 

nant. These re la t ionsh ips  i d e n t i f y  abst rac t ion o f  a  hydrogen atom from 

the s ide chain t o  be s i g n i f i c a n t  i n  the 400-700 K regime. Above 800Ky 

k3 = k4 > k  i nd i ca t i ng  the growing importanct o f  the r i n g  hydrogen 5 ' 
abstract ion. 

It should be noted t h a t  ober the temperature range o f  298-213 K y  k3 

i s  s l i g h t l y  (% 15%)' but  consistant ly ,  l a rge r  than k4 and kg. We i n t e r p r e t  

t h i s  r e s u l t  t o  mean t ha t  s ide chain hydrogen abst ract ion from toluene 

cont r ibutes ?. 20% t o  the measured value o f  kg a t  T  less than 298K. 

The above react ion mechanisms are completely cons is tent  w i t h  pre- 

vious invest igat ions o f  OH-Aromatic hydrocarbon react ions which involved 

r a t e  coe f f i c i en t   measurement^^-^ as we1 1 as reac t ion  product i d e n t i f i c a -  

tions.1° We are cu r ren t l y  quant i fy ing the branching r a t i o s  f o r  a l l  path- 

ways as a  function of temperature. We are a lso analyzing the non- 

exponential decays obtained a t  300 < T < 420K t o  obta in  thermodynamic 

and k i n e t i c  data on the add i t i on  complex. 
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