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Free-space quantum key distribution at night

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther,
G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons

University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

ABSTRACT

An experimental free-space quantum key distribution (QKD) system has been tested over an outdoor optical path
of ~ 1 km under nighttime conditions at Los Alamos National Laboratory. This system employs the Bennett 92
protocol; in this paper, we give a brief overview of this protocol, and describe our experimental implementation of
it. An analysis of the system efficiency is presented, as well as a description of our error detection protocol which
employs a two-dimensional parity check scheme. Finally, the susceptibility of this system to eavesdropping by various
techniques is determined, and the effectiveness of privacy amplification procedures is discussed. Qur conclusions are
that free-space QKD is both effective and secure; possible applications include the rekeying of satellites in low earth
orbit.

Keywords: Cryptography, Quantum Cryptography, Quantum Key Distribution, Eavesdropping, Parity Check,
Privacy Amplification, Bennett 92, Error Detection, Information Security, Satellite

1. INTRODUCTION

Quantum cryptography was introduced in the mid-1980s! as a new method for generating the shared, secret random
number sequences, known as cryptographic keys, that are used in crypto-systems to provide communications security.
The appeal of quantum cryptography is that its security is based on laws of Nature, in contrast to existing methods
of key distribution that derive their security from the perceived intractability of certain problems in number theory,?
or from the physical security of the distribution process.

Since the introduction of quantum cryptography, several groups have demonstrated quantum key distribution
(QKD) over multi-kilometer distances of optical fiber,® 1% and recent advances have led to demonstrations of QKD
over free-space indoor optical paths of 205 m,!! and outdoor optical paths of 75 m.!? These demonstrations increase
the utility of QKD by extending it to line-of-site laser communications systems. Indeed there are certain key distri-
bution problems in this category for which free-space QKD would have definite practical advantages (for example,
it is impractical to send a courier to a satellite). We are developing QKD for use over line-of-sight paths, and here
we report our results of free-space QKD key generation over outdoor optical paths of up to 950 m under nighttime
conditions.

2. QUANTUM KEY DISTRIBUTION

The success of QKD over free-space optical paths depends on the transmission of single-photons through a turbulent
medium and their detection against a high background. Although this problem is difficult, a combination of sub-
nanosecond timing, narrow filters,!3* spatial filtering!! and adaptive optics'® can render the transmission and
detection problems tractable. Furthermore, the essentially non-birefringent nature of the atmosphere at optical
wavelengths allows the faithful transmission of the single-photon polarization states used in the free-space QKD
protocol.

Send correspondence to W. T. Buttler: E-mail: buttler@lanl.gov




Table 1. Observation Probabilities

Alice’s Bit Value . “Q” “y” “yn @
Bob Tests With «y» “g» «q» «o”
Observation Probability | p=0 | p= % p= .;. =0

2.1. THE BENNETT 92 PROTOCOL

A QKD procedure starts with the sender, “Alice,” generating a secret random binary number sequence. For each bit
in the sequence, Alice prepares and transmits a single photon to the recipient, “Bob,” who measures each arriving
photon and attempts to identify the bit value Alice has transmitted. Alice’s photon state preparations and Bob’s
measurements are chosen from sets of non-orthogonal possibilities. For example, using the B92 protocol'® Alice
agrees with Bob (through public discussion) that she will transmit a horizontal-polarized photon, |h), for each “0”
in her sequence, and a right-circular-polarized photon, |r}, for each “1” in her sequence. Bob agrees with Alice to
randomly test the polarization of each arriving photon with vertical polarization, |v), to reveal “1s,” or left-circular
polarization, |£), to reveal “0s.” In this scheme, Bob will never detect a photon for which he and Alice have used a
preparation/measurement pair that corresponds to different bit values, such as |h} and |v), which happens for 50% of
the bits in Alice’s sequence. However, for the other 50% of Alice’s bits the preparation and measurement protocols
use non-orthogonal states, such as |h) and |£), resulting in a 50% detection probability for Bob, as shown in Table 1.
Thus, by detecting single-photons Bob identifies a random 25% portion of the bits in Alice’s random bit sequence,
assuming a single-photon Fock state with no bit loss in transmission or reception. This 25% efficiency factor is the
price that Alice and Bob must pay for secrecy.

Bob and Alice reconcile their common bits through a public discussion by revealing the locations, but not the bit
values, in the sequence where Bob detected photons; Alice retains only those detected bits from her initial sequence.
The resulting detected bit sequences comprise the raw key material from which a pure key is distilled using classical
error detection techniques. The single-photon nature of the transmissions ensures that an eavesdropper, “Eve,” can
neither “tap” the key transmissions with a beam splitter (BS), owing to the indivisibility of a photon,'” nor copy
them, owing to the quantum “no-cloning” theorem.'® Furthermore, the non-orthogonal nature of the quantum states
ensures that if Eve makes her own measurements she will be detected through the elevated error rate she causes by
the irreversible “collapse of the wavefunction.!®”

2.2. QUANTUM-KEY TRANSMITTER: ALICE

The QKD transmitter for our experiments (Fig. 1) consisted of a temperature-controlled single-mode (SM) fiber-
pigtailed diode laser, a fiber to free-space launch system, a 2.5-nm bandwidth notch-filter, a variable optical atten-
uator, a polarizing beam splitter (PBS), a low-voltage Pockels cell, and a 27x beam expander. The diode laser
wavelength is temperature adjusted to 772 nm, and the laser is configured to emit a short, coherent pulse of approx-
imately 1-ns length, containing ~ 10° photons.

Optical
SM-Fiber Attenuator
27x Beam Expander
P

Cooled
Optical j Pockels Cell
Diode Notch

Filter PBS

Figure 1. QKD Transmitter.




A computer control system (Alice) starts the QKD protocol by pulsing the diode laser at a rate previously agreed
upon between herself and the receiving computer control system (Bob). Each laser pulse is launched into free-space
through the notch filter, and the ~ 1 ns optical pulse is then attenuated to an average of less than one photon per
pulse, based on the assumption of a statistical Poisson distribution. (The attenuated pulse only approximates a
“single-photon” state; we tested the system with averages of less than 0.1 photon per pulse. This corresponds to a
2-photon probability of < 0.5% and implies that less than 6 of every 100 detectable pulses will contain 2 or more
photons, i.e., for a Poisson distribution, P*, with an average photon number of 7 = 0.1, for every 1000 pulses there
will be ~ 905 empty pulses, ~ 90 pulses of 1 photon, ~ 5 pulses of 2 photons, and ~ 1 pulse of 3 or more photons.)
The photons that are transmitted by the optical attenuator are then polarized by the PBS, which transmits an
average of less than one |k) photon to the Pockels cell. The Pockels cell is randomly switched to either pass the
“single-photon” unchanged as |h) (zero-wave retardation) or change it to |r) (quarter-wave retardation). The random
switch setting is determined by discriminating the voltage generated by a white noise source.

2.3. QUANTUM-KEY RECEIVER: BOB

The free-space QKD receiver (Fig. 2) comprised a 8.9 cm Cassegrain telescope followed by the receiver optics and
detectors. The receiver optics consisted of a 50/50 BS that randomly directs collected photons onto either of two
distinct optical paths. The lower optical path contained a polarization controller (a quarter-wave retarder and a
half-wave retarder), adjusted as an effective quarter-wave retarder, followed by a PBS to test collected photons for
|); the upper optical path contained a half-wave retarder followed by a PBS to test for |r).* The output port along
each optical path was coupled by multi-mode (MM) fiber to a single-photon counting module (SPCM: EG&G part
number: SPCM-AQ 142-FL). [Although the receiver did not include notch filters, the spatial filtering provided by
the MM fibers effectively reduced noise caused by the ambient background during nighttime operations to negligible
levels (the background was ~ 1.1 kHz).]

Bit values are determined in the following fashion: a single |r) photon traveling along the lower path encounters
the polarization controller, and is converted to |v) and reflected away from the SPCM, but a single |h) photon
traveling the same path is converted to |r) and transmitted toward or reflected away from the SPCM in this path
with equal probability; however, a single |A} photon traveling the upper path is converted to |v) and reflected away
from the SPCM in this path, but a single |r) photon traveling this path is converted to |£) and transmitted toward
or reflected away from the SPCM with equal probability.

*A polarization controller was not required along the upper path because the 50/50 BS transmitted the P polarization without
introducing any phase shift, but the quarter- and half-wave retarder pair was necessary along the lower path because the BS reflected
the S and P polarizations differently, introducing some ellipticity to the reflected wave.

Half-Wave
) Retarder
Cassegrain
Telescope BS

, »% U
/_————-H:! PBS
Quarter-Wave _

MM
Retarder s Fiber
Half-Wave SPCMs
Retarder

Figure 2. QKD receiver.




In this detection scheme, there are a total of four possible optical paths through the receiver, but only two of the
paths, those which terminate upon the detectors seen in Fig. 2, contain definite polarization information. However,
while the remaining two paths contain indeterminate polarization information, this information is important for the
secure implementation of B92, as will be seen later (see Sec 4.1).

3. OUTDOOR FREE-SPACE EXPERIMENTS

The transmitter and receiver optics were operated over 240-, 500-, and 950-m outdoor optical paths, with the
transmitter and receiver collocated in order to simplify data acquisition. The various total optical path lengths were
determined by locating a 25.4 cm diameter mirror at the transmission distance half way point that reflected the
transmitted beam back to the receiver. All measurements were made at night.

3.1. SYSTEM EFFICIENCY

In determining Bob’s bit-rate, we consider that a BS partitions a coherent photon stream in a binomial fashion.
We further assume that the effective wave retarders, combined with the PBSs, behave together as 50/50 BSs when
analyzing non-orthogonal polarizations, i.e, |h) and |£)}, and |r} and {v). In addition, we treat the detectors as BSs
with transmission coefficient T° = 0.65, or in other words, that the detector with efficiency 5p = 0.65 also partitions
coherent photon streams in a binomial way; we also treat the transmission and reception efficiency 7, or power losses
between the transmitter and receiver, and the losses which occur coupling power into the receiver’s MM fibers, as
random binomial processes. The binomial probability distribution is summarized in Eq. 1.

P = ) (&)-T™-R*™™. (1)
m=1

This equation gives the probability that at least 1 photon, from a coherent photon stream of n photons, will be
transmitted through the optical elements along the optical path the photon stream is traveling. The transmission
probability is T, the reflection probability is R, and T+ R = 1.

For calculation purposes, we use Eq. 2, which is equivalent to Eq. 1.
P2 =1-0Q-9-9p-1/2-1/2)", (2

where 7, and 7)p, are as previously defined, and the factor of 1/4 = 1/2-1/2, gives the transmission probability through
the first 50/50 BS followed by either effective wave retarder and PBS pair—given the appropriate polarization.

These binomial expanded products (Eq. 2) of i, 1/4, and 7p, are convolved with the Poisson probabilities that
there will be exactly n photons in a pulse given that the average number of photons per pulse is 4. The Poisson
probability, P2, is shown in Eq. 3.

n _ " -exp(—n)
Po=—7r— ®)

The convolution is summed to give the detection probability as a function of the Poisson average photon number.
This probability multiplied by the rate at which Alice transmits the coherent pulses, R4, gives the rate at which
Bob detects 0s and 1s, Rg. Our experimental result was Rg ~ 50 Hz when the transmitter was pulsed at a rate of

R4 = 20 kHz, with 4 = 0.1 photon per pulse for the 950-m path. This result is expressed in Eq. 4.

fe o]

Rp = Ray [1—(1—n-1p/4)"]-

n=1

A" exp (—71)
n! )

4)

Finally, we note that in the limit that 5 - gp + 1, and given a Fock state of m = 1 photon, then 7 + 1 and the
Poisson probability distribution P? + d,,_1, i.e., dm_1 = Ov m # 1. In this limit—the limit of a perfect, lossless
system—the sum vanishes and we are left with exactly 1 term which shows that Bob and Alice sacrifice 756% of their
bits for privacy. '




Table 2. A 200-Bit Sample of Alice’s (A) and Bob’s (B) Raw Key Material Generated by QKD over 1 km.

A | 0000010101 | 1101101001 | 0000000000 | 0110010101
B | 0000010101 | 1101101001 { 0006000000 | 0110010101
A ] 0011100010 { 0111011101 | 1110111000 | 0100100011
B | 0011100010 | 0111011101 | 1110111000 | 0100100011
A | 1110000000 § 0101101111 | 1001001010 | 0010000011
B | 1110000000 | 0101101111 | 1001601010 | 6010000011
A | 0000010111 { 0000111111 | 1111000000 | 1010101101
B | 0000010111 { 0000111111 | 11061000000 | 1010101101
A | 1111100111 | 1110111101 | 0100110100 | 1011101111
B | 1111100011 | 1110111101 | 0100110100 | 1011101111

3.2. SYSTEM INEFFICIENCY

The bit error rate (BER) for the 950 m path was ~ 1.5% when the system was operating down to the < 0.1 photon
per pulse level, where the BER is defined as the ratio of the bits received in error to the total number of bits received.
A BER of ~ 0.7% was observed over the 240-m optical path and a BER of 1.5% was also observed over the 500 m
optical path. A sample of raw key material from the 950-m experiment, with errors, is shown in Table 2.

Bit errors caused by the ambient background (~ 1.1 kHz) were minimized to less than ~ 1 every 9 s by the
narrow gated coincidence timing windows (~ 5 ns) and the spatial filtering. Further, because detector dark noise
(~ 80 Hz) contributed only about 1 dark count every 125 s, we believe that the BER was caused by misalignment
and imperfections in the optical elements (wave-plates and Pockels cell).

3.3. ERROR DETECTION

Our experiments implement a two-dimensional (2D) parity check scheme that allows the generation of error-free key
material. Error detection is accomplished by Bob and Alice organizing their reconciled bits (see Sec. 2.1) into 2D
arrays in the order that they were detected. Once organized, the parities of the rows and columns are determined
and openly exchanged between Alice and Bob, and any column or row in which Bob and Alice possess different
parities is discarded. To further ensure privacy, Alice and Bob also discard the bits oriented along the diagonals.
This guarantees the elimination of two bits for each row and column of the matrix, even when no errors are detected,
and frustrates knowledge revealed during the parity exchange.

Figure 3 illustrates the error detection protocol. In this example, Alice possesses the ‘good’ bits, and it is necessary
for her and Bob to remove his ‘bad’ bits and distill error free key material. Bob possesses only two bad bits, but
after openly communicating the column and row parities, they sacrifice good bits along the diagonals, and the 2 rows
and 2 columns where parity differences were seen (parity differences are seen in columns 3 and 6 and rows 3 and 6).
The net result, in this example, is 24 error-free bits: key := {100000110111110000010111}. Thus, in addition to the
minimum 75% key lost during the B92 protocol, Bob and Alice have sacrificed another 62.5% of the detected bits.

This is not the whole story, because the detection protocol does not detect all errors. For example, 2 errors in a
column, combined with another error in a row containing one of the column errors (an ‘L’ shaped pattern), results
in a missed bit-error. If there were 4 errors in a ‘box’ pattern, none of the errors would be detected, and so on.

We must emphasize, however, the strengths of the 2D routine as well. For example, the minimum Hamming
distance,?® d, for a 2D scheme is the square of the minimum Hamming distance of the same detection scheme imple-
mented in one-dimension (1D). (The Hamming distance tells how many errors can be detected, and/or corrected—one
can detect d — 1 errors.) For our particular detection code, a parity check code, the minimum Hamming distance is
2 for the 1D case, but in 2D this becomes 4. Once again, this is not the whole story, because there are situations in
the 1D parity check scheme where more than one error can be detected, if the word is long enough; parity in 1D can
detect an odd number of bit flips: 1, 3, 5, etc; however, even parity flips cannot be detected.!

#To ensure the security of the error detection protocol, and to simplify it, we implement the algorithm for square matrices of an even
dimension.

tWe make no attempt to correct for errors, and comment that cyclic redundancy codes are more powerful than the parity codes. For
our specific application, the parity check code allows us to keep more key material while maintaining the capability to frustrate Eve.

&




To test our error detection scheme, we simulated random 0’s and 1's with errors and found that key material with
bit errors had to be processed with the detection protocol several times to reduce errors to negligible levels. On the
first error pass, small 2D matrices were needed (for key with high BERs), but with each subsequent detection pass,
a larger 2D matrix could be used. We found that data with BERs as high as 10% could be reduced to an estimated
~ 1 bit-error in a total of 10° bits after 4 passes, with ~ 14% of the initial key remaining; the sizes of the matrices
in the 4 passes were 6 by 6, 7 by 7, 13 by 13, and 13 by 13, respectively. (We never operated our system with BERs
this high, but in our simulations we wanted to determine the detection scheme’s capabilities. We also found that
there exists an optimal matrix size which most efficiently reduced errors while preserving a maximal amount of key
material. The sizes varied from a 6 by 6 to a 12 by 12, almost linearly, for BERs between 10% and 1%.)

Finally we note that because Alice transmits coherent states, as opposed to single photon Fock states, she and
Bob also need to add a stage of “privacy amplification?'” to reduce any partial knowledge gained by an eavesdropper
to less than 1-bit of information. We have not implemented such a privacy amplification protocol at this time, but
our free-space QKD system does incorporate “one time pad”?? encryption—also known as the Vernam Cipher: the
only provably secure encryption method—and could also support any other symmetric key system.

4. EAVESDROPPING: AN ATTACK BY EVE

Much has been said about the security of QKD against attack by an eavesdropper.'® In fact, B92 is not provably
secure. There are essentially two types of attack to consider: opaque attacks and translucent attacks.

4.1. OPAQUE ATTACK

In an opaque attack, often referred to as the “man in the middle,” Eve intercepts all collectable bits, or single
photons, by positioning herself between Alice and Bob. If Eve possesses a transmitter and receiver identical in every
way to Bob’s receiver and Alice’s transmitter, and Bob, Alice and Eve are operating under the B92 protocol, then
Eve can determine as much information about the key as could Bob. For example, if Alice’s transmission basis is |h)
and [r), and Eve’s measurement basis is {£) and |v), then Eve can know Alice’s transmitted bits with a maximum
efficiency of 25%.% If Eve retransmits the bits she “knows,” then she will lower Bob’s expected bit-rate, relative to
Alice, by at least a factor of 4, but she will be forwarding bits of the correct value to Bob.

If Eve can collect, measure, and quickly retransmit the bits she detects, then she can then listen to Alice’s and
Bob’s open bit reconciliation protocol (see Sec. 2.1). And, while Bob never reveals his bits values, Eve still knows

$1n a real system, Eve will experience reception losses associated with the collection, fiber launch and detection of the single photons.
In addition, there will be bit-errors associated with the transmission and measurement protocols, i.e., impure bit preparation and
measurement associated with optical alignment of the transmission, receiving, and analysis optics.
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Figure 3. Two-dimensional parity check scheme.




what bits Alice and Bob commonly share because she possesses the timing information about Alice’s initial reference
pulse. At this point, if Alice and Bob know their system well, Eve has been revealed by the additional factor of 4
attenuation, e.g., Eve has discarded a minimum of 75% of her bits, but Alice has discarded a minimum of 93.75% of
her bits.

Some could argue this additional attenuation to Bob’s and Alice’s common key is protection enough against an
opaque attack, but our implementation of B92 adds another layer of protection if Eve attempts to bring Bob’s bit
rate to a rate indistinguishable from her own. Eve can do this by retransmitting a bright classical pulse to Bob for
each single photon she detects.Y However, our system protects against this attack when operated in either a 2, 3, or
4 SPCM mode. In a 2 SPCM system, this type of attack would be revealed through an increase in “dual-fire” errors.
{Dual-fire errors occur when both SPCMs fire simultaneously. In a perfect system there would be no dual-fire errors,
regardless of the average photon number per pulse, but in an imperfect experimental system, where bit-errors occur,
dual-fire errors will occur.)

If we consider only a perfect system, then no matter how many horizontally polarized photons travel the |r)
analysis path, none will reach the |r) analyzing detector. However, if this analysis path includes an effective half-wave
retarder followed by a PBS, then the half wave-retarder will convert right-circular polarized photons to left-circular
polarized photons which will then be equally split equally between the two output paths. If both paths then are each
followed by an SPCM, then both SPCMs will fire.

The half of a right-circular polarized pulse which travels the {h) analysis path encounters the effective quarter-
wave retarder followed by another PBS. The quarter-wave retarder converts this right-circular polarized ‘bright’
pulse to a vertical-polarized ‘bright’ pulse which is reflected along the path away from the |h) analyzing detector.
If this path contains an SPCM, then this SPCM will fire together with the two SPCMs which terminate on the jr)
analyzing path.Thus, 3 of 4 detectors have fired alerting Bob and Alice that Eve is opaquely attacking the key. A
similar argument applies if Bob is using 3 detectors.

4.2. TRANSLUCENT ATTACK

Eve could also passively, or translucently, attack the key with a BS. In this scheme, Eve gets the binomial expansion
of the BS she uses to reflect key material her way, and Bob gets the binomial expansion of what is transmitted. It is
necessary to consider Eve’s and Bob’s efficiencies, which are independent of the other. Equation 5 shows the amount
of information on the key Eve gets as a function of the reflection coefficient, R = 1 — T, of her BS, and Eq. 6 shows
the amount of key Bob gets as a function of the transmission coefficient, T°, of her BS.

(o] N E . _ ﬁn % =
and oo B _ _ ~
Rp = Ry g{l ~1- nB - ";D : T)n] L eXfl:!("n) ; (6)

where ng accounts for losses between the transmitter and the power Bob could couple into the MM fibers at his
receiver, if Eve’s BS were 100% transmissive, and g accounts for losses between the transmitter and the power Eve
could couple into the MM fibers at her receiver if her BS was 100% reflective. Eve’s and Bob’s detector efficiencies
are, respectively, 75, and 5. The 1/4 reduction of these products is as previously described in Sec 3. Eve’s bit rate
is Rg, and Rp is Bob’s, and Rj4 is the rate Alice is transmitting.

The privacy, or the amount of information Eve possesses on Alice’s and Bob’s common key takes a bit more work
to extract. We first must determine how many bits Eve and Bob observe coincidently, because only those bits which
both she and Bob possess are of any use to her. First of all, if there is only 1 bit in a pulse, then either Eve or Bob
will get it, but not both. Based on this premise, Eq. 7 shows the number of bits that Bob and Eve will share (observe
coincidently) if Eve attacks the key with a BS of transmission coefficient T', and reflection coefficient R=1—-T.

Ngng = RAZEE.’Z)T(__@i(Z).Tm,Rn—m.[I_(I_.773;1—773)":].{1_(1_U_E;T’]ﬁ)m]' (7)

9In B92 it is possible to send coherent classical pulses of the approriate polarization and insure that every bit transmitted is detected
at the receiver.




Equation 8 shows Alice’s and Bob’s privacy, P.

o0 n—1 ‘
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Under this type of translucent attack, if Eve uses 50/50 BS, and if Alice transmits coherent Poisson pulses with
an average of 0.1 photon per pulse, then for every ~ 250 bits Eve and Bob acquire, Eve will commonly share ~ 3
of her 250 bits with Bob’s 250 bits (or ~ 3/250 of Alice and Bob’s common key—this estimate assumes perfect
system efficiencies for both Bob and Eve). Eve’s knowledge on Alice’s and Bob’s common key is coupled to her own
system efficiencies and drops dramatically under experimental conditions where collection and detection efficiencies
are imperfect.

Eve could determine which bits she commonly shares with Bob when Alice and Bob reconcile their common bits,
but her bit knowledge would be reduced during the error detection procedure Alice and Bob perform. However,
seldom would her information be completely destroyed during this step of bit reconciliation, but Bob and Alice
can easily reduce Eve’s knowledge to less than 1-bit of information by performing a classical privacy amplification
procedure on their common key, if they know the maximum information Eve could have.

5. CONCLUSIONS

This paper demonstrates free-space QKD through a turbulent medium under nighttime conditions. We have described
a system that provides two parties a secure method to secretly communicate with a simple system based on the B92
protocol. We presented two attacks on this protocol and demonstrated the protocol’s built in protections against
them. This system was operated at a variety of average photon number per pulse down to an average of < 0.1 photon
per pulse. The results were achieved with low BERs, and the 240-m experiment demonstrated that BERs of 0.7%
or less are achievable with this system. This protocol could be implemented with classical signature authentication®
and privacy amplification procedures to ensure the security of private information. From these results we believe
that it will be feasible to use free-space QKD for re-keying satellites in low-earth orbit from a ground station.
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