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ABSTRACT
In this paper, we characterize application
performance with a "memory-centric” view.
Using a simple strategy and performance data
measured by on-chip hardware performance
coutners, we model the performance of a simple
memory hierarchy and infer the contribution of
each level in the memory system to an
application’s overall cycles per instruction (cpi).
We account for the overlap of processor
execution with memory accesses - a key
parameter not directly measurable on most
systems. We infer the separate contributions of
three major architecture features in the memory
subsystem of the Origin 2000: cache size,
outstanding loads-under-miss, and memory
latency.

Keywords: performance evaluation, cache,
memory subsystem, computer architecture, and
microprocessor

I Introduction

The performance and scalability of high
performance scientific applications on large-
scale parallel machines are more dependent
on the hierarchical memory subsystems of
these machines than the peak instruction rate
of the processors employed [1-2]. A few
attempts [13, 14] have been tried to
characterize the memory system
performance impact on the total runtime.
Many architecture improvements such as
out-of-order execution and more outstanding
misses are widely studied by simulations.
However, studying the performance impact
of memory subsystem and processor
architecture improvements based on real

applications on production machines is
rarely attempted.

In this paper, we model real application
performance with a "memory-centric" view.
The applications and their realistic problem
sizes are a representative part of the Los
Alamos National Laboratory (LANL)
computational physics workload and most
have been designed with referential locality
in mind. Using overall average effect
strategy and empirical performance data
{rom hardware performance counters, we
infer the contribution of each level in the
memory system to the application's overall
cycles per instruction (cpi). We account for
the overlap of processor execution with
memory accesses - a key performance
parameter that is not directly measurable on
most systems.

Performance data on the application codes
are obtained on the latest Origin 2000
systems and Power Challenge machines
from SGI. This paper discusses only single
node executions. The machines provide a
unique performance evaluation opportunity
since the architectures employ identical
RIOK processors but differ significantly in
the design of the memory subsystems so that
performance studies due solely to the
memory architecture are possible. The same
executables are used on both machines to
eliminate software difference. In particular,
there are three major memory architecture
differences: 1) secondary cache size, 2)
latencies to the main memory, and 3)
number of outstanding cache misses. Thus,
we are able to infer the separate contribution



of each of these on the performance of the
application benchmarks.

The following sections of this paper
describe: the parts of the machine
architecture relevant to this work, small
descriptions of the codes from the Los
Alamos National Lab computational physics
workload, the model and empirical
methodology, validation of the model,
results, analysis and major conclusions.

II.  Origin 2000 and
PowerChallenge:
Architecture Descriptions

The PowerChallenge is an SMP architecture
that employs a central bus to interconnect
memories and processors [3]. The bus
bandwidth (1.2 Gbytes/sec) does not scale
with more processors. Cache coherence is -
maintained through a snoopy bus protocol
which broadcasts cache information to all
processors connected to the bus. The Origin
2000, on the other hand, is a distributed
shared memory (DSM) architecture which
uses a switch interconnect that improves
scalability by providing interconnect
bandwidth proportional to the number of
processors and memory modules [4].
Coherence is maintained by a distributed
directory-based scheme. The processing
elements of both the Origin 2000 and
PowerChallenge systems use a 200MHz
MIPS R 10000 microprocessor. The
processor is a 4-way super-scalar
architecture which implements a number of
innovations to reduce pipeline stalls due to
data starvation and control flow [5]. For
example, instructions are initially decoded
in-order, but are executed out-of-order.
Also, speculative instruction fetch is
employed after branches. Register renaming
minimizes data dependencies between
floating-point and fixed-point unit
instructions. The two programmable
performance counters track a number of
events (6] and were a necessity for this
study.

While the processing elements of the
PowerChallenge and Origin 2000 systems
are identical, there are major differences in
the memory architecture and corresponding
performance of the two systems. The
PowerChallenge is an UMA architecture
with a memory latency of 205 clocks (1025
ns). Latencies to the memory modules of
the Origin 2000 system, on the other hand,
depend on the network distance from the
issuing processor to the destination memory
node. Accesses issued to local memory take
about 80 clocks (400 ns) while latencies to
remote nodes are the local memory time
plus 33 clocks for an off-node reference plus
22 clock periods (CP; 110 ns) for each
network router traversed. In the case of a 32
processor machine, the maximum distance is
4 routers, so that the longest memory access
is about 201 clocks (1005 ns) which is close
to the uniform latency of the
PowerChallenge. This unique feature of
Origin 2000 systems provides us a good
opportunity to adjust the memory access
latency by placing memory and execution
thread on different nodes.

In addition, improvements in the number of
outstanding cache misses that can be queued
by the memory system were made. Even
though the R10000 processor is able to
sustain four outstanding primary cache
misses, external queues in the memory
system of the PowerChallenge limited the
actual number to less than two. In the
Origin 2000, the full capability of four
outstanding misses is possible. The L2
cache sizes of these two systems are also
different. A processor of PowerChallenge

can be equipped up to 2MB L2 cache while

a CPU of Origin 2000 system always has a
L2 cache of 4MB.

III. LANL Benchmark Code
Information

Four applications which form the building
blocks for many nuclear physics simulations



were used in this study. Previously, a
performance comparison of the Origin and

. PowerChallenge architectures has been done
using the codes [7].

a. Code Descriptions

SWEEP3D is a three dimensional solver for
the time independent, neutral particle
transport equation on an orthogonal mesh
[8]. In SWEEP3D, the main part of the
computation consists of a "balance" loop in
which particle flux out of a cell in three
Cartesian directions is updated based on the
fluxes into that cell and on other quantities
such as local sources, cross section data, and
geometric factors. The cell-to-cell flux
dependence, i.e., a given cell cannot be
computed until all of its upstream neighbors
have been computed, implies a recursive or
wavefront structure. The specific version

used in these tests was a scalar-optimized
"line-sweep"” version [8] that involves
separately nested, quadrant, angle, and
spatial-dimension loops. In contrast with
vectorized plane-sweep versions of
SWEEP3D, there are no gather/scatter
operations and memory traffic is
significantly reduced through "scalarization"
of some array quantities. Because of these
features, L1 cache reuse on SWEEP3D is
fairly high (the hit rate is about 85%). A
problem size of N implies N° grid points.

HYDRO is a two-dimensional explicit
Lagrangian hydrodynamics code based on
an algorithm by W. D. Schulz [9]. HYDRO
is representative of a large class of codes in
use at the Laboratory. The code is 100%
vectorizable. An important characteristic of
the code is that most arrays are accessed
with a stride equal to the length of one
dimension of the grid. HYDRO-T is a
version of HYDRO in which most of the
arrays have been transposed so that access is
now largely unit-stride. A problem size of
N implies N* grid points.

HEAT solves the implicit diffusion PDE
using a conjugate gradient solver for a single
timestep. The code was written originally

for the CRAY T3D using SHMEM. The
key aspect of HEAT is that its grid structure
and data access methods are designed to
support one type of adaptive mesh
refinement (AMR) mechanism, although the
benchmark code as supplied does not
currently handle anything other than a
single-level AMR grid (i.e. the coarse,
regular level-1 grid only). A problem size of
N implies N° grid points.

NEUT is a Monte-Carlo particle transport
code. It solves the same problem as
SWEEP3D but uses a statistical solution of
the transport equation. Particles are
individually tracked through a three
dimensional mesh where they have some
probability of colliding with cell material.
The output from the particle tracking is a
spatial flux discretized over the mesh.
Vector (or data parallel) versions of this type

of code exist which track particle ensembles
rather than individual ones. A problem size
of N implies N* grid points and 10 particles
per grid point.

Based on the performance data collected
through R10000 hardware performance
counters, we calculated TLB hit ratio and
branch prediction hit ratio. The calculation
shows that MIPS R10000 processor can do a
good job of speculative branch prediction.
All four benchmark codes (HEAT, HYDRO,
HYDRO-T and SWEEP) have branch
prediction hit ratios over 99%. This means
that over 99% of speculated branch
predictions are taken in real executions.
TLB hit ratios for all these codes are higher
than 98%. This high TLB hit ratio implies
that the impact of TLB misses can be
ignored for these data sets.

IV. Model Description

The analysis in the following sections uses a
simplified mean value parameterization

[11] to separate CPU execution time from
stall time due to memory loads/stores.
Figure 1 is a pictorial description of the
times in the model.
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Figure 1. Relationship of modeled times

The model projects the overall ¢pi of an
application as a function of CPU execution
time and average memory access times:

nlevels

cpi = cpiy + Zh,- *t; (1

i=2

where cpi, is defined to be the cpi of the
application assuming that all memory
accesses are from an infinite L1 cache and
take 1 CP (i.e., the i=I term is included in
¢pi,), and h; and t; are, correspondingly, the
hits per instruction and average non-
overlapped access times for the ith level in
the memory hierarchy. The second term of
Eq. 1 is also referred to as cpiga,.

If no overlap of CPU execution and memory
accesses occur, every memory access to the
ith level incurs the full round-trip latency,
which we denote as T;. We define
(following Larson [12]) a measure of the

overlap of memory accesses with
computation as m,, where

nlevels

epi = cpiy+(1-my) Y b T, @

=2

and, from Eq 1, m, is one minus the ratio of

the average memory access time to the
maximum memory access time:

nlevels ’
[ E:2 hi ti
nlevels
>y <
i=2

3)

my=1-

We note here that the separation of
computational time from memory access
time in this model implies that the two can
be treated independently (i.e., that cpi, is

constant).

V. Measurements and
Validation

a. Measurements

The model described in the previous section
provides the foundation for an analysis of
the Origin 2000’s architectural features on
application performance. The first key issue
is determination of the amount of memory
access time that is overlapped by
computation. Although this overlap is not
directly measurable using the R10000
performance counters, we can infer the
overlap for an individual application by
fitting empirical performance data obtained
from its execution using different problem
sizes.

R10000 performance counters supply
measurements of the total execution cycles
and total graduated instructions. The ratio
of these two measurements gives the overall
cpi of the application. The maximum
latencies, T;, are measured with LMBENCH
[10] and are found to be consistent with
numbers published by SGI. The hit ratios
(coming from the same application
executing on different problem sizes) are
also directly measurable and the unknowns
in Equation 1 become the average times, t;,
and cpi,. The value of cpi, can be obtained
by measuring the cpi of a problem that fits
entirely in the L1 cache. The remaining
unknowns are inferred from the measured
data by a least squares fit constrained such
that

O<=t;<= T,

Table 1 shows the model parameters for
each of the LANL benchmark codes



determined from a data set of executions on
the 1-MB L2 PowerChallenge. The least
square fit generally has errors that are less
than 6%.

t tm : Cpi,
HEAT 2 128 0.74
HYDRO 3 117 0.89
HYDRO-T| 0 69 9
SWEEP 11 134 .88
NEUT 2.2 205 77
Table 1. Model parameters for each code
(Power Challenge)
b. Validation

Validation of the inferred model parameters
is accomplished using the model to predict
performance on a different machine
configuration. Original data from a
PowerChallenge with a 1-MB secondary
cache is used to determine the unknown
model parameters which are then used to
predict the performance of each code on a 2-
MB PowerChallenge. Figure 2 shows that
the fit is extremely close.

Measured vs Calculated

VI. Results and Analysis

a. Analysis of stall time due to memory
accesses.

Table 2 compares the memory access times,
ti, for the benchmark codes on the Power
Challenge and the Origin 2000. In general,
L2 cache accesses are mostly overlapped
with computation (low values of t,).
Additionally, the observed values of t,,
suggest that about one-half of the main
memory latency is hidden on both the Power
Challenge and Origin. The exception is
SWEEP where the value of 11cps for t,
indicates that accesses to the secondary
cache are not overlapped. The reason that
SWEEP stands out may be due to loop-

carried dependencies in the inner loops.
These dependencies present less prefetch
opportunities for the compiler and result in
less overlap of processor execution with
memory accesses. We believe that the
model parameters for NEUT may be
inaccurate. There is so little time associated
with the memory accesses for NEUT (due
to ~99% L1 cache hit ratio) that small
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Figure 2. Model fit for codes with varying problem size



absolute least square errors can result in
large relative changes to the parameters.

t tm t, tm

PC PC Origin | Origin
HEAT 2 128 : 0 60
HYDRO 3 117 2.4 50
HYDRO-T 0 . 69 0 11
SWEEP 11 145 11 43

Table 2. Memory Access times, t;

Figures 3 and 4 show graphs of cpigy
relative to the overall cpi for both machines
on each code. The second half of each
figure shows the corresponding overlap
parameter, my. A number of general
observations are apparent from the graphs.
The overall cpi on the Origin is typically
less than that of the Power Challenge by
factors of up to three (see also Luo, et al.
[7]). The percentage of cpi represented by
stall time on the Origin can be less than
40%, while, on the Power Challenge, it can
be as large as 80%. Two codes, HYDRO-T
and NEUT, exhibit high locality of reference
and cpu stalls due to memory accesses are
less than 10% of the total time. A study of
the algorithms/implementations of these
codes would lead one to expect this. NEUT

has a modest number of scalar variables per

particle that are used many times before
another particle is computed (high temporal
locality). HYDRO-T is a 2D code and was
re-coded from the original HYDRO so that
inner loops have stride-1 vectorizable loops
(high spatial locality). The success of the
transposition.is readily seen by comparing
the two versions in the figures. Memory
overlap parameters are higher on the Origin
than on the PowerChallenge which is
indicative of the better latency hiding
capability of the Origin.

Two extreme cases standout: HYDRO-T
with very high overlap, and SWEEP, with
very low overlap. The high spatial locality
of HYDRO-T means that there is a great
deal of parallelism between CPU and L1, L2
or main memory accesses. Additionally, on
the Origin 2000, major portions of this 2-D
algorithm fit entirely in the 4-MB L2 cache.
In contrast, SWEEP shows much less

overlap on either the Power Challenge or the
Origin. This is consistent with the
information in Table 2 in which we
attributed to loop-carried dependencies. The
results for NEUT, where the Power
Challenge shows high overlap and the
Origin shows very low overlap, are again
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Figure 3. Memory stall & overlap parameters (Power Challenge)
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due to the large parameter changes
associated with the least-squares fit
mentioned above.

b. Separate contributions to the stall time.

As described in Section II, we can perform
an experiment in which we systematically
varied Ty, the latency to main memory seen
by an executing thread, by placing the thread
and its associated data on two different
nodes of the Origin.

Using these experimental measurements and
other empirical data on the two machines,
we can infer the separated contribution of
cache size, memory latency and number of
outstanding misses to the improved cpi of
the Origin over the Power Challenge. Let F
be a measure of this overall improvement:

F=cpi*® [ cpi® (5)

We wish to find the contributing factors, f,
fo, and f, (corresponding to cache size,
outstanding misses and memory latency,
respectively) such that:

F=fxf,#f )

These factors can be defined as follows:

c
B3 156+ hOtEC + opi,
_ B3 5C + hothE + cpi, g
f 0= cpi"* (8)
.o
cpi
S 9)

hlt] +hot°

m-m

+cpi, '

The denominator in f; can be viewed as the
cpi of a virtual machine whose
characteristics are identical to those of the
Power Challenge but with L2 cache size
equal to that of the Origin (4MB L2). The
larger cache size simply changes the hit
ratios, h,.P C, to hl.o. Similarly, the
denominator in f, represents the cpi of a
virtual machine identical to the Origin
except for a memory latency equal to that of
the Power Challenge. The cpi®” for this
machine is directly measured on the Origin
by placing memory on a remote node so as
to increase memory access latency to the
same level of PowerChallenge. The



Code

ﬁ: f;) fm Fcalc Fobs
HEATS50 1.47 1.40 1.13 2.34 2.37
HEAT?75 1.02 1.58 1.09 1.76 1.80
HEAT100 1.00 1.54 1.12 1.73 1.68
HYDRO100 1.41 1.06 1.02 1.52 1.53
HYDRO150 1.34 1.08 1.09 1.59 - 147
HYDRO300 1.28 1.16 1.31 1.94 1.67
HYDRO-T100 1.16 1.05 0.99 1.21 1.28
HYDRO-T150 1.09 1.10 1.03 1.23 1.25
HYDRO-T300 1.01 1.12 1.08 1.22 1.21
SWEEP50 1.05 1.28 1.13 1.52 1.60
SWEEP75 1.00 1.18 1.27 1.50 1.63
SWEEP100 1.00 1.42 1.06 1.52 1.55

Table 3. Observed and calculated performance on the Origin2000

quantity, f;, then, is the ratio of the actual
Power Challenge to a Power Challenge with
the Origin’s cache. The quantity, £, is the
ratio of this “larger cache” Power Challenge
to an Origin with larger memory latency.
Finally, the quantity, f,,, is the ratio of this
“large latency” Origin to the real Origin.
The separate factors satisfy the relationship
in Eq.6.

Each of these factors is listed in Table 3,
along with the calculated and observed
values, F, for the codes. The calculated and
observed speedups are in good agreement.
With the exception of HYDRO and a small
HEAT problem, the values of £, are 1.0-1.1
indicating that the effect of a larger L2 cache
is negligible. The values of f;, are also quite
small (most showing10% or less
improvement). The overall improvement for
over half of benchmark codes comes from
the increased number of outstanding misses
on the Origin. About 75% of the total
improvement of the larger HEAT problems
and 50% to 80% of SWEEP come from this
feature.

VII. Conclusions

This paper describes a methodology using a
simple memory model with empirical
parameters that accounts for the overlap of
single processor execution with memory
accesses. This method is applied to real *
applications using performance counter data
available on actual machines. In general,
this model quantifies the amount of overall

time that is spent on memory accesses for
each application. On the Power Challenge,
the memory access time can be as large as
80% of the overall execution time. On the
Origin 2000, the memory access time is less
than 40%. Using this model, we discover
that the increased number of outstanding
misses in the Origin 2000 is a major
contributing factor to the performance
improvement in two out of four codes. The
effect of cache size on the jerformance of
these codes is generally much less important
except for a code with poor cache reuse
(HYDRO). Currently, the methodology is
an excellent diagnostic tool that can provide
information about the actual time that an
application spends in memory accesses.
This model can be eventually incorporated
into a performance tool. The methodology
can also be applied to any architecture with
the necessary hardware counter information.
Further work in our group is currently
underway to model other microprocessors
systems such as the IBM RS/6000 and Intel
Pentium Pro. Future work will attempt to
enhance the predictive capability of the
model.
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