
Geotechnical Properties of PARAHO Spent Shale

T. E. Gates

October 1982

**Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

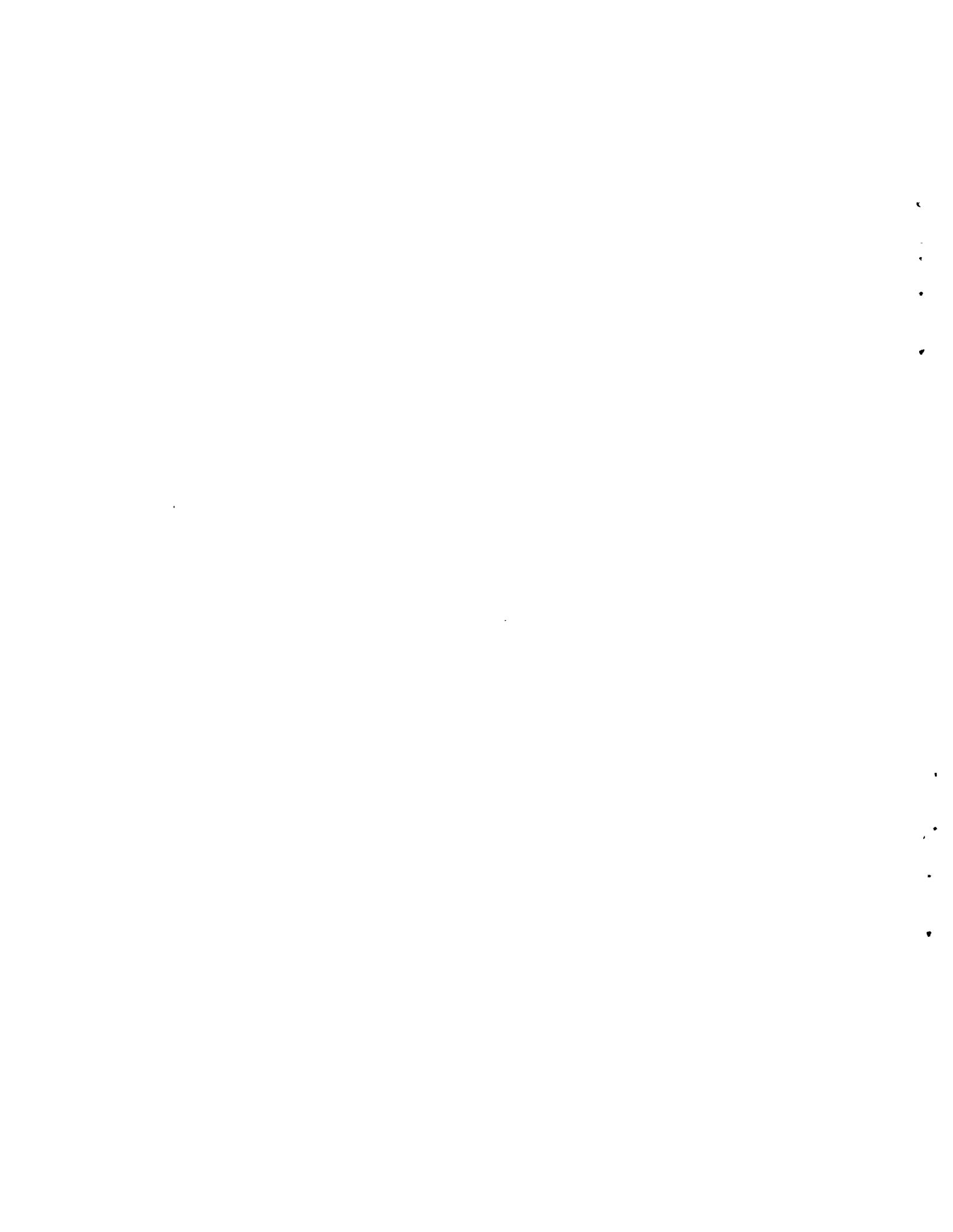
NTIS Price Codes
Microfiche A01

Printed Copy

Pages	Price Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A010
226-250	A011
251-275	A012
276-300	A013

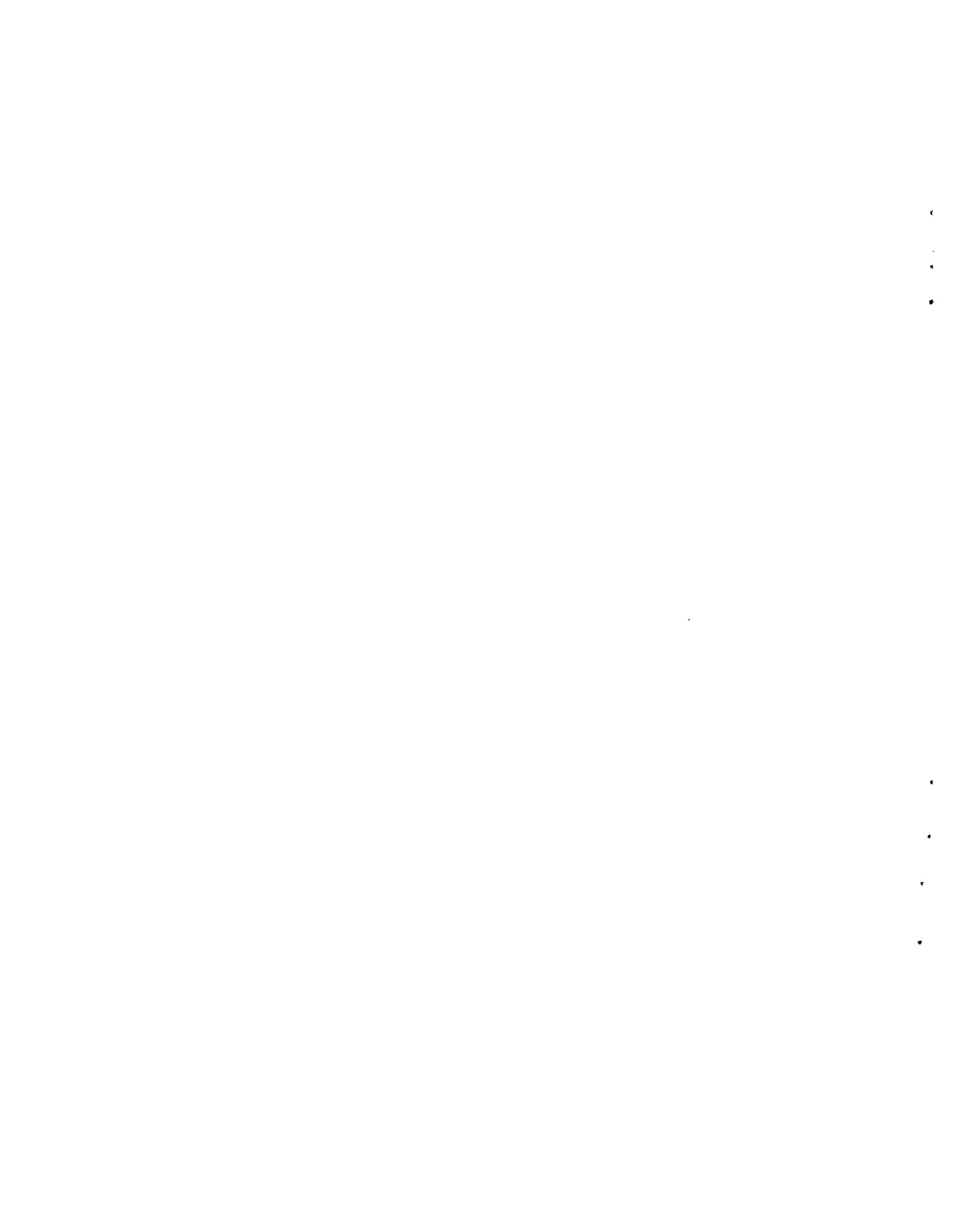
3 3679 00059 3055

PNL-4357
UC-11


GEOTECHNICAL PROPERTIES OF PARAHO
SPENT SHALE

T. E. Gates

October 1982


Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

ACKNOWLEDGMENTS

This study was sponsored and supported by the Department of Energy under the Terrestrial Effects of Oil Shale Program. The author gratefully acknowledges the suggestions provided by Ralph Franklin throughout the study as project administrator for DOE. The author also expresses appreciation to Dr. Glendon Gee of Pacific Northwest Laboratory for his suggestions throughout the study. Special credit is due Wilbert Wakamiya (now with Aerojet General-Environment), Michael Dodson, and Paula Heller of the PNL Earth Sciences Section in conducting the laboratory work and providing the PARAHO oil shale geotechnical measurements. Special thanks are expressed to Ms. Darla Kennedy and Ms. Mary Heid who efficiently performed the word processing for this report.

SUMMARY

A literature review of available geotechnical properties for PARAHO retorted shale was conducted. Also reported are laboratory measurements made at PNL on key hydraulic properties of the PARAHO retorted shale. A determination and working knowledge of the geotechnical properties of the retorted oil shale are useful in considering the proposed options for efficient disposal of the spent shale in a structurally and environmentally safe manner.

The PARAHO retorted shale is classified as a GP or GM soil depending on the amount of gravel present and the plasticity of the fines. Soils under these classifications indicate good compaction characteristics, good to excellent strength values, slight to medium compressibility, and overall a good foundation material.

The PARAHO material can be compacted in the laboratory to dry densities of 12.1 KN/m^3 (77.0 pcf)^(a) to 17.0 KN/m^3 (108.4 pcf) depending on compaction effort. Optimum water content for these densities range from 14.4 to 23.7 percent (dry weight), however, PARAHO can achieve high densities without requiring water for compaction. Vibration compaction is the best method of field compaction, with densities ranging from 98 to 110 percent of standard depending on the number of passes, lift thickness, and moisture content. Particle breakage up to 28 percent occurs with PARAHO shale, depending on compactive effort.

The addition of small quantities of water causes bulking of the PARAHO materials and corresponding low densities. This, however, is common for materials of these gradations and this "bulking" effect does not occur for the better graded scalped and replaced materials.

Water retention characteristics indicate that optimum moisture contents ("field capacity") range from 13 to 14% (dry weight). Water contents in excess

(a) Numerical values also may be expressed as mass per unit volume, where $N = 0.102 \text{ Kg}$; i.e., $9.8 \text{ KN/m}^3 = 1 \text{ Mg/m}^3$.

of these values are likely to drain with time. In semi-arid climates it seems possible that a significant amount (up to 0.1 MT of water/MT of shale) of waste water could be deposited in the spent shale piles with little or no seepage. [Note: MT (metric ton)].

PARAHO shale can be considered as semipervious to pervious with permeability values of 10^{-3} to 10^{-4} cm/s, depending on compaction effort. Lower permeability values have been reported (Holtz 1976, Snethen et al. 1978) with values ranging from 10^{-6} to 10^{-7} cm/s due to the greater amount of fines present. Large, but inconsistent, changes in permeability are observed with changes in compaction (void ratio). Additional study needs are indicated in this area.

PARAHO shale exhibits self-cementing characteristics. Under normal conditions cementing reactions are slow, with strength gains still indicated after 28 days. With its 3 to 8-fold strength gain and a design loading value of 572 KN/m^2 (83 psi), based on a safety factor of 3, PARAHO materials can be considered for construction of waste disposal dams and embankments. Inconsistent quality of the material would require careful considerations of its properties and variability for engineering design use, however.

The shear strength of PARAHO is comparable to similarly graded gravel with effective angles of internal friction, ϕ' , of 33 to 34 degrees. Depending on compactive effort and gradation of the material, effective cohesion values of 0.09 MN/m^2 to 0.19 MN/m^2 (128.05 psi to 277.45 psi) can be expected. Increased compaction effort does not noticeably improve PARAHO's shear strength parameters and generally exhibit positive pore pressures when sheared.

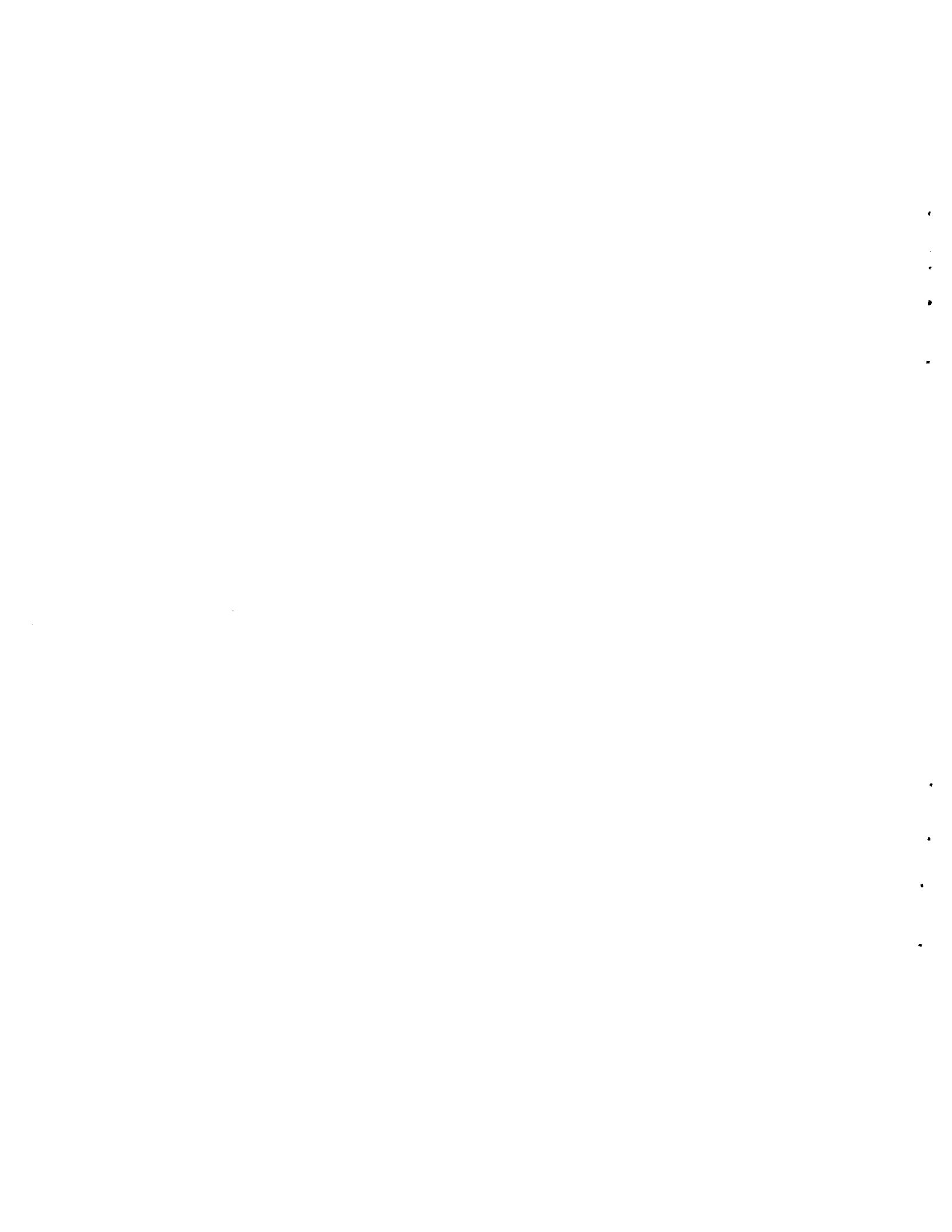
Drop height tests have been performed to determine densities achieved when processed oil shale is dropped from various conveyor heights. Major increase in density occurs within the initial 1.5 m (5 ft) of drop, from 10.3 KN/m^3 to 12.5 KN/m^3 (66.0 pcf to 80.0 pcf). Only a small amount of additional densification can be achieved by increasing the drop height to 5.0 m (16.5 ft).

CONTENTS

ACKNOWLEDGEMENTS	iii
SUMMARY	v
NOTATIONS	xi
1.0 INTRODUCTION	1
2.0 MATERIALS USED FOR TESTING	3
2.1 WATERWAY EXPERIMENT STATION (WES)	3
2.2 WOODWARD-CLYDE CONSULTANTS (WCC)	3
2.3 COLORADO STATE UNIVERSITY (CSU)	3
2.4 PACIFIC NORTHWEST LABORATORY (PNL)	4
3.0 PHYSICAL PROPERTIES	5
3.1 GRADATION	5
3.2 SPECIFIC GRAVITY	5
3.3 ATTERBERG LIMITS	7
3.4 SOIL CLASSIFICATION	8
4.0 ENGINEERING PROPERTIES	9
4.1 COMPACTION	9
4.2 CONSOLIDATION	14
4.3 STRENGTH	19
4.3.1 Unconfined Compression Tests	19
4.3.2 Triaxial Compression Tests	23
4.4 PERMEABILITY	25
4.5 SOUNDNESS	28

5.0 OTHER PROPERTIES	33
5.1 DROP HEIGHT TESTS	33
5.2 WATER RETENTION CHARACTERISTICS	33
5.3 FIELD CAPACITY	35
REFERENCES	39

FIGURES


3.1 Comparison of Raw and Retorted Oil Shale Gradation	6
3.2 Comparison of Gradation Analyses for PARAHO Retorted Oil Shale	7
4.1 Water Content-Density Relationship for 30.5 cm (12 in.) dia Compaction Test on PARAHO Retorted Oil Shale	10
4.2 Water Content-Density Relationship for 15 cm (6 in.) dia Compaction Test on Modeled PARAHO Retorted Oil Shale	11
4.3 Effects of Compaction Effort on Gradation for 30.5 cm (12 in.) dia Compaction Tests on PARAHO Retorted Oil Shale	15
4.4 Effects of Compaction Effort on Gradation for 15 cm (6 in.) dia Compaction Tests on PARAHO Retorted Oil Shale	16
4.5 PARAHO Shale Particle Size Distribution After Compaction	18
4.6 Effect of Curing Time on the Unconfined Compressive Strength for Compacted PARAHO	20
4.7 Total and Effective Stress Envelopes for PARAHO Compacted to Standard Effort Density	26
4.8 Effective Stress Envelope for PARAHO Compacted to Modified Effort Density	27
4.9 Permeability-Void Ratio Relationships for Compacted PARAHO Retorted Oil Shale	29
4.10 Permeability Values for Full Size PARAHO Material	30
5.1 Effect of Drop Height on Dry Density for PARAHO and TOSCO Retorted Oil Shales	34
5.2 Water Retention PARAHO Shale "Loose Pack"	37
5.3 Water Retention PARAHO Shale "Tight Pack"	38

TABLES

3.1	Summary of Atterberg Limits for PARAHO Shale	8
4.1	Summary of Compaction Test Results on PARAHO Oil Shale	12
4.2	Comparison of Compaction Results on PARAHO	13
4.3	Breakage Factors Due to Compaction of PARAHO Material	17
4.4	Percent Settlement Versus Applied Load for Retorted PARAHO Shale	18
4.5	Summary of Unconfined Test Results on PARAHO Oil Shale	21
4.6	Summary of Consolidated-Drained (S) and -Undrained (\bar{R}) Triaxial Compression Tests on PARAHO Material.	24
4.7	Permeability of PARAHO Shale at Different Dry Bulk Densities	31
4.8	Summary of Los Angeles Abrasion Test Results on PARAHO Shale	31
5.1	Summary of Drop Height Tests on PARAHO Shale	33
5.2	Water Retention Characteristics by Large Column	35
5.3	Water Retention Characteristics by Pressure Plate Extractor	36

NOTATIONS

A = coefficient related to ultimate compressive strength
B = breakage factor
C = cohesion
CS = compressive strength
D = coefficient related to initial compressive strength
 D_r = relative density
e = void ratio
G = specific gravity
k = coefficient of permeability
K = coefficient related to rate of cementation
LL = liquid limit
n = porosity
PI = plasticity index
PL = plastic limit
 \bar{R} = consolidated-undrained triaxial compression tests
S = consolidated-drained triaxial compression tests
T = curing time
 $u-u_0$ = induced pore pressure
 $\frac{\Delta V}{V}$ = volumetric strain
w = water content
 γ_d = unit weight of soil if water is entirely replaced by air
 ϵ = strain
 σ_1 = major principal stress
 σ_3 = minor principal stress
 ϕ = angle of internal friction; angle of shearing resistance

1.0 INTRODUCTION

Oil shale is a sedimentary rock containing kerogen. When heated the kerogen decomposes to yield oil. The principle concentration of oil shale in the United States is the Green River Formation, located in the three states of Colorado, Wyoming, and Utah. Of the total 64,750 km² (25,000 mi²) of oil shale in the Green River Formation, approximately 44,030 km² (17,000 mi²) are estimated to contain oil shale suitable for commercial development.

One of the major problems inherent to commercial oil shale production is the efficient and safe disposal of 80 to 85 percent of the total raw weight after retorting. To date several options have been proposed for the disposal of retorted oil shales, some of these being:

1. backfilling the mine with spent shale as the raw shale is removed;
2. filling deep narrow canyons of the oil shale mine area with the spent shale; and
3. using the spent shale for productive uses, such as material for road bases, waste disposal dams, and embankments.

The options require a determination and working knowledge of the geotechnical properties of the retorted oil shale for efficient disposal in a structurally and environmentally safe manner.

The processing method will determine the majority of the key geotechnical parameters. Currently, there are several retorting processes in various stages of development. These include the Chevron, Lurgi, Occidental, PARAHO, TOSCO, and others. Occidental is largely an in situ process with some above ground retorting, where the other processes listed completely utilize above ground retorting methods. The various processes can utilize fine or coarse materials, low or high temperatures, and direct or indirect heat mode producing different types of retorted shale.

The report is primarily a review of available geotechnical properties for PARAHO retorted shale reported in the literature, but also includes laboratory measurements made at PNL. The PARAHO internal combustion process is one of the simplest processes, utilizing gravity feed through a vertical retort

operating at about 649°C (1200°F) in the direct heat mode. The raw shale is crushed to about 6 cm (2 1/2 in.) maximum size, with the minus 9 mm (3/8 in.) fines removed and presently discarded.

The following section presents the materials used for testing by the various institutes. This is an important consideration since ASTM specifications limits the maximum size of the large fraction used in many tests, which could effect the resulting data.

Section 3.0 presents the physical properties of PARAH0 material. Of interest to geotechnical engineers for classification and comparison purposes are gradation, specific gravity, and Atterberg limits.

Engineering properties needed for design considerations include compaction, consolidation, strength, permeability, and soundness which are discussed in Section 4.0. Section 5.0 presents properties not specifically covered under Sections 3.0 or 4.0.

2.0 MATERIALS USED FOR TESTING

The PARAHO materials used in the testing needs to be considered in the comparison of results. Description of the sampling materials used for testing by the various institutes are provided below.

2.1 WATERWAY EXPERIMENT STATION (WES)

The PARAHO material was processed by passing the material through a Trommel rotating drum screen into various sieve sizes. The stored fractions were reconstituted for test specimens using the gradation determined by hand sieving. This gradation (Figure 3.2) was selected as representing the gradation of PARAHO material as it leaves the retort.

The reconstituted fractions consisted of two groups: 1) full-scale material, and 2) scalped and replaced. In the full-scale group fractions 8 cm (3 in.) and below were reconstituted based on the gradation determined by hand sieving. Specifications limit the maximum particle diameter to one fourth to one sixth of the corresponding mold diameter, hence, the larger particles must be scalped and replaced with an equal weight of finer material. This constituted the Group 2 material.

2.2 WOODWARD-CLYDE CONSULTANTS (WCC)

The PARAHO material passed the 8 cm (3 in.) screen with 96 to 98 percent passing the 4 cm (1 1/2 in.) screen. The plus 4 cm (1 1/2 in.) material was not used in the laboratory tests. Due to the small amount of this material to the total, it was felt that insignificant change on the properties would result.

2.3 COLORADO STATE UNIVERSITY (CSU)

The experimental approach was designed to simulate the operating conditions from a modeled sense. The initial raw oil shale was crushed to minus 4 cm (1 1/2 in.) to represent the 8 cm (3 in.) commercial shale size. All tests were conducted using this "modeled" material after retorting.

2.4 PACIFIC NORTHWEST LABORATORY (PNL)

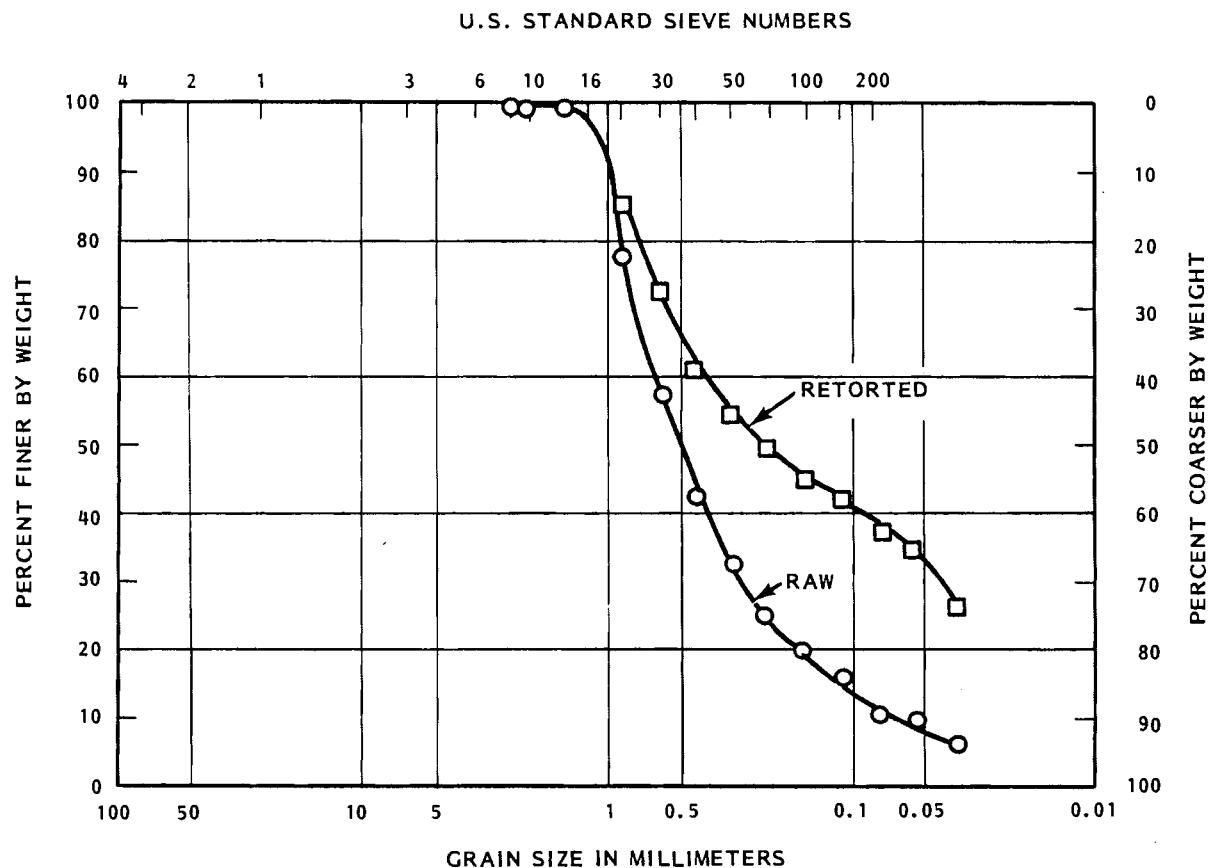
The PARAHO material was processed, using a Ro-Tap mechanical shaker, by passing the material through various sieve sizes. To assure uniformity between test specimens the fractions were reconstituted using the average percentage retained, during processing, for each respective sieve size. Full size material was used during reconstitution of the fractions.

3.0 PHYSICAL PROPERTIES

Gradation, specific gravity, and Atterberg limits are physical properties of interest to geotechnical engineers. From these physical properties, comparisons may be made with other soils exhibiting similar characteristics and expected behavior predicted. Not considered to be a physical property, but of equal importance, is the classification of the material.

3.1 GRADATION

Since the gradation of retorted shale is dependent on mining operation, type of crusher, and amount of crushing the material undergoes prior to retorting, gradation is highly variable. The gradation of retorted shale is, however, helpful in classifying the material and indicating its suitability for engineering purposes. The influence of the retorting process on gradation is evident in Figure 3.1.

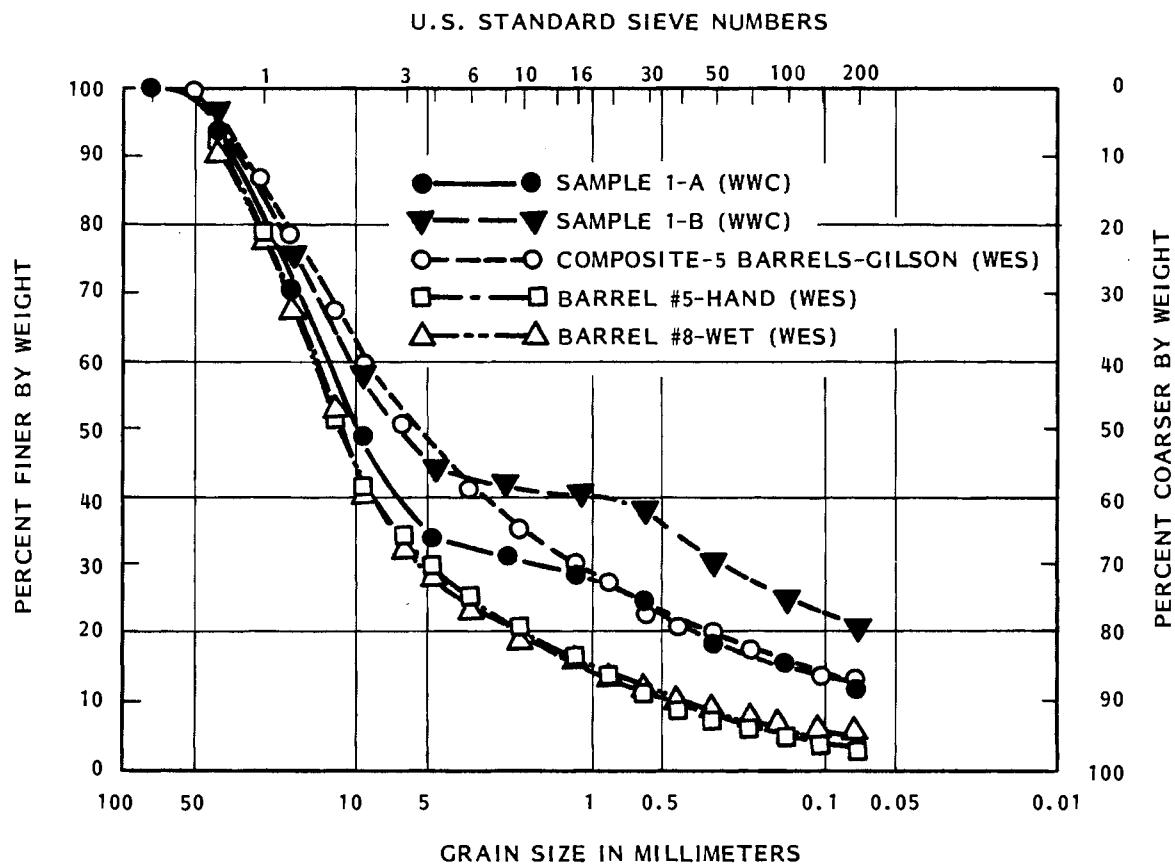

Figure 3.2 presents the results of the gradation analysis performed by WES (Townsend and Peterson 1979) on PARAHO material, plus those determined by WCC (Holtz 1976). Comparison between the hand-sieved and Gibson shaker-sieved gradation results (WES) show that the PARAHO material is friable and experiences some breakdown by the shaker, producing approximately 10 percent more fines.

Comparison of the gradations determined by WES with those of WCC show fairly close agreement in one case and a finer gradation obtained by WCC for another (Townsend and Peterson 1979). The agreement shown in Figure 3.2 is representative of the gradation of PARAHO retorted shale considering the variability of oil shale and gradations entering the retort.

3.2 SPECIFIC GRAVITY

The specific gravity may be expressed in three forms (Snethen et al. 1978, Townsend and Peterson 1979):

1. the specific gravity of solids, which is applied to soils finer than a No. 4 sieve;
2. the apparent specific gravity; and
3. the bulk or mass specific gravity.


FIGURE 3.1. Comparison of Raw and Retorted Oil Shale Gradation. Based on all material less than 2 mm (Townsend and Peterson 1979)

The apparent and mass specific gravities are both applied to soils coarser than the No. 4 sieve. The apparent specific gravity is routinely used when dealing with coarse aggregates.

Snethen et al. (1978) reported that the majority of apparent specific gravities for PARAH0 material varied from 2.52 to 2.59. The apparent specific gravity of the PARAH0 material used by WES and WCC was determined to be 2.42 and 2.54, respectively.

Mass specific gravity (relative bulk density) for PARAH0 material range between 1.80 and 1.85, and specific gravity of solids around 2.67.

In comparison with sandstone, limestone, basalt, and granite rockfill materials with values ranging from 2.65 to 2.87 for apparent specific gravity and 2.29 to 2.84 for mass specific gravity, the specific gravity values of PARAH0 material are quite low.

FIGURE 3.2. Comparison of Gradation Analyses for PARAHO Retorted Oil Shale (Townsend and Peterson 1979)

3.3 ATTERBERG LIMITS

The Atterberg limit tests determine, for fine-grained soils, the water contents at the boundaries between liquid, plastic, semisolid, and solid states. The plasticity index (PI), the difference between liquid and plastic limits, and liquid limit can be used to characterize mechanical properties of soil particles. The lower the plasticity index at a given liquid limit, the more likely it is that organic material is present and the greater the permeability and compressibility.

Summarized below are results of Atterberg limit tests conducted on PARAHO material by WES. WCC (Holtz 1976) listed PI values of 3 percent for PARAHO, which agree well with the results in Table 3.1.

TABLE 3.1. Summary of Atterberg Limits for PARAHO Shale
(Townsend and Peterson 1979)

Fraction Number	LL (a)	PL (a)	PI (a)	Remarks
-40	29	29	NP ^(b)	Blenderized
-40	32	28	4	Blenderized, 9 mo. soak
-40	37	32	5	Blenderized, 18 mo. soak

(a) LL, PL, and PI = liquid limit, plastic limit, and plasticity index, respectively.

(b) NP = nonplastic

The increase in PI values from nonplastic to 5 percent after 18 months of inundation indicates that some breakdown and softening can occur with weathering of the shale.

3.4 SOIL CLASSIFICATION

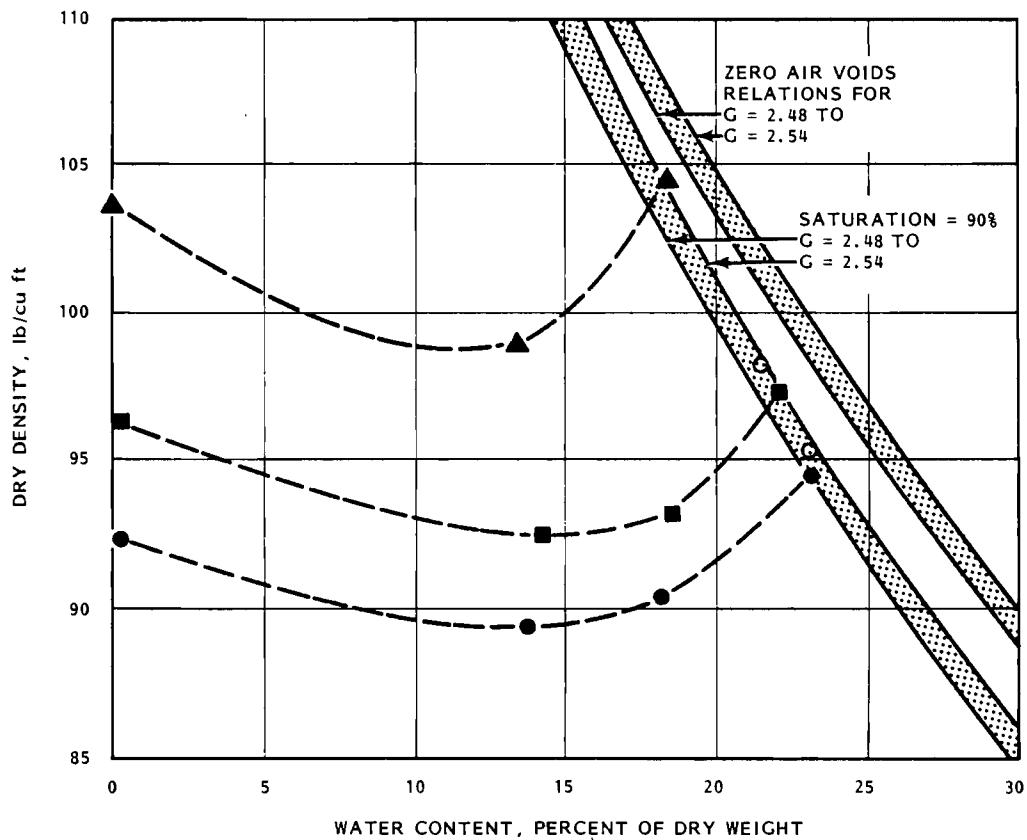
The retorted PARAHO shales, as sampled, would be classified as a GP or GM soil under the Unified Classification System depending on the amount of gravel present and the plasticity of the fines. Soils in the GP group are poorly graded gravels and sands containing less than 5% of nonplastic fines.

In general, soils in the GM group include gravels or sands which contain more than 12% of fines having little or no plasticity. Gradation is not important, with both well graded and poorly graded materials included. Some soils and gravels in this group may have a binder composed of natural cementing agents, thus the dry strength is provided by a small amount of soil binder or by cementation of calcareous material or iron oxide. The fine fraction of noncemented materials may be composed of silts or rock-flour types having little or no plasticity, and the mixture will exhibit no dry strength.

It may be concluded that, in general, soils under these classifications indicate good compaction characteristics, good to excellent strength values, slight to medium compressibility, and overall a good foundation material.

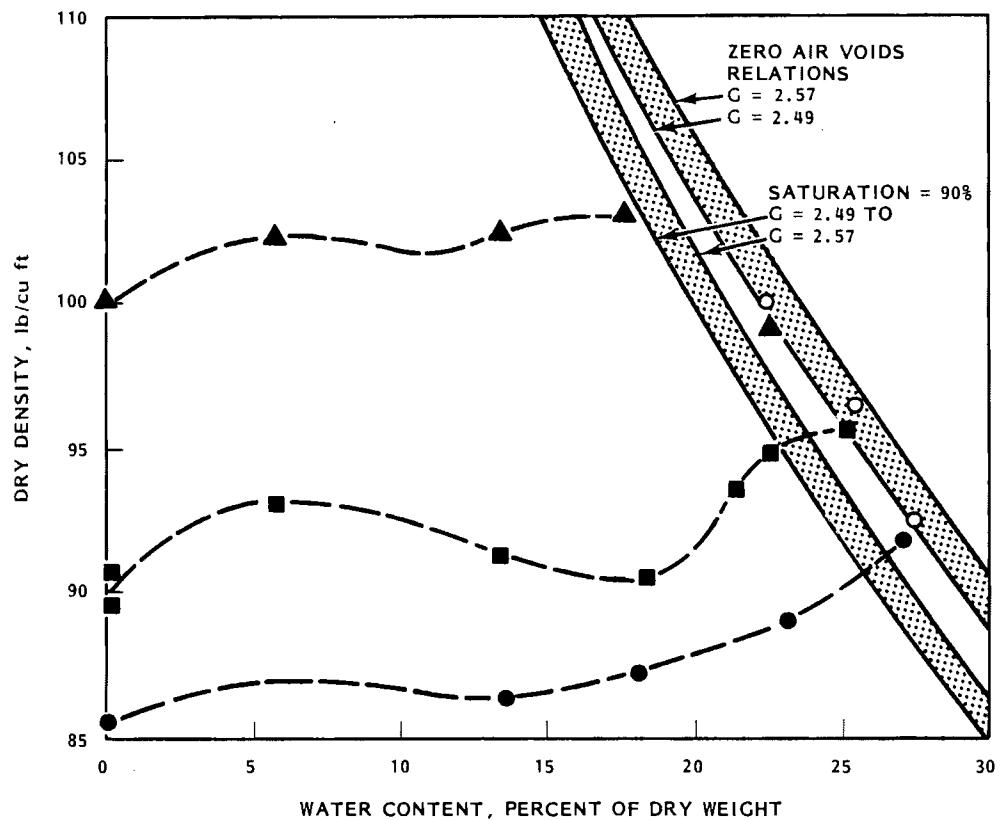
4.0 ENGINEERING PROPERTIES

The major engineering properties pertinent to geotechnical engineers for the determination of an efficient disposal method for retorted oil shale in a structurally and environmentally safe manner are compaction, consolidation, strength, permeability, and soundness.


4.1 COMPACTION

Numerous laboratory compaction tests have been performed to evaluate the compaction characteristics of PARAH0 material due to the importance of compaction in disposing of spent shale. Snethen et al. (1978) summarized the variability in compaction characteristics for this material in the following tabulation.

Compaction Energy KN/m^2 (psf)	ASTM Standard	Optimum Water Content w, %	Maximum Dry Density γ_d^{\max} , KN/m^3 (pcf)
297 (6,200)	50 D698	18.5 - 23.7	12.1-15.6 (77.0-99.2)
592 (12,375) Standard	D698	15.5 - 22.0	12.6-16.2 (80.2-103.2)
2,693 (56,250) Modified	D1557	14.4 - 22.0	13.9-17.0 (88.8-108.4)


These variations are largely attributed to differences in retorting mode, variability of the unprocessed shale, gradation, and particularly the amount of fines.

Shown in Figure 4.1 are results of large scale [30.5 cm (12 in.) dia] compaction tests using 60 percent of standard, standard, and modified compactive efforts on minus 5 cm (2 in.) dia PARAH0 material performed by WES. Companion tests performed on scalped and replaced minus 2 cm (3/4 in.) material using a 15 cm (6 in.) dia mold are shown in Figure 4.2. Using a 28 cm (11 in.) dia mold, vibrating table method maximum-minimum density tests were also performed on minus 5 cm (2 in.) and minus 2 cm (3/4 in.) dia material. Table 4.1 presents a summary of the compaction test data.

SAMPLE NO.	ELEV OR DEPTH	CLASSIFICATION	G	LL	PL	% > NO. 4	% > 3/4 in.					
	"AS BATCHED"		2.48		NP	72.5	33.5					
●	60% STANDARD EFFORT		2.51		NP	63.0	28.5					
■	STANDARD EFFORT		2.52		NP	58.0	25.5					
▲	MODIFIED EFFORT		2.54		NP	49.0	19.5					
SAMPLE NO.												
NATURAL WATER CONTENT, PERCENT												
OPTIMUM WATER CONTENT, PERCENT												
MAX DRY DENSITY, lb/cu ft												
REMARKS	$G_s = 2.67$	PROJECT	OIL SHALE (PARAHO)									
$G_a = 2.42$	NOTE: COULD NOT	12-in.-DIAM COMPACTION TESTS										
COMPACT MODIFIED EFFORT		AREA										
SAMPLE @ $w = 23\%$		BORING NO.			DATE MARCH 1977							
* FREE WATER		COMPACTATION TEST REPORT										

FIGURE 4.1. Water Content-Density Relationship for 30.5 cm (12 in.) dia Compaction Test on PARAHO Retorted Oil Shale (Townsend and Peterson 1979)

SAMPLE NO.	ELEV OR DEPTH	CLASSIFICATION	G	LL	PL	% > NO. 4	% > 3/4 in.
		"AS BATCHED"	2.49		NP	72.0	0
●		60% STANDARD EFFORT	2.53		NP	52.0	0
■		STANDARD EFFORT	2.54		NP	50.0	0
▲		MODIFIED EFFORT	2.57		NP	38.5	0
SAMPLE NO.							
NATURAL WATER CONTENT, PERCENT							
OPTIMUM WATER CONTENT, PERCENT							
MAX DRY DENSITY, lb/cu ft							
REMARKS	$G_s = 2.67$	PROJECT	OIL SHALE (PARAHO)				
$G_a = 2.42$		6-in.-DIAM COMPACTION TESTS					
* FREE WATER		AREA					
+NOTE: TEST DATA MAY BE	BORING TEST	DATE	MARCH 1977				
QUESTIONABLE.	COMPACTION TEST REPORT						

FIGURE 4.2. Water Content-Density Relationships for 15 cm (6 in.) dia Compaction Tests on Modeled PARAHO Retorted Oil Shale (Townsend and Peterson 1979)

TABLE 4.1. Summary of Compaction Test Results on PARAHO Oil Shale
(Townsend and Peterson 1979)

<u>Gradation Size</u>	<u>Compaction Effort</u>	Maximum Dry Density γ_d _{max} pcf	Minimum Dry Density γ_d _{min} pcf	Water Content w, %	Relative Density D_r , %
Original (-2 in. fraction)	Vibration 60% of standard	89.2 94.6	66.0 ---	23.3	116.2
	Standard Modified	97.5 104.4	---	22.2 18.4	124.2 141.4
Scalped and replaced (-3/4 in. fraction)	Vibration 60% of standard	81.8 91.9	62.9 ---	27.2	136.6
	Standard Modified	95.7 103.1	---	25.2 17.7	148.3 168.8
Parallel (-3/4 in. fraction)	Standard	88.9 88.0		0.2 22.8	
Scalped (-3/4 in. fraction)	Standard	88.7 92.5		0.2 23.1	

The results presented in Figures 4.1 and 4.2 indicate that both full scale and scalped and replaced materials produced significantly higher densities with increased compaction effort. A comparison of results in Table 4.1 also shows that the scalping and replacement procedure underestimates the maximum dry density and overestimates the optimum water content. Others have also observed that scalping and replacement modeling fails to achieve results comparable to full scale (Snethen et al. 1978).

Table 4.2 compares results between the WES and WCC study. These comparisons show that the material tested at WES produced greater densities due to its greater amount of coarse particles for both the minus 5 cm (2 in.) and minus 2 cm (3/4 in.) gradations than did the finer grained WCC minus 4 cm (1 1/2 in.) and minus 2 cm (3/4 in.) gradations.

TABLE 4.2. Comparison of Compaction Results on PARAHO
(Townsend and Peterson 1979)

Compaction Effort ft-lb/ft ³	WES -2 in. Material Breakage			WCC -1-1/2 in. Material Breakage			WES -3/4 in. Material Breakage			WCC -3/4 in. Material Breakage		
	w _{opt} %	γ _d _{max} pcf	B	w _{opt} %	γ _d _{max} pcf	B	w _{opt} %	γ _d _{max} pcf	B	w _{opt} %	γ _d _{max} pcf	B
6,200 ^(b) or 7,425 ^(c) (50% or 60% of standard)	23.3	94.6	11	22	87.5	19	27.2	91.9	20	27.2	85.5	10
12,375 (standard)	22.2	97.5	16	22	94.8	22	25.3	95.7	24	25.2	90.2	17
56,250 (modified)	18.4	104.4	25	22	98.9	25	17.7	103.1	34	22.0	96.4	20

(a) w_{opt} = optimum water content

(b) WCC

(c) WES

The extent of particle breakage during compaction for tests performed by WES on full scaled and scalped and replaced gradations of PARAH0 material are shown in Figures 4.3 and 4.4, respectively. Little difference in the magnitude of particle breakage exists for 60 percent of standard and standard compaction effort. Considerable breakage occurs, however, when modified effort is applied. Table 4.3 summarizes the breakage factor B, for the full scale and scalped and replaced compaction tests. These B values show a progressive increase with compaction effort.

Similar results were obtained by PNL where full scale compaction tests, using a 15 cm (6 in.) dia mold, were performed under standard, 50 percent modified, and modified compaction effort. Sieve analyses were performed after each compaction test and the results are summarized in Figure 4.5.

For materials containing less than 12 percent fines ASTM criteria recommend using a vibratory table method to obtain the maximum dry density. The maximum dry density achieved by vibration was only 14.0 and 12.8 KN/m³ (89.2 and 81.8 pcf) for full scale and scalped and replaced gradations, respectively, for the WES "as batched" gradations containing only 3 percent fines. These results are considerably lower than the maximum dry density achieved by 60 percent of standard compaction effort shown in Table 4.1.

WCC also presented results showing that vibratory densification produced lower densities than those achieved by impact compaction. Hence, it might be concluded that retorted PARAH0 shale does not respond favorably to vibratory compaction. This, however, is contrary to field compaction test which showed that the most economical compaction of PARAH0 material could be obtained using a vibratory drum roller (Holtz 1976, Snethen et al. 1978).

4.2 CONSOLIDATION

Settlement properties are very important in assessing the stability of an embankment constructed of retorted shales. Further, the total volume required in a disposal site, its permeability, and strength characteristics are influenced by consolidation of retorted shale.

Snethen et al. (1978) reported settlement properties on retorted shale. Summarized in Table 4.4 are the percent settlement for the various applied loads (ASTM D698 energy).

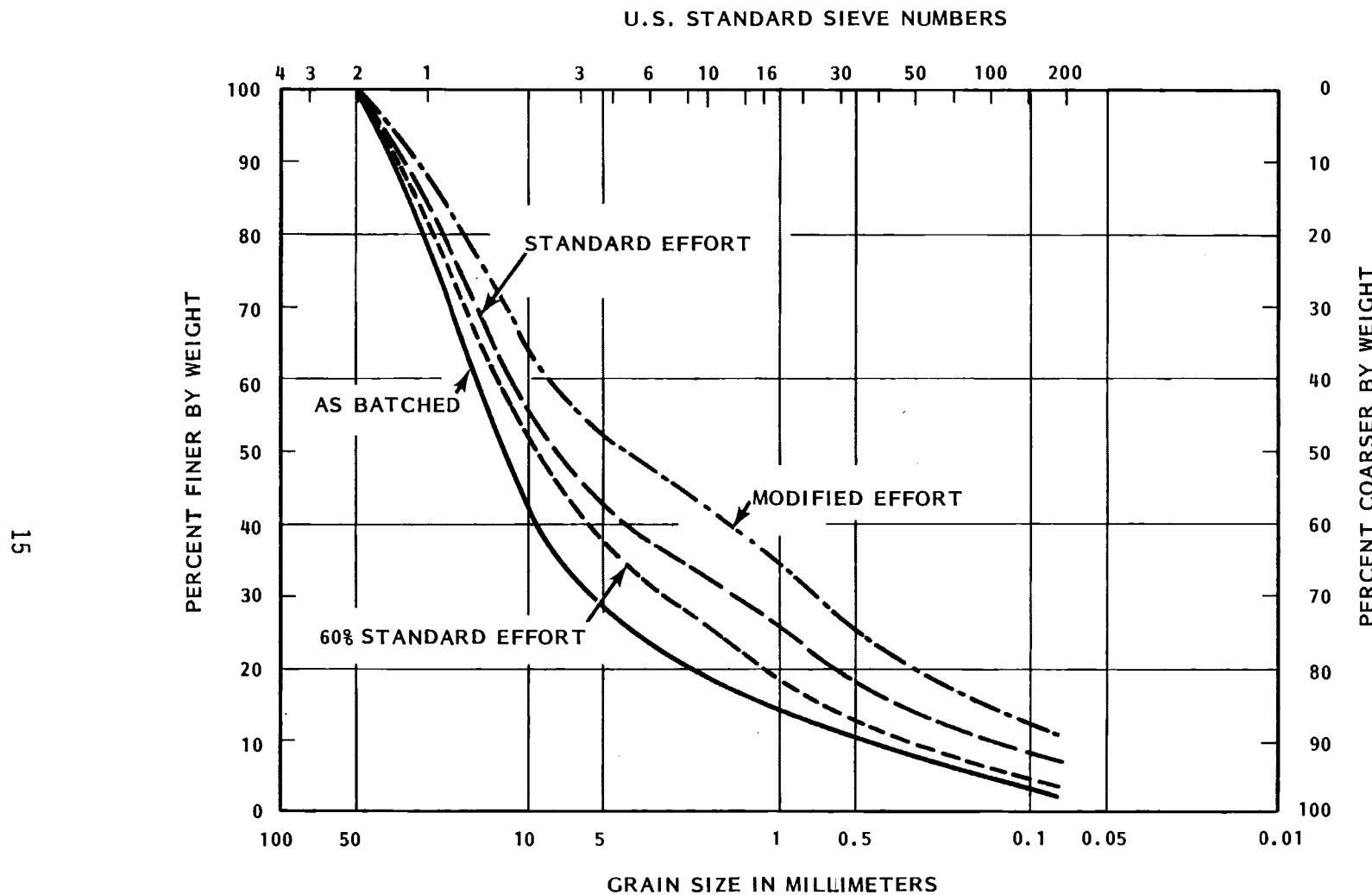


FIGURE 4.3. Effects of Compaction Effort on Gradation for 30.5 cm (12 in.) dia Compaction Tests on PARAHO Retorted Oil Shale (Townsend and Peterson 1979)

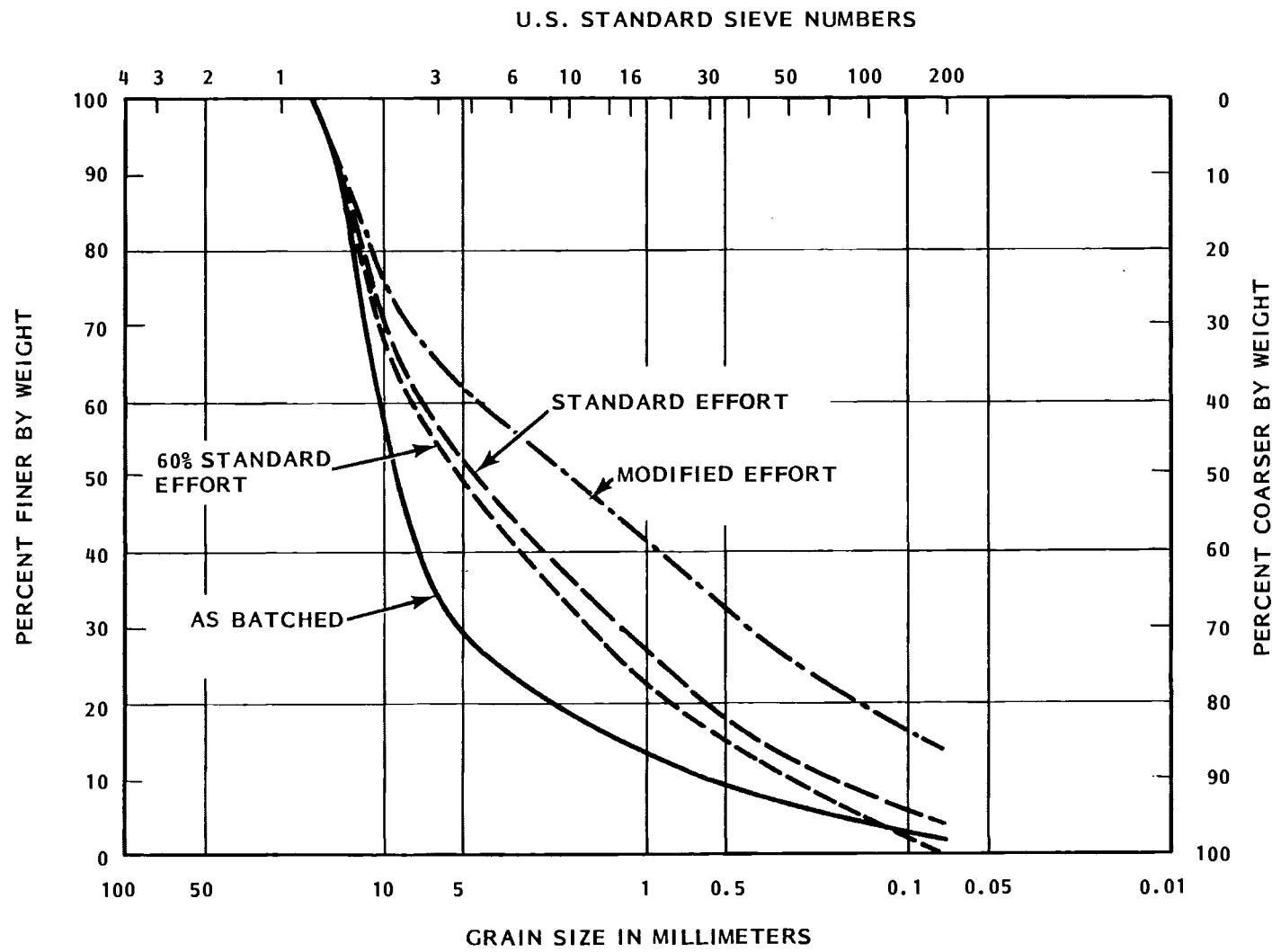


FIGURE 4.4. Effects of Compaction Effort on Gradation for 15 cm (6 in.) dia Compaction Tests on PARAHO Retorted Oil Shale (Townsend and Peterson 1979)

TABLE 4.3. Breakage Factors Due to Compaction of PARAHO Material (Townsend and Peterson 1979)

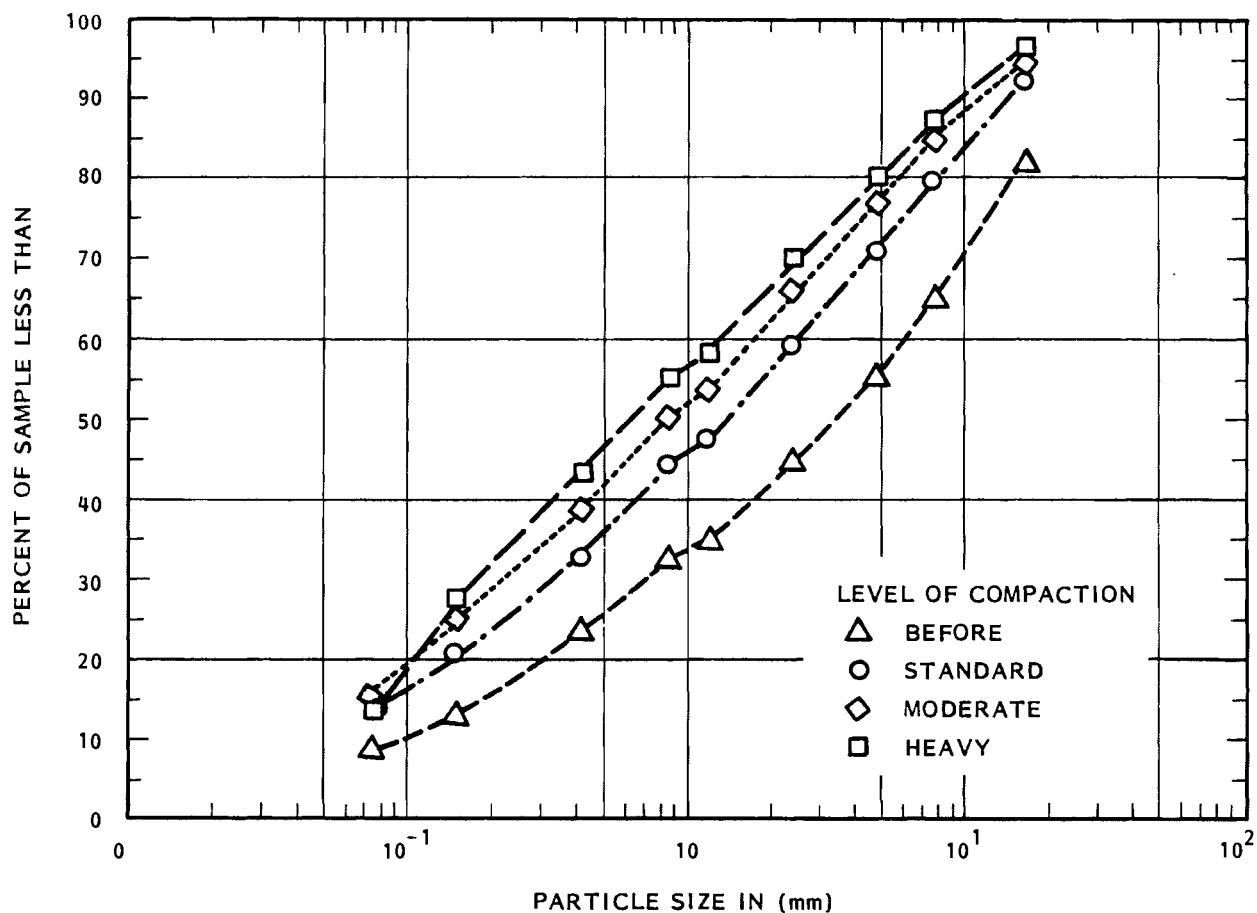


FIGURE 4.5. PARAH0 Shale Particle Size Distribution After Compaction

TABLE 4.4. Percent Settlement Versus Applied Load for Retorted PARAH0 Shale (Snethen et al. 1978)

Material	Applied Load		Settlement percent	Dry Density	
	psi	KN/m ²		pcf	KN/m ³
PARAH0	50	345	0.7 - 2.8	95.5 - 88.0	15.0 - 13.8
	100	689	0.8 - 3.4	95.5 - 98.3	15.0 - 15.4
	200	1379	0.8 - 4.8	95.5 - 98.3	15.0 - 15.4
	70	483	0.4 - 3.4	88.8 - 102.5	13.9 - 16.1
	145	1000	0.7 - 4.8	85.0 - 97.4	13.4 - 15.3
	300	2068	0.8 - 5.6	85.0 - 97.4	13.4 - 15.3
	1000	6895	5.3 - 10.7	80.2 - 96.6	12.6 - 15.2

The total vertical strains in the WES study varied from 4.7 to 10.0 percent when the vertical stress was $5,516 \text{ KN/m}^2$ (800 psi) and the maximum dry density around 15.3 KN/m^3 (97.5pcf) for standard compaction energy. WCC obtained settlement values ranging from 2.2 to 11.3 percent with a vertical stress of $6,895 \text{ KN/m}^2$ (1000 psi) and a maximum dry density of 14.2 KN/m^3 (90.2pcf). These results agree quite well with each other, as well as the results presented by Snethen et al. (1978).

The compressibility of compacted PARAH0 material is comparable to that of dense rockfill or sands. Approximately 28 percent particle breakage during consolidation can be experienced for standard effort densities consolidated to $5,516 \text{ KN/m}^2$ (800 psi) normal stress.

4.3 STRENGTH

The stability or load carrying capacity of retorted oil shale is determined by its strength characteristics. Strength has been quantified using several parameters and tests, i.e., compressive strength, modulus values, and triaxial shear strength.

4.3.1 Unconfined Compression Test

The self-cementing characteristics of spent shale are well documented (Farris 1979, Holtz 1976, Snethen et al. 1978, Townsend and Peterson 1979) and have been tested by the unconfined compression test. Summarized in Figure 4.6 and Table 4.5 are unconfined compression results for PARAH0 material performed by WES. Comparisons between these results and previous test results by WCC are given below.

Unconfined Compressive Strength, psi

Compaction Effort	WES	WCC
	0d	28d
60% of Standard	5.7	27.4
Standard	8.2	66.8
Modified	61.3	194.8

d - days
psi = 6.894 KN/m^2

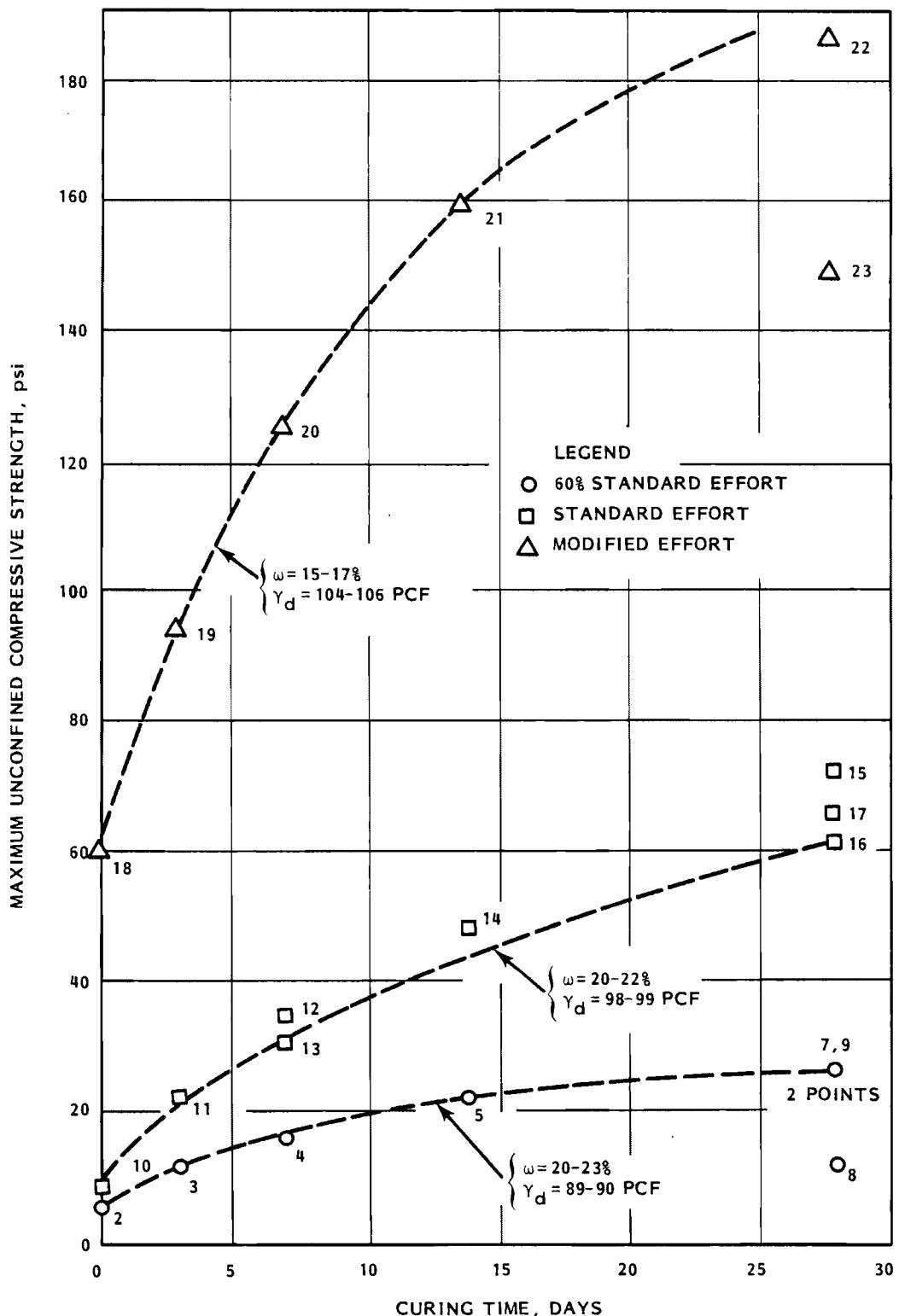


FIGURE 4.6. Effect of Curing Time on the Unconfined Compressive Strength for Compacted PARAHO (1 psi = 6.9 kPa) (Townsend and Peterson 1979)

TABLE 4.5. Summary of Unconfined Test Results on PARAHO Oil Shale
(Townsend and Peterson 1979)

Symbol Number on Figure	Test No.	Compaction Effort	Curing Time days	As Tested		Maximum Unconfined Strength	Secant Young's Modulus to 1/2 Maximum Unconfined Strength		Remarks
				Water Content w, %	Dry Density γ_d , pcf		psi	tsf	
1	UC-L-0-9	60% standard	0	22.8	89.2	--	--	--	Questionable results
2	UC-L-0-9A		0	22.5	89.8	5.7	0.41	720	51.5
3	UC-L-3-10		3	21.6	89.3	11.9	0.86	650	46.5
4	UC-L-7-11		7	21.5	90.3	16.3	1.17	1,560	112.0
5	UC-L-14-12		14	20.5	90.4	22.8	1.64	Not available	Initial strain data are questionable
6	UC-L-28-13		28	20.2	97.1	51.3	3.69	2,730	196.5
7	UC-L-28-13A		28	23.0	93.0	27.4	1.97	1,180	85.5
8	UC-L-28-13B		28	20.4	82.9	12.5	0.90	1,130	81.5
9	UC-L-28-13C		28	20.4	90.5	27.4	1.97	1,840	132.5
10	UC-S-0-5	Standard	0	20.7	99.6	8.2	0.59	510	37.0
11	UC-S-3-6		3	21.4	99.0	22.4	1.61	890	64.0
12	UC-S-7-1		7	21.3	98.0	35.6	2.56	950	68.5
13	UC-S-7-4		7	21.3	98.2	31.1	2.24	1,430	103.5
14	UC-S-14-7		14	20.3	100.9	49.3	3.55	2,230	160.5
15	UC-S-28-2		28	20.4	98.3	73.6	5.30	3,640	262.0
16	UC-S-28-3		28	22.1	98.1	62.3	4.49	2,740	197.0
17	UC-S-28-8		28	19.5	101.2	66.8	4.81	2,630	189.0
18	UC-M-0-14	Modified	0	17.2	104.4	61.3	4.41	4,100	295.0
19	UC-M-3-15		3	16.6	105.8	95.6	6.88	4,240	305.0
20	UC-M-7-16		7	15.6	105.2	127.0	9.14	8,170	588.0
21	UC-M-14-17		14	15.7	105.5	161.6	11.64	12,000	864.0
22	UC-M-28-18A		28	17.4	107.2	194.8	14.03	11,818	850.9
23	UC-M-28-18B		28	15.1	106.5	151.4	10.90	11,818	850.9

Considering differences in curing temperatures, percent fines and gradation differences, and the amount of time between retorting and compaction (all affecting cementing reactions) the variance between the two studies for the 60% of standard and standard compaction effort may be explained. The comparisons are fairly close for the modified compaction effort, however.

The time between mixing and compaction, "mellowing time", is an important construction consideration for stabilized soils. The results presented in Table 4.5 shows that mellowing times up to 16 hours had no effect on resulting unconfined compressive strengths. If self-cementing is desired several important design and construction guidelines are evident based upon these considerations (Snethen et al. 1978):

1. PARAH0 satisfies recommended criteria for lime stabilized soils, hence, would be judged as a suitable stabilized material.
2. Increased density produces higher strengths.
3. Mellowing times up to 16 hours have little effect on self-cementing of PARAH0. This time should be kept to a minimum, however. Increased compaction effort can be substituted to obtain greater strengths, if the expense of increased compaction effort is justified.
4. The self-cementing components do not deteriorate significantly due to exposure to air after retorting. To maximize self-cementing, exposure time between retorting and placement should be minimized.
5. Self-cementing characteristics of PARAH0 are retained.
6. Cementing reactions under normal curing conditions for PARAH0 are slow. Additional strength gains are indicated after 28 days. Heavy equipment should be restricted from tracking compacted areas at least 7 to 14 days following compaction.

An equation to estimate the 3 to 8 fold increase in compressive strength from the cementation has been proposed by Farris (1979) and given below.

$$CS^* = \frac{A}{1 + De^{-KT}} \quad (4.1)$$

where,

CS = compressive strength, psi

A = coefficient related to ultimate compressive strength, psi

D = coefficient related to initial compressive strength, 1/psi

K = coefficient related to rate of cementation, 1/days

T = curing time, days

* Considerable variability in the results was observed; the predictive equation above fits the results to within approximately 345 KN/m^2 (50 psi) (Farris 1979).

With an assumed safety factor of 3, a design loading value of 572 KN/m^2 (83 psi) can be considered when using PARAH0 materials for construction of waste disposal dams and embankments (Farris 1979). Inconsistent quality of the material would require careful considerations of its properties and variability for engineering design use, however.

4.3.2 Triaxial Compression Test

Presented in Table 4.6 is a summary of consolidated-drained (S) and undrained (\bar{R}) triaxial compression tests on PARAH0 material performed by WES. Interpretation of shear strength parameters based on total stresses from \bar{R} test envelopes is influenced by several factors:

1. curved failure envelopes,
2. negative pore pressures, and
3. criteria selecting maximum deviator stress.

Typically the failure envelope is curved, based upon total stresses, thus the angle of internal friction (ϕ) and cohesion (C) are often only for the higher confining stresses.

WCC provided strength parameters of $C' = 1.95 \text{ kg/cm}^2$ (27.7 psi) and $\phi' = 34.2$ degrees for S triaxial compression tests on 15 cm (6 in.) dia specimens of 4 cm (1 1/2 in.) maximum particle sized PARAH0 material at standard density (Holtz 1976). Where ϕ' and C' are the effective angle of friction and effective cohesion, respectively. These values agree quite well with those observed in the WES investigation.

TABLE 4.6. Summary of Consolidated-Drained (S) and -Undrained (R) Triaxial Compression Tests on PARAHO Material (Townsend and Peterson 1979)

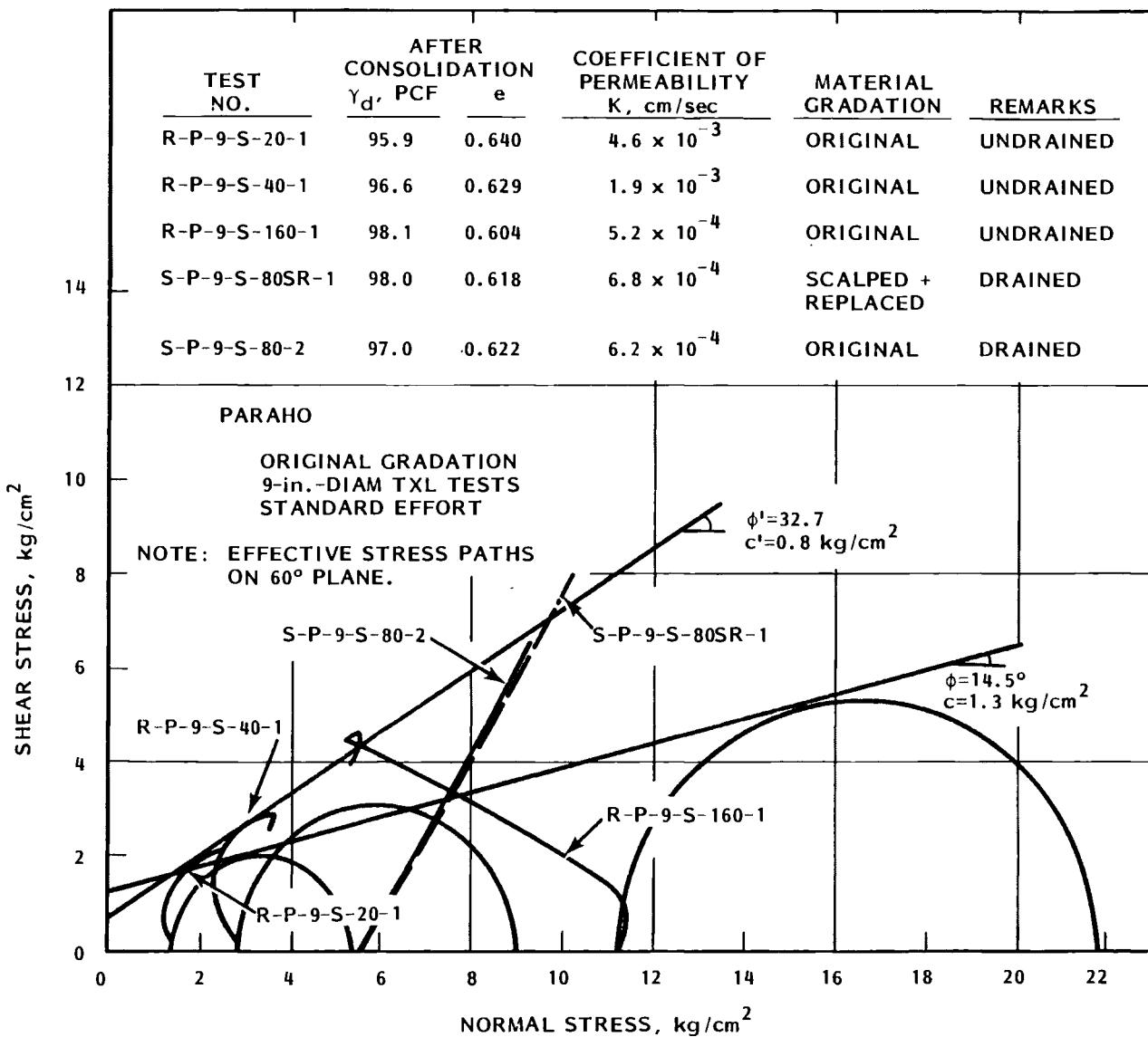
Test No. (a)	Compaction Effort (b)	Specimen Conditions						At Maximum Effective Stress Ratio, $\frac{\sigma_1}{\sigma_3}$									
		Initial			After Consolidation			Maximum B Before Consolidation $B = \frac{\sigma_1 - \sigma_3}{\sigma_0 - \sigma_3}$	Permeability cm/sec	$\frac{\sigma_1 - \sigma_3}{\sigma_0 - \sigma_3}$	$\frac{u - u_0}{\sigma_0 - \sigma_3}$	Induced Pore Pressure $\frac{u - u_0}{\sigma_0 - \sigma_3}$	Volumetric Strain $\frac{\Delta V/V_0}{\sigma_0 - \sigma_3}$	Minor Principal Stress $\frac{\sigma_3}{\sigma_0 - \sigma_3}$	Effective Stress Parameter, A $A = \frac{u - u_0}{\sigma_1 - \sigma_3}$	Pore Pressure Ratio $\frac{u - u_0}{\sigma_1 - \sigma_3}$	Strain ϵ
		Water Content $w, \%$	Dry Density $\gamma_d \text{ pcf}$	Saturation $S, \%$	Void Ratio e	Dry Density $\gamma_d \text{ pcf}$	Void Ratio e										
S-P-9-L-20-1	(1)	17.0	90.1	57.8	0.738	90.9	0.724	0.97	1.5×10^{-2} (c)	6.23	N/A	2.65	1.66	4.75	N/A	15.02	
		18.3	89.3	62.2	0.753	91.4	0.714	0.97	1.0×10^{-2} (c)	8.95	N/A	4.81	3.04	3.94	N/A	13.2	
		23.3	89.2	79.1	0.756	92.2	0.700	0.97	5.8×10^{-3}	14.29	N/A	6.29	5.86	3.44	N/A	14.2	
		17.8	88.7	60.6	0.765	95.4	0.643	0.96	2.7×10^{-3}	27.54	N/A	7.61	11.35	3.43	N/A	15.2	
24	(2)	18.7	95.1	72.8	0.654	95.9	0.640	0.97	4.6×10^{-3}	4.03	0.68	N/A	0.80	6.02	0.17	1.5	
		17.3	95.1	67.2	0.654	96.6	0.629	0.98	1.9×10^{-3}	6.13	1.59	N/A	1.38	5.45	0.26	2.0	
		17.5	95.2	68.2	0.652	98.1	0.604	0.96	5.2×10^{-4}	10.61	8.65	N/A	2.73	4.89	0.81	5.1	
		18.1	96.5	70.6	0.629	98.0	0.618	0.97	6.8×10^{-4}	18.79	N/A	1.80	5.72	4.28	N/A	7.8	
		18.6	94.6	72.7	0.662	97.0	0.622	0.97	6.2×10^{-4}	14.81	N/A	4.20	5.69	3.60	N/A	14.24	
S-P-9-M-20-1	(3)	13.1	98.7	51.5	0.606	99.5	0.594	0.98	5.9×10^{-4}	10.34	N/A	0.48	1.57	7.58	N/A	1.5	
		12.9	100.3	50.6	0.581	101.2	0.567	0.97	7.6×10^{-4}	14.35	N/A	0.57	2.95	5.86	N/A	1.8	
		13.0	100.3	51.2	0.581	101.8	0.558	0.97	4.6×10^{-4}	12.32	3.56	N/A	2.22	6.55	0.29	1.0	
		12.8	98.5	50.4	0.601	101.7	0.559	0.99	5.7×10^{-4}	32.23	N/A	2.24	11.33	3.84	N/A	7.0	

(a) S = consolidated-drained; R = consolidated-undrained; P = PARAHO; SR = scalped and replaced gradation; 9 = 9-in. dia; 6 = 6-in. dia; L, S, and M = low, standard, or modified compaction effort; 20, 40, 80, or 160 = confining pressure; 1 or 2 = specimen number. Example: S-P-9-L-20-1 = 9-in.-dia PARAHO specimen, low compaction effort, 20 psi confining pressure, test specimen No. 1.

(b) (1) indicates 60% of standard ($G_s = 2.51$); (2) standard ($G_s = 2.52$); and (3) modified ($G_s = 2.54$).

(c) Permeability data may be questionable.

Figures 4.7 and 4.8 present the effective stress paths, Mohr's circles based on maximum effective principle stress ratio, and the total and effective stress envelopes for PARAH0 materials. The following tabulation summarizes and compares the total and effective stress parameters (Townsend and Peterson 1979).


Material and Compaction Effort	Maximum Particle Size, in.	Total Stress		Effective Stress	
		ϕ , deg	c , kg/cm ²	ϕ' , deg	c' , kg/cm ²
PARAH0					
9-in.-diam, 60% of Standard	1-1/2			33.0	0.9
Standard	1-1/2	14.5	1.3	32.7	0.8
Modified	1-1/2	31.0(a)	0	32.3	1.9
Modeled PARAH0					
9-in.-diam, Standard(a)	3/4			38.0	0
6-in.-diam, Standard	3/4	17.1	1.7	37.9	1.1
PARAH0 Fines					
1.4-in.-diam, Standard		23.2	1.7	33.6	2.3

(a) Based upon single test.

For these confining stresses typically well graded compacted gravels have effective angles of internal friction ranging from 40 to 45 degrees. It may be concluded that PARAH0 is slightly weaker than similarly graded gravels even though it possess adequate strength. Further, increased compaction effort does not noticeably improve PARAH0's shear strength parameters.

4.4 PERMEABILITY

Figure 4.9 presents results of permeability measurements, preceding shear of triaxial compression tests, on specimens of PARAH0 materials compacted to densities comparable to 60 percent of standard, standard, and modified compaction efforts performed by WES. Also shown are permeability values based upon consolidation tests by WES. Both sets of data are consistent and show decreasing permeabilities with decreasing void ratios. For 60 percent of standard effort densities the permeabilities for PARAH0 decreased from 10^{-3} cm/s to 10^{-4} cm/s for modified effort densities. The permeabilities determined from consolidation tests reflect lower values due to lower void ratios achieved from higher consolidation stresses.

FIGURE 4.7. Total and Effective Stress Envelopes for PARAHO Compacted to Standard Effort Density (Townsend and Peterson 1979)

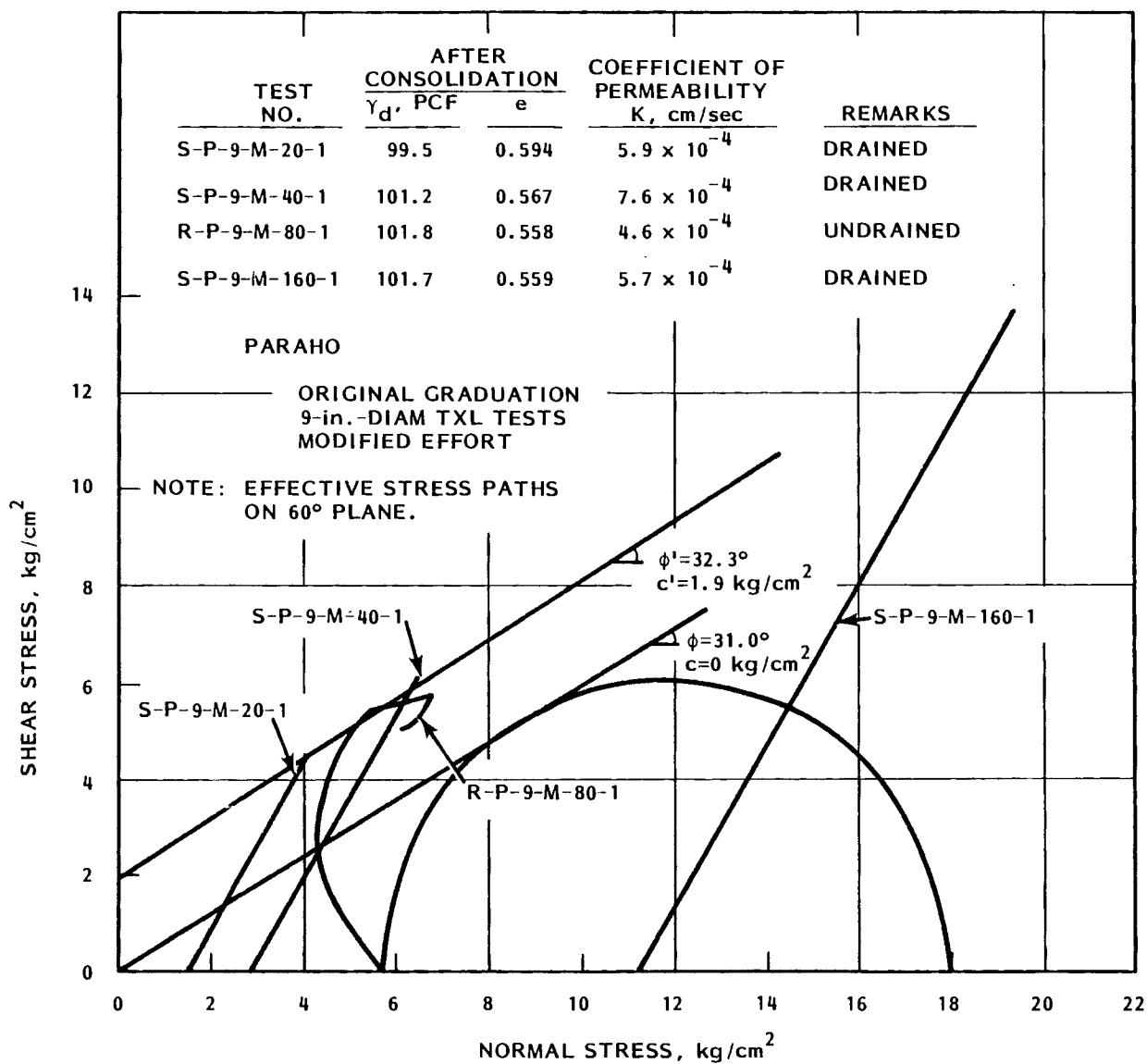


FIGURE 4.8. Effective Stress Envelope for PARAHO Compacted to Modified Effort Density (Townsend and Peterson 1979)

Permeability values determined by WCC on 20 cm (8 in.) dia specimens of 4 cm (1 1/2 in.) PARAH0 material are also presented in Figure 4.9 for comparison. This comparison shows considerably lower permeabilities for comparable void ratios due to the greater amount of fines for WCC material than the WES material.

Using two different sampling apparatuses, permeability data were collected for full size PARAH0 material at PNL and the results shown in Table 4.7. A 18 cm by 18 cm (7 in. by 7 in.) square column, 2 m (6 ft) high was used along with a 15 cm (6 in.) dia cylindrical cell, 15 cm (6 in.) high for comparison. Both apparatuses were packed with a low density and a high density pack. The permeability range between the two apparatuses is shown in Figure 4.10 for each respective packing.

The results of Townsend and Peterson (1979) are also shown in Figure 4.10 for comparison. The variance between results are due to differences in packing conditions (density) and the amount of fines present.

4.5 SOUNDNESS

The soundness of an aggregate material is a measure of its ability to resist degradation from an applied force. Soundness is quantified using the Los Angeles Abrasion test (LAA). Shown below is a summary of Los Angeles Abrasion tests on PARAH0 shale. With LAA values of 79.7, 80.1, and 66.7 percent for the various gradations the PARAH0 retorted shale is quite susceptible to abrasion. All of the values exceed the maximum acceptable value of 40 percent for base coarse materials.

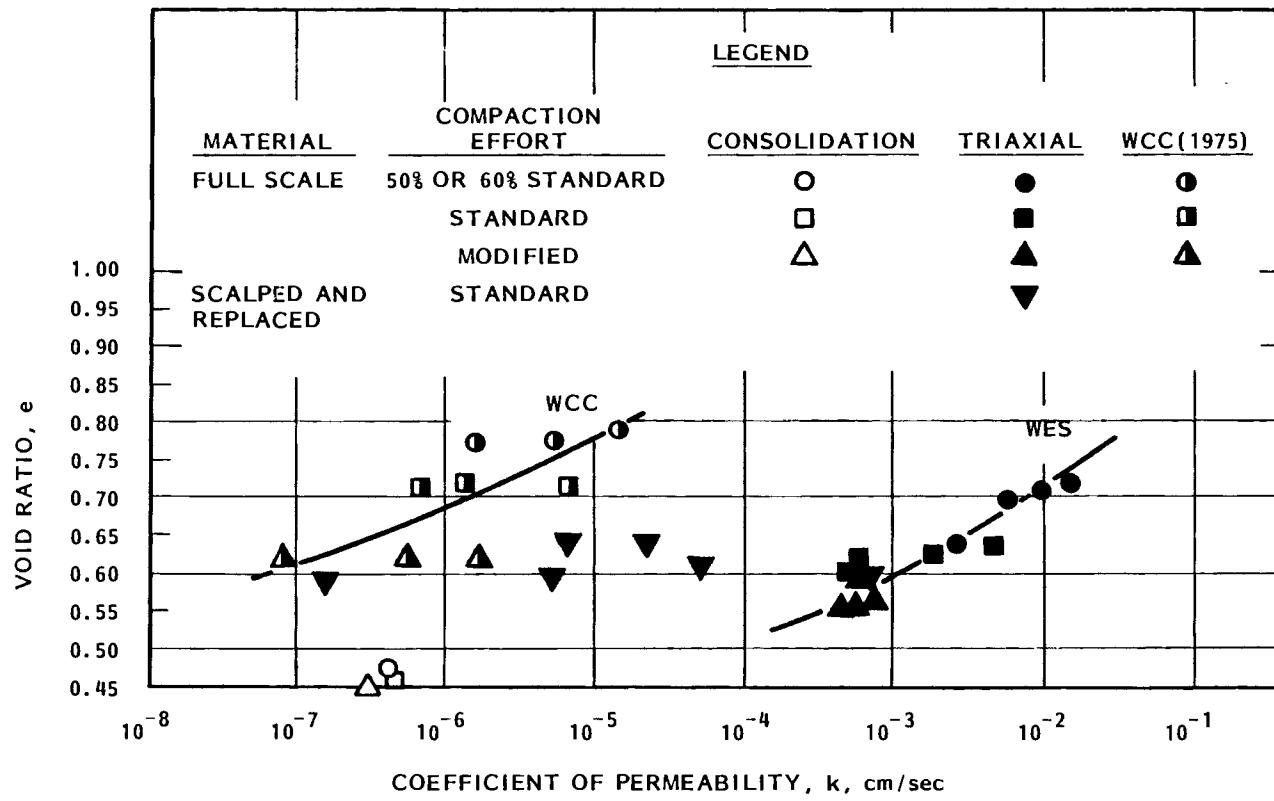
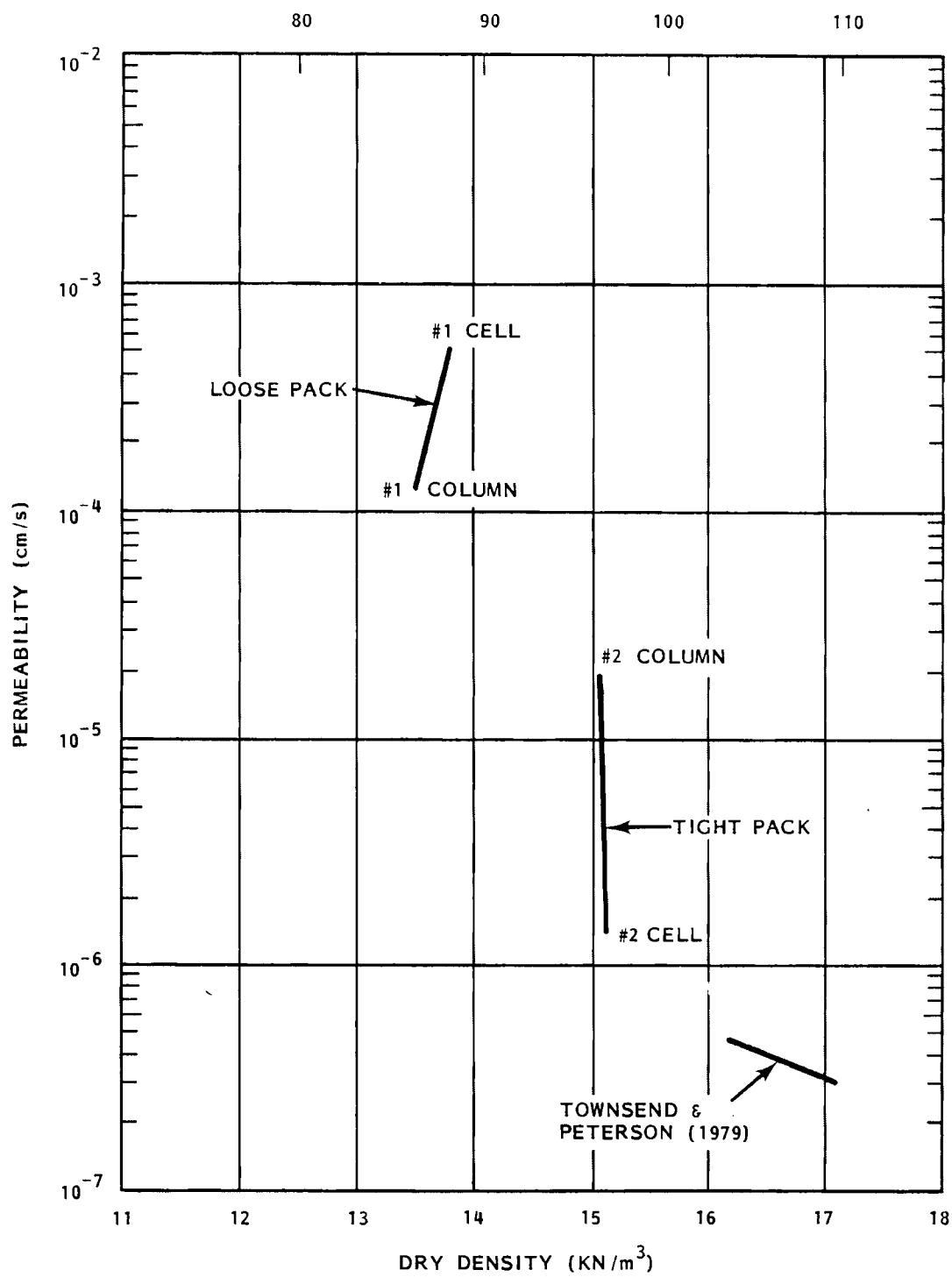


FIGURE 4.9. Permeability-Void Ratio Relationships for Compacted PARAO Retorted Oil Shale (Townsend and Peterson 1979)



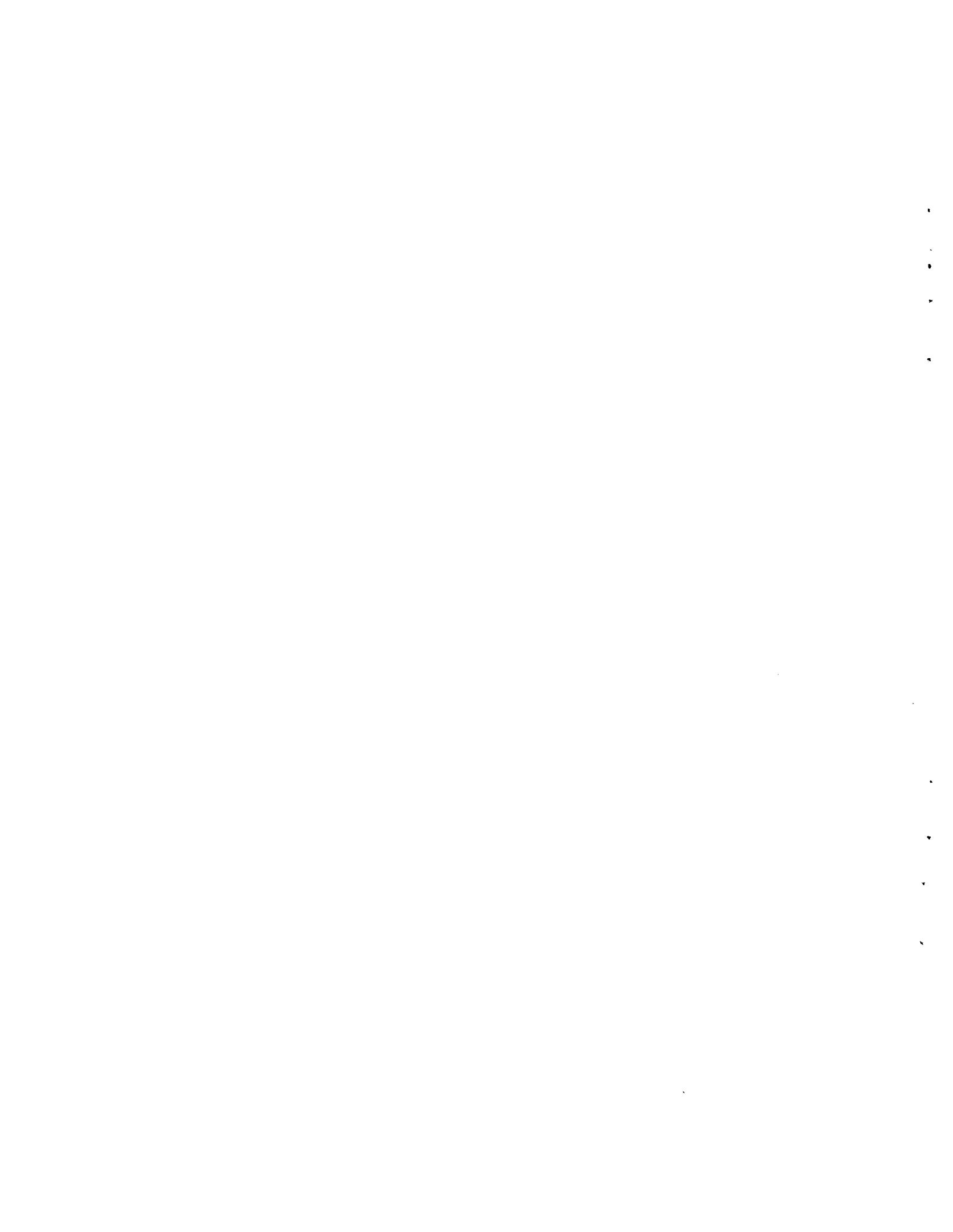

FIGURE 4.10. Permeability Values for Full Size PARAH0 Material

TABLE 4.7. Permeability of PARAHO Shale at Different Dry Bulk Densities

Sample	Dry Bulk Density (g/cm ³)	Permeability (cm/s)
Column No. 1 (Loose Pack)	1.32	1.2×10^{-4}
Column No. 2 (Tight Pack)	1.53	2.0×10^{-5}
Cell No. 1 (Loose Pack)	1.41	5.0×10^{-4}
Cell No. 2 (Tight Pack)	1.54	1.4×10^{-6}

TABLE 4.8. Summary of Los Angeles Abrasion Test Results on PARAHO Shale (Townsend and Peterson 1979)

Material	ASTM Designation	Grading	Sieve Size, in.	Percentage Wear
PARAHO	C131-76	A	- 1-1/2 to + 1 - 1 to + 3/4 - 3/4 to + 1/2 - 1/2 to + 3/8	79.7
PARAHO	C131-76	C	- 3/8 to + No. 3 - No. 3 to + No. 4	80.1
PARAHO	C535-69	2	- 2 to + 1-1/2 - 1-1/2 to + 1	66.7

5.0 OTHER PROPERTIES

Properties not specifically covered under physical or engineering properties will be covered below.

5.1 DROP HEIGHT TESTS

To determine densities achieved when processed oil shale is dropped from various conveyor heights, tests were conducted by WES and the results presented in Table 5.1 and Figure 5.1. Major increase in density occurs within the initial 1.5 m (5 ft) of drop for PARAHO, where a relative density of 67 percent was achieved. Only a small amount of densification (79 percent) was achieved by increasing the drop height to 5.0 m (16.5 ft).

TABLE 5.1. Summary of Drop Height Tests on PARAHO Shale
(Townsend and Peterson 1979)

Material	Height of Drop		Density ^(a)	
	m	ft	KN/m ³	pcf
PARAHO (-2 in. fraction)	0.2	0.7	11.6	73.8
	0.4	1.5	11.6	74.1
	1.4	4.5	12.5	79.8
	3.2	10.5	12.9	82.0
	5.0	16.5	13.0	83.0

(a) Air dry material (the water content of the PARAHO fractions are less than 1 wt percent)

5.2 WATER RETENTION CHARACTERISTICS

Water retention characteristics for PARAHO shale were measured by PNL over a range from saturation to air dry conditions. Water retention data from 20 to 100 cm (8 to 39 in.) were collected by direct gravimetric sampling of 1.8 m (6 ft) permeability columns (Table 5.2) and a pressure plate extractor method

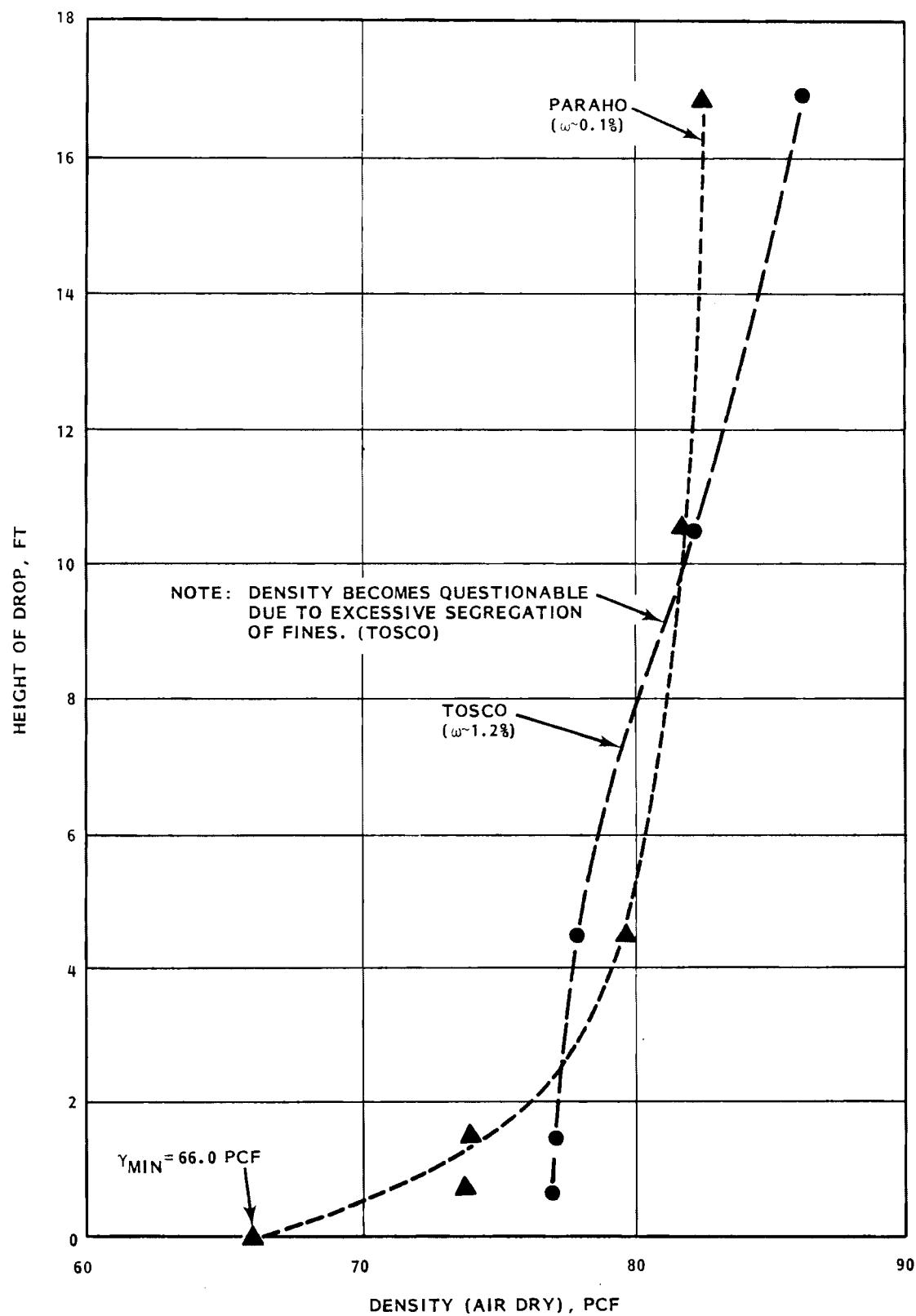


FIGURE 5.1. Effect of Drop Height on Dry Density for PARAHO and TOSCO Retorted Oil Shales (Townsend and Peterson 1979)

TABLE 5.2. Water Retention Characteristics by Large Column

Loose Pack		Tight Pack	
Head (cm)	Volumetric Water Content (cm ³ /cm ³)	Head (cm)	Volumetric Water Content (cm ³ /cm ³)
8.0	0.412	15.5	0.381
28.0	0.401	35.5	0.394
48.0	0.362	55.5	0.359
68.0	0.344	75.5	0.365
88.0	0.348	95.5	0.349
108.0	0.340	115.5	0.362
128.0	0.337	135.5	0.342
148.0	0.322	155.5	0.320
Dry Bulk Density (KN/m ³)	12.9		15.0
Porosity (a) (cm ³ /cm ³)	0.511		0.433
Void Ratio	1.045		0.764

(a) Assumes a particle density of 2.70 g/cm³

used for collecting water retention over the range of 100 to 3,000 cm (3.25 to 98.4 ft) (Table 5.3). Summarized in Figures 5.2 and 5.3 are water retention characteristics for PARAH0 shale loose and tight packed, respectively.

Water retention characteristics values determined by Bloomsburg and Wells (1978) on PARAH0 material packed at densities of 12.6 KN/m³ (80.0 pcf) and 15.0 KN/m³ (95.0 pcf) are also shown in Figures 5.2 and 5.3, respectively, for comparison. This comparison shows considerable variance between the two studies, the result of the PARAH0 material used during testing. Bloomsburg and Wells (1978) tested samples dry packed with retorted oil shale sieved to 2 mm and finer, where PNL used "as received" full scale material.

5.3 FIELD CAPACITY

To determine the "field capacity" of retorted oil shale, estimates were made by PNL using the technique of Kemper and Walker (1978). Field capacity

measurements were determined to be 13.83% (dry wt) for the loose pack [dry bulk density of 11.8 KN/m³ (75 pcf)] and 12.71% (dry wt) for the tight pack [dry bulk density of 16.1 KN/m³ (102.5 pcf)]. Based on these measurements, little seepage should occur even in relatively deep piles when conditioned at moisture contents less than 13 or 14% (dry wt), for these compacted PARAHO materials. At a semi-arid disposal site, where annual deep infiltration is expected to be small or negligible, dry PARAHO treated shale could be moisturized with waste water to at least 0.1 MT (metric ton) retort water per MT of shale without significant drainage from 30 to 50 m thick piles (Bond et al. 1982). However, moisturization of the pile to optimum water contents [15 to 22% (dry wt)] will result in drainage. This kind of information will assist in properly engineering the pile for optimum stability as well as minimizing environmental degradation which may result from contaminant seepage from large spent shale piles.

TABLE 5.3. Water Retention Characteristics by Pressure Plate Extractor

Loose Pack		Tight Pack	
Head (cm)	Volumetric Water Content (cm ³ /cm ³)	Head (cm)	Volumetric Water Content (cm ³ /cm ³)
100	0.383	100	0.374
300	0.286	300	0.364
1,000	0.224	1,000	0.306
3,000	0.156	3,000	0.233
Dry Bulk Density (KN/m ³)	12.2		16.0
Porosity ^(a) (cm ³ /cm ³)	0.537		0.394
Void Ratio	1.160		0.650

(a) Assumes a particle density of 2.70 g/cm³

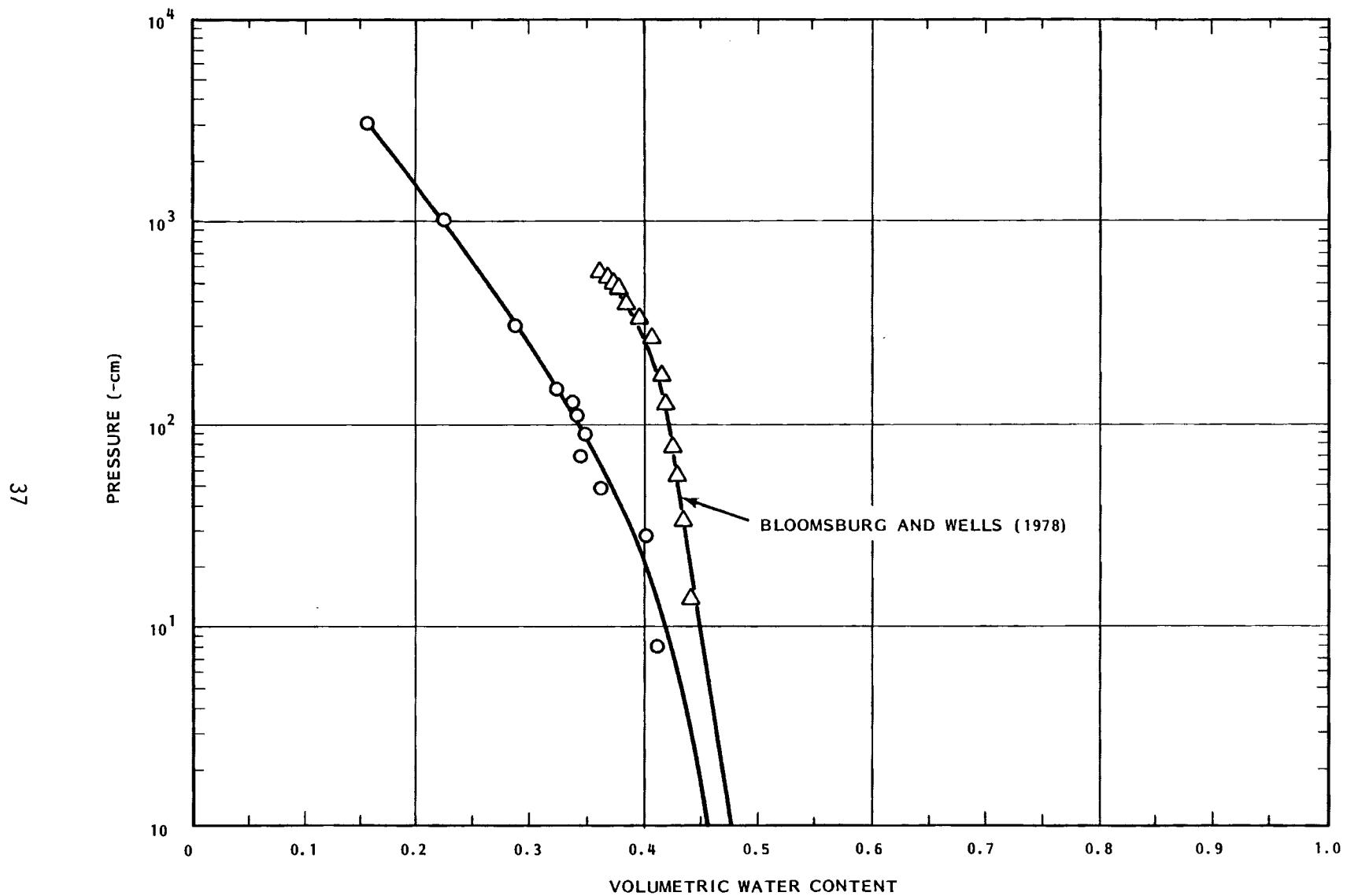


FIGURE 5.2. Water Retention PARAHO Shale "Loose Pack"

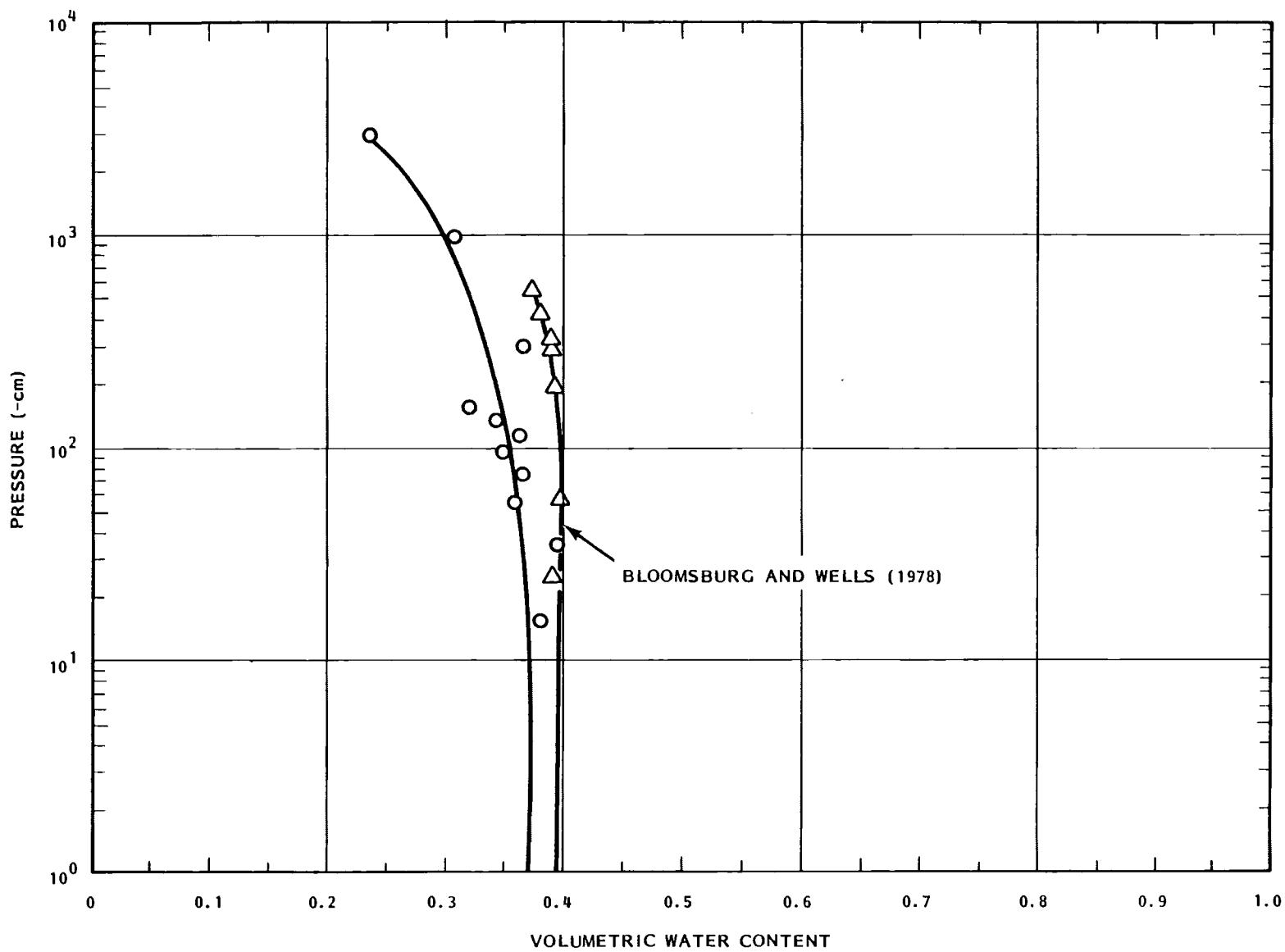


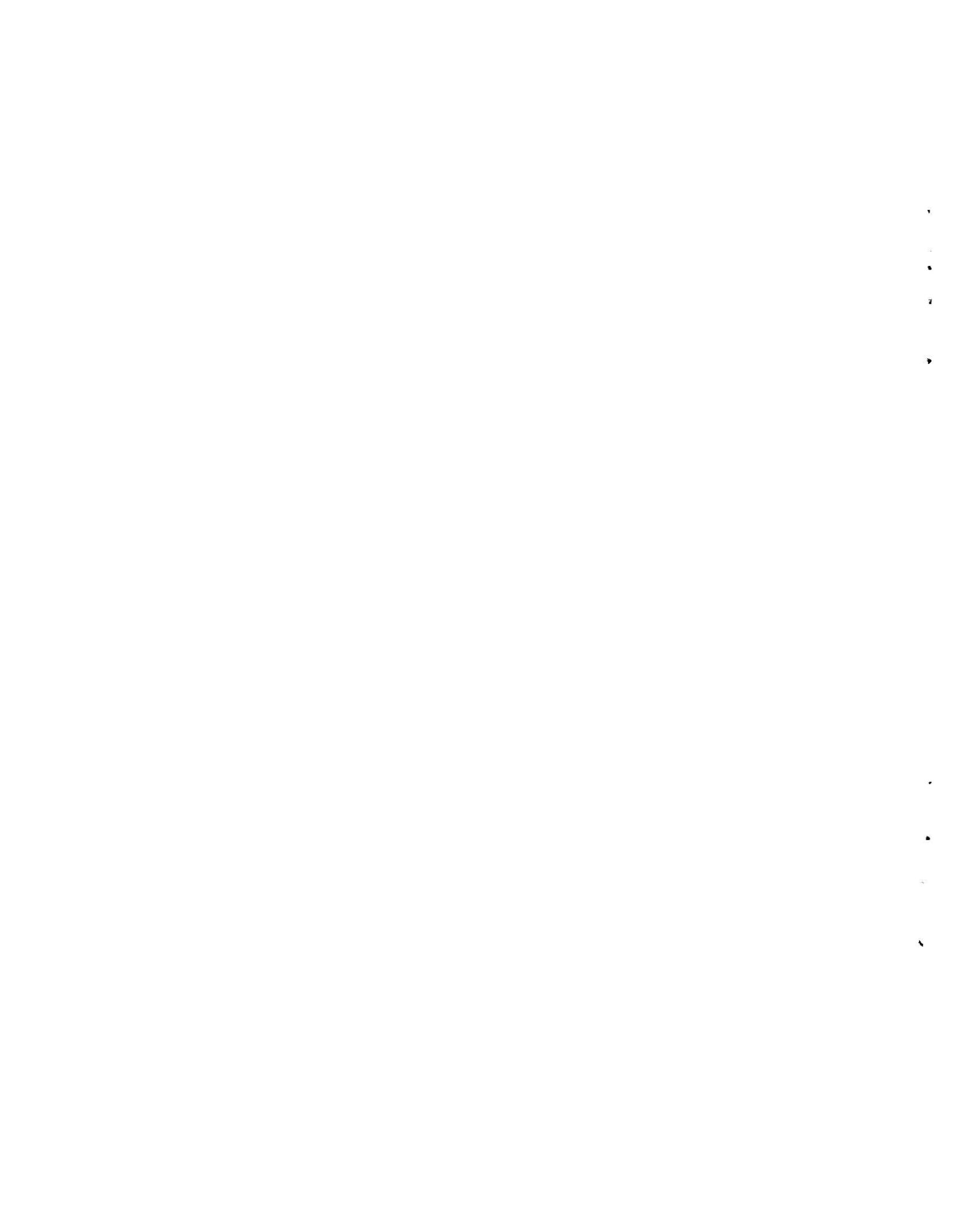
FIGURE 5.3. Water Retention PARAHO Shale "Tight Pack"

REFERENCES

Bloomsburg, G. L., and R. D. Wells. 1978. "Seepage Through Partially Saturated Shale Wastes," Final Report to U.S. Bureau of Mines Under Contract H0252065, prepared by Agricultural Engineering Department, University of Idaho, Moscow, Idaho.

Bond, F. W., M. D. Freshley and G. W. Gee. 1982. Unsaturated Flow Modeling of a Retorted Oil Shale Pile. PNL-4284. Pacific Northwest Laboratory, Richland, Washington.

Farris, C. B. 1979. "Natural Cementation of Retorted Oil Shale," Final Report to U.S. Bureau of Mines under Contract J0285001, prepared by Colorado School of Mines Research Institute, Golden, Colorado.


Holtz, W. G. 1976. "Research and Development Program on the Disposal of Retorted Oil Shale--PARAHO Oil Shale Project," First report to the U.S. Bureau of Mines under Contract J025504, prepared by Woodward-Clyde Consultants, Denver, Colorado.

Kemper, W. D. and W. R. Walker. 1978. "Trans-Seasonal Storage of Solar Energy, CSU Report C0014546-3, Ft. Collins, Colorado.

Klute, A. 1965. "Laboratory Measurements of Hydraulic Conductivity of Saturated Soil," In Methods of Soil Analysis, Part I, ed. C. A. Black, American Society of Agronomy, Inc., Madison Wisconsin, p. 210-222.

Snethen, D. R., W. J. Farrell, and F. C. Townsend. 1978. "A Review of the Physical and Engineering Properties of Raw and Retorted Oil Shales from the Green River Formation," Miscellaneous Paper S-78-3, U.S. Army Engineers Waterways Experiment Station, CE, Vicksburg, Mississippi.

Townsend, F. C., and R. W. Peterson. 1979. "Geotechnical Properties of Oil Shale Retorted by the PARAHO and Tosco Processes," Final Report to the U.S. Bureau of Mines under Contract H0262064, prepared by Waterways Experiment Station, Vicksburg, Mississippi.

DISTRIBUTION

<u>No. of Copies</u>	<u>No. of Copies</u>
<u>OFFSITE</u>	
27 <u>DOE Technical Information Center</u>	Arthur Hartstein U.S. Department of Energy Office of Fossil Energy FE-34, GTN Washington, DC 20545
Edward Bates Industrial Environ. Research Lab Extraction Tech. Branch U.S. Environ. Protection Agency Cincinnati, OH 45268	Robert N. Heistand Anvil Points, Box A Rifle, CO 81650
Willard R. Chappell Campus Box 136 University of Colorado 1100 14th Street Denver, CO 80202	Jane King American Petroleum Institute 2101 L Street, N.W. Washington, DC 20037
R. Merril Coomes TOSCO Corporation 10100 Santa Monica Blvd. Los Angeles, CA 90067	Helen M. McCammon Ecological Research Division EV-34 E-201 GTN Office of Energy Research Washington, DC 20545
J. Phyllis Fox J. Phyllis Fox Consulting Serv. 1988 California Berkeley, CA 94703	Dennis Miller National Research Council 2101 Constitution Ave., N.W. Room JH 734 Washington, DC 20418
Ralph E. Franklin U.S. Department of Energy ER-75 GTN Washington, DC 20545	Glenn Miller Area Oil Shale Supervisor's Office 131 North 6th Street Suite 300 Grand Junction, CO 81501
James Godlove White River Shale Oil Corp. 115 South Main Street Suite 500 Prudential Bldg. Salt Lake City, UT 84111	Kathy Petersen Center for Environ. Sciences University of Colorado 1100 14th Street Campus Box 136 Denver, CO 80202
Lawrence B. Gratt IWG Corp. 975 Hornblend Street Suite C San Diego, CA 92109	

<u>No. of Copies</u>	<u>No. of Copies</u>
Edward Redente Colorado State University Department of Range Sciences Ft. Collins, CO 80523	<u>ONSITE</u>
Carlton B. Scott Union Oil Company 461 S. Boylston Street Los Angeles, CA 90017	<u>DOE Richland Operations Office</u> H. E. Ransom <u>Marine Research Laboratory (Sequim)</u> R. L. Schmidt
Dave Shelton, Director Colorado Mined Land Reclamation 1313 Sherman Street Room 423 Denver, CO 80203	50 <u>Pacific Northwest Laboratory</u> F. W. Bond K. E. Byers (4) M. E. Dodson A. R. Felmy J. S. Fruchter T. R. Garland T. E. Gates (5) G. W. Gee (10) D. C. Girvin A. J. Haverfield P. R. Heller E. A. Jenne K. M. Krupka D. E. Oleson R. G. Riley J. E. Rogers J. A. Stottlemyre N. M. Sherer W. L. Templeton R. E. Wildung (5) W. R. Wiley B. E. Vaughan Z. M. Zachara Technical Information (5) Publishing Coordination (BE)(2)
G. C. Slawson Rio Blanco Oil Shale Company 2851 South Parker Road Suite 500 Aurora, CO 80014	
Russel Tait ESSO, Australia Limited 70 Goondoon Street Gladstone, Queensland Australia	
Allen Verstuyft Chevron Shale Oil Company Great West Plaza, Tower 2 1625 Broadway Suite 2150 Denver, CO 80202	
Jim Westhoff Laramie Energy Technical Center University Station P. O. Box 3395 Laramie, WY 82071	