

BNL-34955

CONF-8405193-20

BNL--34955

DE84 014382

The AN Effective Interaction

D. J. Millener
Brookhaven National Laboratory
Upton, New York 11973

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

THE Λ N EFFECTIVE INTERACTION

D. J. Millener

Brookhaven National Laboratory, Upton, N.Y. 11973

ABSTRACT

A combination of theoretical estimates, based on a Λ N potential model, and phenomenological analysis of hypernuclear data is used to determine a set of four p_{Λ} s two-body matrix elements which characterize the spin dependence of the Λ N interaction in the p shell. The central spin-spin and the Λ spin-orbit matrix elements are most strongly constrained by existing data. The spin dependence is weak in the sense that s_{Λ} doublet splittings are predicted to be of order 100 keV except for the special case of $^7\Lambda$ Li where the central spin-spin interaction dominates and the ground-state doublet separation is likely to be about 600 keV. The results of recent $(K^-, \pi^-\gamma)$ experiments at the Brookhaven AGS are interpreted in terms of the Λ N effective interaction.

INTRODUCTION

Since the sizes of p-shell nuclei determined from measurements of r.m.s. charge radii do not vary greatly it is a reasonable approximation to attempt a description of p-shell hypernuclei in terms of a constant set of Λ N two-body, and possibly Λ NN three-body, matrix elements. Past phenomenological analyses¹ have demonstrated that a data set consisting of ground state information only (Λ binding energies, some spins, etc.) is too limited to permit a characterization of the spin dependence of the Λ N interaction. Excited states have been observed at CERN and Brookhaven in (K^-, π^-) reactions using magnetic spectrometers with an important deduction being that the Λ N spin-orbit interaction is weak^{2,3}. Much more precise excitation energies have been obtained at Brookhaven⁴ using the $(K^-, \pi^-\gamma)$ reaction with NaI detectors following earlier results obtained with stopped kaons^{5,6}. The most direct evidence on the spin dependence of the Λ N interaction lies⁷ in the separation of s_{Λ} doublets based on core states with non-zero spin. Recent $(K^-, \pi^-\gamma)$ experiments⁸ have searched for the doublet transitions using germanium detectors.

CALCULATIONS

The basic philosophy behind these calculations is very similar to that of Gal, Soper and Dalitz¹. Shell-model calculations are performed for $\{s^4 p^A - 5 s_{\Lambda}\}$ configurations using the interaction of Cohen and Kurath for the core wave functions; the formalism follows a recent treatment¹⁰ for $\{s^4 p^A - 5 p_{\Lambda}\}$ configurations. The two-body Λ N interaction can be expressed^{1,9} in terms of five radial integrals, one associated with each term in

$$v_{\Lambda N}(r) = v_o(r) + v_\sigma(r)s_N \cdot s_\Lambda + v_\Delta(r)\ell_{N\Lambda} \cdot s_\Lambda + v_N(r)\ell_{N\Lambda} \cdot s_N + v_T(r)s_{12} \quad (1)$$

These parameters, denoted by \bar{v} , Δ , s_Λ , s_N and T , are taken to be constant throughout the shell. In terms of Talmi integrals for the appropriate radial interaction,

$$\bar{v} = -1/2(I_0 + I_1), \quad \Delta = 1/2(I_0 + I_1), \quad s_\Lambda = 1/2 I_1, \quad (2)$$

$$s_N = 1/2 I_1, \quad T = 1/3 I_1$$

In a simplified model the doublet splittings at the beginning of the shell ($p_3/2N s_{1/2\Lambda}$) and at the end of the shell ($p_{1/2}N s_{1/2\Lambda}$) are given in terms of the parameters δ and δ' respectively where

$$\delta = 2/3 \Delta + 4/3 s_\Lambda - 8/5 T \quad (3)$$

$$\delta' = -1/3 \Delta + 4/3 s_\Lambda + 8T$$

For a standard interaction⁹, the spin-dependence of which is given by $\Delta = 0.5$, $s_\Lambda = -0.04$, $s_N = -0.08$ and $T = 0.04$ (all in MeV), δ and δ' are small.

The case of $^{12}\Lambda$ represents a typical calculation. The spectrum of core states to which a Λ or a Σ is coupled (s_Λ , p_Λ or p_Σ are of most interest) is shown in Fig. 1. Also given are

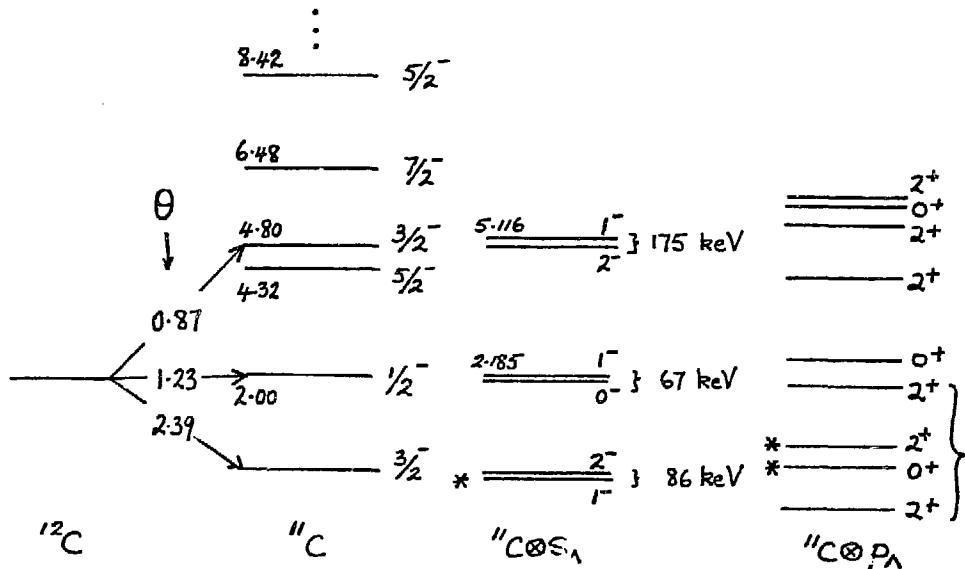


Fig. 1. Low-lying levels of ^{11}C and of the hypernuclear states formed by coupling s_Λ or p_Λ to this core.

the spectroscopic amplitudes for nucleon pickup which govern¹⁰ the formation cross sections of hypernuclear states in the (K^- , π^-) reaction (for a weak-coupling state $d\sigma/d\Omega \propto \theta^2$). The low-lying states for $^{11}\Lambda$ C \times s_Λ and $^{11}\Lambda$ C \times p_Λ are also shown in Fig. 1. For $^{11}\Lambda$ C \times s_Λ a weak-coupling structure with small doublet splittings is evident. The ground state wave function is quite pure $^{11}\Lambda$ C gs \times s_Λ with admixtures at the 1% level; nevertheless the (K^- , π^-) formation strengths for the upper 1^- levels are reduced by destructive admixtures (for $\Delta > 0$, $S_\Lambda < 0$) to levels which are not observable in magnetic spectrometer experiments. For $^{11}\Lambda$ C \times p_Λ , on the other hand, there is considerable mixing of the basis configurations to form states with particular symmetries¹⁰, all the $\Delta L = 0$ formation strength being concentrated in the lowest 0^+ state (see §5.3.4 of Ref. 10).

Theoretical estimates for the interaction parameters have been obtained using the Model D potential of Nagels et al.¹¹ to obtain explicit expressions for the radial forms in Eq. (1). In addition to the first order boson-exchange potentials for the ΛN channel, second order $\Lambda N \rightarrow \Sigma N \rightarrow \Lambda N$ coupling terms and second order tensor terms are included. An effective interaction is obtained by cutting the potentials off inside a separation distance r_0 . For $r_0 = 1.2$ fm, $S_\Lambda = -0.037$, $S_N = 0.075$ and $T = 0.035$. These estimates for S_N and T are used in forming the standard $p_{\Lambda}N\Lambda$ interaction while Δ and S_Λ are estimated from hypernuclear data.

The spin-orbit splitting, $\epsilon_p = \epsilon_{p1/2}(\Lambda) - \epsilon_{p3/2}(\Lambda)$, is related to S_Λ by $\epsilon = -6S_\Lambda$. The first deduction of the smallness of this splitting come from analysis of the $^{16}\Lambda$ O (K^- , π^-) $^{16}\Lambda$ O reaction². Subsequently, an analysis³ of $^{13}\Lambda$ C (K^- , π^-) $^{13}\Lambda$ C data gave $\epsilon_p = 0.36 \pm 0.30$ MeV and hence $S_\Lambda = -0.06 \pm 0.05$. A new estimate of S_Λ comes from the recent observation⁴ of a 3.08 MeV γ ray in $^{9}\Lambda$ Be. This line corresponds to the deexcitation of the first excited $3/2^+$, $5/2^+$ doublet to $^{9}\Lambda$ Be g.s. An upper limit of 100 keV for the separation of the doublet gives

$$|2.48S_\Lambda - 0.73T| < 0.1 \quad (4)$$

For $T > 0$, $S_\Lambda < 0$ a conservative upper limit is $|S_\Lambda| \leq 0.04$.

The $1^+, 0^+$ doublet splitting in the $A=4$ hypernuclei⁶, if naively attributed to the spin-spin interaction, is equal to I_0 . Using a potential of range $\mu = 1$ fm to estimate the Talmi integrals gives $0.40 \leq \Delta \leq 0.64$ based on extreme assumptions about the size of the $A=4$ hypernuclei relative to the p-shell hypernuclei. In the case of $^{7}\Lambda$ Li (see Fig. 2 of R.E. Chrien's contribution⁸ to this conference) the ground state doublet splitting depends mainly on Δ since the $^{6}\Lambda$ Li g.s. has $L = 0$, $S = 1$. Unfortunately the $3/2^+$ member is difficult to populate, particularly if the $1/2^+$; $T = 1$ level is particle unstable. However, the 0^+ ; $T = 1$ core state has $L = 0$, $S = 0$ so that $B_{\Lambda\Lambda}(\gamma)$ receives little contribution from spin-dependent ΛN forces. Consequently

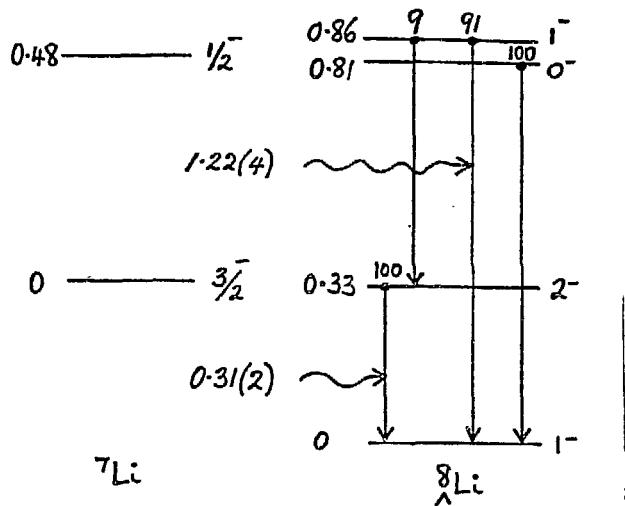


Fig. 2 Levels of ^7Li and ^8Li ; possible identifications of observed γ rays are indicated.

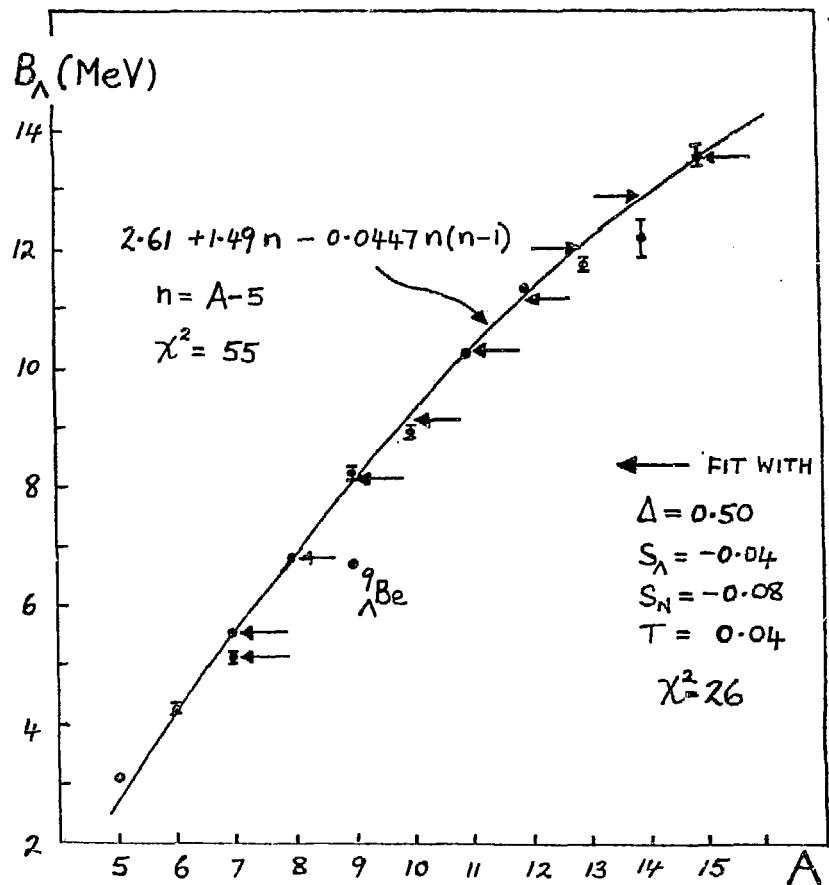


Fig. 3 Binding energies of p-shell hypernuclei.

$$3/2[B_{\Lambda}({}^7_{\Lambda}\text{Li}) - B_{\Lambda}({}^7_{\Lambda}\text{Be})] = 3/2[0.42 \pm 0.09] \text{ MeV} \quad (5)$$

$$\approx E(3/2^+) - E(1/2^+) = 1.35\Delta + 0.15S_{\Lambda} - 1.29T - 0.06S_N$$

from which we deduce $\Delta \approx 0.50 \pm 0.11$ in agreement with the estimate from $A=4$. Also, the $5/2^+ \rightarrow 1/2^+$ γ transition has been observed with $E_{\gamma} = 2.18 + 0.07\Delta - 1.00 S_{\Lambda} + 0.22T + 0.95S_N = 2.034 \pm 0.023$ MeV. For the standard parameters only S_N lowers the energy, $S_N \approx -0.25$ being required to give the observed transition energy.

In the case of ${}^{10}_{\Lambda}\text{B}$ only the members of the ground state doublet will be particle stable and it is the 2^- member which will be formed in the (K^-, π^-) reaction. A separation $E(2^-) - E(1^-) = 170$ keV [$\approx \delta$; Eq. (3)] is obtained from the full calculation in good agreement with the preliminary measurement of 156 keV reported by R. E. Chrien.

The ${}^8_{\Lambda}\text{Li}$ states based on the ${}^7_{\Lambda}\text{Li}$ ground and first excited states are shown in Fig. 2. The mixing angle governing the structure of the 1^- ground state is constrained by an analysis¹² of ${}^8_{\Lambda}\text{Li} \rightarrow \pi^- + {}^8_{\Lambda}\text{Be}^* \rightarrow \pi^- + \alpha + \alpha$ data to $-0.40 < \epsilon < -0.13$ or $-1.2 < \epsilon < -0.3$ (ϵ in radians). This result has been difficult to reconcile with the solutions found by Gal, Soper and Dalitz¹. The present calculations give $\epsilon = -0.35$. Two tentative assignments of γ rays to ${}^8_{\Lambda}\text{Li}$ are indicated in Fig. 2. While it is difficult to obtain a separation as large as 1.22 MeV for the 1^- levels the energy of the second γ ray is close to the predicted separation of the ground state doublet.

Finally it is interesting to ask how well the B_{Λ} values for the p shell hypernuclei can be fitted. In Fig. 3 the solid line represents a fit by a quadratic in the number of p shell nucleons to the data^{1, 13} omitting ${}^5_{\Lambda}\text{He}$, ${}^6_{\Lambda}\text{He}$ and ${}^9_{\Lambda}\text{Be}$, the first on the grounds that ${}^5_{\Lambda}\text{He}$ is probably more compact than the heavier hypernuclei and the latter two on the grounds that the core nucleus, the mass of which enters into B_{Λ} , is unbound. The constant term represents the single particle energy for s_{Λ} relative to a ${}^4\text{He}$ core, the linear term V and the quadratic term provides a crude approximation to a (repulsive) three-body ANN interaction. The χ^2 of 55 drops to 26 when the data are refitted with the spin-dependent AN terms included and fixed at the standard values (the fitted values are indicated by arrows in Fig. 3). Any attempt to improve χ^2 by varying one of Δ , S_{Λ} , S_N or T leads to a very small change in the parameter and little change in χ^2 .

SUMMARY

It has been possible to find a set of parameters for the $\text{p}_N\text{s}_{\Lambda}$ interaction which fits all available data--such as ground

state spins, excitation energies, B_A values etc.--on p-shell hypernuclei. This interaction is also consistent with $p^n p_A$ data¹⁰. There is a need for data at the end of the shell where there is a strong sensitivity to the tensor force [see δ' , Eq. (3)]. The present calculations give 84 keV for the ground state doublet splitting in $^{16}_\Lambda$ (and $J^\pi = 0^-$ for the ground state). However, a very small splitting, such that the excited level would undergo predominantly weak decay, could occur for a perfectly reasonable value of T . In general more data will provide consistency checks and could test the basic assumption of a constant two-body force.

ACKNOWLEDGMENTS

This work was performed in collaboration with A. Gal, C. B. Dover and R. H. Dalitz. A more complete account can be found in Ref. 9 and many details are contained in Ref. 7. We have benefitted from many conversations with R. E. Chrien and M. May. Work supported by U.S. Department of Energy under contract DE-AC02-76CH00016.

REFERENCES

1. A. Gal, J. M. Soper and R. H. Dalitz, Ann. Phys. (N.Y.) 113, 79 (1978).
2. W. Bruckner et al., Phys. Lett. 73B, 157 (1978); A. Bouyssy, Phys. Lett. 84B, 41 (1979).
3. M. May et al., Phys. Rev. Lett. 47, 1106 (1981); E. H. Auerbach et al., Phys. Rev. Lett. 47, 1110 (1981).
4. M. May et al., Phys. Rev. Lett. 51, 2085 (1983).
5. A. Bamberger et al., Nucl. Phys. B60, 1 (1973).
6. M. Bedjidian et al., Phys. Lett. 94B, 480 (1980).
7. R. H. Dalitz and A. Gal, Ann. Phys. (N.Y.) 116, 167 (1978).
8. R. E. Chrien, these proceedings.
9. D. J. Millener, A. Gal, C. B. Dover and R. H. Dalitz, to be published.
10. E. H. Auerbach et al., Ann. Phys. (N.Y.) 148, 381 (1983).
11. M. M. Nagels, T. A. Rijken and J. J. de Swart, Phys. Rev. D12, 744 (1975); D15, 2547 (1977).
12. D. Ziemińska and R. H. Dalitz, Nucl. Phys. B74, 248 (1974).
13. M. Juric et al., Nucl. Phys. B52, 1 (1973); T. Cantwell et al., Nucl. Phys. A236, 445 (1974).