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Ashok Das

Department of Physics and Astronomy
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Lecture I

Basic Notations:

The theories which we will study in these lectures are supposed to describe
fundamental processes at extremely high energies. Consequently, these theories will
be relativistic theories invariant under Lorentz transformations. Let me, therefore,

begin by establishing some notation which I will be using throughout the lectures.

Let us recall that if we have two vectors £ and ¥ in the three dimensional
Euclidean space, their product invariant under rotations is defined to be (we will

assume repeated indices to be summed unless otherwise specified.)

—

T Y=y -Z==z1y1 + T2y2 + T3Ys = Tiy; 1=1,2,3 (1.1)

This is, of course, the scalar product and from this we obtain the length squared of
a given vector Z as

2 _ o~ = .2 .2 2 _
T°=ZF-T==z] +z; +2; =TT (1.2)

which is also invariant under rotations. (Rotations define the isometry group of the

Euclidean space.)

In constrast, in the four dimensional Minkowski space, one can define two kinds

of vectors, namely, the covariant and the contravariant vectors denoted respectively

L4
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by A, and A*. These a\rc}four component objects (also known as four-vectors) with
u taking the values, p = 0,1,2,3. Furthermore, the covariant and the contravariant

vectors are related through the metric of the Minkowski space as

A* = A,

(1.3)
Ay =14 |

where I will assume the second rank metric tensors 7#* and 7,, to take the diagonal

matrix form

1 0 0
y 0 -1 0
77“ —_ 0 0 —1 = 17‘”, (1.4)
0 0 0 -1

The metric tensors can be used to raise or lower tensor indices and the choice of

the metric in Eq. (1.4) is commonly known as the Bjorken-Drell convention.

It is clear now that if we write the components of A# as
ar = (4, 4) (1.5)
then the components of A, would take the form
Ay =AY = (A°,—A’) (1.6)

In a sense, the covariant and the contravariant vectors have opposite transformation
properties under a Lorentz transformation so that given two vectors A, and B*,

we can define a scalar product
A-B=A,B* = A*B, =9**A,B, =1, A*B" = A°B* - A-B (1.7)

which will be invariant under Lorentz transformations. The length squared of a

vector A, in Minkowski space now follows to be
A2 = A, 4% = (4°)° - A2 (1.8)

This is Lorentz invariant but is no longer positive definite as would be true in the

Euclidean space.
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Let us also recall that space and time coordinates define a four vector in

Minkowski space. Thus writing

o = (4,3) | (1.9)
we obtain
zy = (t,—%) (1.10)
and
z? =z,zt =t* — F* (1.11)

which is, of course, the invariant length (we will set & = 1 = ¢ throughout). It is
clear now that Minkowski space can be divided into four cones and the phyéiéal
processes are assumed to take place in the forward light cone (so that causality

holds) defined by

22 =1 -3 >0 t>0 (1.12)

Just as space and time coordinates define a four-vector, derivatives with respect

to these coordinates also define a four-vector. Thus the contragradient is defined to

be

9 _ b 2 Ry |
8z, o= (at : V) (113)
from which we obtain
ad v a =
R N (E , v) (1.14)

The generalization of the Laplacian to the Minkowski space is known as the D’Alem-
bertian and is given by
5°

O=08,0" = o7 - \"& (1.15)

There is one other kind of four-vectors that we will need for our discussions.

These are known as the Dirac matrices and are denoted by 4* and «,. They satisfy

the anticommutation relation

{7} =74 it =2 - (1.16)



where I is the identity matrix. It follows, therefore, that

(") =1 (M) =0 =) =1 (1.17)

I would choose the Hermiticity properties of these matrices to be
oyt _ o0 at_ | \
(") =7 ()" =— (1.18)

A particular representation for these 4 x 4 matrices can be written in terms of 2 x 2

blocks as
I 0 . 0 o

0 -TI — Oy 0

where o;’s represent the Pauli matrices. From the four Dirac matrices we can

construct a nontrival scalar matrix
75 ="'y (1.20)
which satisfies

7= (1)’ =1 (1.21)

As we will see later, 5 describes the chirality or the handedness of a massless Dirac

spinor.

Scalar Field Theory:

With this introduction, let us look at the simplest of the field theories, namely,
the free, massive, real scalar field theory. The Lagrangian (or more appropriately,

the Lagrangian density) has the form
2
£=3 040" -7 ¢ (1.22)

where ¢(z) = ¢(,Z) is Hermitian and is known as a spin zero field or a scalar
field because it transforms like a scalar under a Lorentz transformation. Most of
the physical theories are at most quadratic in the derivatives. In this case, the

Euler-Lagrange equations take the form

ocC oc

O



From Eq. (1.22), therefore, we see the dynamical equations to have the form
@O+m?)¢=0 | (1.24)

This is a generalization of the wave equatidn, known as the Klein-Gordon equation,

whose solutions are plane waves of the form
¢(z) ~ e:!:ik-z
with (1.25)
k2 = kuk* = m?
The field ¢(z) can describe neutral spin zero partiéles. In physical processes,
however, particles are not completely free - rather they are interacting. Thus a

more realistic theory would be one which describes a scalar field interacting with

an external source. The Lagrangian, in this case, has the form
1 m? , .
£=10,000 - $ 4 s (1.26)

where j(z) represents an external source and the Euler-Lagrange equation, in this

case, takes the form v
(D + mz) é(z) = 3(=z) (1.27)

The solution to this equation can be obtained from the Greens function for the

problem which satisfies

@ +m?) G(z —y) = —§W(z —y) (1.28)

In terms of G(z — y) then, we can write

#2) = #9@) - [ 6 - 1)) (1.29)

where ¢(°)(z) is any solution of the homogeneous equation (1.24). The formal
solution of Eq. (1.29) is useful only if we know the explicit form of G(z — y). Note

that in momentum space Eq. (1.28) has the form



(-4 +m) G4 = -1

1

— (1.30)

so that we can write

Gz —y) = /d“k e (== G(k)

1
(2)

—~ik-(z—y)
- / &k
(27)4 k? —m? — i€

Here the infinitesimal parameter ¢ is added to the denominator in order to obtain

(1.31)

the retarded Greens function. Thus we see that a crucial ingredient in studying
any physical system is the Greens function which is also known as the propagator.
Note that so far in our discussion we have not brought in the quantum nature of
the theory. This can be done simply by noting that from the Lagrangian in Eq.
(1.22) or (1.26), we can define a momentum canonically conjugate to the ¢(z) as

T(z) = 53] - é(z) (132)

The quantization rules now follow to be

[6(2), $(z")] ;= = 0 = [O(2),I(=z")]_,,
(1.33)

[¢(z),1I(z")],_,, = i6®) (= — ')

The fields ¢(z) and II(z) can now be expanded in terms of creation and annihilation

operators and we can build up a Hilbert space for the quantum system:.

Self-Interacting Scalar Field Theory:

Just as a scalar field can interact with an external source, it can also interact
with itself. Thus let us choose the following Lagrangian as a model of a self-

interacting scalar field theory (also known as the ¢* theory).

1 m? A
I [ SNy Y AN«
L 5 090" ¢ 5 ¢ 2 ¢ A>0 (1.34)
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where A represents the strength of self interaction or the coupling constant. From

this Lagrangian, we can construct the Hamiltonian as

H=1¢-L

(1.35)

=5+ V$-Vé+ o ¢+ 5 ¢

It is clear now that classically the field configuration for which the energy would be

a minimum has the form

¢(z) = constant =0 (1.36)

Quantum mechanically, we say that the ground state or the vacuum state is one

where
< 0|¢(z)j0 >=0 (1.37)

For a constant field configuration, the minimum of the energy can be simply ob-

tained by noting that in such a case

2
H=V($)=Lin="0 ¢+ 6" (1.38)
from which we obtain
—""ggf) —0  for $=g.=0 (1.39)

As we will see later, these observations will be useful in studying the phenomenon

of spontaneous symmetry breaking.

In a laboratory experiment, we would like to study the scattering involving
particles. The scattering amplitudes can be calculated using the Feynman rules
following from the theory, in Eq. (1.34). The theory, as we have seen, has a

propagator and a set of interaction vertices. In the present case, we have



1G(p) = ————
iG(p) e gy >
, .01V N ’
—il®) (P1,P2,P3,P4) = -1 e p1 RN 1
$=0 X
B B
/ N\

= —iA6(*) (Pl +p2 +p3+ P4)
(1.40)

Any physical scattering process such as

1\\\ — ql
-
\\ - .
P,— y g -4
2 \\\\ ,—-”/ 2
— [~
p.—’-’ \\\\
3 7 ‘\\ 93
. // \ ’
. \\ .
P
n qm

n particles — m particles

can now be constructed and computed using the propagator and the interaction
vertices. Thus for example, 3 particles — 3 particles, in this theory has the lowest

order graph given by

P 9,

o \_\\ /;7

y S>> —=>——<T> 4, p+p+p =q +q,+q
o BB B, N 17427 53 1 2% %

P3 q3

and has the value

1 1A?

p1 + p2 + p3)? —m? (=id) (p1 + p2 + p3)? — m?

(—iX) : (1.41)

The diagram describing the scattering process above is a simple one and such di-

agrams are known as tree diagrams. However, scattering can take place through
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complicated diagrams also. For example, in the lowest order in the ¢* theory a par-
ticle can scatter by emitting a pair of particles which would annihilate each other.

The Feynman diagram corresponding to this would look like

Such a diagram involves an internal loop representing the creation and anni-
hilation of a pair of particles and is known as a loop diagram. In fact, it is called
a one-loop diagram since the number of loops involved is one. Use of the Feynman

rules now gives this scattering amplitude to be

dik 1 A 1
— = dik—— 1.42
U\_/ (2w)t k2 —m? (2m)4 / k k2 —m? ( )

The difference from the tree diagram is now obvious in that we have an integration
over a momentum variable. This merely reflects the fact that the process involving
the pair creation and annihilation is a virtual process and can occur with any
momentum. This integral can be evaluated in many ways. The simplest is to go to

the Euclidean space by letting

ko 4 tk4
| (1.43)
k2 =k2 —k* — —k2 — k* = — k%,
so that the integral takes the form
i 4 1 i\ 1

7 —_— = —— | k}dkpdQ ——

(2m)4 /d ke —(k% + m?) (27)4 / pdkpdil k% + m?
(1.44)

= — . Zdk: — &
(2mr)4 2w ,/; 2 F k% + m?

Clearly, the integral in Eq. (1.44) diverges and one way to define the integral is

to cut off the integral at some large value of k%. Thus defined this way, Eq. (1.44)
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A /‘A:d._,kf;;—{-mz——mz
0

- 1672 E k2 4 m?
A A? m? :
= — dk2 11— 1.45
167r2/0 E( k%+m2> , ( )
A 2 2 A? +m?
~ 162 (A —mihn ()

The true value of the integral (1.44) is, of course, obtained in the limit A — oo and

it diverges. But doing it this way brings out the nature of the divergence. This

example also brings home another difference between the tree and the loop diagrams,

namely, the loop diagrams diverge and, consequently, need to be regularized.
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Lecture II

Dimensional Regularization:

As we saw in the last lecture, there are inherent divergences in a quantum field
theory which need to be regularized. There are many possible ways of regularizing
a theory. For example, in the earlier calculation, we used a cut off to regularize the
amplitude. But we could have chosen one of many other available regularization
schemes such as the Pauli-Villars regularization or the point splitting regulariza-
tion or the dimensional regularization or the higher derivative regularization and
so on. Given a system, one chooses a regularization scheme which respects all the
symmetry properties of the theory. In the case of gauge theories, the regulariza-
tion that works well (it respects- gauge invariance) and has become the standard

regularization is dimensional regularization which I will describe next.

Let us now study the ¢* theory, which we have analyzed in some detail, not in
four dimensions but rather in n dimensions where n = 4 — € with € an infinitesimal

parameter. The action defined as

S:/d"z[f . (2.1)

is a scalar in units of A = ¢ = 1 so that the canonical dimension of £ follows to be

[L]=n (2.2)
Note that
1 m? A
- = 17 S ¥ A L |
L=3 0,400 - " ¢ — 7 ¢ (2.3)
and since
[e#] = -1 8, =1 (2.4)
the canonical dimension of ¢ now follows to be
n—2
¢l = —— (2.5)

We also obtain

fml=1 [A]l=4-n=c¢ (2.6)
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We would, however, like the coupling constant A to be dimensionless and this can

be achieved if we introduce an arbitrary mass scale p and write the Lagrangian as

1 m2> pe |
- = e 2 4
L= 5 0,90 ¢ > ¢ a0 Ao (2.7)

The coupling constant, A, now will be dimensionless. The Feynman rules for this

theory in n-dimensions take the form

1

zG'(P)=;J7j;;5 ——“;——
. .oV
~i0® (p1,p2,p3,p4) = ~i 52 R B
A F
7\

. 0%
= —1iu 269 (p1 +p2+ps+ P4) p2 B )
(2.8

Let us next go on and calculate all the one loop diagrams in this theory. Re-~

membering that we are in n-dimensions, we obtain

k
s
{ \

i ] d"k 1
N s (2m)™ k2 —m? .
P p (2.9)

_ ‘A/ d"k 1
—H (27)* k2 —m?

The fundamental formula for n-dimensional integrals that is of use to us is

[ dnk 1
= ] @o)n (k2 + 2k-p — M?)=

I

in™/? T(a—n/2) 1
ey T(@) MR

= (-1)* (2.10)

where

Ta+1)=do
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Differentiating I,—; with respect to p*, we can obtain other useful formulae such

as

1 0l., drk k,
" 2(a—1) dp# _/(27r)" k2 + 2k -p — M?)
(2.11)
_ (—1)e- ir™/? T(a —n/2) Pu
(2m)»  T(a) (P + M?2)x-n/2

and similarly

d"k kuk,
(2m)™ (k2 +2k-p— M?)=

/2 1 1

= (_1)0‘ (27r)'"' F(a) (p2 +M2)a-—-n/2

[pypuI‘(a ~n/2)

- -;— N (P + M*)T(a—1- n/2)} (2.12)

Using Eq. (2.10), we can now evaluate the expression in Eq. (2.9) which takes the

form

vy 4y T2 T(1—-n/2) 1
AV M=) (2m)»  T(1) (m?)i-n/2

- n/2 € 1—¢€/2
= =i\ G T(= 14 5) () / (2:13)

We can now use the gamma function identities

I(n) = I‘(nn—{— 1)
and (2.14)
D(5) =2 + finite

to simplify the expression in Eq. (2.13). Thus

k
S
(o)
\ / A (2 m?
\ / 2 .
ey =TV e (; —1In rEl + ﬁmte) (2.15)
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Thus we see that in n = 4 — € dimensions, this Feynman amplitude is well defined.
However, as we approach € — 0, the divergence appears as a pole.

There is one other one loop diagram that we can construct in this theory. Let

us calculate a simplified version of this.

p ’_1<( p 2
At ST __ €
WO =3 e [ ()
_ l 2€y2 dnk 1
2k A (2m)" (k2 — m?2)?
1 72 T(2 — n/2) 1
=3 #2e>‘2(_1)2 i ( n/2)

@y~ (@) (mpR

= ;#26 22 E;—)n ( )( )—-6/2

A 2 m?
ey, 2 . m° .
=1pc) 3o (e In P + ﬁmte) (2.16)
Here the factor % is known as the symmetry factor and arises because the amplitude
is symmetric under the interchange of the two internal lines. Once again we see that
the divergence appears as a pole and is independent of the external momentum. We
can now explicitly work out and show that even for arbitrary external momenta,

the Feynman amplitude will have the form

D k
¢ %(K\% B4 . e A (2 m?
p AN = 1,[1, )\ 327['2 (— —ln;— + ﬁmte) (217)
1 K Py
+ p1+p2

p1+p2+pst+ps=0
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Adding in the other two channels, we sece that at one loop the total four particle

scattering amplitude will have the form

P, b, P, P, I P,
—— —— - =~ /o
KX+ XTI+ XX (peRepyvp, = 0)
pl p3 pl p2 pl p3
. € 32 (2 m? )
=tp - 3977 (; - IDF + ﬁmte) (2.18)

The divergence structure of the theory is now completely determined at the
one loop level and we see that if we start from the theory in Eq. (2.7), then at one
loop, the two point function as well as the four point function develop divergences.

On the other hand, let us note that if we had started from the theory

1 m? BEA m? pEA
I Bh — — 2 T gt A — " Bot 2.1
Lo=5 0,400 — ¢ - L gt - T ag - L2 Byt (219)
with
A
A=
8n2e
(2.20)
_3A
T 1672
then we would have additional vertices in the theory given by
. 2 L. 2 A
— 2> =—im'A=-im
P p 8m2e
P

N
2 ) = —ip“AB6* (p1 + p2 + ps + pa) (2.21)

RN P3

/ﬂp1 N

=—ipX- §*(p1 + p2 + ps + pa)

1672%¢€
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Note that the constants A and B are really one loop quantities. (this would have

been easier to see if we had kept the h terms.) Thus in this new theory, at one loop

we will have

k
sy
/ \
| !

/

T W S VA
2 3

. A +im? A 2 1 m? + finit
= — . m* - - —1n—
YT Bnte 1672 \ e pu? e

A m?
— . 2 .
=—1im”. T (1n72- + ﬁmte) | (2.22)
P,
2\ ;’p ¢ Py P, P P, B P
W o+ XTX + XIX 4+ XX (Bepenen, =0)
P{{ \pa P, P; P P, P Py

3 3N /2 m?
= —ip). 1 - o™ 4 finit
WA Joaze TH N 3o (e In-7 + fini e)

. e 3\ m? ) ‘ .
=—14 A . 327r2 (ln 72— + ﬁmte) (2.23)

Thus we see that had we started with the theory Lo, there would be no diver-
gence at least at the one loop level. However, the Lagrangian £, would appear to

be different from £. But on closer inspection we find that £, really has the same
form as £ with redefined parameters, namely,
1 m? Ao
Lo = > p P00 Po — "'23 $5 — ar o (2.24)

where

do=¢

m§=m2(1+A)=m2(l+ A )

8n2e (2.25)

1672%¢

3
do = pM1 + B) = ,f,\(1 + )
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The terms, depending on the constants A and B, which are added to the origi-

nal Lagrangian to render the amplitudes finite are known as counterterms and this
process of removing divergences is known as renormalization. Although we have
explicitly shown this only for one-loop, in any given theory one can add countert-
erms order by order so that the amplitudes are finite at every loop. Furthermore,
a renormalizable theory is one (physical théories are renormalizable.) where the
counterterms can be completely absorbed into a redefinition of the fields and the

various parameters in the theory.

Let me say this again in a different way. Let us call ¢y to be the bare field and
mg, Ao to be the bare parameters. Similarly, let us call ¢ to be the renormalized
field and m, A to be the renormalized paiameters. Then if we start from the bare
Lagrangian Ly and calculate the amplitudes in terms of bare parameters mg and
Ao then the process of renormalization guarantees that, in a renormalizable theory,
when the bare parameters are expressed in terms of a set of renormalized parameters
as in Eq. (2.25), the amplitudes would be finite. Thus if we calculated the four

point function up to one-loop from £ in terms of m and A, we would obtain

P P P P P o)
24 .4 24 .4 ;
K 3 2 ¢ pzﬁ s kp4 Py Py
H\\ - /\k + x -+ X + : - -
, N , < , \\ -
P, B, P P, P p, L 133
P, P
-~ ——
XX (P+pyepy+p, =0)
P1 p3

2
= — iy,‘A - ip,eA . 3A <ln12 + ﬁnite)

3272 7
. € 3A m? . .
=—iu A(l + 977 (In o + ﬁmte)> = finite (2.26)

The choice of the renormalized parameters is, however, not unique. As is

obvious, their definition depends on the mass scale u. Thus for example, given a

.
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bare theory Lo, two different people can choose two scts of renormalized parameters -
depending on different mass scales - which would lead to finite scattering amplitudes.
The mass scale p, therefore, would correspond in some sense to the subtraction
point or the energy scale at which a process is evaluated. Thus we see that in
a renormalizable theory, the renormalized parameters become energy dependent.
In the case of coupling constant one fondly says that the renormalized éoupling
runs with energy or that it becomes a running coupling. This dependence of the
renormalized parameters on the mass scale p leads to the renormalization group
equation which basically gives how various quantities would change as p is changed.
For the coupling constant, this evolution up to one-loop can be obtained from Eq.
(2.25). Note that whereas the renormalized parameters depend on p, the bare
parameters do not depend on the arbitrary mass scale. Thus from Eq. (2.25) we

obtain

0 . 3
or, p,—a-; (p A (1+ 167r25>> =0

o} 322 -
oo (o) s ro)

0 3)2 3)2 2
or, pa—“ (/\—{-m—i—(e/\-{-lsﬁ)lnp-}—O(e )) =0

Y 2
o o8 (o B (o ) s 000

8m?e 8w 1672

o 32 3 3\ 2
or, u—az = - (GA + 16#2) (1 ~ 8nte <e+ g;—;;) lnp) + 0 (€%) (2.27)

Keeping terms up to order A? which is the consistent one-loop case, we obtain in

the limit e —» 0
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ox _ _3x 3 3
B on ™ "16n2 T8x2 T 16x

= B(N) (2.28)

This equation can be solved in a straightforward manner.

o _ av
Hop = 16x2
d 3 du
0 N T 16
‘/‘X(#) d\ 3 /u du
or, -0 = _—
ORI S
1 1 3 . p
or, — + — = In =
Ap) * AMp) 167 L
A(E)
or, A(ﬂ)z—-T—— (2.29)
)
, 1- 38 s

This, indeed, shows how the coupling constant, A(x), changes with the scale or
energy. As p increases relative to j, A(p) grows. The coupling becomes stronger
and beyond a certain value perturbation theory breaks down. One says that the ¢*
theory is not asymptotically free. I would also like to emphasize here that although
our discussion so far has been within the context of the real scalar field, it can be

generalized to other theories in a straightforward manner.
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Lecture IIX

Complex Scalar Field Theory:

Let us next consider a self-interacting scalar field theory where the field ¢(z) is

not real. Such a theory can describe processes involving charged spin zero particles.

Thus let,
L=203,4'0"¢p —mP¢te — % (¢14)” A>0 (3.1)
Since ¢(z) is complex, we can express it in terms of two real fields o(z) and {(z) as
#(z) = 5 (o(2) +i((=)

(3.2)
1 .
$i(z) = 7% (o(2) — (=)

When expressed in terms of o(z) and {(z), the Lagrangian of Eq. (3.1) takes the

form
2 A
£=to00tet tocomc— T (P ) -2 (P H) (33)
2 2 2 16
Thus we see that a self-interacting complex scalar field theory is equivalent fo a

theory of two coupled, self-interacting real scalar fields.

The fields ¢(z) and ¢¥(z) in Eq. (3.1) can be taken to be independent variables.

Correspondingly, the Euler-Lagrange equations for the system are

9, 5;% _ 565? ~0
o, @+m?)g=—3 (4'9)¢ (3.9
and
9, 5‘% _ g_f; ~0
o, @+m) 4 =3 (419) 4 (3.5)
The canonical momenta conjugate to ¢(z) and ¢!(z) are given respectively by
y(z) = a—fjf—) = §(2)
(3.6)
oc

Myt () = = (=)

0¢1(z)
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The quantization conditions, therefore, become

[6(2), Wg(2' )y = 6P (= — 2") = [1(2), g1 (=), (3.7)
with all other equal time commutators vanishing.

Noether’s Theorem:

Let us note that the Lagrangian of Eq. (3.1) is invariant under a phase trans-

formation of the form

#(z) = §(z) = *¢(z)
#'(z) = ¢'(z) = 79 ()

where a is a space-time independent constant parameter. Thus the phase transfor-

(3.8)

mations of Eq. (3.8) are a symmetry of the system described by the Lagrangian
in Eq. (3.1). The phase transformations do not involve a change in the space-time
coordinates of the fields and hence do not correspond to a space-time symmetry
transformation. Rather, such a transformation is known as an internal symmetry
transformation. Furthermore, the parameter of transformation, a, is a constant
- it is the same at all coordinate points. Thus such a transformation defines a
global symmetry trnasformation. Often times, it is more convenient to study the
infinitesimal form of a transformation. Thus when the parameter of transformation

is infinitesimally small, the transformations in Eq. (3.8) can be written as
bed(z) = §(z) — ¢(z) = ieg(z)
Sepl(z) = 8Y(z) — #'(2) = —ieg(2)

where ¢ is the infinitesimal parameter of transformation.

(3.9)

If the Lagrangian of a system is invariant under a continuous symmetry trans-
formation, Noether’s theorem guarantees the existence of a conserved current. In

the case of an internal symmetry transformation, the conserved current can be

obtained as

€3*(z) = 555725 PV(e) (3.10)

where 1(z) generically represents all the field variables of the theory. Thus for

the Lagrangian in Eq. (3.1), we can determine the current associated with the
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infinitesimal transformations of Eq. (3.9) to be

oc oc

€j¥(z) = 99,4(2) bedp(z) + 35, 41(=) 5e¢’(?)

= 04 (2)(ied (=) + B (z)(—ies! (=))
= —ic(¢'(2)0" §(=) — 8*4'(z)9(x)

or,  j*(z) = —i(¢1(2)0*¢(x) — BN (2)d(a)) = —ig!(z) B #(x)  (3.11)

Let us note that

8,3(z) = —id, (¢f(m)aﬂ¢(z) - a#¢*<z)¢(z))

(3.12)
=—i (¢f(z) O¢(z) -0 ¢*(z)¢(z))_
Using the equations of motion in (3.4 - 3.5), we see that
0,3%(2) = =i( #1(@)( - m9(e) - 5 (#'9)9)
(3.13)

A
~ (- m¢1(e) - § (¢18)8)6())
or, 0O,3%(z)=0
In other words, the currént associated with the trénsformations in Eq. (3.9) is,

indeed, conserved.

Given a conserved current, 7#, we can construct a charge as

Q= / &z (3, 1) (3.14)

which can be shown to be independent of time. Thus, for the complex scalar field
theory, we see that there exists a charge operator
Q= [#25°) =i [ #2(#!(@)ie) - $1(=)0(2)
(3.15)
- / &2 ($1(2) g1 (2) — T(2)d(2))

Here we have used the relations in Eq. (3.6). The algebra of the charge can now be
obtained using Eq. (3.7) to be

@, Q] =0 (3.16)
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In other words, the conserved charge associated with the symmetry transformations
of Eq. (3.9) is Abelian. This can be identified with the electric charge operator of
the theory. Note also that using Eq. (3.7), we can show that

bed(z) = ied(z) = —i[¢(z), Q)]
(3.17)
bepl(z) = —ieg!(z) = —i[¢'(2), Q]

This shows that the charge Q is the generator of the infinitesimal transformations

in Eq. (3.9).

Spontaneous Symmetry Breaking:

Let us now consider the complex scalar field theory described by the Lagrangian
v hY ‘
L=28,410¢ +m?stp— 2 (¢14)” A>0 (3.18)

This Lagrangian differs from the one in Eq. (3.1) in the 'sign of the quadratic term.
It is still invariant under the phase transformations of Eq. (3.8) or the infinitesimal
transformations of Eq. (3.9). The conserved charge @ of Eq. (3.15) must, therefore,
commute with the Hamiltonian of the system and one would naively expect that

the charge operator @ would annihilate the vacuum of the theory. But as we will

see next, this is not true.

Let us rewrite the Lagrangian in terms of the real fields o(z) and {(z) of Eq.
(3.2).

2
t=toomroiloo+™ (e - 2 (4 o)

In terms of these fields, the infinitesimal transformations of Eq. (3.9) would take

the form

beo(z) = ——% e((z) = —ilo(z), Q] |
(3.20)

5(() = —% eo(z) = —il((z), Q]

Let us analyze the ground state of the theory. For constant field configurations, we

see that the minimum of the potential

Ve ™ (210 4+ (02402 (3.21)
T2 16 )
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would give the ground state. Note that the solutions to the minimum equations

ov 2 A 2, s2\
9 = ot o) =0
(3.22)
e = g+ ) =0
are given by
a':O:C
or (3.23)
2

It can be verified readily that o = { = 0 defines a local maximum whereas the true

minimum is given by

2
o+ (2= fi—";’\i (3.24)
For simplicity, we choose the minimum to correspond to
2m
=0 o= —— 3.25
‘ 7 (335)..
V(o)

As we have discussed before, in the quantum theory, it corresponds to the fact
that the vacuum state satisfies
<O0[Klo>=0

(3.26)

2
< 0loj0 > S

Vv

From Eq. (3.20), on the other hand, we see that this implies

< 0|60 >= ——1—2 e<0lol0>=¢ \/gm = —1 < 0|[¢, eQ]]0 > (3.27)
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This cannot be satisfied if

Qlo>=0 (3-28)

In other words, we see that in this case, a symxhetry of the thedry is not a symmetry

of the vacuum. In such a case, we say that there is a spontaneous breakdown of the

symmetry.

To obtain the consequences of spontaneous symmetry breaking, let us observe
that any perturbtion of a system can only be stable around the ground state. Thus

we should expand the theory around the stable minimum by redefining

oo o+ 2—-\/'; (3.29)

The Lagrangian now becomes

1 1 " m? 2m . 2
P ” = Iz i - 2
c 23“0'3 a+26,,,C6C+ 5 ((or-i-\/x) +<)

_"116 ((a + 3\/’%)2 + 42)2

1 1 m?
=3 o0t o + 3 0,(0"*¢ — m?a® + 5y
v A
_ m2 o(e? +¢%) =75 ( + (%) (3.30)

The interesting point to note in the above Lagrangian is that there is no mass
term for the (-field. That is, the (-field has become massless. This is known as the
Goldstone theorem which roughiy says that whenever a continuous global symmetry
is spontaneously broken, there must arise massless particles in the theory. The

massless field ( is also known as the Goldstone field.

Dirac Field Theories:

Let us next discuss theories which describe particles obeying Fermi-Dirac statis-
tics. The simplest theory is, of course, one which describes a massless spin % particle.

The Lagrangian has the form

L =if(z)r"8,¥(z) (3.31)



26

Here v#’s are the 4 x 4 Dirac matrices we discussed in Lecture I and ¥(z) is a four

component spinor field which has the form
(:(2)\
$a(a)
¥a(z)
\ (=) /

¥(=z) =

and
P(z) = (2’
The Euler-Lagrange equations have the form
i 0,(z) = ifb(=z) = 0
(A = ’Y“A#)
i(2) 57" = i(2) P =0
The momentum canonically conjugate to o(z) is

_ ac
Hpa(z)

The theory can now be quantized in the following way.

{’/’a(z)a ¢ﬂ(z')}t=t; = (¢a(z)¢ﬁ(z') + ‘bﬂ(?')lba(m)) ?=t' =0

Ho(z) =i (P(zN°), = ipl(=) «=1,2,3,4

{L(2),s(2")},_,, =0

{¢a(z)a Hﬁ(z')}t=g = isaﬁa(a)(z —z')

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

We see the basic difference between the bosonic theories and the fermionic theories in

that the fermionic theories are quantized with anticommutators. This is connected

with the fact that the fermionic theories describe particles obeying Fermi-Dirac

statistics.

The Lagrangian in Eq. (3.31) is invariant under the constant phase transfor-

mations

¥(z) — ¢ (z) = e9(z)

B(z) - $(z) = e==(z)

(3.37)
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as well as the chiral phase transformations

¥(z) = h(z) = PP (z)
(3.38)

P(z) — () = P(z)e"’
where o and 3 are constant parameters independent of any space-time coordinates.

Infinitesimally, the transformations take the form

Sb(2) = ¥ (z) — $(=) = icd(z)
(3.39)

5eb(z) = (=) — B(z) = —ich(z)
and

529(2) = B(z) — $(z) = inrs¥(=)
(3.40)

§4¥(z) = ¥(z) — ¥(=) = ind()s
The conserved currents associated with these symmetry transformations can be

constructed from the Noether’s theorem (see Eq. (3.10)) and take the form

et (z) = aa"’—;j() cb(e) = ()7 ieh(=)

or, j*(z)=—P(=)r"¥(=) (3.41)

and

135(=) = 555723 b(=) = N (s (o)

or, ji(z) = —P(z)r*¥1s9(2) (3.42)

The corresponding conserved charges are
0= [#20) =~ [ 2 d@n"we)

— / Pzt (@)(z) = i / Folla(a)palz)  (3.43)
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and

Qs = [ #28e) =~ [ = @0 (=)
= - [ @2 vt @nie)

. / &z Ua(2) (75) 4 ¥5(2) (3.44)

Using the quantization conditions of Eq. (3.36), the charge algebra can now be

shown to satisfy

[Q) QJ =0= [Q5’ QS] = [Q, Q5] (3.45)

Let us note here that although the currents j# and j{ in Eqs. (3.41) and (3.42)
are conserved classically, quantum mechanical corrections may spoil this. When a

current is conserved classically, but quantum mechanically

9ui*(=) # 0 ' (3.46)

we say that there are anomalies-in the theory and that the symmetry has become
anomalous. Anomalies associated with global symmetries are harmless (in fact,
sometimes useful as shown in 7% — 2v) but as we will see, anomalies associated

with local symmetries can render the theory inconsistent.

Local Symmetry:

Let us next analyze what would happen if we tried to make the phase parameter

in Eq. (3.37) to be a local function. Under

B(z) > ¥ (2) = e°C(z)
(3.47)

F(z) - P(2) = e P(z)

we see that

£ — £ = ip(=)r*8, ($(2))
= i (2)7*0uh(2) — Bue(2)h(2)7*¥(z) (3.48)
= £ - 8,0(=)b ()l (=)
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In other words, the Lagrangian of Eq. (3.31) is not invariant under a local phase
transformation. On the other hand, we note that if we had started from the La-

grangian
L = ihpy* (0, —ieA,L) ¢ (3.49)
where “e” is'a constant, then this would be invariant under

P(z) — e C=hp(z)
P(z) = e (=) (3.50)

1
A4(=) = Au(z) + = Buo(e)
Infinitesimally, these take the form

Seb(z) = ie(2)h(z)
§e(z) = —ie(z)i(z) (3.51)

5eAu(e) = = Bue(a)

Thus we see that the local symmetry of Eq. (3.31) requires an additional field
A,(z). A,(z) is known as a gauge field and the transformations of Egs. (3.50) and

(3.51) are known as gauge transformations.

Let us also note here that the Lagrangian £ can be obtained from £ with the

replacement

Op — O, —1ed,
or, p,=—10, —p,—e4, (3.52)

This is, of course, the prescription of minimal coupling we are familiar with in
trying to couple charged particles to electromagnetic fields. Thus we can identify
the gauge field, 4,(z), with the photon of the theory. This also suggests that a
local symmetry must always be accompanied by physical forces. Conversely, we

may try to describe physical forces in terms of theories with local symmetries (or

gauge theories).



Lecture IV

Quantum Electrodynamics:

30

We have seen how to couple charged spin 3 particles to the electromagnetic

field or the photon field. If we now introduce the dynamics of the photon fields, we

would have an interacting theory of say, electrons and photons - othefwisq known

as quantum electrodynamics. The Lagrangian, in this case, has the form (e can

now be thought of as the electromagnetic coupling.)
.7 . 1 pv
Lqep = Wy (0, —ied, )y — i F,,F

where

F,, = 6“.4,, - ayA,, =~F,
Foi = E;

Fij = —€;jx By

The Euler-Lagrange equations for this theory are
in* (8 —ied,) b = (iD+ eA) ¥ = 0

and

0, F* = —epy¥e = ej”

The v = 0 and v = ¢ components of Eq. (4.4) give respectively

'{7-13)‘:6_70
and

- o OE o

VXB—-B—t'+8]

Similarly, from the definition of F,, in Eq. (4.2) we see that it satisfies

ay.FvA +3vFAy+aAF;w =0

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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These set of equations can be shown to be equivalent to the pair of equations

V-B=0
and (4.7)
-~ - 8B
VXE——E—

We recognize Eqs. (4.5) and (4.7) together as the set of Maxwell’s equations and,
therefore, we conclude that the additional term in the Lagrangian in Eq. (4.1),

indeed, gives the dynamics of the photon fields.

The Lagrangian of Eq. (4.1) can be checked to be invariant under the gauge

transformations

Sep(z) = ie(z)¢(:c)
beip(z) = —ie(z)P(z) (4.8)

Sedy(z) = - Bye(a)

This is, of course, a local symmetry. Note that gauge invariance requires the photon
to be massless since a mass term would break gauge invariance. From Eq. (4.4) we

see that since F*¥ is antisymmetric, consistency of the equation would require

0,0, FF =0 =¢d,5" (4.9)
In such a case, therefore, the current must be conserved even quantum mechanically.
Any violation of current conservation or any anomaly would render the dynamical
equations inconsistent. This is, of course, what we have noted earlier, namely,
whereas anomalous global symmetries are harmless, anomalies in local symmetries

must be avoided.

The gauge invariances of the QED Lagrangian has both advantages as well as
disadvantages. To see the advantages, let us write down the fermionic Feynman

rules of the theory.
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—s— =Sk}
p
(4.10)
p2
>«mw = —iL,(p1,P2,P3) = 17,6 (p1 + p2 + p3)
P
P, 3

From the structure of the propagator and the vertex, we see that

2 s _2i_ig i 1 TR
g p  oprp B P e\ k=0>
or g (S0) = (SM)(~iTu(p—p,0) (iS()

or, —aﬁa—:ﬂﬁ = ——E T'u(p,—p,0) (4.11)

This relation is quite important in that it relates different scattering amplitudes. It
is, in fact, a consequence of the gauge invariance of the system (al_though our simple
derivation does not make it seem so). Although, we have derived this relation for
the case when the electrons are massless, the same holds for massive electrons.
Furthermore, this relation holds order by order in perturbation theory and plays a

crucial role in the renormalization of the theory. Relation (4.11) is also known as

the Ward identity of QED.

The difficulties of gauge invariance can be seen from Eq. (4.4).

O, F* = ej"
or, 3“(6“A" — 8" A*) = ej"
or, @n* - *8")A, = ej¥ (4.12)

The Greens function associated with this equation must satisfy

O™ — 828%) Gua(z — y) = —646W (2 —y) (4.13)
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But note that the operator (O.n*¥ — 0#0%) is a transverse projection operator in

the sense that
Bzy (Qen™ — 020%) =0.07 — 002 =0 (4.14)

Since projection operators do not have inverses, the Greens function of Eq. (4.13)
does not exist. Consequently, the Cauchy initial value problem cannot be solved
uniquely. Classically, we know that in such a case, we have to choose a gauge in
which the problem can be solved. The rationale for this, of course, comes from the
fact that any observable is gauge invariant and is, therefore, insensitive to a choice

of gauge.

In the quantum theory, there is a well-defined procedure (known as the
Faddeev-Popov procedure) for doing this. One adds a gauge fixing term to the
Lagrangian (corresponding to the choice of a gauge) and a compensating ghost La-
grangian. Thus with a covariant gauge choice, the complete gauge fixed Lagrangian

for QED takes the form

Les = LQED — 5& (B,V,A“)2 + 9*€0,¢
(4.15)
= 7 (B — ie W)Y~ 3 FuF** — o (3,4¥) + 04e0,c

Here o is an arbitrary constant parameter known as the gauge fixing parameter.
¢ and ¢ are known as ghost fields and satisfy anticommutation relations like the
fermions. (They are scalars with opposite statistics.) Physically, one can think of
the ghost fields as subtracting out two degrees of freedom from the four component
photon field to give effectively two physical degrees of freedom (namely, the trans-
verse degrees). The complete theory of QED now has the additional Feynman rules

given by

ANNENAN __t —(1 — o) PrPv
p iG(p) 7 (W;w (1-a) ;2

)

(4.16)

T Z.Gc =L
o > . iGc(p) 7



34 -

The procedure of gauge fixing, while gives well defined calculational rules, has
changed the theory also (at least appears to). For example, the theory is no longer
gauge invariant and, consequently, it is not clear whether the Ward identities which
we derived earlier and which characterize gauge invariance still hold in the full
theory. A crucial observation which helps answer this question is that even though
L.g is not gauge invariant, it is invariant under a symmetry transformation involving
the ghost field (also known as the BRST transformation). This can be appreciated

by rewriting Leg as
Lot = igy™ (B, —ied,) % — }1 FuF™ — FO, 4% + 5 F' + 0¥e0uc  (417)

Note that if we eliminate the auxiliary field F' from Eq. (4.17), the Lagrangian of Eq.

(4.15) is obtained. The Lagrangian (4.17) is invariant under the transformations

SoAu(z) = £ 8ye(2)
Sab(a) = iBel()(z)
S59(z) = ~iBe(=)()
(4.18)
556(2:) =0

f55(z) = L F(z)
€ .
gF(z) =0
Here B is a space-time independent anticommuting parameter. The invariance of

the Lagrangian can be checked by noting that these transformations correspond to

a gauge transformation if we identify

a(z) = Be(x) (4.19)
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Since the original Lagrangian is gauge invariant, it follows now that
bpgLleg = bg| — FO A" + % F? 4+ o*cluc

= —F0,65A" + 88380,

(4.20)
B

| p
—_——— hn__ OB
= —C F8,8#c— £ 0" Fo,c
__B b

= —C 8, (Fo~e)

Therefore, the action is invariant.

The BRST symmetry of the theory imposes relations between different scat-
tering amplitudes which include the Ward identities we discussed earlier. But more
importantly, the symmetry transformations of Eq. (4.18) lead to a conserved charge,

QBrsT, through the Noether procedure. This charge has the important property

that it is nilpotent, that is,

QirsT =0 (@Brsr is fermionic.) (4.21)

This allows us to define the physical states in this theory as those states which are

annihilated by @Qgrst, namely,

QBRSTIphys >=0 (4.22)

Note that since @prsT is the generator of the BRST transformations, we can write

(up to a total derivative)

—F3,A* + % F? 4+ 8*&8,c
., 0
= 5( — e(A,ﬁ“c + 5 Fc)) . (4.23)

= {QBRST) —C(A“a#(—:’*- ’% FE)}
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It follows now that
< phys'|Ceq|phys >
=< phys'|Lqep — FO,A* + % F? + 9*20,c|phys >
O
=< phys'|LqED — e{QBRsT, Akd,e + g— Fa} |phys >
=< phys'|LqEp |phys >

Here in the last step we have used Eq. (4.22). This shows that even though the
gauge fixing procedure may have changed the theory, the effect is not observable in
the physical sector. The BRST symmetry also plays a crucial role in proving the

perturbative unitarity of the theory.

Higgs Mechanism:

Let us reconsider the self-interacting theory of the complex scalar field which
displays spontaneous symmetry breaking. However, let us also assume the complex
(charged) scalar fields to be interacting with photons. As we have seen, interaction
with photons can be introduced through the minimal coupling. Thus the Lagrangian

for this theory is given by

L= FuF 1 (D,9)!(D#6) + m2stg— 5 ($16)° A>0  (425)
where

Dy = (8, —ied,)d

(Dud’)f = (6# + ieA#)d’f

In terms of the real fields o and (, the Lagrangian of Eq. (4.25) takes the form

(4.26)

1
L= _i F F* 4 % Buodta + 3 0,(0"¢

— 2
— ec 8, CA* + fz— A A% (o + (?) (4.27)
1'TI.2 z\ 2
+7 (62+{2)_-1—6 (a2+c2)



37

This Lagrangian is invariant under the gauge transformations
fo(a) = = (=)((2)
o(z) = ——— €(z)((=
€ ﬁ

8el(=) = — e()o(2) (4.28)

Sl

5Au(=) = - Buc(z)

However, as we have seen earlier, the ground state of this theory occurs for

¢=0
2m (4.29)

g = ——

VA

For a stable perturbation, the theory must be expanded around this ground state
by letting

2m
oo+ —— 4.30
A (4:30)

This leads the Lagrangian in Eq. (4.27) to take the form

L= FuF® + 3 8,00%0 + 3 0,00

Zem 2m2e?

\/X A*0,( — ea'a (A" +

A A*

(4.31)

2me?

P e’ (.2 2 m* 2 2
+TUA“A +E'A“A (0' +()+T—ma'

D ot +¢) - 2 (2 + ¢

As we have seen before, there is spontaneous breakdown of symmetry in this theory
and in the absence of the photon fields, Goldstone’s theorem guarantees the exis-
tence of massless particles. However, in the presence of the photon field, there is a
gauge invariance which allows us to choose a gauge. In particular, if we choose the

gauge (this is also known as the unitary gauge)

(=0 (4.32)
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Then the Lagrangian of Eq. (4.31) takes the form

2m2e?

1 1
L= -5 FuF* 4 50,0040 + = A, A"
4 2 2 2
— m2o? + T—';— + 3; TA AR + % W (4.33)
B mvVA ;A o4
2 16

We note that in such a case, the massless particle has disappeared and instead the

photon field has become massive with a mass given by

2me
mph = % (4.34)

This is known as the Higgs mechanism and we say that the photon has become
massive by eating the Goldstone boson C‘. Note that a massive photon has three
helicity states as opposed to the two states a massless photon can have and, conse-
quently, the total number of degrees of freedom is unchanged: (otherwise unitarity
would be violated). The Higgs mechanism is quite useful in generating masses for

particles in a physical theory.
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Lecture V

Non-Abelian Symmetries:

So far we have only considered symmetries where the generator of the symme-
try, namely, the charge satisfied a trivial algebra - that is, it commuted with itself.
Such symmetries are known as Abelian symmetries. Let us next consider some
symmetries where the generators satisfy a nontrivial algebra. Such symmetries are
known as non-Abelian symmetries and we are quite familiar with them also. For
example, we know that the angular momentum operators generate rotations and

satisfy the algebra
[J2,T%] =iebeue a,b,c=1,2,3 (5.1)

As we know, this is a non-Abelian algebra corresponding to the group SU(2). We

also know that the quantum mechanical operator generating rotations is given by
U9) =&’ (5.2)

where 6% is the parameter of rotation. Thus, for example, we know that if ¢ is a
two component spinor corresponding to the j = 1/2 representation, then under a

rotation _
b = Uy (O = 3 7y (5.3)

where 02 are the Pauli matrices and correspond to the angular momentum operators
for this representation (actually, 0 corresponds to the generators). Infinitesimally,

the two components of the spinor would rotate as
: 1 0o
Seyp* =1 (— a'“e“) P’ 1, =1,2 (5.4)
The 7 = 1/2 representation is 2j + 1 = 2 dimensional and is also called the funda-
mental representation of SU(2).

SU(2) is, of course, the simplest of the non-Abelian symmetries. In general,
the algebra corresponding to a higher symmetry group SU(n) consists of n? — 1

Hermitian generators and satisfies an algebra of the form
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[T*,T*] = ifebeTe a,b,c=1,2,...,nr —1 (5.5)

where the totally antisymmetric constants, f“"c, are known ‘;zs the structure con-
stants of the group. We can think of the generators T'* as generating rotations in
a (n? — 1) dimensional internal space. Therefore , we can readily generalize many
of the results of SU(2) to the SU(n) case. For example, we note that if ¥ is a
function belonging to the fundamental representation of SU(n), then it will be a
n-component object and under an infinitesimal SU(n) rotation, it would transform
as

bbt =i (T%e*) 47 i,7=1,2,...n (5.6)

Here T® corresponds to the SU(n) generators in the fundamental representation

and €* is the parameter of rotation.

Let us next consider a free fermion theory where the fermion field belongs to
the fundamental representation of an internal symmetry group SU(n). We are,
of course, quite familiar with many such fermionic systems. We know that the
three colored quarks belong to the fundamental representation of the color groui) '
SU(3). The up and down quarks belong to the fundamental fepr_eseintation of the
isospin group SU(2) and so on. Such a system is, fherefore, worth studying. The

Lagrangian is given by
L =iy o, i=1,2,...n (5.7)

which is just a sum of n-free fermion Lagrangians. Note that the momenta conjugate

to ¥l (z) are
oc

i (=)

so that the quantization rules become

I (z) = = i} (z) a=1,2,3,4 (5.8)

{$i(2), 95 (=)} oy = 0 = {Ii(2), (")}, _,,
(5.9)
{($i(2), (2"} _y = i67 6056 (z — 2')
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The Lagrangian of Eq. (5.7) is, of course, invariant under the global U(1)

transformation we have discussed earlier, namely,
Pi(z) — €°P(2)
(5.10)
$i(z) — e Y (2)

where a is a constant scalar parameter. But more importantly, the Lagrangian is
also invariant under a global SU(n) rotation which has the infinitesimal form
| bpi(z) = i(Te€) 7y
(5.11)
8 (z) = i (Te®)”
Here €* are constant, infinitesimal parameters of the SU(n) transformation. The

invariance can be checked readily as

6L = 6P v 8,0  + iyt 8,60

= 3 (T%e) O, — B0, (T2 947)

— ‘I,Ei(Tafa)ij’)’“a“‘lf)j _ ‘(Z)—i(Taéa 1J’Y“6“1/IJ

or, 8£=0 : (5.12)

The conserved current can now be constructed from the Noether procedure and has

the form
o = () Ty = e (519)
The corresponding conserved charges
Q= / &z 0 (z) (5.14)
can be shown using Eqgs. (5.5) and (5.9) to satisfy
[@*, Q%] =if**Q° (5.15)
which, as we have seen, is the SU(n) algebra (see Eq. (5.5)).

The Lagrangian of Eq. (5.7) is, however, not invariant under the SU(n) trans-

formations of Eq. (5.11) if the parameter ¢* are coordinate dependent. As we
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have seen earlicer, invariance under a local transformation necessarily requires the

introduction of a gauge field. In the present case, the Lagrangién

£ =iy (890, —igas (T°)7) 47
can be shown to be invariant under the local gauge transformations

S () = i(T*e(2)) V()
S (z) = —igp? () (T°e%(=))”
5.A%(z) = i B (2)4 F2¥ AL (2)e%(z)
The invariance can, in fact, be readily checked as

8L = by (6""6,. —igA® (T“)"">¢J‘
+ ity (5"" 8, — igAj, (T°)ij> Setp?
+ g%y (T%) 7 6. A% ()

= - (@) (590, — g A3(07) 7 )7

_ 1/-,;7# (51'1'3“ _ igAZ (Ta)ij) (Tbeb(z))jk¢k(z)

+ gy (1% (3 Bue*(z) + f“"“AZ(z)f‘(:v)) ¥ ()

= iggiy* [T*, T A%(2)eb ()97 (=)

+ gyt fe(T°) 7 Al (2)ef () (=)
Using Eq. (5.5), we now obtain
6L =— gyt f°(T°) 7 A5 (z)et (2 )7 (=)

+ gpiyt o (T°) 7 A8 (2)e (2 )i () = 0

(5.16)

(5.17)

(5.18)
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Several comments are in order here. The paramecter g can be thought of as

the coupling constant for the SU(n) gauge group. Furthermore, in the present
case we note that the gauge fields A carry SU(n) quantum numbers and hence
SU(n) charge. This behavior is quite distinct from the photon which does not
carry electric charge. Furthermore, since the gauge fields couple to any source
carrying the corresponding charge and since in the case of SU(n) the gauge fields
themselves carry SU(n) charge, it is clear that the gauge fields of SU(n) must couple
to themselves - that is, they must have self-interaction in contrast to the case of
the photon. In fact, the dynamical Lagrangian for the SU(n) gauge fields invariant

under the transformations of Eq. (5.17) can be shown to be
1 a uv,a 2°
v [’85“8° = _Z F#V(z)F ' (:B) a= 1)21 co.n® =1
where . (5.19)
F2, = 0, A% — 0,45 + g AL AS

The self-coupling is now obvious. Thus for example, if we are considering Quantum
Chromodyna“mics. corresponding to the gauge group SU(3), there would be
32 -1 = 8 gauge fields or gluons which not only couple to the colored quarks but also
to themselves. This, of course, has profound conséquences leading to asymptotic
freedom.

The complete Lagrangian including the fermions and the dynamics of the gauge
fields which is invariant under the transformations of Eq. (5.17) is given by

1
ﬁinv - _Z

F:vFl‘v.a + i'(,zi’)’“ (51'.7'6“ — ig (Ta.)ij A:) ¢j(2) (520)
The gauge invariance, as we have seen, presents problems in quantizing the theory.
Therefore, following the method due to Faddeev and Popov, we choose a gauge

fixing and a ghost Lagrangian. A covariant choice of the gauge in the present case

leads to the complete Lagrangian
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L= Ciny— 51; (B, AP®) + 842%(z) (8,6° + g > 45) c(z) (5.21)

where c®(z) and &%(z) are the respective ghost and anti-ghost fields. The Feynman

rules for this Lagrangian can now be derived.

'6‘ab
AN : (yab _ ! (1 _ PuPv
.. 164
> = ; 1S (p) = —
yi p g #)="3
'6‘ab
S iG*(p) =
cd p —c—b (p) p?
pz’ J |
—iFZ'ij (PJ;P2,P3) =197, (T°){j5(4) (p] +p2 + p3) (5.22)
P:3 M, 8
Pl. 1
Ps, c
h b be ¢(4)
>/\/\£\/\/\/\ —gnabe = abeg
/_{ pz " b o, (PI,P2,P3) gplp.f (pl + p2 +p3)
Pl, a
R, A,c
~iT2% (p1,p2,p3) = —9f** | (p1 — p2) \ Mo
p2 ¢ v 1] b
P, 1,8 + (2 = p3) s + (3 — P1), s

_irzg‘fp (p11p2ap3ap4) = —igz fabpf‘:dp (npknvp - nypnuk)
P, 4,8 B,V, b + facpfdbp (nupnvA - 77,u.u77Ap)

+ fadpbep (qu"?lp - ﬂuAﬂup)



The Feynman rules clearly bring out the feature of pure gauge interactions. With

these, one can now calculate any scattering amplitude.

The Lagrangian in Eq. (5.21) is no longer gauge invariant. But as in the case
of QED, there is a residual (BRST) symmetry involving the anticommuting ghost
fields. Thus the Lagrangian in Eq. (5.21) is invariant under the set of transforma-

tions -
8.5 = B3 ) + 1 AL (2)e"(2)

89’ = ifc*(z)(T°) "9 (2)

a%* = —ifc*(z)d’ (T°)” (5.23)
dpc?(z) = -—g febect(z)c(z)

dpc(z) = —g (0, A*%(z))
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Here B is an anticommuting constant parameter and the invariance of the La-

grangian can be checked in a straightforward manner. Once again the BRST sym-
metry leads to relations between different scattering amplitudes known as Ward
identities or Slavnov-Taylor identities. These identities are much more complicated
than the ones we encountered in the case of QED but are quite useful in renormal-
izing the theory. The conserved charge associated with the BRST symmetry in the
present case can also be shown to be nilpotent. As in the case of QED, this helps
us define a physical Hilbert space. In this space, the theory can again be shown
to be independent of the choice of the gauge and the parameter . Furthermore,

perturbative unitarity can also be shown to hold in this space.

As we have seen earlier, renormalization introduces a mass scale p and that all
coupling constants become functions of u. The p-dependence of the SU(n) gauge
coupling in the present case can be calculated since all the Feynman rules are
known. In fact, if we assume that there are ny fermion fields in the fundamental

representation interacting with the SU(n) gauge field, then at one-loop level we find

g3

672

0
b =Ble) = ~ja 5 (1in—2ny) (5.24)

The first term on the right hand side comes from pure gauge interactions whereas

the second term which depends on the number of fermion flavors comes from the
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fermionic interactions. Note that the two terms contribute with opposing signs. As

in Eq. (2.29), we can solve Eq. (5.24) to obtain

PO pp—. (5.25)
£48) (11n — 2n4)In £ |
This shows that if
1ln —2nf >0 (5.26)

Then g(p) decreases as p increases with respect to . In other words, in such a
case the coupling becomes weaker as the energy scale increases. In particular, for

infinitely large energy values, the coupling vanishes leading us to conclude that such

theories are asymptotically free.

Let us note, in particular, that when n;y = 0, namely, when no fermions are

present, the scale dependence of the gauge coupling is given by

g*(a)
1+ llng’(#) In _&2_

g (p) = (5.27)

That is, in a pure non-Abelian gauge theory, the coupling is asymptotically free. It
is the presence of fermions and 6ther matter fields that spoils asymptotic freedom.
Intuitively, one understands this as saying that fermions and other matter fields lead
to a screening effect whereas a non Abelian gauge field leads to antiscreening which
is responsible for asymptotic freedom. Note also that since in an asymptotically
free theory, the coupling is weak at high energies, perturbative calculations can
be trusted only at large energies. At low energies, however, the coupling constant

grows and hence perturbation theory breaks down.

Let me conclude by pointing out that Quantum Chromodynamics which is the
theory of strong interactions is a gauge theory based on the gauge group SU(3).
The quarks which are the fermion fields in this theory come in threee colors and
belong to the fundamental representation of SU(3). Thus specializing to n = 3 we
would obtain all the necessary results for QCD. Since we do not see free quarks in
nature, we can say that the color symmetry (SU(3)) is unbroken leading to the fact

that observables must be color singlet states. As we have seen, since the coupling
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becomes stronger in non Abelian gauge theories, it supports this hypothesis that the
quarks must be strongly bound. However, a conclusive proof of quark confinement

is still lacking.
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Lecture VI

Weinberg-Salam-Glashow Theory:

The strong force can be described by Quantum Chromodynamics which is a
gauge theory based on the gauge group SU(3). As we have seen, we understand the
basic features of this theory quite well. Thus let us ignore the strong interactions
for a moment and try to understand the gauge structure of the other two fundamen-
tal interactions, namely, the weak interaction and the electromagnetic interaction.
Let us recall that while leptons interact weakly as well as through electromagnetic
interactions, they do not have any strong interaction. Consequently, we can, for
simplicity, restrict ourselves to the gauge theory involving only leptons in order to

understand the weak and electromagnetic forces.

To begin with, let us recall some facts about fundamental particles. We know
that all elementary particles can be classified according to the representations of the
weak isospin group, SU(2), which is very similar to the rotation group. (For clarity
let me emphasize here that the weak isospin is different from the strong isospin
which classifies observed hadrons.) Thus, let us list some of the more familiafl
particles all of which correspond to the I = 1/2 represeht'ation of the weak isospin

group.

2 OGE)E0) 2
Iy =—3 e n T d) \s

The particles within a given multiplet are arranged so that the member with a higher
I3(I.) value has a larger electric charge. It is also known that we can assign to every

elementary particle a U(1) quantum number known as the weak hypercharge and

denoted by Y such that the electric charge of any given particle can be written as

Q=I3+§ (6.2)

(Once again, a word of caution that the weak hypercharge is different from the

strong hypercharge which can be identified with the sum of the baryon number
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and the strangeness number.) Eq. (6.2) can, in fact, be taken as defining the

hypercharge of a given particle. Thus, the hypercharges of some of the particles in

Eq. (6.1) are
},c =—-1= Yv,

. 1 (6.3)
Yu = 5 = Yd

Note here that the hypercharges of the particles within an isospin multiplet are the

saime.

Phenomenologically, we know that weak interactions are short ranged and,
therefore, if they can be written as a gauge theory, the gauge bosons must be
massive. Second, we know that they violate parity maximally and have a V—A
structure. To understand this better, let us recall that the electromagnetic current,

in the case of QED, has the form (see Eq. (3.41))
i =~ (6.)

This behaves like a vector under a Lorentz transformation as well as under a space
reflection and is, therefore, called a vector current. An axial vector current, on the
other hand, transforms like a vector under a Lorentz transformation but behaves

like a pseudo-vector under a space reflection and has the form (see Eq. (3.42))

ih = —vrtrs¥ (6.5)

A V—A current, as the name suggests, has the structure

. 1 -
Jv_a= ~3 pyH (1 — 7s)9
(6.6)
= —¢Yr7*PL
where we have defined 1
YL =3 (L—s)¥
(6.7)

- 1 -
YL = 3 1/1(1 + ’)’5)
The quantity %(1 - 75) is a projection operator which merely projects out the left

handed component of a fermion field. Thus the V—A structure of weak interactions
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tantamounts to saying that only the left-handed components of particles participate
in weak interactions. Consequently, we can think of weak isospin as a left-handed
group.

With all this information, let us construct the simplest theory involving only

one family of leptons, namely, the electron family. Let

- (2), o

This is an isospin doublet. However, whereas we know that the right handed
component of the electron exists, right handed neutrinos are not seen in nature.
Consequently, there will only be one right-handed lepton in this case which is the

right-handed electron. By definition, this will be an isospin singlet.

r=ep (6.9)

All the fermions, of course, carry the hypercharge quantum number. We have

already determined the hypercharge of the left-handed particles to be
Y=-1 (6.10)
The hypercharge of the right-handed electron can, similarly, be determined to be
Y,=-2 (6.11)

Note that all the fermions carry both the isospin as well as the hypercharge quantum
numbers. Thus the simplest gauge theory that we can think of constructing is one
where both these symmetries are local. We can easily write down a fermionic

Lagrangian which is invariant under the isospin (SUL(2)) and hypercharge (Uy (1))

gauge transformations.

i ij ig' 9 [ a\iiyra \ i
£f =1l ’7“(5 ]6# — —2- 6 JY“ —_ —2‘ (0’ ) ]W“>£J
(6.12)
+ 17y* (8, — ig'Y)r
Here 4,5 = 1,2 and a = 1,2,3. We have introduced the gauge fields W and Y,

corresponding to the isospin and hypercharge transformations. g and g' denote
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respectively the strengths of the isospin and hypercharge interactions. Note that
since the right-handed field does not carry any isospin quantum number, it does

not couple to Wg.

The dynamics of the gauge fields can now be introduced in a straightforward

manner.

1

Lgange = _4

v 1 a v,a
Y Y™ — 5 W, W (6.13)

where

Yo =0,Y, —-0,Y,
(6.14)
Wo, =0,W2 — 8, Wg + g™ Wi W¢
Relation (6.14) emphasizes that Y, is an Abelian gauge field like the photon field
since it corresp.onds to the group Uy(1l). W, on the other hand, is a non-Abelian

gauge field corresponding to the gauge group SUL(2). Thus, together,

defines an interacting gauge theory of leptons based on the gauge group SUL(2) x
Uy(1).

The weak interactions, on the other hand, are short ranged which amounts to
the corresponding gauge bosons being massive. We can incorporate this into our
theory by adding to our Lagrangian a part depending on scalar fields which, as we

have seen, can give masses to the gauge bosons through the Higgs mechanism. Let

o= (%) 610

denote an isospin doublet of complex scalar fields with charges 1 and 0. Thus the
hypercharge quantum number associated with this multiplet is 1. Let us also denote

the Hermitian conjugate of ¢ as
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pr=9¢" 4 (6.17)
~

The scalar Lagrangian, invariant under SUL(2) x Uy(1) transformations, can now

be written as

.. AT
[:Higgs = ((5"6 + 2 5'JY —‘5( a) JW:)¢J)
i 19 ig ik
: (5 ko 4 - ¢ 9 > Ca) W“"’) oF (6.18)

+m?gle— 2 ($19)° — h(rgte+ Egr)
This is the usual symmetry breaking Lagrangian for the scalar fields except for the
last term representing the interaction between the scalar fields and the fermions in
the theory. h is known as the strength of the Yukawa coubling.' We can now write

the total Lagrangian for the theory to be

£TOT = Cgauge + cf + ACHiggls (6.19)

Note that if we now define the combinations

WE= +iW;) - ‘ (6.20)

1 1
ﬁ (Wu
then Lhiggs can be written explicitly in terms of the components as

Liiggs = ((6,‘ - % Y,,)giw‘ + %g W,fd’— + % W;¢'5°> ((6“ + = Yu)¢+

g ig ig' -
S wrs) o (0oL 0

- i T ig’
+ == W+¢ W3¢0) ((au + = Yp)¢0
v2 ’ 2 (6.21)

v A 2 W“«»") +m?(¢7¢F +8°¢")

(6~ o™ + ¢°¢°) — h&pver ¢~ — hérerd’

dk|>4

— hvvepepd™ — hérerd’

52
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As before, we can now calculate the minimum of the potential. To be consistent

with our earlier notation, let me define

o 1 .
(6.22)

_0——1—- oc—1

In terms of these, the minimum of the potential can be shown to occur at (see Eq.

(4.29))
bt =0=¢" =
6.23
. V2
We can now expand the theory around this classical minimum by letting
oc—o+v (6.24)

To bring out the essential features of the theory, let us first look at only the

quadratic terms in LroT after shifting. The quadratic Lagrangian takes the form

LQuad. = —% (6“Wj - a,w;) (aﬂwv- - 6"W““)
- 711 (G#Wf,’ - ayW,i) (6“W"3 - 6”W“3)

(o) (07 25) v i

+ ié-[,ﬁel, + iERﬁeR + au¢_a“¢+
(6.25)

1 1 3 —
+35 0u00a + 3 BuLOH — o WOk

+ LWt + 2 (g'y,, + gW,i)a*‘c

g*v? + o, vl ' 3 ' 3
+ n W, wH +§ gY,+gW, )| gYH +gW¥

hv _ hvée 2 2
— — érer — — —mio
\/QRL \/ﬁLR
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Although this looks complicated, it can be simplified by redefining variables in
the following way. Let

g

sin fyw = ———— (6w = Weinberg angle)
/g2 + gl2
g9
cos by = ———
\ /g2 + gl2
(6.26)
1 .
Z, = \/_2——_——__’_2_ (g'Y,, +ng) =sinfwY, + cos BWW;:
g°+g
A =——}——— Y, —¢'W3) =cosOwY, —sin W3
B \/g—zrg—'z— g¥y—gWw,} = wi, wyy,
Then in terms of these variables, the quadratic Lagrangian takes the form
1 + + BWV— _ YW HE— 90 -
LQuad. = -3 oW, —~ 8, W || WY — "W + y w,w
1 2 12Y,,2
. (a“z, _ MM) <3nzv _ 6%) + (ij%_)_ 2,2
1 B AV VAR
-1 0,4, —0,A, )| 0*A" - 0"A
+ e Prer + 1€LPer + 1€RPen
(6.27)

hv _ hv _ _
- —\/‘5 €rer — E érer + Ou¢ ot

+ % 0,.¢0"( + % 8,080 — m?a?

1gv -, tgv
__;qz__W:-aud, +%—WF6“¢+
[aZ 1 o2
+E—g—+—g—Z“6“C

2

We note here that three of the four gauge fields have become massive and only
one gauge field remains massless. (This is particularly obvious if we choose the

gauge ¢7 = ¢~ = ¢ = 0.) Thus the original symmetry has spontaneously broken
down to U(1). Thus we say

SUL(2) x Uy(1) —> Uem(1) (6.28)
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The field A, can be identified with the photon so that we have the familiar result

that in this theory even though isospin and hypercharge quantum numbers may be

]

violated in some processes, the electric charge will be conserved. We also note that

spontaneous symmetry breaking gives a mass to the electron through the Yukawa

coupling whereas the neutrino remains massless. Note that the mass of the W and

the Z-bosons are given by

so that

Mw =5
(6.29)
2 g12Y1/2
My = & 95
2
Mw _ J =cosfw (6.30)

MZ ,/gz +g12

Both these masses and the Weinberg angle are, of course, well measured experimen-

tally.

Let us next look at the part of L1oT describing the interaction of the fermions

with the gauge fields.

= Wi Denyher + 5 Wieraver

7

+ —‘g Wz ('—/eL'Y“VeL - EL’Y'LGL> (6.31)

!

g

) Y, (D,L'y“u,z, +eryter + 25R‘7“6R>

We can rewrite this in terms of the variables in Eq. (6.26) as

g
Line = L
‘T2

(W:ﬁeL')’ﬂeL + WM_EL'Y“VcL)

ZI‘ 2(= 7 7y b
T (0 =)
(6.32)

+ g2 (DeLy*ver + ELY"eL + 2637“63))

!

99

W A, (EL’Y"€L + éR’)’“eR)

+
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The first and the second terms in Eq. (6.32) exprerss the charged and neutral
current structures of the weak interactions. The last term, on the other hand,
has precisely the form of the coupling of electrons to photoﬁs if we identify the

electromagnetic coupling to be

!
. L —— . — i ;
e= W gsin GW g' cos 0w (6.33)
We have, of course, considered the simplest model with one family of leptons. One
can add more families of leptons as well as quarks. We will then have a gauge
theory of weak and electromagnetic interactions involving quarks and leptons. This

is known as the standard model and seems to work well experimentally.



