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Ashok D as
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Lecture I

Basic Notations:

The theories which we will study in these lectures are supposed to describe 

fundamental processes at extremely high energies. Consequently, these theories will 

be relativistic theories invariant under Lorentz transformations. Let me, therefore, 

begin by establishing some notation which I will be using throughout the lectures.

Let us recall that if we have two vectors x and y in the three dimensional 

Euclidean space, their product invariant under rotations is defined to be (we will 

assume repeated indices to be summed unless otherwise specified.)

x-y = y-x — x^i + x2y2 + xzy3 = Xiyi i = 1,2,3 (1.1)

This is, of course, the scalar product and from this we obtain the length squared of 

a given vector x as

x2 = x ■ x = xl + x% + xl = X{Xi (1.2)

which is also invariant under rotations. (Rotations define the isometry group of the 

Euclidean space.)

In constrast, in the four dimensional Minkowski space, one can define two kinds 

of vectors, namely, the covariant and the contravariant vectors denoted respectively
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by Aft. and . These a^re four component objects (also known as four-vectors) with 

/x taking the values, /x = 0,1,2,3. Furthermore, the covariant and the contravariant 

vectors are related through the metric of the Minkowski space as

= 77"*'

Ap = ThiVAv
(1.3)

where I will assume the second rank metric tensors t/**1' and to take the diagonal 

matrix form
/I 0 0 0 \

0-10 0
*7

tiv
0 0 

\0 0

-1

0

— Vm*

-1/

(1.4)

The metric tensors can be used to raise or lower tensor indices and the choice of 

the metric in Eq. (1.4) is commonly known as the Bjorken-Drell convention.

It is clear now that if we write the components of A*1, as

A11 = (1.5)

then the components of A^ would take the form

A^V^=(a\-a) (1.6)

In a sense, the covariant and the contravariant vectors have opposite transformation 

properties under a Lorentz transformation so that given two vectors A^ and B1*, 

we can define a scalar product

A- B = A^B* = A^B^ = r]*lvAilBv = r\ikVA»Bv = A* B° -A-B (1.7)

which will be invariant under Lorentz transformations. The length squared of a 

vector j4m in Minkowski space now follows to be

A2 = A^A* = (A0)2 — A2 (1.8)

This is Lorentz invariant but is no longer positive definite as would be true in the 

Euclidean space.
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Let us also recall that space and time coordinates define a four vector in 

Minkowski space. Thus writing

x>1 = (t,x) (1.9)

we obtain

*„ = (*,-*)■ (1.10)

and

x2 = = t2 — x2 (1.11)

which is, of course, the invariant length (we will set h = 1 = c throughout). It is 

clear now that Minkowski space can be divided into four cones and the physical 

processes are assumed to take place in the forward light cone (so that causality 

holds) defined by

x2 =t2 -x2 >0 t>0 (1.12)

Just as space and time coordinates define a four-vector, derivatives with respect 

to these coordinates also define a four-vector. Thus the contragradient is defined to

(113)

from which we obtain

^ = a, =Wr = (!,$) (i.i4)

The generalization of the Laplacian to the Minkowski space is known as the D’Alem- 

bertian and is given by

D = ^ = ^ (1-15>

There is one other kind of four-vectors that we will need for our discussions. 

These are known as the Dirac matrices and are denoted by 7^ and 7^. They satisfy 

the anti commutation relation

+ 7 V = WI (1.16)
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where I is the identity matrix. It follows, therefore, that

(7°)2 = I (t1)2 = (72)2 = (73)2 = -/ (1-17)

I would choose the Hermiticity properties of these matrices to be

(70' =-7* (1.18)

A particular representation for these 4x4 matrices can be written in terms of 2 x 2 

blocks as

where cr,-’s represent the Pauli matrices. From the four Dirac matrices we can 

construct a nontrival scalar matrix

7s = »70717273 (1.20)

which satisfies

7s = 7s (7s)2 = I (1-21)

As we will see later, 75 describes the chirality or the handedness of a massless Dirac 

spinor.

Scalar Field Theory:

With this introduction, let us look at the simplest of the field theories, namely, 

the free, massive, real scalar field theory. The Lagrangian (or more appropriately, 

the Lagrangian density) has the form

C = \ 8^4, - (1.22)

where 4>(x) = <f>(t,x) is Hermitian and is known as a spin zero field or a scalar 

field because it transforms like a scalar under a Lorentz transformation. Most of 

the physical theories are at most quadratic in the derivatives. In this case, the 

Euler-Lagrange equations take the form

dC 8C _
d(l dd^ d<t> ~ (1.23)
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From Eq. (1.22), therefore, we see the dynamical equations to have the form

(□ + m2)<£ = 0 (1.24)

This is a generalization of the wave equation, known as the Klein-Gordon equation, 

whose solutions are plane waves of the form

<f>(x) ~ e±ifc-*

with (1.25)

k2 = k^k*1 = m2

The field <f>(x) can describe neutral spin zero particles. In physical processes, 

however, particles are not completely free - rather they are interacting. Thus a 

more realistic theory would be one which describes a scalar field interacting with 

an external source. The Lagrangian, in this case, has the form

1 771?
C = -d^d><f>- — <t>2+j<t> (1.26)

where j(x) represents an external source and the Euler-Lagrange equation, in this 

case, takes the form

(□ + m2) <f>(x) = j(x) (1.27)

The solution to this equation can be obtained from the Greens function for the 

problem which satisfies

(□*+m2) G(x - t/) =-£(4)(:c - y) (1.28)

In terms of G(x — y) then, we can write

<K*) = #0)(x) - J d'y G(x - y)Kv) (1.29)

where <t>(°\x) is any solution of the homogeneous equation (1.24). The formal 

solution of Eq. (1.29) is useful only if we know the explicit form of G(x — y). Note 

that in momentum space Eq. (1.28) has the form
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(—fc2 + to2) G(k) = —1

1
or. G(k) =

k2 — to2
(1.30)

so that we can write

= —f d4)
(27T)4 J

(1.31)
e-ik(x-y)

k2 — to2 — ie

Here the infinitesimal parameter e is added to the denominator in order to obtain 

the retarded Greens function. Thus we see that a crucial ingredient in studying 

any physical system is the Greens function which is also known as the propagator. 

Note that so far in our discussion we have not brought in the quantum nature of 

the theory. This can be done simply by noting that from the Lagrangian in Eq. 

(1.22) or (1.26), we can define a momentum canonically conjugate to the <j>(x) as

. dC •.. .
n(*) = TjTT = ^(*) 

d<p(x)

The quantization rules now follow to be

[#r),,«z')](=,, = o = [n(*),n(*')]<=,,

[<j5(z),n(z')]1=1, = - x')

(1.32)

(1.33)

The fields <f>(x) and H(x) can now be expanded in terms of creation and annihilation 

operators and we can build up a Hilbert space for the quantum system.

Self-Interacting Scalar Field Theory:

Just as a scalar field can interact with an external source, it can also interact 

with itself. Thus let us choose the following Lagrangian as a model of a self­

interacting scalar field theory (also known as the <j>4 theory).

A > 0 (1.34)
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where A represents the strength of self interaction or the coupling constant. From 

this Lagrangian, we can construct the Hamiltonian as

E = U(f>-C

1—2,1 V7j, X7J, , 771,2 j2 , ^ j 4
■* +S*

(1.35)

2 H2 + 2 ‘ +

It is clear now that classically the field configuration for which the energy would be 

a minimum has the form

<j>c{x) := constant = 0 (1.36)

Quantum mechanically, we say that the ground state or the vacuum state is one 

where

< 0|^(*)|0 >= 0 (1.37)

For a constant field configuration, the minimum of the energy can be simply ob­

tained by noting that in such a case

B = V(t) = -CM = ^ (1-38)

from which we obtain

=0 f°r <f> = <j>c = 0 (1.39)

As we will see later, these observations will be useful in studying the phenomenon 

of spontaneous symmetry breaking.

In a laboratory experiment, we would like to study the scattering involving 

particles. The scattering amplitudes can be calculated using the Feynman rules 

following from the theory, in Eq. (1.34). The theory, as we have seen, has a 

propagator and a set of interaction vertices. In the present case, we have
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iG(p) = p2 — m2
-------->..

P

-tr(4)(pi,p2,P3,P4) = -i. PV
d<t>4 <j>=0

= -i\s^ (pi + P2 + P3 + P4)

P ^ Izp
1 \/ 2

P D3 71 V *4
/ \

(1.40)

Any physical scattering process such as

n particles —> m particles

can now be constructed and computed using the propagator and the interaction 

vertices. Thus for example, 3 particles —> 3 particles, in this theory has the lowest 

order graph given by

Pp —>—^------ >—-< —q.
sf P1 + VP3

Pl+P2+P3 WS

and has the value

zA2
_________ :_________ (—i\) =___________ —_________

1 (Pi +P2+ Pa)2 - m1 (Pi + P2 + Pa)2 - m!
(1.41)

The diagram describing the scattering process above is a simple one and such di­

agrams are known as tree diagrams. However, scattering can take place through
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complicated diagrams also. For example, in the lowest order in the <f>4 theory a par­

ticle can scatter by emitting a pair of particles which would annihilate each other. 

The Feynman diagram corresponding to this would look like

'\\k

->----------
P

-------->—

P

Such a diagram involves an internal loop representing the creation and anni­

hilation of a pair of particles and is known as a loop diagram. In fact, it is called 

a one-loop diagram since the number of loops involved is one. Use of the Feynman 

rules now gives this scattering amplitude to be

_iA f —--------1----- = --A f d4k----------- (1.42)
J (27t)4 _ m2 (27r)4 J K v-m2 { }

The difference from the tree diagram is now obvious in that we have an integration 

over a momentum variable. This merely reflects the fact that the process involving 

the pair creation and annihilation is a virtual process and can occur with any 

momentum. This integral can be evaluated in many ways. The simplest is to go to 

the Euclidean space by letting

ko —► tfc4

(1.43)

so that the integral takes the form

zA
(So1

1
-(*K + m2)

/ ^BdSl

zA
(27t)4 + m2

(1.44)

Clearly, the integral in Eq. (1.44) diverges and one way to define the integral is 

to cut off the integral at some large value of kg. Thus defined this way, Eq. (1.44)



10

becomes
iA m

IGtt2

1

-iK
)

■«

o kg + m2

iX L m2
IGtt2 k% + rri

iX Ta2 - m2 In ( A2+m2
IGtt2 m2

0

>)

(1.45)

The true value of the integral (1.44) is, of course, obtained in the limit A —► oo and 

it diverges. But doing it this way brings out the nature of the divergence. This 

example also brings home another difference between the tree and the loop diagrams, 

namely, the loop diagrams diverge and, consequently, need to be regularized.
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Lecture II

Dimensional Regularization:

As we saw in the last lecture, there are inherent divergences in a quantum field 

theory which need to be regularized. There are many possible ways of regularizing 

a theory. For example, in the earlier calculation, we used a cut off to regularize the 

amplitude. But we could have chosen one of many other available regularization 

schemes such as the Pauli-Villars regularization or the point splitting regulariza­

tion or the dimensional regularization or the higher derivative regularization and 

so on. Given a system, one chooses a regularization scheme which respects all the 

symmetry properties of the theory. In the case of gauge theories, the regulariza­

tion that works well (it respects gauge invariance) and has become the standard 

regularization is dimensional regularization which I will describe next.

Let us now study the 4>A theory, which we have analyzed in some detail, not in 

four dimensions but rather in n dimensions where n = 4 — e with e an infinitesimal 

parameter. The action defined as

S = J (TxC (2.1)

is a scalar in units of = c = 1 so that the canonical dimension of £ follows to be

[£] = n (2.2)

Note that
£ = i a, ^ ^ ^ (2.3)

and since

M = -1 [^] = 1 (2-4)

the canonical dimension of <f> now follows to be

M = ^ (2-5)

We also obtain

M =1 [A] = 4 — n = e (2.6)
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We would, however, like the coupling constant A to be dimensionless and this can 

be achieved if we introduce an arbitrary mass scale fi and write the Lagrangian as

£ = 1 (2.7)

The coupling constant, A, now will be dimensionless. The Feynman rules for this 

theory in n-dimensions take the form

iG(p) =
p2 — m2

------------>-.

P

-ir(4)(pi,p2,P3,P4) = -i. d4V 
d<f>*

p p1 4
X X

\/
/\

y v= -l>eA^(4^(p] + P2 + P3 + Pi) P2

(2.8)

Let us next go on and calculate all the one loop diagrams in this theory. Re­

membering that we are in n-dimensions, we obtain

i \ i i \ /
\ /->—v.—>

[JUl___Ll/i Ay (27r)» k2-i

f d”k 1 
^ J (27r)n k2 — m2

(2.9)

The fundamental formula for n-dimensional integrals that is of use to us is

J
= (-l)

dnk 1
(27r)n (A:2 +2k - p — M2)a

ztt”/2 T(a — n/2) 1
(27r)n T(a) (p2-i-M2)“-"/2

(2.10)

T(a + 1) = a!

where
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Differentiating Ia-\ with respect to p*1, we can obtain other useful formulae such 

as

1 dIa-\ _ t dnk kp
2(a — 1) dp* J (27r)n

= (-1)£

(A:2 + 2k • p — M2)c

,_i itt”/2 r(a—n/2)
(2.11)

Pm
(27t)» r(a) (p2+M2)“-"/2

and similarly

f dnJ (27T
kfikj,

)n (k2 + 2k • p - M2)<*

*7Tn/2 1
= (-1)° (27T)n r(a) (p2+M2)“-”/2 

1

p^r(a - n/2)

Vfivip2 + M2)F(a — 1 — n/2) (2.12)

Using Eq. (2.10), we can now evaluate the expression in Eq. (2.9) which takes the 

form

->-■

P

/ \I I
\ /
\ / =PeA(-l)

iW2 r(l — n/2) 1
(27t)» r(l) (m2)1-n/2

n/2 . e, 2\l-e/2

We can now use the gamma function identities

T(n + 1)r(») = n

and

r(-) = —f- finite 
6

to simplify the expression in Eq. (2.13). Thus

✓ •<N / \I I \ /
\ /

->----------^------->- = m i\
IGtt2

fi- ttT . 1
In —— + finite

(2.13)

(2.14)

(2.15)
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Thus we see that in n = 4 — e dimensions, this Feynman amplitude is well defined. 

However, as we approach e —> 0, the divergence appears as a pole.

There is one other one loop diagram that we can construct in this theory. Let 

us calculate a simplified version of this.

P J? P 1 2 /■
p k p

dnk
(27r)n

f_i_V
— m2 J

= - u2f A2 / dnk______ 1
2 J (27r)n (fc2—m2)2

*7rn/2 T(2-n/2) 1
(27r)n F(2) (m2)2-”/2

1
2

fj.2c\2
iTrn/2
(27r)n

-e/2

=^ ■ 3^(7"1,1 ^■ + i5nite) (2'16)

Here the factor | is known as the symmetry factor and arises because the amplitude 

is symmetric under the interchange of the two internal lines. Once again we see that 

the divergence appears as a pole and is independent of the external momentum. We 

can now explicitly work out and show that even for arbitrary external momenta, 

the Feynman amplitude will have the form

_ k
P2 P4

Pi v Pa
k^Pj.R,

= i/icA
327T2

e-
In------ f- finite

/i2 J (2.17)

Pi + P2 + P3 + P4 = 0
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Adding in the other two channels, we see that at one loop the total four particle 

scattering amplitude will have the form

P2 P4 P3 P4 P4 P2

>CZK + ptZZK + (5*p2‘p3*p4 =°)
Pi p3 Pi p2 Pi p3

= *>‘A • 3^ ■(! “1,1 ^+ finite) (218)

The divergence structure of the theory is now completely determined at the 

one loop level and we see that if we start from the theory in Eq. (2.7), then at one 

loop, the two point function as well as the four point function develop divergences. 

On the other hand, let us note that if we had started from the theory

m
Co — - ~ — (t>

fj,eX
4!

<t>4 ^ (2.19)

with

A =

167r2e

(2.20)

then we would have additional vertices in the theory given by

->   >— = — im2 A - —im2
87r2e

2 X n
yP N3

= — ifle\B64 (pi + P2 + P3 + Pi) (2.21)

^ S4 (p! + p2 + P3 + Pi)
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Note that the constants A and B are really one loop quantities, (this would have 

been easier to see if we had kept the h terms.) Thus in this new theory, at one loop 

we will have

---- ----->
P P

+

k
✓
/i
\

\I
/

\ /

->-------- *--------->-----
P P

= — im 87r2e + im 167T2
/2 m2 , . \
(-----In —— + fimte JVe ^2 J

= — im
167T2 ( In ——f- finite (2.22)

\ A"4 ^2 P4 P3 P4 P4 P2
X + ><_>< + ><_>< + X_K (p1+p2+p3+p4 = 0)

pX \p3 ?! P3 P1 P2 Pi p3

— i/x£A
3A

167r2e
4- i/^eA

3A
327T2

(?-ln^
\C /*2

+ finite

= — i/xeA
3A

327T2 ( In + finite 
n*

(2.23)

Thus we see that had we started with the theory Cq , there would be no diver­

gence at least at the one loop level. However, the Lagrangian Cq would appear to 

be different from C. But on closer inspection we find that £0 really has the same 

form as C with redefined parameters, namely,

CQ = \ (2.24)

where
<f>o = <f>

m20 = m2(l + A) = m2(l +

A0=^A(l + B) = ^(l + I|L)

(2.25)



The terms, depending on the constants A and 5, which are added to the origi­

nal Lagrangian to render the amplitudes finite are known as counterterms and this 

process of removing divergences is known as renormalization. Although we have 

explicitly shown this only for one-loop, in any given theory one can add countert­

erms order by order so that the amplitudes are finite at every loop. Furthermore, 

a renormalizable theory is one (physical theories are renormalizable.) where the 

counterterms can be completely absorbed into a redefinition of the fields and the 

various parameters in the theory.

Let me say this again in a different way. Let us call </>o to be the bare field and 

mo, Aq to be the bare parameters. Similarly, let us call to be the renormalized 

field and m, A to be the renormalized parameters. Then if we start from the bare 

Lagrangian £q and calculate the amplitudes in terms of bare parameters mo and 

Aq then the process of renormalization guarantees that, in a renormalizable theory, 

when the bare parameters are expressed in terms of a set of renormalized parameters 

as in Eq. (2.25), the amplitudes would be finite. Thus if we calculated the four 

point function up to one-loop from £q in terms of m and A, we would obtain

11

P P P P 
A > A >

& = V
TW^ VP.

/\
X V

P P3. /4 nA >

P3 Pl' SP3 P; 'P«

P4 P3
+ X + yZK +

* V *r --- -
1 ^2R, P, R.

^4 Pg
^Pl + P2+P3 + P4 = °)

= (in^-+ finite)

= — z/ieA+ 2^^ (ln -y + finite)^ = finite (2.26)

The choice of the renormalized parameters is, however, not unique. As is 

obvious, their definition depends on the mass scale ^z. Thus for example, given a
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bare theory £o > two different people can choose two sets of renormalized parameters - 

depending on different mass scales - which would lead to finite scattering amplitudes. 

The mass scale therefore, would correspond in some sense to the subtraction 

point or the energy scale at which a process is evaluated. Thus we see that in 

a renormalizable theory, the renormalized parameters become energy dependent. 

In the case of coupling constant one fondly says that the renormalized coupling 

runs with energy or that it becomes a running coupling. This dependence of the 

renormalized parameters on the mass scale fi leads to the renormalization group 

equation which basically gives how various quantities would change as fi is changed. 

For the coupling constant, this evolution up to one-loop can be obtained from Eq. 

(2.25). Note that whereas the renormalized parameters depend on /i, the bare 

parameters do not depend on the arbitrary mass scale. Thus from Eq. (2.25) we 

obtain

Keeping terms up to order A2 which is the consistent one-loop case, we obtain in 

the limit e —> 0



19

d\ _ 3A2 3A2 _ 3A2
^ dfx IGtt2 Stt2 IGtt2

This equation can be solved in a straightforward manner.

(2.28)

dX _ 3A2
^ 9/i IGtt2

dA
or

3 dfi
’ A2 IGtt2 h

rHu)
or, /

Jx(a)

dX
a(a) A2 IGtt2 „ji

r ^
Ju V

1 1
or, - -T7—r + 3 In —

x(fi) A(/x) IGtt2

or, A(/i) =
A(/z)

1-^ln^
16ira u

(2.29)

This, indeed, shows how the coupling constant, A(/z), changes with the scale or 

energy. As fi increases relative to fi, A(/x) grows. The coupling becomes stronger 

and beyond a certain value perturbation theory breaks down. One says that the <f>4 

theory is not asymptotically free. I would also like to emphasize here that although 

our discussion so far has been within the context of the real scalar field, it can be 

generalized to other theories in a straightforward manner.
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Lecture III

Complex Scalar Field Theory;

Let us next consider a self-interacting scalar field theory where the field <f>(x) is 

not real. Such a theory can describe processes involving charged spin zero particles. 

Thus let,

C = d^d11^ - - J A > 0 (3.1)

Since is complex, we can express it in terms of two real fields c(a;) and CC1) as

#0 = ^ (o-(x) +*C(*)) 

^(s) = ^ (<r(a) -*C(*))
(3.2)

When expressed in terms of cr(x) and C^)? the Lagrangian of Eq. (3.1) takes the 

form
r = i 1 a^ca-c - ^ (°-2 + (2) - ^ (0'2 + <2)2 <3-3)

Thus we see that a self-interacting complex scalar field theory is equivalent to a 

theory of two coupled, self-interacting real scalar fields.

The fields <f>(x) and ft(x) in Eq. (3.1) can be taken to be independent variables. 

Correspondingly, the Euler-Lagrange equations for the system are

dC 8C
= 0

or, (□ + m2) ^ (#*#) 4 (3.4)

and

or.

dC dC 
»dd^ d<j>

(□ + m2) ~ (0^) (3.5)

The canonical momenta conjugate to <f>(x) and <f>^(x) are given respectively by

n*(x) = aJw = * ^

n*iW=allr*w
(3.6)
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The quantization conditions, therefore, become

[<}>(x), = iS{3){x - x1) = [^(x), I4, (x')j f=f, (3.7)

with all other equal time commutators vanishing.

Noether’s Theorem:

Let us note that the Lagrangian of Eq. (3.1) is invariant under a phase trans­

formation of the form
^(x) —> ^(x) = eta^(x)

<3-8)
^t(x) —> <j>^(x) = e ’“^(x)

where a is a space-time independent constant parameter. Thus the phase transfor­

mations of Eq. (3.8) are a symmetry of the system described by the Lagrangian 

in Eq. (3.1). The phase transformations do not involve a change in the space-time 

coordinates of the fields and hence do not correspond to a space-time symmetry 

transformation. Rather, such a transformation is known as an internal symmetry 

transformation. Furthermore, the parameter of transformation, a, is a constant 

- it is the same at all coordinate points. Thus such a transformation defines a 

global symmetry trnasformation. Often times, it is more convenient to study the 

infinitesimal form of a transformation. Thus when the parameter of transformation 

is infinitesimally small, the transformations in Eq. (3.8) can be written as

6e<f>(x) = <f>(x) — <j>(x) = ic<f>(x)
(3.9)

£t<f>^{x) = ^(x) _ ^t(x) = —ie^(x) 

where e is the infinitesimal parameter of transformation.

If the Lagrangian of a system is invariant under a continuous symmetry trans­

formation, Noether’s theorem guarantees the existence of a conserved current. In 

the case of an internal symmetry transformation, the conserved current can be 

obtained as
= a^(x)(3'10)

where ip(x) generically represents all the field variables of the theory. Thus for 

the Lagrangian in Eq. (3.1), we can determine the current associated with the
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infinitesimal transformations of Eq. (3.9) to be

dC t
dd^x)

= 5M<^^(z)(xe^(z)) + 9,1^(z)(—te^^(z))

= —ie(<f>\x)d11 <f>(x) — d^tfix^x))

or, j^z) = —i ((^(z^^^z) — (?M<£t(z)$(x)) = —i<£t(z) <^(z) (3.11)

Let us note that

dflj,l(x) = —idll^(f)\x)d,i<f>(x) — 0/1^t(z)^(z)^

= -i ^f(z) □ ^>(z) - □ <f>i(x)<f>(x)^ 

Using the equations of motion in (3.4 - 3.5), we see that 

= -i^CaOC - rn2<f>{x) - ^

- ( - m2^t(z) - ^

or, d^j^x) = 0

(3.12)

(3.13)

In other words, the current associated with the transformations in Eq. (3.9) is, 

indeed, conserved.

Given a conserved current, jM, we can construct a charge as

q=y <j!x j°(i, <) (3.14)

which can be shown to be independent of time. Thus, for the complex scalar field 

theory, we see that there exists a charge operator

—t J d3z(<£t(z)<^(z) — <^(z)<£(z))

-i J d3x (0l(x)n^t(x) - n^(x)^(x))

(3.15)

Here we have used the relations in Eq. (3.6). The algebra of the charge can now be 

obtained using Eq. (3.7) to be

W,Q] = o (3.16)
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In other words, the conserved charge associated with the symmetry transformations 

of Eq. (3.9) is Abelian. This can be identified with the electric charge operator of 

the theory. Note also that using Eq. (3.7), we can show that

6€<p(x) = ie<j)(x) = -i{<j>(x),eQ]

(3.17)
6c<f}i(x) = —ie<j>*(x) = -1(^(1), eQ]

This shows that the charge Q is the generator of the infinitesimal transformations 

in Eq. (3.9).

Spontaneous Symmetry Breaking:

Let us no.w consider the complex scalar field theory described by the Lagrangian

C = + - J (4>'<j>)2 A > 0 (3.18)

This Lagrangian differs from the one in Eq. (3.1) in the sign of the quadratic term. 

It is still invariant under the phase transformations of Eq. (3.8) or the infinitesimal 

transformations of Eq. (3.9). The conserved charge Q of Eq. (3.15) must, therefore, 

commute with the Hamiltonian of the system and one would naively expect that 

the charge operator Q would annihilate the vacuum of the theory. But as we will 

see next, this is not true.

Let us rewrite the Lagrangian in terms of the real fields cr(x) and ^(x) of Eq.

(3.2).

r = ^ + i e^c + ^ (<r2 + c2) - ~ (t2 + <2)
16

(3.19)

In terms of these fields, the infinitesimal transformations of Eq. 

the form
6e*(x) = eC(x) = -i[<r(x),eQ]

(3.9) would take

(3.20)
*cC(*) = ^ «>■(*) = -l‘[C(a:), e<2]

Let us analyze the ground state of the theory. For constant field configurations, we 

see that the minimum of the potential

V = + V + (<r2+<2)2 (3.21)
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would give the ground state. Note that the solutions to the minimum equations

= —m2a + ^ a [a2 + £2) = 0 
da 4 v

(3.22)
^=-m2< + ^C(-2+C2)=0

are given by

a = 0 = C

(3.23)

<72 + C2 4m2
“X”

It can be verified readily that cr = £ = 0 defines a local maximum whereas the true 

minimum is given by

+ c2 4m2 (3.24)

For simplicity, we choose the minimum to correspond to

< = 0 (3.25)

As we have discussed before, in the quantum theory, it corresponds to the fact 

that the vacuum state satisfies

<0|C|0> = 0
(3'26)

< oho > = -^

From Eq. (3.20), on the other hand, we see that this implies

< 0|6eC|0 >= —e < 0|o-|0 >
v2

i<0|[<,eQ]|0> (3.27)
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This cannot be satisfied if

Q|0>=0 (3.28)

In other words, we see that in this case, a symmetry of the theory is not a symmetry 

of the vacuum. In such a case, we say that there is a spontaneous breakdown of the 

symmetry.

To obtain the consequences of spontaneous symmetry breaking, let us observe 

that any perturbtion of a system can only be stable around the ground state. Thus 

we should expand the theory around the stable minimum by redefining

2m
<r +

Vx
(3.29)

The Lagrangian now becomes

£ = i + i ^ 2m x 2 >■
+ —) +C

-M^+2^)2+(2)2

= \ + \ dpCd^t - mV + ^
2i Z A

- + <2)~y6 + <2)2 (3'3°)

The interesting point to note in the above Lagrangian is that there is no mass 

term for the £-field. That is, the £-field has become massless. This is known as the 

Goldstone theorem which roughly says that whenever a continuous global symmetry 

is spontaneously broken, there must arise massless particles in the theory. The 

massless field ( is also known as the Goldstone field.

Dirac Field Theories;

Let us next discuss theories which describe particles obeying Fermi-Dirac statis­

tics. The simplest theory is, of course, one which describes a massless spin ^ particle. 

The Lagrangian has the form

(3.31)
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Here are the 4x4 Dirac matrices we discussed in Lecture I and t(}(x) is a four 

component spinor field which has the form

\tPa(x)J

and

i{>(x) = ^(x)j°

The Euler-Lagrange equations have the form 

ij*1 dp^x) = ipif>(x) = 0

i■^j>(x)^|1'Y,l = i^(x) = 0

The momentum canonically conjugate to ij>a{x) is

dC

(A = 7^)

n«(x) = = * W*)7°)tt = a. = 1,2,3,4
dij>a(x)

The theory can now be quantized in the following way.

= (V’aCajJV’/sCa:')+ V’/3(®')V’a(a:))t=1, =0

{na(*),n/J(*,)}1=ll=o

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

{^«(*)in^(*')}4=t( = iSap^3)(x - x1)

We see the basic difference between the bosonic theories and the fermionic theories in 

that the fermionic theories are quantized with anticommutators. This is connected 

with the fact that the fermionic theories describe particles obeying Fermi-Dirac 

statistics.

The Lagrangian in Eq. (3.31) is invariant under the constant phase transfor­

mations
rp(x) —> if) (®) = exaTp(x)

tJ)(x) —> ^(x) = e *“-0(®)

(3.37)
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as well as the chiral phase transformations

^(x) —> V’(a:) = e,'r6^'0(z)

(3.38)

■0(z) —» V’(:c) “ V’(a:)e*7*^

where a and (3 are constant parameters independent of any space-time coordinates. 

Infinitesimally, the transformations take the form

and

£e0(:e) = V" (*) — V'C*) := ieV’C1)

6ni>{x) = il)(x) - tI>(x) = irn^x)

(3.39)

(3.40)

S^(x) = V»(®) — V>(a0 = i^(®)75

The conserved currents associated with these symmetry transformations can be 

constructed from the Noether’s theorem (see Eq. (3.10)) and take the form

ej#i(z)
8C

ddtlrl)(x)
6ei[>(x) = i-ip^x)^11 (ieTp(x))

and

or, .^(s) = —V’(:c)7f‘V,(:E)

W's (*) = q'q~ ^x} Svi’(x) = *V’(:c)7M(i7775V’(*))

(3.41)

ori is (*) = -^(aj)7M75^(*)

The corresponding conserved charges are

(3.42)

Q = J d3xj°(x) — — J d3x'ip(x)j0ip{x)

— ft.M.yM-iff.u.W.M (3.43)
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and

Qs ~ J d3xj°5(x) = ~

— — J d3x (x^sift^x)

= i J d3x na(®)(75)Q/3^(i) (3.44)

Using the quantization conditions of Eq. (3.36), the charge algebra can now be 

shown to satisfy

IQ,Q} = 0 = {QS,QS} = {Q,QS) (3.45)

Let us note here that although the currents and jg in Eqs. (3.41) and (3.42) 

are conserved classically, quantum mechanical corrections may spoil this. When a 

current is conserved classically, but quantum mechanically

dpj^x) ± 0 (3.46)

we say that there are anomalies in the theory and that the symmetry has become 

anomalous. Anomalies associated with global symmetries are harmless (in fact, 

sometimes useful as shown in tt0 —> 27) but as we will see, anomalies associated 

with local symmetries can render the theory inconsistent.

J d3x V,(*)7°75V,(:c)

Local Symmetry:

Let us next analyze what would happen if we tried to make the phase parameter 

in Eq. (3.37) to be a local function. Under

il>(x) —> ip (x) = eia^ip{x) 

ip(x) —> 7p(x) = e~ia^-ip(x)

we see that
C C = iij}(x)'y,ldll(rp(xyj

= i-i(j(x)'Y,J'dflip(x) — dfla(x)ip(x)'y,lxj)(x) 

= £ — dlj.a(x)-ip(x)'y,lTp(x)

(3.47)

(3.48)



29

In other words, the Lagrangian of Eq. (3.31) is not invariant under a local phase 

transformation. On the other hand, we note that if we had started from the La­

grangian

C — (8^ — ieA^)^ (3.49)

where “e” is a constant, then this would be invariant under

^(x) —* exa^x^{x)

■0(s) - e~ia^(x) (3.50)

A^x) -* Am(x) + - 9Ma(x) 
e

Infinitesimally, these take the form

Seif>(x) = ie(x)^(x)

5c-0(x) = -ie(x)^(x) (3.51)

ScA^x) = i 9Me(x)

Thus we see that the local symmetry of Eq. (3.31) requires an additional field 

A^x). A^x) is known as a gauge field and the transformations of Eqs. (3.50) and 

(3.51) are known as gauge transformations.

Let us also note here that the Lagrangian C can be obtained from C with the 

replacement

dfi —> dp — icAp

or, pM = —idp —* Pn — eAM (3.52)

This is, of course, the prescription of minimal coupling we are familiar with in 

trying to couple charged particles to electromagnetic fields. Thus we can identify 

the gauge field, ^^(s), with the photon of the theory. This also suggests that a 

local symmetry must always be accompanied by physical forces. Conversely, we 

may try to describe physical forces in terms of theories with local symmetries (or 

gauge theories).



Lecture IV 30

Quantum Electrodynamics:

We have seen how to couple charged spin ^ particles to the electromagnetic 

field or the photon field. If we now introduce the dynamics of the photon fields, we 

would have an interacting theory of say, electrons and photons - otherwise known 

as quantum electrodynamics. The Lagrangian, in this case, has the form (e can 

now be thought of as the electromagnetic coupling.)

£qed = — ^ FliVF,iV

where
Ffiv - d»Av - d„ Afl =

Foi = Ei

VfJ.

Fij — tijkEk

The Euler-Lagrange equations for this theory are

(4.1)

(4.2)

i'Y11 (d/i — ieAfj,) ij) = (ip + e^.) V’ = 0 (4.3)

and

= ejv (4.4)

The v = 0 and u = i components of Eq. (4.4) give respectively

V • E = ej°

and (4‘5)
*

-* -* f) Pj

Similarly, from the definition of F^ in Eq. (4.2) we see that it satisfies

dfiFv\ + dvFxtl + dxF^ = 0 (4.6)
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i

and

V-S = 0

V x E =
dB
dt

(4.7)

We recognize Eqs. (4.5) and (4.7) together as the set of Maxwell’s equations and, 

therefore, we conclude that the additional term in the Lagrangian in Eq. (4.1), 

indeed, gives the dynamics of the photon fields.

The Lagrangian of Eq. (4.1) can be checked to be invariant under the gauge 

transformations

6tTp(x) = ie(x)'ip(x)

8ti>{x) = —ze(x)/0(x) (4.8)

SfA^x) = - d^x)
e

This is, of course, a local symmetry. Note that gauge invariance requires the photon 

to be massless since a mass term would break gauge invariance. From Eq. (4.4) wre 

see that since is antisymmetric, consistency of the equation would require

dvd^F'“' =0 = edpjv (4.9)

In such a case, therefore, the current must be conserved even quantum mechanically. 

Any violation of current conservation or any anomaly would render the dynamical 

equations inconsistent. This is, of course, what we have noted earlier, namely, 

whereas anomalous global symmetries are harmless, anomalies in local symmetries 

must be avoided.

The gauge invariances of the QED Lagrangian has both advantages as well as 

disadvantages. To see the advantages, let us write down the fermionic Feynman 

rides of the theory.
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->------ = iS(p) = ^

(4.10)

= -ir#i(Pi,P2,P3) = ie7M5(4)(pi +p2 +pa)

*1

From the structure of the propagator and the vertex, we see that

8
dpi1

or,

d i i . i 1
dpi1 i> e \

p

k = 0

(*s(j>)) = \ {iS(p))( -ir»(p. -p.0))(iS<p))

This relation is quite important in that it relates different scattering amplitudes. It 

is, in fact, a consequence of the gauge invariance of the system (although our simple 

derivation does not make it seem so). Although, we have derived this relation for 

the case when the electrons are massless, the same holds for massive electrons. 

Furthermore, this relation holds order by order in perturbation theory and plays a 

crucial role in the renormalization of the theory. Relation (4.11) is also known as 

the Ward identity of QED.

The difficulties of gauge invariance can be seen from Eq. (4.4).

d^ = ejv

or, d^A" -d^*) =e3v

or, - d^dv)A„. = ejv (4.12)

The Greens function associated with this equation must satisfy

(cW - ajar) - ») = - y) (4.13)



But note that the operator — d£d") is a transverse projection operator in

the sense that

dxli (CIxTr - 6IM) = nxdvx - n*dvx = 0 (4.14)
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Since projection operators do not have inverses, the Greens function of Eq. (4.13) 

does not exist. Consequently, the Cauchy initial value problem cannot be solved 

uniquely. Classically, we know that in such a case, we have to choose a gauge in 

which the problem can be solved. The rationale for this, of course, comes from the 

fact that any observable is gauge invariant and is, therefore, insensitive to a choice 

of gauge.

In the quantum theory, there is a well-defined procedure (known as the 

Faddeev-Popov procedure) for doing this. One adds a gauge fixing term to the 

Lagrangian (corresponding to the choice of a gauge) and a compensating ghost La­

grangian. Thus with a covariant gauge choice, the complete gauge fixed Lagrangian 

for QED takes the form

£eff = £Qed - ^ (d^)2 + d^cd^c

= - ieA(t)il> - i FtlvF>1’' - j- (dpA*)2 + d^cd^c
(4.15)

Here a is an arbitrary constant parameter known as the gauge fixing parameter, 

c and c are known as ghost fields and satisfy anticommutation relations like the 

fermions. (They are scalars with opposite statistics.) Physically, one can think of 

the ghost fields as subtracting out two degrees of freedom from the four component 

photon field to give effectively two physical degrees of freedom (namely, the trans­

verse degrees). The complete theory of QED now has the additional Feynman rules 

given by

= *G p,[p)
V2 (

«?.(!>) = 4
rc

—>-------------------- __

P c

(4.16)
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The procedure of gauge fixing, while gives well defined calculalional rules, has 

changed the theory also (at least appears to). For example, the theory is no longer 

gauge invariant and, consequently, it is not clear whether the Ward identities which 

we derived earlier and which characterize gauge invariance still hold in the full 

theory. A crucial observation which helps answer this question is that even though 

£efj is not gauge invariant, it is invariant under a symmetry transformation involving 

the ghost field (also known as the BRST transformation). This can be appreciated 

by rewriting £efr as

£eff = fV’7'1 - ieA^iP - \ - Fd^A* + ^ F2 + dnd^c (4.17)

Note that if we eliminate the auxiliary field F from Eq. (4.17), the Lagrangian of Eq. 

(4.15) is obtained. The Lagrangian (4.17) is invariant under the transformations

SpA^x) = — dMc(x) 
e

Spij}{x) = iPc{x)^}{x')

8p-ij}(x) = —i(3c(x)ij}(x)

8pc(x) = 0

8pc(x) — JF’(z) 
e

SeF{x) = 0

(4.18)

X

Here /? is a space-time independent anticommuting parameter. The invariance of 

the Lagrangian can be checked by noting that these transformations correspond to 

a gauge transformation if we identify

o:(x) = ftc(x) (4.19)
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Since the original Lagrangian is gauge invariant, it follows now that

SpCeK - $0
a

- FdhA» + — F2 + d^cd^c 
2

= -Fd^pA*1 + d^Spcd^c

= -- Fdad^c - £ d^FduC 
e e

= -£e,iFd>‘c)

Therefore, the action is invariant.

(4.20)

The BRST symmetry of the theory imposes relations between different scat­

tering amplitudes which include the Ward identities we discussed earlier. But more 

importantly, the symmetry transformations of Eq. (4.18) lead to a conserved charge, 

Qbrst> through the Noether procedure. This charge has the important property 

that it is nilpotent, that is,

<3brst = ° (Qbrst is fermionic.) (4-21)

This allows us to define the physical states in this theory as those states which are 

annihilated by Qbrst? namely,

QBRSxIphys > = 0 (4.22)

Note that since Qbrst is the generator of the BRST transformations, we can write 

(up to a total derivative)

—FdpA*1 + ^F2+ d^c

= tf^-e(A^c + |Fc)^

= ^BRSTj—|

(4.23)
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It follows now that

< phys'|£cff|phys >

=< phys'l^QED - FdpA11 + ^ F2 + ^^c^cjphys >

(4.24)
=< phys'|£QED — el^BRSTj-A^S^c + — Fc||phys >

=< phys' |£qed Iphys >

Here in the last step we have used Eq. (4.22). This shows that even though the 

gauge fixing procedure may have changed the theory, the effect is not observable in 

the physical sector. The BRST symmetry also plays a crucial role in proving the 

perturbative unitaxity of the theory.

Higgs Mechanism:

Let us reconsider the self-interacting theory of the complex scalar field which 

displays spontaneous symmetry breaking. However, let us also assume the complex 

(charged) scalar fields to be interacting with photons. As we have seen, interaction 

with photons can be introduced through the minimal coupling. Thus the Lagrangian 

for this theory is given by

C = -\ FltvF*v + (LV<£)t(£'V) - j (4>U)2 A > 0 (4.25)

where
— (dp — ieAfj,)<f)

(D^y = (d^ + ieA^

In terms of the real fields a and the Lagrangian of Eq. (4.25) takes the form

(4.26)

- eo-VCA* + y ApA^ia2 + C2)

+ ^(-! + c2)-4(-2 + c2)2

(4.27)
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This Lagrangian is invariant under the gauge transformations

^ e(l)C(l)

= 4= (4.28)
v2

However, as we have seen earlier, the ground state of this theory occurs for

C = o
2m (4.29)

For a stable perturbation, the theory must be expanded around this ground state 

by letting

cr —> tr +
2m

This leads the Lagrangian in Eq. (4.27) to take the form

(4.30)

£ = -j + j + - a^ca^c

2em- — A*dllC-e<rdllCA* +

2m e2

2m2
A

+ ^ + y ApA11 (<r2 + (2) + y---- m2o-2 _2

(4.31)

As we have seen before, there is spontaneous breakdown of symmetry in this theory 

and in the absence of the photon fields, Goldstone’s theorem guarantees the exis­

tence of massless particles. However, in the presence of the photon field, there is a 

gauge invariance which allows us to choose a gauge. In particular, if we choose the 

gauge (this is also known as the unitary gauge)

C = o (4.32)
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Then the Lagrangian of Eq. (4.31) takes the form

£ = _1 i + 2m2 e

, ~ m4 2me2
-mV + T + -^

A

Zi

mVx 3 ^ 4<7 — —- cr

(4.33)

2 16

We note that in such a case, the massless particle has disappeared and instead the 

photon field has become massive with a mass given by

2me
(4.34)

This is known as the Higgs mechanism and we say that the photon has become 

massive by eating the Goldstone boson £. Note that a massive photon has three 

helicity states as opposed to the two states a massless photon can have and, conse­

quently, the total number of degrees of freedom is unchanged (otherwise unitarity 

would be violated). The Higgs mechanism is quite useful in generating masses for 

particles in a physical theory.
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Lecture V

Non-Abelian Symmetries:

So far we have only considered symmetries where the generator of the symme­

try, namely, the charge satisfied a trivial algebra - that is, it commuted with itself. 

Such symmetries are known as Abelian symmetries. Let us next consider some 

symmetries where the generators satisfy a nontrivial algebra. Such symmetries are 

known as non-Abelian symmetries and we are quite familiar with them also. For 

example, we know that the angular momentum operators generate rotations and 

satisfy the algebra

=iea6cJc o,6,c = 1,2,3 (5.1)

As we know, this is a non-Abelian algebra corresponding to the group SU(2). We 

also know that the quantum mechanical operator generating rotations is given by

U{6) = eija°a (5.2)

where 6a is the parameter of rotation. Thus, for example, we know that if is a 

two component spinor corresponding to the j = 1/2 representation, then under a 

rotation

ip —► ip = Ui/2(^)V’ = e ip (5.3)

where cra are the Pauli matrices and correspond to the angular momentum operators 

for this representation (actually, |cra corresponds to the generators). Infinitesimally, 

the two components of the spinor would rotate as

*'.J = 1.2 (5.4)

The j = 1/2 representation is 2/ + 1 = 2 dimensional and is also called the funda­

mental representation of SU(2).

SU(2) is, of course, the simplest of the non-Abelian symmetries. In general, 

the algebra corresponding to a higher symmetry group SU(n) consists of n2 — 1 

Hermitiaji generators and satisfies an algebra of the form



40

[ra,rfc] = x7abcrc a,6,c = l,2,...,n2 - 1 (5.5)
where the totally antisymmetric constants, fabc, are known as the structure con­

stants of the group. We can think of the generators Ta as generating rotations in 

a (n2 — 1) dimensional internal space. Therefore , we can readily generalize many 

of the results of SU(2) to the SU(n) case. For example, we note that if ^ is a 

function belonging to the fundamental representation of SU(n), then it will be a 

n-component object and under an infinitesimal SU(n) rotation, it would transform 

as

8^ =i(Taea)ij i,j = 1,2,.. .n (5.6)

Here Ta corresponds to the SU(n) generators in the fundamental representation 

and ea is the parameter of rotation.

Let us next consider a free fermion theory where the fermion field belongs to 

the fundamental representation of an internal symmetry group SU(n). We are, 

of course, quite familiar with many such fermionic systems. We know that the 

three colored quarks belong to the fundamental representation of the color group 

SU(3). The up and down quarks belong to the fundamental representation of the 

isospin group SU(2) and so on. Such a system is, therefore, worth studying. The 

Lagrangian is given by

£ = i = 1,2,... n (5.7)

which is just a sum of n-free fermion Lagrangians. Note that the momenta conjugate 

to V’aC*) are

= *'#!(*) « = i.2-3.4 (5-8)

so that the quantization rules become

= o = {nL(*),n£or')},=,

W,(*).nj(*')},=, = iF’s^Hx - *')
(5.9)
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The Lagrangian of Eq. (5.7) is, of course, invariant under the global U(l)

transformation we have discussed earlier, namely,

^(x) ---->

(5.10)

tpl{x) ----y e tai!>'(x)

where a is a constant scalar parameter. But more importantly, the Lagrangian is 

also invariant under a global SU(n) rotation which has the infinitesimal form

Scpix) = i{Taea)%3^

(5.11)

StVix) = —iif)i(Taea)lt

Here ea are constant, infinitesimal parameters of the SU(n) transformation. The 

invariance can be checked readily as

SeC =

or, S€C = 0 (5.12)

The conserved current can now be constructed from the Noether procedure and has 

the form

j** =

The corresponding conserved charges

<r = }**?*(*)

can be shown using Eqs. (5.5) and (5.9) to satisfy

[Q\Qi]=ifaicQc

which, as we have seen, is the SU(n) algebra (see Eq. (5.5)).

The Lagrangian of Eq. (5.7) is, however, not invariant under the SU(n) trans­

formations of Eq. (5.11) if the parameter ea are coordinate dependent. As we

(5.13)

(5.14)

(5.15)
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have seen earlier, invariance under a local transformation necessarily requires the 

introduction of a gauge field. In the present case, the Lagrangian

£ = - igAl (Tay^ V (5.16)

can be shown to be invariant under the local gauge transformations

S.Vix) = -ip(z)(T‘f(x))ii (5.17)

S,A%(x) = i d,f[x)+r'cAl(z)fiz)

The invariance can, in fact, be readily checked as

S£C = - igA*(Ta)ij^

+ ~ igA°(Tayj^ ser

+ g^(Tayj6eAa^(x)

= i>k(Tbe\x))k\»^d»-igAl(Tayj^

- (s^dr - igA;(Tayj^ (Tbeb(x))jk^k(x)

+grr{Ta)ij Q d^ix) + r^Afawx))^)

= igr^[Ta:Tb]ijAl(x)eb(x)^(x)

+grrfabc{TayjAbtl(x)ec(xW(x)

Using Eq. (5.5), we now obtain

sec = - grrfabc{TcyjAi(x)eb(x)r{x)

+ g4,i1»rbc(TayjAbfl(x)ec(xW(x) = 0 (5.18)
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Several comments are in order here. The parameter g can be thought of as 

the coupling constant for the SU(n) gauge group. Furthermore, in the present 

* case we note that the gauge fields A“ carry SU(n) quantum numbers and hence 

SU(n) charge. This behavior is quite distinct from the photon which does not 

carry electric charge. Furthermore, since the gauge fields couple to any source 

carrying the corresponding charge and since in the case of SU(n) the gauge fields 

themselves carry SU(n) charge, it is clear that the gauge fields of SU(n) must couple 

to themselves - that is, they must have self-interaction in contrast to the case of 

the photon. In fact, the dynamical Lagrangian for the SU(n) gauge fields invariant 

under the transformations of Eq. (5.17) can be shown to be

where (5.19)

F$v = d^Al - dvAl + gf^A^Al

The self-coupling is now obvious. Thus for example, if we are considering Quantum 

Chromodynamics corresponding to the gauge group SU(3), there would be 

32 — 1 = 8 gauge fields or gluons which not only couple to the colored quarks but also 

to themselves. This, of course, has profound consequences leading to asymptotic 

freedom.

The complete Lagrangian including the fermions and the dynamics of the gauge 

fields which is invariant under the transformations of Eq. (5.17) is given by

£inv = ~\ F^ttF>lv'a + - ig {Taf V{x) (5.20)

The gauge invariance, as we have seen, presents problems in quantizing the theory. 

Therefore, following the method due to Faddeev and Popov, we choose a gauge 

fixing and a ghost Lagrangian. A covariant choice of the gauge in the present case 

leads to the complete Lagrangian



44

C = £jnv - (^^-a)2 + a^ca(x) (5^ac +^/a6c^) Cc(x) (5.21)

where c°(x) and ca(x) are the respective ghost and anti-ghost fields. The Feynman 

rules for this Lagrangian can now be derived.

C a
iSah
V2

= i97n(Tay3(pi +P2+P3)

-iTaJ,c(p1,p2,p3) = 9Pi^fabcSi4)(pi +P2 +Pi)

(5.22)

-iTaJl\(puP2,P3) = -9fabc (pi -P2)xVn»

+ (92-93)^ + (P3 -Pl)vVXn.

P4,P.d Pg.X.C

-iTllc\P (p j ,P2,P3,Pi) = -ig2 fabpfcdp(vp\Vup - VhpVu\)

+ facpfdbp(VppV^ ~ VfiuVxp)

+ fadpfbcp(VpuVXp ~ VnXVvp)



The Feynman rules clearly bring out the feature of pure gauge interactions. With 

these, one can now calculate any scattering amplitude.

45

The Lagrangian in Eq. (5.21) is no longer gauge invariant. But as in the case 

of QED, there is a residual (BRST) symmetry involving the anticommuting ghost 

fields. Thus the Lagrangian in Eq. (5.21) is invariant under the set of transforma­

tions
SpAl = /j(i a,c-(*) + r‘'A‘(z)c'(:r))

SpP = i/?ca(x)(Ta)*V(*)
Spj* =-iPca(z)$’(T*)’* (5.23)

V°(*) = fabccb(x)cc(x)

8pc*(x) = (d^A^iz))
a

Here /3 is an anticommuting constant parameter and the invariance of the La­

grangian can be checked in a straightforward manner. Once again the BRST sym­

metry leads to relations between different scattering amplitudes known as Ward 

identities or Slavnov-Taylor identities. These identities are much more complicated 

than the ones we encountered in the case of QED but are quite useful in renormal­

izing the theory. The conserved charge associated with the BRST symmetry in the 

present case can also be shown to be nilpotent. As in the case of QED, this helps 

us define a physical Hilbert space. In this space, the theory can again be shown 

to be independent of the choice of the gauge and the parameter a. Furthermore, 

perturbative unitarity can also be shown to hold in this space.

As we have seen earher, renormalization introduces a mass scale fi and that all 

coupling constants become functions of //. The /x-dependence of the SU(n) gauge 

coupling in the present case can be calculated since all the Feynman rules are 

known. In fact, if we assume that there are rif fermion fields in the fundamental 

representation interacting with the SU(n) gauge field, then at one-loop level we find

"t =«9> = -l£H(11"-2n'> <5-24>

The first term on the right hand side comes from pure gauge interactions whereas 

the second term which depends on the number of fermion flavors comes from the
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fermionic interactions. Note that the two terms contribute with opposing signs. As 

in Eq. (2.29), we can solve Eq. (5.24) to obtain

This shows that if

2( s =__________ _______________

lln — 2n/ > 0

(5.25)

(5.26)

Then <7(/x) decreases as fi increases with respect to /2. In other words, in such a 

case the coupling becomes weaker as the energy scale increases. In particular, for 

infinitely large energy values, the coupling vanishes leading us to conclude that such 

theories are asymptotically free.

Let us note, in particular, that when n/ = 0, namely, when no fermions are 

present, the scale dependence of the gauge coupling is given by

92M 92(^)
1 4. lln93t£l ln itlL ^ 48ir2 in p

(5.27)

That is, in a pure non-Abelian gauge theory, the coupling is asymptotically free. It 

is the presence of fermions and other matter fields that spoils asymptotic freedom. 

Intuitively, one understands this as saying that fermions and other matter fields lead 

to a screening effect whereas a non Abelian gauge field leads to antiscreening which 

is responsible for asymptotic freedom. Note also that since in an asymptotically 

free theory, the coupling is weak at high energies, perturbative calculations can 

be trusted only at large energies. At low energies, however, the coupling constant 

grows and hence perturbation theory breaks down.

Let me conclude by pointing out that Quantum Chromodynamics which is the 

theory of strong interactions is a gauge theory based on the gauge group SU(3). 

The quarks which are the fermion fields in this theory come in threee colors and 

belong to the fundamental representation of SU(3). Thus specializing to n = 3 we 

would obtain all the necessary results for QCD. Since we do not see free quarks in 

nature, we can say that the color symmetry (SU(3)) is unbroken leading to the fact 

that observables must be color singlet states. As we have seen, since the coupling
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becomes stronger in non Abelian gauge theories, it supports this hypothesis that the 

quarks must be strongly bound. However, a conclusive proof of quark confinement 

is still lacking.
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Lecture VI

Weinberg-Salam-Glashow Theory:

The strong force can be described by Quantum Chromo dynamics which is a 

gauge theory based on the gauge group SU(3). As we have seen, we understand the 

basic features of this theory quite well. Thus let us ignore the strong interactions 

for a moment and try to understand the gauge structure of the other two fundamen­

tal interactions, namely, the weak interaction and the electromagnetic interaction. 

Let us recall that while leptons interact weakly as well as through electromagnetic 

interactions, they do not have any strong interaction. Consequently, we can, for 

simplicity, restrict ourselves to the gauge theory involving only leptons in order to 

understand the weak and electromagnetic forces.

To begin with, let us recall some facts about fundamental particles. We know 

that all elementary particles can be classified according to the representations of the 

weak isospin group, SU(2), which is very similar to the rotation group. (For clarity 

let me emphasize here that the weak isospin is different from the strong isospin 

which classifies observed hadrons.) Thus, let us list some of the more familiar 

particles all of which correspond to the 7 = 1/2 representation of the weak isospin 

group.

(6.1)

The particles within a given multiplet are arranged so that the member with a higher 

Iz(Iz) value has a larger electric charge. It is also known that we can assign to every 

elementary particle a U(l) quantum number known as the weak hypercharge and 

denoted by Y such that the electric charge of any given particle can be written as

<?=/,+!
(6.2)

(Once again, a word of caution that the weak hypercharge is different from the 

strong hypercharge which can be identified with the sum of the baryon number
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i

and the strangeness number.) Eq. (6.2) can, in fact, be taken as defining the 

hypercharge of a given particle. Thus, the hypercharges of some of the particles in 

Eq. (6.1) are
y« = -i = y„.

‘y*
(6.3)

Note here that the hypercharges of the particles within an isospin multiple! are the 

same.

Phenomenologically, we know that weak interactions are short ranged and, 

therefore, if they can be written as a gauge theory, the gauge bosons must be 

massive. Second, we know that they violate parity maximally and have a V—A 

structure. To understand this better, let us recall that the electromagnetic current, 

in the case of QED, has the form (see Eq. (3.41))

Jv = -V’7mV’ (6-4)

This behaves like a vector under a Lorentz transformation as well as under a space 

reflection and is, therefore, called a vector current. An axial vector current, on the 

other hand, transforms like a vector under a Lorentz transformation but behaves 

like a pseudo-vector under a space reflection and has the form (see Eq. (3.42))

il = (6.5)

*

A V—A current, as the name suggests, has the structure

Jv-a = ^(l “ Ts)^
(6.6)

where we have defined
V’L = ^ (1-75)^

1 (6-7) 
V’L = 2 +75)

The quantity |(l — 75) is a projection operator which merely projects out the left 

handed component of a fermion field. Thus the V—A structure of weak interactions



tantamounts to saying that only the left-handed components of particles participate 

in weak interactions. Consequently, we can think of weak isospin as a left-handed 

group.

With all this information, let us construct the simplest theory involving only 

one family of leptons, namely, the electron family. Let

MU (68)
This is an isospin doublet. However, whereas we know that the right handed 

component of the electron exists, right handed neutrinos are not seen in nature. 

Consequently, there will only be one right-handed lepton in this case which is the 

right-handed electron. By definition, this will be an isospin singlet.

r — eR (6.9)

All the fermions, of course, carry the hypercharge quantum number. We have 

already determined the hypercharge of the left-handed particles to be

Yt = -l (6.10)

The hypercharge of the right-handed electron can, similarly, be determined to be

Yr = -2 (6.11)

Note that all the fermions carry both the isospin as well as the hypercharge quantum 

numbers. Thus the simplest gauge theory that we can think of constructing is one 

where both these symmetries are local. We can easily write down a fermionic 

Lagrangian which is invariant under the isospin (SUl(2)) and hypercharge (Uy(l)) 

gauge transformations.

c, = icr^a,. - ^ 1 (^Y’wAe’
(6.12)

+ - ig'Y^r

Here i,j = 1,2 and a = 1,2,3. We have introduced the gauge fields W“ and 

corresponding to the isospin and hypercharge transformations, g and g* denote
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respectively the strengths of the isospin and hypercharge interactions. Note that 

since the right-handed field does not carry any isospin quantum number, it does 

not couple to W“.

The dynamics of the gauge fields can now be introduced in a straightforward 

manner.

= --7 YavY^ - - WLW*■ (IV pv (6.13)

where
y —J. ---

(6.14)

w;v = - dvW; + geabcW*W,

Relation (6.14) emphasizes that Y^ is an Abelian gauge field like the photon field 

since it corresponds to the group Uy(1)- W“, on the other hand, is a non-Abelian 

gauge field corresponding to the gauge group SUl(2). Thus, together,

c = cgauge + £/ (6.15)

defines an interacting gauge theory of leptons based on the gauge group SUl(2) x 

UY(1).

The weak interactions, on the other hand, are short ranged which amounts to 

the corresponding gauge bosons being massive. We can incorporate this into our 

theory by adding to our Lagrangian a part depending on scalar fields which, as we 

have seen, can give masses to the gauge bosons through the Higgs mechanism. Let

*-($) (616> 

denote an isospin doublet of complex scalar fields with charges 1 and 0. Thus the 

hypercharge quantum number associated with this multiplet is 1. Let us also denote 

the Hermitian conjugate of </> as
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4* = <f>- 4>° (6.17)

The scalar Lagrangian, invariant under SUl(2) x Uy(1) transformations, can now 

be written as

£hik. = ((«*»„ + ^ 1 1

• + y 6ikY>l - y (6-18)

+ m2(j)^<j> — ^ (<f>^4>)2 — h(f<f>H + i<f)r)

This is the usual symmetry breaking Lagrangian for the scalar fields except for the 

last term representing the interaction between the scalar fields and the fermions in 

the theory, h is known as the strength of the Yukawa coupling. We can now write 

the total Lagrangian for the theory to be

£tOT = £gauge + Cf + ^Higgs (6.19)

Note that if we now define the combinations

W* = -L (W> ± iWl) • (6.20)

then ^Higgs can be written explicitly in terms of the components as

= ((3„ - ^ Y,)*- + f Wlr + ^ ((9" + ^ Y*)#*

_ M W<^^) + ((a„ - ^ r^)^°

+■ w+4- - wtf0) ((3' + ^ r')^

V2 2 / V 2 (6.21)

- 1^1-^+ + ^ W'-V0) + m2 (^“^+ + £V)

- ^ (^“^+ + ^°^0)2 - h.eRV'Lij>~ -

— hueieR(f>+ — heieRcj)0
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As before, we can now calculate the minimum of the potential. To be consistent 

with our earlier notation, let me define

r = ^+i<)

<£° = — (<7 - *C)

(6.22)

y/2

In terms of these, the minimum of the potential can be shown to occur at (see Eq.

(4.29))
= 0 = <

2m
(6.23)

a — v =

We can now expand the theory around this classical minimum by letting

cr —> er + u (6.24)

To bring out the essential features of the theory, let us first look at only the 

quadratic terms in jCtot after shifting. The quadratic Lagrangian takes the form

£q«.d. = (drw+ - d,wA - d"W“-

- \ [s.wl - a,wty (

-l(«,y.-«.n)(

d^W* - dvW* ) ( d^W1'3 - d^*3

duYv - dvY* d*Yv - d'Y* + ii?eLSu,■'eL

+ ieLPeL + ienPeR +

+ i a^o- + i a^c - ^ Wfa**-
(6.25)

+ '-Y 1 (g% + gW^a“(,

+ + j (s'^+«^) (s'Y“+sw"3

hv _ hv _ 22
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Although this looks complicated, it can be simplified by redefining variables in 

the following way. Let

5'
sin 8\y —

cos 6w =

=

Va2 + 9n

9

(6W = Weinberg angle)

y/92 + 9a

(g'Yp + gW^j = sin 8WY^ + cos 8wW\ 

(gYp-g'Wl) = cos^^ - sin 6w Wt

‘ +g12 \ J

(6.26)

Vg

Va2 +91

Then in terms of these variables, the quadratic Lagrangian takes the form

/W = fow* - drW+J (aw- - d^-'j + 9~ w+w»~ 

^ (dpZv - dvzA {d'izv - a-'z^) + ^2-t|,2).r?l Zflz^■)

- i (dllAv--dvA1^

+ WeLfiVeL + ieLfitL + ^rP^r 

- ^j= eReL - eLeR +
V2Y2

+ ^ d^Cd^C + i d^ad^a - m2cr2

^ w+d*4>- + \ w;d*t+

(6.27)

u-v/q2 + o'2+ \

We note here that three of the four gauge fields have become massive and only 

one gauge field remains massless. (This is particularly obvious if we choose the 

gauge <f>+ — 4>~ = C = 0-) Thus the original symmetry has spontaneously broken 

down to U(l). Thus we say

SUl(2) x Uy(l) —^ Uem(l) (6.28)
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The field can be identified with the photon so that we have the familiar result 

that in this theory even though isospin and hypercharge quantum numbers may be 

violated in some processes, the electric charge will be conserved. We also note that 

spontaneous symmetry breaking gives a mass to the electron through the Yukawa 

coupling whereas the neutrino remains massless. Note that the mass of the W and 

the Z-bosons are given by

Mz
(g2+g,2y/2v

2

(6.29)

so that
Mw
Mz

----7=--:,. =: — COS 6\V

V92+g'2
(6.30)

Both these masses and the Weinberg angle are, of course, well measured experimen­

tally.

Let us next look at the part of £tot describing the interaction of the fermions 

with the gauge fields.

Ant = -4= W+ueL^eL + -4 W-erf
V2 V2

+ ! W? ( ~ e^eL

+

(•

H’-L'YllVcL + ez^ej, + ^eR-y^en

We can rewrite this in terms of the variables in Eq. (6.26) as

Ant —
v/2

(w+ue

+
ZL == ( g2{veL'y,1i'eL - ez,7/1e^)

,12 y2vV+?

+ g12 {pehYVeL + ZlYcl + ‘leR'y*1 CR^j

(6.31)

(6.32)

+ —7- = - , AM(eL7MeL + eRj^eR) 
V5 + <7'2
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The first and the second terms in Eq. (6.32) exprerss the charged and neutral 

current structures of the weak interactions. The last term, on the other hand, 

has precisely the form of the coupling of electrons to photons if we identify the 

electromagnetic coupling to be

e = —■==£= = g sin 6w = g' cos 6\y (6.33)
vV + 912

We have, of course, considered the simplest model with one family of leptons. One 

can add more families of leptons as well as quarks. We will then have a gauge 

theory of weak and electromagnetic interactions involving quarks and leptons. This 

is known as the standard model and seems to work well experimentally.


