

DOE/PC/92532--T2

Progress Report to

The United States Department of Energy
Pittsburgh Energy Technology Center
Pittsburgh, PA 15236-0940

DOE/PC/92532--T2

on

DE93 009691

**FISCHER-TROPSCH SYNTHESIS IN
SUPERCritical REACTION MEDIA**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Grant No. DE-FG22-92PC92532

Period of Performance: 10/01/92 - 12/31/92

Bala Subramaniam
Principal Investigator
Associate Professor

Department of Chemical & Petroleum Engineering

David Bochniak
Kirk Snavely
Graduate Students

January 1993

U. S./DOE PATENT CLEARANCE IS NOT REQUIRED PRIOR TO PUBLICATION OF THIS
DOCUMENT

MASTER

DISSEMINATION OF THIS DOCUMENT IS UNRESTRICTED

Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (*n*-hexadecane) and in supercritical *n*-hexane phases. Due primarily to the students' preoccupation with course work (which is usually heavy during the fall semester), progress during this quarter was slower than expected.

a . Construction of Reactor Unit

This phase is being spearheaded by one of the two graduate students currently associated with the project (David Bochniak). Upon further review we found that work reported by Yokota, Hanakata and Fujimoto (1991) raised some important questions about their reactor design and operation. Based on communication with Prof. Fujimoto, the initial reactor design was revised resulting in a delay of parts acquisition and reactor assembly. Some of the changes are as follows: the flow direction has been changed from a downflow to an upflow mode as in a cocurrent bubble column reactor. Also, a preheating/mixer section packed with quartz wool will be placed upstream of the reactor section. These modifications should facilitate better interfacial contact between the syngas and either the liquid or the supercritical reaction medium. The profile thermocouple probe will be introduced at the exit end of the reactor extending into the preheater section.

Materials purchased during this quarter include a pressure regulator for the syngas cylinder, cables and hardware required for interfacing the flowmeters, thermocouples and pressure transducers to the Camile® data acquisition system. A 486/MS-DOS computer that is compatible with the data acquisition system has also been received. Materials under order include the reactor tube, an OMEGA profile thermocouple, gas cylinders, and mass flow controller for syngas addition. The sand bath surrounding the reactor will be fabricated in house. An exhaust vent for the reactor unit is being constructed by the local facilities operations department and is expected to be completed by the time the reactor is ready for testing. Dr. Udaya Rao of PETC has agreed to send Rührchemie Fe-based and Co-based F-T catalysts to be used in our experimental investigations.

b. Analytical

This phase is handled by the second graduate student (Kirk Snavely). As explained in the last report, we had initially planned to adopt the analytical method

reported by Dictor and Bell (1984) which analyzes all F-T synthesis products (complete analysis of C₁ to C₃₂ hydrocarbons and oxygenates in 2.5 hours) on-line. This method is attractive for its simplicity. The entire product stream is analyzed on a 50 m capillary column using an FID. With the gas sampling valves in the load position, the vent from the sampling valve to the capillary column is run through a water-cooled condenser and the noncondensed light gases are routed through a second sampling valve connected to a 2.7 m column packed with Chromosorb 106 and analyzed by a TCD. Both columns are mounted in a single GC. Consequently, the maximum oven temperature is set by the physical limit of the packed column packing material (235°C in this case).

Conversations with research chemists and sales representatives now suggest that use of a single column oven is impractical. Sally Kail, formerly of PETC and now a research chemist at Supelco, suggested use of a 100 m column rather than a 50 m column to get the detailed analysis of C₁ to C₂₀ which we desire, and to ramp the temperature to 320 °C, the upper temperature limit of the capillary column, in order to elute up to C₄₀ in a reasonable amount of time (4 to 6 hours). To characterize the F-T wax, single-carbon resolution of C₂₀ to C₄₀ compounds is needed. The operating temperature limit of 320 °C is beyond the operating range of all packed and PLOT columns sold by vendors such as Supelco and Chrompak. Capillary columns will not resolve the permanent gases (H₂, CO, CO₂, H₂O). Hence, in the interest of minimizing analysis turnaround time, two GC's connected in series will be used: one for the capillary column, ramped to 320 °C, and one for the packed columns, operated at a lower temperature.

The first GC will be set up similar to the specifications of Dictor and Bell (1984). The inlet to the Supelco DH capillary column (100 m) will be connected to a standard injector-splitter system. Split ratio is 100:1. Injector temperature will be 310 °C. FID temperature will be 300 °C. The sample valve and independently heated capillary injector are housed in an oven capable of sustained operation at 200 °C. Sample loop size is 2 ml. Head pressure will be 25-30 psig to maintain a He carrier gas flow rate of 1 to 2 cm³/min. Make-up He flowrate will be 30 cm³/min. For analysis, the temperature will be held at 35 °C for 15 min., then ramped at 2 °C/min to 320 °C and held until C₄₀ elutes (approximately 4 to 6 hours for total analysis).

The second GC is downstream of a low dead volume water-cooled condenser operated at 2 °C. The noncondensable gases in the product stream are analyzed on parallel packed (Porapak R) and PLOT columns in this GC, each with its own sampling valve, as proposed by Hackett and Gibbon (1989). The backflush valve for the 50 m PLOT column used by Hackett and Gibbon and the temperature-controlled valve oven are not needed in this setup, however, as C₁₀₊ components are removed by the condenser. Although Dictor and Bell report a maximum carbon number of C₅ in their packed column chromatogram, Huff and Satterfield (1982) reported significant quantities of C₅₊ up to C₁₀ in the noncondensable gases from a cold trap operated at 2 °C. Thus, the PLOT column must be able to resolve components up to C₁₀. The Porapak R column uses Ar carrier gas flowing at 15 ml/min; analysis takes place on a TCD at 150 °C. Sample loop size is 0.2 ml. The PLOT column uses He carrier gas flowing at 3 ml/min, with a make-up of 30 ml. Sample loop size for this column is 0.1 ml. The proposed analytical scheme is thus a combination of those proposed by Dictor and Bell (1984) and Hackett and Gibbon (1989).

We believe that the stated revisions to reactor design and product analysis scheme will improve the quality and reliability of our experimental investigations aimed at determining the effects of liquid vis-a-vis supercritical reaction medium on reaction rates and product selectivity during F-T synthesis on Fe and Co-based catalysts. Our goal for the next quarter is to complete the installation of the reactor and analytical units.

REFERENCES

1. Dictor, Ronald A. and Bell, Alexis T., *On-Line Analysis of Fischer-Tropsch Synthesis Products*, Industrial and Engineering Chemistry Fundamentals, **23**, 252 (1984).
2. Hackett, J.P. and Gibbon, G.A., *Capillary Gas Chromatographic Characterization of Fischer-Tropsch Liquefaction Products: On-Line Analysis*, Journal of Chromatographic Science, **27**, 405 (1989).

3. Huff, George A. Jr. and Satterfield, Charles N., *Stirred Autoclave Apparatus for Study of the Fischer-Tropsch Synthesis in a Slurry Bed. 1. Reactor and Trapping Procedures*, Industrial and Engineering Chemistry Fundamentals, **21**, (1982).
4. Yokota, K., Hanakata, Y. and Fujimoto, K., *Supercritical Phase Fischer-Tropsch Synthesis Reaction: 3. Extraction Capability of Supercritical Fluids*, Fuel, **70**, 989 (1991).

END

DATE
FILMED

4/14/93

