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ABSTRACT 

Hydraulic fractures created in oil and gas bearing rock formations can 
be made to propagate for a limited time at approximately constant height 
if favorable stress, deformation modulus or fracture toughness barriers to 
height growth exist and if the fracture design is suitably optimized to 
exploit these favorable conditions and reduce height growth. 

In this report, a unified theoretical formulation for the 
Perkins-Kern-Nordgren (PKN) and Christianovitch-Geertsma-De Klerk-Daneshy 
(CGDD) constant height fracture models is first presented. For a fracture 
fluid injection rate that varies as an arbitrary power of time, growth 
laws for fracturing fluid pressure, fracture width, and flow rate are 
rigorously derived for PKN and CGDD types of fractures. These similarity 
solutions account for nowNewtonian power-law fluid flow, transient fluid 
storage and generalized power-law fluid leak-off to the rock formation. 
They include and extend the results currently available in the literature 
for PKN and CGDD fractures. 

The results 
an approximate 
constant height 

for PKN and CGDD fractures are then generalized to obtain 
hybrid CGDD-PKN fracture model that can be applied to 
fractures of arbitrary length/height aspect ratio and 
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arb i t ra ry  cross-sectional shape. Character is t ic  !.times f o r  f rac tu re  
extension are i d e n t i f i e d  and estimates are given f o r  the t r a n s i t i o n  times 

from a CGDD-type f rac tu re  a t  small  aspect r a t i o  when the f rac tu re  evolves 

t o  a PKN-type f rac tu re  a t  large aspect r a t i o .  These resu l t s  are use fu l  f o r  
i n te rp re t i ng  f rac tu r ing  data and f o r  designing fractures f o r  crack-opening 

modulus measurements. 

Because a hydraul ic f racture responds t o  the i n - s i t u  propert ies of a 

large volume o f  rock, a t  leas t  as large as i t s e l f ,  f r ac tu r i ng  can be an 

a t t r a c t i v e  means o f  determining the i n - s i t u  deformation moduli o f  a rock 

mass a t  d i f f e r e n t  length scales. With t h i s  motivation, f o r  f rac tu r i ng  

condi t ions tha t  lead t o  constant height f rac tu re  extension, a procedure 

based on the hybr id  CGOO-PKN model i s  proposed f o r  computing the 

crack-opening modulus from sui tab le bottomhole pressure data. S e n s i t i v i t y  
analysis o f  the uncertainty i n  the measured crack-opening modulus 
ind icates tha t  the crack-opening modulus computed from the i n i t i a l  
CGDD-type f rac tu re  extension phase ( i f  present) w i l l  be much less  
sensi t ive t o  the uncertainty i n  fracture-height than tha t  computed from 
- -  I f  the crack-opening modulus 

i s  t o  be computed f rom the f i n a l  PKN-type f rac tu re  extension period, the 

f rac tu re  height must be known with much less uncertainty than the 

uncertainty i n  the crack-opening modulus tha t  i s  t o  be resolved through 

the f i n a l  PKN-type f rac tu re  extension phase. 

such measurements. 

. 
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1. INTRODUCTION 

1.1 Backqround And Motivation 

Hydraulic fracturing is a process by which fractures are created in 
underground rock formations by injecting fluid through a wellbore at a 
pressure high enough to fracture the rock. Hydraulic fracturing has excited 
scientific interest because o f  the fascinating interactions between the 
physical processes that govern it and the challenge posed by the diffi- 
culties of its analysis. In the scientific arena it has found application 
in determining the state of stress in the earth's crust [1,11,14], in 
explaining the fracturing phenomena that occur naturally in the subsurface 
[5,29] or in man-made structures such as dams and tunnels, and in studies 
of the escape of gaseous contaminants from underground explosions [15,32]. 
Perhaps of greater import is its economic impact on the cost effective 
extraction of underground petroleum and geothermal energy resources and on 
the subsurface disposal of liquid wastes. For example, during the last 
forty years, hydraulic fracturing has been used to increase production from 
wells drilled in oil and gas reservoirs [13,35] and in potable aquifers 
[33], to enhance the injectivity of liquid waste disposal wells [36], to 
create fractured geothermal energy reservoirs in hot dry rock masses [25] 
and to measure the in-situ stresses in reservoir rock formations for frac- 
ture design purposes [1,35]. 

The propagation of hydraulically induced fractures in the subsurface 
is influenced by in-situ conditions such as the state of stress in the 
targeted and neighboring rock formations, the spatial distribution of 
deformation moduli and fracture toughness of the rock, and the permeabi- 
lity, fluid saturation and pore pressure levels that affect fluid-loss to 
the porous rock formation. In addition, the fluid injection schedule, the 
rheology and fluid-loss control properties of the fracturing fluid, and the 
properties and schedule of the proppant are control parameters that affect 
the fracturing process. Many properties, such as the fluid rheology para- 
meters and the fluid-loss coefficients that are required as input data to 
fracture design models, are measured in the laboratory. We wish to focus 
attention here on the crack-opening modulus Ec=G/(l-u), where G= shear 
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modulus and u = Poisson's ratio, that is the only deformation modulus 
used in most simple fracture design models. 

There is increasing evidence that suggests that static deformation 
moduli measured in the laboratory and dynamic deformation moduli measured 
by sonic well-logging methods in the field may not be representative of 
the deformation modulus experienced in-situ by a propagating fracture. 
Because of the quasi-static nature of hydraulic fracturing and the larger 
levels of strain induced by hydrofractures, it would seem from a conceptual 
point of view that the static moduli, and not the dynamic moduli, are the 
deformation properties that should be used for designing hydraulic frac- 
tures. There is a large collection of data [17,18,19,20] that show that 
static deformation moduli measured in the laboratory differ significantly 
(60% to 600%) from the dynamic moduli measured both in the laboratory and 
in the field on the same rock under equivalent stress conditions. There 
are even substantial differences between the sonic modulus measurements 
made in the laboratory and i n  the field. 

Perhaps of greater relevance to fracture design is the possibility 
that in-situ static moduli can be very different from those measured in 
the laboratory due to the scale dependence of the moduli that are to be 
measured. Spatial scale dependence of deformability has been documented in 
the geotechnical engineering literature [12] and arises as a result of 
natural fractures and modulus inhomogeneities that occur in the field on 

scales much larger than the sizes of laboratory rock samples. The larger 
length scales associated with these features are likely to be more 
representative of the length scales affecting the rock mass stiffness 
experienced by a large hydraulic fracture. It is implied in these state- 
ments that the rock mass, though discontinuous and inhomogeneous, can be 
viewed as a continuum on the spatial scales on which we wish to assign 
average modulus values. If the distribution of these features is too sparse 
to permit such an averaging procedure, then the measured moduli cannot be 
considered to be constitutive properties but merely deformability measures 
that depend upon the specific test configuration and interpretive model 
used. While the observed differences between the moduli measured by 
different methods may in part be related to factors other than scale 



- 3 -  

dependence, such as sample disturbance during removal or undetected local 
conditions occurring within or near the wellbore in the field measurements, 
it is imperative to try to develop an independent method of determining the 
in-situ stiffness properties of the rock mass on the length scale of the 
hydraulic fractures. 

From its very early days [14,11,1] the potential of hydraulic fractur- 
ing for acquiring in-situ stress data was recognized; now this is often a 
routine preliminary procedure in the design of massive hydraulic fractures 
[35]. However, the possibility of using hydraulic fracturing for determin- 
ing in-situ deformation moduli does not seem to have been explored. We 
propose here to back-calculate the crack-opening modulus from hydraulic 
fracturing bottomhole pressure data using an interpretive model that is 
appropriate for the conditions in the field. Because a hydraulic fracture 
responds to the in-situ properties of a large volume of rock, at least as 
large as itself, fracturing can be an attractive means of assessing the 
scale-dependence of deformation moduli of the rock mass in-situ. The idea 
is even more attractive when it is realized that the fracture dimensions 
can be controlled by controlling the pumping schedule and the fracturing 
fluid properties so that, conceptually, it should be possible to sample 
the stiffness properties of the rock formation at different length scales. 
A major difficulty, of course, is the possibility that the discontinuities 
or inhomogeneities are sparsely distributed and influence fracture propa- 
gation only as discrete entities. Another difficulty that can arise is 
that, although the discontinuities and inhomogeneities are sufficiently 
profuse to be viewed as continuum features, the fracture may intercept one 
or more of them leading to a situation for which the data required for 
interpretation cannot be easily acquired in sufficient detail even if a 
capability to analyze the problem could be developed. 

Subject to these caveats on the fidelity and sophistication of our 
models and the availability of supporting data, 'it may be possible to cal- 
culate the modulus on different length scales using data from a single 
fracture as it extends with time. An alternative procedure is to assign a 
single different modulus to each fracture of a different size. For this to 
be possible, a reliable means of analyzing hydraulic fracturing pressure 
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records i s  an essent ia l  prerequis i te.  The s u i t a b i l i t y  o f  ex i s t i ng  hydraul ic 

f rac tu r ing  models must, therefore, be examined and methods o f  in terpreta-  
t i o n  and, i f  necessary, improved models must be developed f o r  t h i s  purpose. 
In addi t ion,  the s e n s i t i v i t y  o f  the calculated moduli t o  the analysis 
procedure and the physical  parameters governing the hydraul ic f rac tu r i ng  

process must be evaluated. The resu l t s  presented i n  t h i s  repor t  cons t i tu te  

a f i r s t  step i n  t h i s  d i rect ion.  

1.2 Ex is t ing  Hydraulic Fractur ing Models 

In te rp re t i ve  models o f  hydraul ic f rac tu r ing  tha t  have been reported i n  

the open l i t e r a t u r e  over the years can be conveniently c l a s s i f i e d  i n t o  

f i r s t ,  second and t h i r d  generation models. An exhaustive inventory o f  these 

models i s  not attempted here. Instead, we r e f e r  in terested readers t o  the 

review by Mendelsohn [22,23] and c i t e  only a few models tha t  are e i the r  

representative o f  a c lass or are d i s t i n c t l y  d i f f e r e n t  i n  approach. The 

f i r s t  generation models are those which assume tha t  the height o f  the 
f rac tu re  i s  constant i n  time and uniform i n  space, and tha t  the resistance 

o f  the f rac tu re  t o  opening under f l u i d  pressure i s  derived from e i the r  the 
l a t e r a l  or  the long i tud ina l  d i rec t i on  o f  the f racture.  The best known o f  
these are the Perkins-Kern-Nordgren (PKN) and Christianovitch-Geertsma-De 
Klerk-Daneshy (CGDD) models [31,28; 16,37,9,7]. They incorporate varying 

degrees o f  approximation f o r  the crack-opening s t i f fness,  the conservation 

o f  f l u i d  mass i n  the fracture,  the f low law r e l a t i n g  the f low r a t e  t o  the 

pressure gradient, and the f l u i d  leak-of f  i n t o  the porous rock formation. 

Few, i f  any, o f  the f i r s t  generation models include a l l  o f  these e f fec ts  

with a s u f f i c i e n t  degree of genera l i ty  [ lo] ;  t h i s  provides the mot ivat ion 

f o r  the der iva t ion  o f  the extended resu l t s  f o r  constant height f ractures 

and the hybr id  model described i n  the present report .  

The second generation models d i f f e r  from those o f  the f i r s t  generation 

i n  tha t  they al low simultaneous growth o f  both f rac tu re  height and f racture 

length. The pseudo-three-dimensional P3DH-type models, f i r s t  introduced by 

Cleary [ 6 ] ,  al low for height grbwth by coupling CGDD-type f rac tu re  exten- 
s ion i n  the l a t e r a l  d i rec t i on  with PKN-type f racture extension i n  the 

long i tud ina l  d i rect ion.  The coupling i s  through the equation o f  f l u i d  mass 
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conservation. This approach yields useful results but requires a great deal 
of subjective judgement in choosing model-dependent parameters. Other, 
distinctly different, approximate models that allow simultaneous height and 
length growth have been introduced by Stout [34] and by Advani et. al. [3] .  
Both of these models assume a particular shape for the fracture geometry 
that is parameterized through time dependent dimensions. The ordinary non- 
linear differential equations that govern the growth of these dimensions 
in time are obtained by Advani et. al. using a Lagrangian formulation with 
non-conservative generalized forces and by Stout by means of a full-fledged 
rate variational principle. Advani et. al. obtained approximate power-law 
solutions by resorting to approximations regarding the stiffness contribu- 
tions from the two principal directions of the assumed fracture shape, 
while Stout integrated his ordinary differential equations by an explicit 
numerical integration procedure. 

Third generation models allow for the evolution of an arbitrary frac- 
ture shape but still confine the fracture to growth in a single vertical 
plane. These models are based on either hybrid boundary element-finite 
element formulations such as that of Abou-Sayed et. al. [23 requiring dis- 
cretization of only the fracture surface or full-fledged finite-element 
simulators such as that reported recently by Morita et. a1.[24]. These 
models require substantially greater computational effort but provide more 
flexibility in modelling the actual field conditions. Used with care, they 
have the potential to provide the most accurate predictions and can be used 
to calibrate and define the domains of applicability o f  simpler, less 
accurate but more convenient, models. 

1.3 Scope Of The Present Work 

The present study is restricted to first generation models which assume 
that the hydraulic fracture remains confined to a single vertical plane 
passing through the wellbore and that it extends laterally (i.e. horizon- 
tally) away from the wellbore at constant fracture height. It is assumed 
that the orientation of the fracture is determined by the direction of the 
minimum in-situ principal stress in the far-field and that the minimum 
principal stress acts in the horizontal plane. Therefore, the plane of the 
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fracture is vertical and its azimuthal orientation is normal to the minimum 
in-situ principal stress. In a practical sense, this implies that such 
fractures will be created only at depths sufficiently below the surface 
where the vertical stress will not be the minimum in-situ principal stress. 
It also implies that the difference between the minimum and intermediate 
principal stresses is sufficiently large to fix and contain the fracture 
within a single unique vertical plane as it propagates in the horizontal 
direction. The PKN and CGDO models, the best known models of this class, 
are distinguished primarily by whether the stiffness contribution to open- 
ing of the fracture by the fracturing fluid pressure is derived from the 
lateral (i.e. vertical) direction or the longitudinal (i.e. horizontal) 
direction of the fracture. 

In the PKN model, shown in Figure 1, it is assumed that the fracture 
closes at the top and the bottom of the fracture in the vertical direction 
and that the resistance of the fracture to opening under fluid pressure is 
derived solely from the elastic stiffness of its cross-section in the ver- 
tical direction. This implies that the vertical cross-sections of the 
fracture deform independently of each other and, therefore, any contribu- 
tion to the stiffness from the horizontal direction is neglected. On the 
other hand, in the CGDD model, also shown in Figure 1, it is assumed that 
the cross-sections are of uniform width and do not close at the top and 
bottom so that the resistance of the fracture to opening under fluid 
pressure is derived solely from its elastic stiffness in the horizontal 
direction. The uniform width assumption would be strictly valid, for 
example, if the fracture terminates in the vertical direction at rock 
boundaries at which there is complete slip. In both models the fluid flow 
in the fracture is assumed to be pseudo-steady and to take place horizon- 
tally while the fracture extends in this direction. Within the confines of 
these major distinguishing assumptions, power-law fluid flow, proppant 
transport and approximate one-dimensional fluid leak-off into the porous 
rock formation have been incorporated in these two models. 

" 

In this report a unified theoretical formulation for constant height 
fractures of the PKN and CGDD types is presented in Section 2. The govern- 
ing equations for constant height fractures of arbitrary cross-sectional 



PKN FRACTURE MODEL 

FIGURE 1 : CONSTANT HEIGHT FRACTURE MODELS BY PERKINS-KERNS-NORDGREN (PKN) 
AND CHRISTIANOVICH-GEERTSMA-DE KLERK-DANESHY (CGDD) . 
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shape with non-Newtonian power-law f l u i d  f low i n  the f rac tu re  and a 

generalized power-law f l u i d  leak-of f  model are given here. I n  Section 3 the 
equations are recast i n  dimensionless form and s i m i l a r i t y  solut ions f o r  
f l u i d  pressure, f rac tu re  width, f low r a t e  and f racture length tha t  grow as 
powers o f  t ime are derived. The resu l t i ng  nonlinear ordinary d i f f e r e n t i a l  

equations are not completely solved but t h e i r  l i m i t i n g  behaviors are 

investigated. Although the d i s t r i bu t i ons  o f  the var iables over the f rac tu re  
are not determined, the s i m i l a r i t y  analysis enables the dependence on time, 

and on the physical  propert ies tha t  govern the f rac tu r ing  process, t o  be 

extracted. The t i m e  regimes within which e i the r  the f l u i d  storage term or 
the f l u i d  leak-of f  term can be neglected are i d e n t i f i e d  i n  terms o f  times 

tha t  are charac ter is t i c  o f  PKN and CGDD types o f  f rac tu re  extension. 

I n  Section 4 these resu l t s  are extended t o  a f rac tu re  whose 
cross-section always remains closed a t  i t s  top  and bottom edges but which 

extends a t  constant height. It is shown tha t  such a f rac tu re  can be con- 

sidered t o  be a hybr id  CGDD-PKN f rac tu re  which behaves as a CGDD f rac tu re  

when i t s  length i s  much smaller than i t s  height but which evolves i n t o  a 

PKN f rac tu re  when the f rac tu re  length i s  much greater than the f rac tu re  

height. Estimates o f  the times o f  t r a n s i t i o n  between these two behaviors 

are derived as an important by-product o f  t h i s  extended view. I n  Section 5 

the resu l t s  derived f o r  the power-law coef f i c ien ts  and exponents are used 

t o  devise a procedure f o r  computing the crack-opening modulus from bottom- 

hole pressure records obtained f o r  a hybr id  CGDD-PKN constant height f rac-  

ture.  A s e n s i t i v i t y  analysis o f  the impact o f  uncertainty i n  the assumed 

f rac tu re  height on the crack-opening modulus is presented next. The con- 

clusions based on the extended analysis o f  constant height f rac tu re  models 
and the s e n s i t i v i t y  analysis f o r  the crack-opening modulus are summarized 

i n  Section 5. 
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2. MODEL FORMULATION FOR CONSTANT HEIGHT RiACTURES 

The governing equations are derived here f o r  PKN and CGDD-type 

hydraul ic f ractures o f  uniform and constant height propagating i n  a homo- 

geneous f l u i d  saturated porous rock formation. Consider the f low of the 

in jec ted  f rac tu r ing  f l u i d  along a uniform plane f rac tu re  o f  height H and 

an as ye t  unspecif ied cross-sectional shape, as shown i n  Figure 1. We 
assume tha t  the plane o f  the f rac tu re  i s  or iented normal t o  the minimum 

i n - s i t u  p r i n c i p a l  stress S act ing i n  the f a r - f i e l d  and tha t  the i n - s i t u  

stress S and pore f l u i d  pressure pi d i s t r i bu t i ons  are uniform i n  the 
f a r - f i e l d .  I n j e c t i o n  o f  f rac tu r i ng  f l u i d  i s  begun a t  time t=O a t  a r a t e  

Q w ( t )  and the bottomhole f l u i d  i n j e c t i o n  pressure pw( t )  required t o  
maintain t h i s  i n j e c t i o n  r a t e  i s  measured. The present analysis attempts t o  

approximately p red ic t  the bottomhole i n j e c t i o n  pressure pw(t),  the 

f rac tu re  length L( t )  

and the crack-opening width w(x,z,~) o f  the f racture as a funct ion o f  the 

i n - s i t u  stress, the mechanical propert ies o f  the rock formation and the 

rheolog ica l  propert ies o f  the f rac tu r ing  f l u i d .  I n  par t i cu la r ,  we wish t o  

assess the s e n s i t i v i t y  o f  the bottomhole pressure h i s t o r y  t o  the mechanical 

proper t ies o f  the rock formation and the extent o f  the uncertainty i n  the 

pred ic t ion  o f  these propert ies from bottomhole pressure data tha t  resu l t s  

f rom the approximations embedded i n  the models. 

2.1 Conservation O f  F l u i d  Mass 

For one-dimensional f l u i d  f low along the length o f  the f racture,  

conservation o f  f l u i d  mass i n  the f rac tu re  i s  approximately expressed i n  

terms o f  average cross-sectional quant i t ies  by Equation (2.1): 

a (PwHYw) 
t 2pyLHqL = 0 . a t  ax 

I n  Equation (Z. l ) ,  yW(x,t) and p(x,t) are the average f rac tu re  width 
and the average f l u i d  density, respectively, Q(x,t) i s  the t o t a l  f l u i d  

f l o w  r a t e  along the f rac tu re  and qL(x,t) i s  the t o t a l  r a t e  o f  f l u i d  loss 
t o  the porous formation per u n i t  f racture area a t  any cross-section o f  the 
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fracture.  To account f o r  only a par t  o f  the height o f  f rac tu re  being 

adjacent t o  a permeable rock formation, the f l u i d  leak-of f  r a t e  qL i s  
defined w i th  respect t o  a leak-of f  f rac tu re  height HL = yL H tha t  i s  

less than the height o f  the f racture.  The t o t a l  f low r a t e  Q(x,t) i s  equal 

t o  the i n t e g r a l  over the height o f  the f racture o f  the l o c a l  f low r a t e  

q (x,z,t) i n  the long i tud ina l  d i rect ion.  The l o c a l  f l u i d  ve loc i t y  has 
V and Vz i n  the longi tud ina l ,  l a t e r a l  and normal components 

d i rect ions with respect t o  the f racture surface. The l o c a l  f low r a t e  

qX(x,z,t) i s ,  therefore, equal t o  the f low ve loc i t y  VX(x,y,z,t) a t  a 
f i xed  height z integrated with respect t o  y over the f racture width 

w(x,z,~).  These quant i t ies  are defined by: 

X 

vx' y 

, +H/2 

(V (x,w/~,z,  t ) - V  (x,-w/~,z, t ) }dZ , 
Y Y q p , t )  = - l I  

'L -HL/2 

i s  a shape fac to r  t ha t  depends on the assumed shape o f  the where, 
cross-section o f  the f rac tu re  and d(x,z,t) i s  the average f l u i d  densi ty 

over the width o f  the f racture.  I f  the product form given by Equation (2.6) 
is assumed f o r  the cross-sectional shape, then the shape fac to r  yw i s  

defined by Equation (2.7). For PKN f ractures with e l l i p t i c a l  cross-sec- 

t ions  and CGDD fractures with uniform cross-sections, the cross-sectional 

shape funct ion fW(C)  (assumed t o  be an even funct ion o f  C=2zIH) and 
y are given by Equations (2.8) and (2.9), respect ively.  

yW 

W 

W(X,Z,t) = W(x,t) fW(2z/H) . (2.6) 

+H/2 
- -  I f  fW(2z/H) dz . 

yw - -H/2 
(2 7) 
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(2.8) 
2 E l l i p t i c  PKN cross-sections: fw(C)=d(l-? 1; Yw = */4. 

Constant width CGOD cross-sections: fw(C)= 1; yw = 1 . ( 2 . 9 )  

I f  the f l u i d  compressibi l i ty  i s  small compared t o  the compliance o f  the.  

f racture width under the normal e f fec t i ve  stress (p - S) (an assumption 

v a l i d  f o r  l i q u i d  saturated fractures), then Equation (2.1) s imp l i f i es  t o  

Equation (2.10) f o r  constant height fractures: 

Y ~ H  %! + ax + 2yLH qL = 0 . (2.10) 

2.2 Flow Law For Non-Newtonian Fractur ing F lu ids 

For low Reynold's Number o f  the f l u i d  f low i n  the fracture,  the 

pressure gradient i n  the flow d i rec t i on  i s  balanced p r imar i l y  by the 

viscous shear forces as given by Equation (2.11). The rheologica l  behavior 

o f  proppant laden f l u i d  i s  fu r ther  complicated by the presence o f  f l u i d  

loss cont ro l  and v iscos i ty  enhancing chemical addi t ives.  We conform t o  

standard prac t ice  here and approximate the non-Newtonian rheology o f  t h i s  

composite f l u i d - s o l i d  mixture by the power-law re la t ionsh ip  given by 
Equation (2.12), where K '  i s  the f l u id  consistency and n '  i s  the power-law 

exponent. The power-law exponent ranges between 0 and 1, and when n ' = l  the 

f l u i d  i s  Newtonian and the f l u i d  consistency K '  i s  the Newtonian f l u i d  
v iscos i ty .  When Equation (2.12) is used t o  el iminate T from Equation 
(2.11), Equation (2.13) tha t  governs power-law f l u i d  f low i n  the f rac tu re  

i s  obtained. 

XY 

(n'- l)  
) = O .  a vx a vx 

* + a  ax ay { K ' l F l  aY 

(2.11) 

(2.12) 

(2.13) 
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I n  wr i t i ng  Equation (2.13) we have neglected the unsteadiness o f  the 
f l u i d  f l ow ,  the convective i n e r t i a l  e f fec ts  and the e f fec ts  o f  f l u i d  

leak-of f  on the l o c a l  ve loc i t y  p r o f i l e .  This Equation can be eas i l y  solved 

for the f l u i d  ve loc i t y  Vx subject t o  no-sl ip boundary condi t ions on the 
f racture surfaces, t o  a r r i v e  a t  the fo l lowing re la t ionships f o r  the 

ve loc i ty  p r o f i l e  (Equation (2.14)) and the l o c a l  f low r a t e  qX(x,z,t) 

(Equation (2.15)) as a funct ion o f  the pressure gradient: 

(2.14) 

(2.15) 

Equation (2.15) can now be subst i tuted i n  Equation (2.4) t o  obtain the 

desired f low law between the t o t a l  f low r a t e  Q(x,t) and the pressure 

gradient: 

(2.16) 

The apparent f l u i d  v iscos i ty  Ka and the shape parameter y 

t i o n  (2.16) are defined by: 
i n  Equa- Q 

2n'+l  n' 
K a= K '  ( - 1 ,  3n ' 

W Q o  
1 

0 
= { s (1-c 2 1 (2n'+1)/2nA~} n' for e l l i p t i c  PKN cross-sections, 

(2.17) 

(2.18) 

= 1  f o r  constant width CGDD cross-sections. 

The shape parameter y can be computed f o r  any speci f ied value o f  

n ' ;  f o r  n '= l ,  f o r  example, i t  takes the value o f  y = 3r/16. Also, 

the standard Po iseu i l le  f low law f o r  Newtonian f l u i d  f low between p a r a l l e l  

p la tes can be recovered from Equation (2.16) f o r  a constant width f racture 

by se t t i ng  n'=l. 

P 
Q 
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2.3 Crack-Opening Relat ion 

The f i n a l  re la t ionsh ip  required t o  achieve closure o f  Equations 

(2.10) and (2.16) i s  tha t  between the f rac tu re  width and the e f f e c t i v e  
stress d i s t r i b u t i o n  (p(x,t)-S) ac t ing  on the f rac tu re  surfaces. The 
p r i n c i p a l  d i f ference between the PKN and CGDD models stems from the 

dif ferences i n  t h i s  re la t ionsh ip  i n  the two models. 

2.3.1 PKN Crack-Opening Model 

I n  the PKN model, v e r t i c a l  cross-sections o f  the f rac tu re  act 

independently o f  each other by assumption so tha t  approximately plane 

s t r a i n  condit ions p r e v a i l  a t  each cross-section. Therefore, f o r  the 

e l l i p t i c  cross-sectional shape, and the uniform f rac tu re  f l u i d  pressure 

within the f rac tu re  ac t ing  a t  each cross-section, the f rac tu re  width 

w(x,z,t) i s  given as a funct ion o f  (p(x,t)-S) by: 

1 
E 

W(X,Z,t) = - H (p(X,t)-S) f (2Z/H) , 
W 

C 

(2.19) 

(2.20) 
L 

C 

where the crack-opening modulus Ec = G/(l-u) and fW(2z/H) i s  defined 
by Equation (2.8). 

2.3.2 CGDD Crack-Openinn Model 

I n  the CGDD model, each cross-section i s  assumed t o  be o f  uniform 

width and the e l a s t i c  s t i f f n e s s  o f  the f rac tu re  i s ,  therefore, derived 

so le ly  from i t s  deformation i n  the lengthwise d i rec t ion .  The f l u i d  

pressure varies along the f rac tu re  due t o  the viscous shear o f  the 

f rac tu r ing  f l u i d  with the r e s u l t  t ha t  the f rac tu re  width a t  any l oca t i on  

is re la ted  t o  the ent i re d i s t r i b u t i o n  o f  pressure over the f rac tu re  
length. For the plane s t r a i n  condit ions p reva i l i ng  i n  the hor izon ta l  
plane, the e l a s t i c  so lu t ion  t o  the crack width f o r  an a r b i t r a r y  pressure 

d i s t r i b u t i o n  ac t ing  on i t s  surface was given by England and Green [8]  as: 
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where 1 = x/L(t). 

In PKN fractures the cross-section was assumed to be of elliptical 
shape with fluid penetrating to the very edges of the fracture 
cross-section at uniform pressure. Under these conditions, linear elas- 
ticity theory predicts infinite stresses at the crack edge although the 
width profile is well defined. Because the fracture height was assumed to 
be constant, it was reasonable to ignore this situation in the case of PKN 
fractures. However, if this condition were to prevail in the case of CGDD 

fractures, infinite stresses would exist at the crack-tip that is respon- 
sible for fracture extension in the lengthwise direction. This dilemma 
was resolved by Khristianovitch and Zheltov [16,37] who suggested that the 
pressure distribution within the crack would adjust itself to yield a 
crack-width profile that not only would close at the crack-tip but also 
would close smoothly at the crack-tip. The condition of smooth closure of 
the fracture tip was later placed on a firmer fracture mechanics 
foundation by Barenblatt [4]. This inspired hypothesis is similar to the 
Kutta-Joukowsky-Chaplygin condition [21] for potential fluid flow past an 
aerofoil with a sharp trailing edge. In this fluid mechanics problem, the 
streamlines are required to be tangential to the aerofoil at the trailing 
edge to eliminate the infinite fluid velocities that would otherwise exist 
at this point. The Kutta-Joukowsky-Chaplygin condition determines the lift 
on the aerofoil while the Khristianovitch-Zheltov condition determines the 
length of the crack. In contrast to this situation for CGDO fractures, the 
governing equation for crack width for PKN fractures is of a lower order 
than the integro-differential equation for CGDD fractures and, therefore, 
can support only the condition that the crack closes at the crack-tip. 

When the gradient dW(rl)/dV is set equal to zero in Equation (2.21) 
we obtain Equation (2.22a) as the condition that must be satisfied by the 
pressure distribution to achieve smooth closure at the crack-tip. When 
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the f i n i t e  tens i l e  strength (or f rac tu re  toughness) o f  the rock i s  taken 

i n t o  account we obtain Equation (2.22b). I f  the f rac tu re  length i s  large 

enough t o  s a t i s f y  the Inequal i ty  i n  (2.22a), where u i s  the spec i f i c  

surface energy o f  the rock, the inf luence o f  f rac tu re  toughness o f  the 
b r i t t l e  rock i s  small  and can be neglected [9,30] and Equation (2.22a) i s  
recovered. 

K - 
- d(2L(t)) ’ 

(2.22a) 

(2.22b) 

1/2 with K = (2rEcu) . 

Geertsma and De Klerk [9] have shown that, except i n  a small  narrow 
wedge-like zone near the t i p  o f  the f racture,  f o r  many hydraul ic 
f rac tu r ing  condit ions the f rac tu re  width p r o f i l e  can be approximated as 

being e l l i p t i c a l  i n  shape: 

(2.23) 

where, i ( t)  i s  
the shape function defined previously by Equation (8) f o r  e l l i p t i c  cross- 

sections. 

the average f l u i d  pressure i n  the f rac tu re  and fw(n) i s  

2.4 The F l u i d  Leak-Off Model 

The f l u i d  loss t o  the rock formation i s  assumed t o  be governed by a 

generalized form o f  Carter’s f l u i d  leak-of f  model given by Equation 
(2.24a) : 

(2.24a) 

x = L(T) . (2.24b) 
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I n  t h i s  model, an a r b i t r a r y  f l u i d  leak-of f  power index m i s  used instead 

o f  the standard value o f  1/2 because t h i s  value i s  only appropriate f o r  
leak-of f  con t ro l led  by l i nea r  pressure d i f f us ion  i n  the rock formation. As 

indicated by Equation (2.24b), T ( X )  i s  the time a t  which the propagating 
t i p  o f  the f rac tu re  a r r i ves  a t  a loca t ion  x i n  the formation so tha t  
( t - T ( X ) )  i s  the elapsed t ime  during which f l u i d  leaked-off i n t o  the rock 

formation since i t s  f i r s t  exposure t o  the f rac tu r ing  f l u i d .  I n  hydraul ic 

f rac tu r ing  numerical codes the leak-of f  coe f f i c i en t  C i s  usual ly updated 

i n  t i m e  t o  r e f l e c t  i t s  dependence on the va r ia t i on  i n  the f l u i d  pressure 

i n  the f racture.  I n  the present analysis, however, we w i l l  assume C t o  be 

a constant. 

2.5 Governing P a r t i a l  D i f f e r e n t i a l  Equation 

With these de f in i t ions ,  the p a r t i a l  d i f f e r e n t i a l  equation which 
governs the extension o f  both PKN and CGOD type fractures can be wr i t t en  
by combining Equations (2.10), (2.16) and (2.24): 

= o .  l / n t  2 y ~  c 
ax yw ( t - T ) m  

I I + -  (2.25) 

The values o f  the shape factors  yw and y tha t  appear i n  Equation 
(2.25) were given previously f o r  both types o f  f ractures.  For PKN 

fractures, the crack-opening r e l a t i o n  given by Equation (2.20) can be 

subst i tu ted i n  Equation (2.25) t o  obtain the governing Equation (2.26) 

so le ly  i n  terms o f  the f racture width W(x,t): 

0 

while the bottomhole 
width a t  the wellbore 

- I + -  = o ,  (2.26) ax 
- 

pressure pw(t )  can be recovered f rom the f rac tu re  
from: 

C 
E 

pw(t )  = s + H W(0,t) . (2.27) 
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In the case of CGW) fractures the situation is more complicated 
because W(x,t) is related to the distribution of p(x,t) over the entire 
fracture by Equation (2.21), or more approximately, through Equation 
(2.23) to the average pressure in the fracture p(t). 
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3. SIMILARITY SOLUTIONS FOR PKN AND CGDD FRACTURES 

3.1 General Analysis Of Constant Height Fractures 

The standard method of solving the problem posed by Equations 
(2.7)-(2.10) would be to discretize them in space and/or time by a finite- 
difference or finite-element technique and to solve the resulting set of 
coupled nonlinear algebraic equations by some iterative scheme. For our 
present purpose, we are primarily interested in analyzing the time history 
of the bottomhole pressure for different pumping schedules at the wellbore 
and in evaluating its sensitivity to the parameters of the hydraulic frac- 
turing process. With this limited aim, a similarity solution technique is 
devised here to extract the functional dependence of the bottomhole 
pressure on time and on the process parameters, for a limited but realistic 
class o f  power-law pumping schedules, without having to resort to the 
rigors of obtaining a complete numerical solution to the problem. 

In doing so, we present a unified treatment of both PKN and CGDD 
fractures and extend the existing solutions to include fluid rheology, 
leak-off and pumping rate governed by generalized power-laws. The complete 
solution to the similarity solutions for PKN fractures was given by 
Nordgren [28] for the special case o f  a Newtonian fluid, the half-power 
fluid leak-off law and constant fluid injection rate. Cleary [6] has 
presented more general similarity solutions for PKN fractures with 
non-Newtonian power-law fluid rheology, generalized power-law fluid 
leak-off and power-law fluid injection rates. However, no computational 
results comparable to Nordgren's work were presented by him. Geertsma and 
De Klerk [9] provided an approximate solution for CGDD fractures that 
neglects the fluid storage term and approximates the crack-opening 
relationship. Their work is limited to Newtonian fluid flow in the 
fracture, half-power fluid leak-off to the rock formation and a constant 
rate of fluid injection. Daneshy [7] has reported an approximate extension 
of this model to power-law fracturing fluids but information is not 
available in sufficient detail regarding this improvement. In summary, a 
general theory has been presented by Cleary for PKN fractures but no 
rigorous computations of the similarity equations are available. For CGDD 
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fractures, no s i m i l a r i t y  analysis tha t  accounts f o r  a l l  o f  the features we 

propose t o  include i n  the present model has been reported previously i n  

the open l i t e r a t u r e .  Furthermore, the resu l t s  presented here on the 

charac ter is t i c  times and aspect r a t i o  l i m i t i n g  times for hybr id  CGDD-PKN 

f ractures are not  avai lab le i n  the l i t e r a t u r e .  

The solut ions are found by f i r s t  transforming the nonlinear p a r t i a l  

d i f f e r e n t i a l  Equation (2.10) i n  the two independent var iables x and t t o  
an ordinary d i f f e r e n t i a l  equation i n  the s ing le s i m i l a r i t y  var iab le n 
defined by Equation (3.1). The s i m i l a r i t y  var iab le Q defined by t h i s  
Equation i s  the dimensionless distance along the f racture and i s  equal t o  

the actual  distance scaled t o  the length o f  the f racture L(t). We fu r ther  

assume tha t  the f rac tu re  length L(t) var ies according t o  the power-law 

given by Equation (3.2). We seek s i m i l a r i t y  solut ions f o r  p(x,t), W(x,t), 

Q(x,t), qL(x,t) i n  the form o f  Equations (3.3), (3.4), (3.5) and (3.6), 
respectively, where the corresponding power-law exponents p, w, q, r and 

the dimensional coe f f i c i en ts  po, Wo, Qo and qLo w i l l  be chosen t o  
obtain a meaningfully scaled dimensionless governing equation tha t  depends 

only on the s i m i l a r i t y  var iab le Q as the sole independent var iable.  The 

dimensionless pressure pD(n), the dimensionless f rac tu re  width 
WD(v), the dimensionless f lowrate Q,,(n) and the dimensionless 

leak-of f  r a t e  qLD(n) provide convenient invar ian t  means o f  

representing the corresponding s p a t i a l  d i s t r i bu t i ons  over the length o f  
the f rac tu re  as i t  evolves i n  time. 

a L( t )  = Lo t , (3.2) 
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As the f i r s t  step we r e s t r i c t  the f rac tu re  f l u i d  i n j e c t i o n  r a t e  

schedules t o  power-law pumping schedules o f  the form: 

where Qo and q are known input  parameters tha t  are consistent with the 
s i m i l a r i t y  assumption o f  Equation (3.5). Therefore, from Equation (3.5) we 

obta in  the boundary condit ion: 

Note tha t  f o r  constant i n j e c t i o n  r a t e  (i.e., q=O) Qo i s  the r a t e  o f  

i n j e c t i o n  i t s e l f  but  f o r  q ) 0 i t  has phys ica l  u n i t s  d i f f e r e n t  from tha t  

o f  f low rate.  To obta in  the dimensionless form o f  the flow-law given by 
Equation (3.10) we use Equations (3.1-3.5) t o  subs t i tu te  for the 
dimensional var iables i n  Equation (2.16) and obta in  Equation (3.9): 

For t h i s  r e l a t i o n  t o  be consistent with Equation (3.5) the power-law 

indices must be re la ted  by: 

(w(2n l t l ) t  p - Q}/nl = q . (3.10) 

In  addi t ion,  we def ine the dimensionless f low r a t e  QD(n) t o  be given 
by Equation (3.11) and we determine Q, as a funct ion o f  the power-law 

coe f f i c i en ts  p W and L from Equation (3.12): 
0' 0 0 

H Q o = g I  

(3.11) 

(3.12) 
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The f l u i d  leak-o f f  r a t e  law given by Equation (2.24a) i s  next recast 
i n  the form o f  Equation (3.13) by using Equations (3.2) and (2.24b) t o  

express T as a funct ion o f  n and t: 

l / Q ) - m  t-m , 
qL(x,t) = c (1 - n (3.13) 

(3.14) 

Comparing Equation (3.13) with the s i m i l a r i t y  form o f  Equation (3.6), we 

make the fo l low ing  i den t i f i ca t i ons :  

(3.15) 

r = - m ,  (3.16) 

= c .  (3.17) qL0 

Under the s i m i l a r i t y  coordinate transformation, Equation (2.10) f o r  

conservation o f  f l u i d  mass transforms t o  Equation (3.18): 

-1q -1 dwD tu-1 + - Qo - dQD tq'Q + 2y Hq q tr = 0 . 
(3.18) '#'ofW '0 dq Lo dn L Lo LD 

Equation (3.18) can be r e w r i t t e n  i n  the form: 

tha t  i s  su i tab le  f o r  evaluating the r e l a t i v e  magnitudes o f  the storage and 

leak-o f f  terms. The dimensionless ordinary d i f f e r e n t i a l  equations tha t  
govern the dimensionless s i m i l a r i t y  variables under d i f f e ren t  assumptions 
regarding the r e l a t i v e  importance o f  the storage, transport and leak-of f  

terms can be derived from Equation (3.19). For example, when a l l  three 

terms are s ign i f i can t ,  the s i m i l a r i t y  solut ions are governed by Equation 
(3.20a) provided the power-law exponents Q, w, q and r s a t i s f y  the 

compat ib i l i t y  r e l a t i o n s  given by Equations (3.20b) and (3.20~): 
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p t Q = l + q ,  (3.20b) 

k = q - r .  (3 .20~)  

I n  Equation (3.20a) the parameters a. and I3 are dimensionless 
parameters tha t  measure the importance o f  the f l u i d  storage and f l u i d  

leak-of f  terms, respect ively,  r e l a t i v e  t o  the f l u i d  transport term. The 

f l u i d  transport te rm i s  assumed t o  be s ign i f i can t  when the f rac tu re  
extends but i t  may not be the most s ign i f i can t  term i f  the f rac tu re  ceases 

t o  propagate. This can occur as a r e s u l t  o f  a stress bar r ie r ,  a s t i f f n e s s  

or f racture toughness bar r ie r ,  or a sand-out condi t ion within the f rac tu re  
tha t  prevents the f rac tu r ing  f l u i d  from approaching the f rac tu re  t i p .  The 

parameters o and B are defined by Equations (3.21a) and (3.21b), 

respect ively:  

Q = yGHLoWo/Qo , (3.21a) 

(3.21b) 

I n  Equation (3.20) only one o f  the two dimensionless parameters a 

and L3 can be independently specif ied, the other i s  determined by the 

so lut ion i t s e l f  i n  establ ish ing the pos i t ion  o f  the moving f rac tu re  f ron t .  

We del iberate ly  introduced t h i s  problem-determined parameter i n t o  the 

governing d i f f e r e n t i a l  equation by choosing t o  solve the governing 

d i f f e r e n t i a l  equation over the domain 0 n 1 instead o f  over a domain 
o f  unknown extent 0 9 '  i nL. The l a t t e r  domain would requi re a 
d i f f e r e n t  s i m i l a r i t y  var iab le n' where n'=nL i s  the pos i t i on  o f  

the t i p  o f  the f racture tha t  must be found as a par t  o f  the solut ion.  I n  

the general case i n  which storage, t ransport  and leak-of f  terms are a l l  

taken in to  account, the dimensionless parameter I3 is re la ted  t o  u by an 

expression o f  the form L3 = 2yL(a/yw) g(n') where g(nf )  i s  a 
known funct ion o f  n f  ( i .e .  Equations (3.55a) and (3.59a) with (l+r-w)=O). 
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It w i l l  be shown tha t  s i m i l a r i t y  solut ions o f  the k i n d  considered here 

can be found f o r  t h i s  general case only f o r  a cer ta in  spec i f i c  value o f  

the f l u i d  i n j e c t i o n  power-law exponent q tha t  i s  re la ted  t o  the f l u i d  

v iscos i ty  exponent n' and leak-of f  exponent m. This l i m i t s  the usefulness 

o f  the s i m i l a r i t y  so lu t ion  when a l l  three terms are important t o  t h i s  

spec i f i c  case. However, because l i m i t i n g  forms o f  the solut ions, tha t  are 

not subject t o  the above r e s t r i c t i o n  on the f l u i d  i n j e c t i o n  power-law 

exponent, can be found when e i the r  f l u i d  storage or f l u i d  leak-of f  are 

neglected, i t  i s  use fu l  t o  develop the governing equations and solut ions 

f o r  these two l i m i t i n g  condit ions as wel l .  The governing Equation (3.22a) 

f o r  the case when leak-of f  e f fec ts  are small compared t o  storage e f fec ts  

i s  obtained by neglect ing the leak-of f  term i n  Equation (3.19): 

w t Q = l t q ,  (3.22b) 

Q f q - r .  (3 .22~)  

As ind icated by Equation (3.22b) and Inequa l i t y  (3.22c), only the 

power-law balance between the f l u i d  storage and f l u i d  t ransport  terms i s  

enforced i n  t h i s  case, with the r e s u l t  tha t  I3 i s  a dimensional parameter 

while a is a dimensionless parameter tha t  i s  an i m p l i c i t  funct ion o f  the 

independent power-law exponents q and n'. The parameter I3 must be 

determined as a pa r t  o f  the so lu t ion  t o  Equation (3.22a). The time per iod 

over which t h i s  approximation is v a l i d  i s  found by requ i r ing  that:  

rtQ-q > > B t  we-q-1 a t  

or equivalently, 

1/ (ltr -w) t ( ( tS = {ah3 I ,  (3.23) 

where tS i s  i d e n t i f i e d  as the upper l i m i t  o f  the time per iod when t h i s  
large storage small  leak-of f  approximation can be invoked. 
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The opposite case when fluid leak-off effects dominate the effects of 
fluid storage can be found similarly by neglecting the fluid storage term 
in Equation (3.19): 

w + k # l + q ,  (3.24b) 

k = q - r .  (3.24~) 

As before, Inequality (3.24b) and Equation (3.24~) indicate that only 
the power-law balance between the fluid leak-off and transport terms is 
enforced. Consequently, a is a dimensional parameter while I3 becomes a 
dimensionless parameter that is an implicit function of the independent 
power-law exponents q, n '  and m. The parameter a must be determined as a 

part o f  the solution to Equation (3.24a). The time period during which 
this approximation is valid can be found from: 

or equivalently, 

5 (3.25) 
1/ (l+r-w) t > > tL = (a/B) 

where tL is identified as the lower limit o f  the time period when this 
large leak-off small storage approximation can be invoked. 

It is important to realize that although Equations (3.23) and (3.25) 
look similar, they lead to different results because a and I3 switch 
roles as the dimensionless parameter, and the value of the dimensionless 
parameter is evaluated using different governing equations and power-law 
exponent balance relations. This will become more evident in the explicit 
expressions that will be presented later for the dimensional parameters. 
In the intermediate time range tS tL, storage and leak-off terms 
are both important and except for certain specific combinations of q, n', 
and m, no similarity solutions of the present kind can be found. 

t 



- 25 - 

3.2 I n i t i a l  And Boundary Conditions For Dimensionless Governing Equations 

The i n i t i a l  and boundary condit ions tha t  must be s a t i s f i e d  by the 

dimensionless governing Equations (3.20a), (3.22a) and (3.24a) are tha t  
the f low r a t e  i s  spec i f ied a t  the wellbore and tha t  i t  i s  zero a t  the 

crack-t ip.  In addit ion, the crack must close a t  the crack- t ip  f o r  PKN 

f ractures whi le i t  i s  required t o  close smoothly f o r  CGDD f ractures.  The 

i n i t i a l  condi t ion i s  tha t  the crack width and the crack length be zero a t  

i n i t i a l  time. 

FXN And CGDD Fractures: 

I n i t i a l  Conditions: 

Boundary Conditions: 

Boundary Condit ion For CGW) Fractures: 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The bottomhole pressure p,(t) tha t  i s  the focus o f  i n te res t  i n  t h i s  
work i s  given by: 

(3.30) 



i 
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3.3 Model Speci f ic  Analyses O f  Constant Height Fractures For PKN And CGDD 

Fractures 

The analysis up t o  t h i s  po in t  has been the same f o r  both PKN and CGDD 

fractures and, i n  fact ,  i s  v a l i d  f o r  constant height f ractures o f  a r b i t r a r y  

cross-sectional shape. The essent ia l  d i f ference between the PKN and CGDD 

models i s  embedded i n  the crack-opening r e l a t i o n  between the crack width 

W(x,t) and the f l u i d  pressure p(x,t). By subs t i tu t ing  the s i m i l a r i t y  
representations for these two quant i t ies  i n  the crack-opening r e l a t i o n  f o r  

PKN fractures given by Equation (2.20) we a r r i v e  at: 

w = p ,  

W = H p,/Ec , 
0 

(3.31) 

(3.32) 

(3.33) 

so tha t  the dimensionless s i m i l a r i t y  d i s t r i bu t i ons  and the power-law 

var ia t ions w i th  respect t o  time a t  a f i xed  value o f  the s i m i l a r i t y  

coordinate n are the same f o r  both f rac tu re  width and f l u i d  pressure. 

The corresponding re la t i ons  f o r  CGDD fractures are less 

straightforward. They are obtained by subs t i tu t ing  the s i m i l a r i t y  

representations f o r  W(x,t) and p(x,t) i n  Equation (2.21): 

w = p t Q ,  (3.35) 

W = 2Lop0/Ec . 
0 

(3.36) 

We see from Equation (3.35), tha t  un l i ke  i n  the case o f  PKN fractures, the 

growth exponents f o r  f rac tu re  width and f l u i d  pressure o f  CGOD f ractures 

are d i f f e r e n t  by an amount equal t o  the growth exponent f o r  the length o f  

the f racture.  This basic feature i s  the reason f o r  the r a d i c a l l y  d i f f e ren t  

pressure responses exhib i ted by PKN and CGDD fractures.  
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The condi t ion o f  smooth closure o f  the f rac tu re  a t  i t s  t i p  can be 

e i the r  d i r e c t l y  imposed on WD(n) as i n  Equation (3.29) or i n d i r e c t l y  

imposed on pD(n) as i n  Equation (3.37), using the r e s u l t  o f  Equation 

(2.2.2a) : 

3.3.1 Power-Law Exponents 

(3.37) 

The power-law exponents f o r  f rac tu re  width, f l u i d  pressure and f rac tu re  

length can now be obtained i n  terms o f  q, n' and m by solv ing Equations 

(3.10), (3.16), (3.20b) and (3.20~) together with e i the r  Equation (3.32) 

f o r  PKN fractures or Equation (3.35) for CGOD fractures. Equation (3 .20~)  

must be not be enforced f o r  the l i m i t i n g  case o f  small leak-of f  e f f e c t s  

while Equation (3.20b) must not be used i n  the l i m i t i n g  case o f  small 

storage e f fec ts .  When these Equations are solved simultaneously we obtain 

the fo l lowing r e s u l t s  f o r  the power-law exponents: 

General Case 

PKN FRACTURES 

P =  

w =  

a =  

q =  

n*+l 
2n't3 2n't3 l +  q = 1/5 f o r  n'=l, q=O , 

1/5 f o r  n*=l,  q=O , n '+ l  l +  2n1+3 2n1t3 = 

q = 4/5 f o r  n'=l, q=O , - 2n'+2 n'+2 
2nIt3 + 2n'+3 

m = 3/4 f o r  n'=l, m=1/2 . 2n +3 
n '+ l  2 -  

(3.38) 

(3.39) 

(3.40) 

(3.41) 
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CGDD FRACTURES 

= - 1/3 f o r  n '=l ,  q=O , (3.42) - n f  - 
n ' t 2  

(3.43) 1 
2 - + - q = 113 f o r  n f = l ,  q=O , - 

n ' t 2  

= 2/3 f o r  n '=l ,  q=O , ( 3 . 4 4 )  

- 2 m = 0 f o r  n'=l, m=1/2 . (3.45) 

- n ' + l  ~ 1 - nl+2 

- 2 n ' t l  
n ' t 2  

- 

These r e s u l t s  ind ica te  tha t  f o r  f l u i d  i n j e c t i o n  a t  constant f low r a t e  

( i .e.  q=O) f rac tu re  width a t  any f i xed  value o f  TI, and i n  pa r t i cu la r  a t  

TI=O a t  the wellbore, increases ( i .e.  w ) 0) f o r  both PKN and CGDD 
fractures as the f racture extends (i.e. Q > 0) with time. The r a t e  o f  

increase o f  the f rac tu re  width is general ly smaller f o r  PKN f ractures than 

f o r  CGDD fractures.  However, the pressure a t  a f i x e d  value o f  TI increases 
( i .e. p > 0) with time i n  the case o f  PKN fractures but decreases 

(i.e. p ( 0) with time i n  the case o f  CGDD f ractures y ie ld ing  a s ign i f i can t  

qua l i t a t i ve  d i f ference i n  the bottomhole pressure response. Further, f o r  

both types o f  f ractures these resu l t s  predic t  smaller ra tes  o f  increase or 
decrease f o r  Newtonian f l u i d s  (nI=l) than f o r  nowNewtonian power-law 

f l u i d s  tha t  have smaller values o f  n l .  

The apparently strange resu l t s  o f  Equations (3.41) and (3.45) i n  which 

the i n j e c t i o n  f low r a t e  exponent q i s  given as functions o f  n' and m merely 

r e f l e c t  the fac t  tha t  power-law s i m i l a r i t y  solut ions o f  t h i s  k ind  can be 

obtained f o r  the general case when a l l  three storage, t ransport  and 

leak-of f  terms are retained only f o r  the spec i f i c  value o f  the pumping r a t e  

exponent q tha t  s a t i s f i e s  t h i s  Equation f o r  given n' and m. For example, 

f o r  the case o f  a Newtonian f l u i d  (n'=l) and the standard half-power 

(m=1/2) leak-of f  law, Equation (3.35) f o r  PKN fractures i s  s a t i s f i e d  only 
i f  q=3/4 and Equation (3.39) f o r  CGOO f ractures i s  s a t i s f i e d  only i f  q=O. 

Therefore, f o r  general analysis o f  hydraul ic f rac tu r i ng  considering 
storage, t ransport  and leak-of f  terms simultaneously, these s i m i l a r i t y  
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solut ions are not very use fu l  unless the values o f  n' and m are chosen t o  
s a t i s f y  these equations. However, as we w i l l  show, they remain use fu l  f o r  
i n te rp re t i ng  the l i m i t i n g  cases o f  small leak-of f  when the r a t e  o f  f l u i d  

leak-of f  i s  neg l i g ib le  compared t o  r a t e  o f  change i n  f l u i d  storage, and 

f o r  i n t e r p r e t i n g  the opposite case o f  large r a t e  o f  f l u i d  leak-o f f  when 

f l u i d  leak-o f f  dominates the r a t e  o f  change i n  f l u i d  storage. For these 

l i m i t i n g  cases there i s  no r e s t r i c t i o n  on the pumping r a t e  power-law 
exponent q. 

Case O f  Small F l u i d  Leak-Off 

The r e s u l t s  f o r  t h i s  case are obtained by not enforcing Equation 

(3 .20~)  tha t  represents the compat ib i l i t y  o f  power-law behaviors between 

the f l u i d  leak-o f f  term and the f l u i d  transport term i n  Equation (3.18). 

When Equation (3.20~) i s  neglected, the r e s u l t s  tha t  are obtained f o r  p, 

w and R are i d e n t i c a l  t o  those given above by Equations (3.38), (3.39) 

and (3.40) f o r  PKN f ractures and by Equations (3.42), (3.43) and (3.44) 
f o r  CGDO fractures. No Equations tha t  correspond t o  Equations (3.41) and 
(3.45) are then obtained. 

Case O f  Small F l u i d  Storane 

S imi la r ly ,  the r e s u l t s  f o r  the case when f l u i d  leak-of f  dominates 
f l u i d  storage effects are obtained by not enforcing Equation (3.20b) tha t  

represents the compat ib i l i t y  o f  the power-law behaviors between the f l u i d  

storage term and the f l u i d  t ransport  term i n  Equation (3.18). These 

resu l t s  are given below: 

PKN FRACTURES 

1 t 5 q = 1/8 f o r  n'=l, q=O, m=1/2 , 

+ q = 1/8 f o r  n'=l, q=O, m=1/2 , 

] I =  m + q = 1/2 f o r  n'=l, q=O, m=1/2 , 

= m  
1 m w - -  - 2nt+2 

(3.46) 

(3.47) 

(3.48) 
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CGDD FRACTURES 

= - 1/4 for n'=l, q=O, m=1/2 , 

1/4 for n'=l, q=O, m=1/2 , - n'+l 2n'+2 = 

= m  + q = 1/2 f o r  n'=l, q=O, m=1/2 , 

n' 

n'+2 

- n 'm 
n'+l 2n'+2 q 

= - -  

- -  + -  

(3.49) 

(3.50) 

(3.51) 

3.3.2 Power-Law Coefficients 

The power-law coefficients po, Wo and Lo can be determined as 
functions of Qo, Ec, C, H, K ' ,  n' and Q and/or 13. When the general 
case is being solved, a(n1,m,13) will be considered to be determined by 
the solution as a function of n', m and 13. In the limiting case of small 
fluid leak-off, the power-law coefficients depend only on the dimensionless 
parameter a(q,n'); while in the limiting case of small fluid storage they 
depend only on the dimensionless coefficient B(q,n',m). The expressions 
that are given below for these coefficients were obtained by simultaneously 
solving Equations (3.12), (3.21a), (3.21b) and either Equation (3.33) for 
PKN fractures or Equation (3.36) for CGDD fractures. Equations (3.55a) and 
(3.59a) relate the dimensional parameter 13 to the dimensionless parameter 
Q for PKN and CGDD fractures in terms o f  the characteristic times T~ 

and T defined by Equations (3.55b) and (3.59b), respectively. Note 
that in Equations (3.55a) and (3.55b), (l+r-w)=O for this general case. 
The estimates for tS and tL, given below, show that the times T~ 

and T characterize the nature of the solution and its transition from 
primarily fluid storage dominated fracture extension at small times to 
primarily leak-off dominated fracture extension at large times. Note that 
these characteristic times are different for PKN and CGDD models but are 
the same for both limiting conditions. 

C 

C 
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FXN FRACTWKS 

(2n'+2)H-(3nt+3) (n'+l) 1/(2nt+3) 
QO 3 9 

wo = [ - Q  2.6"' -lH-nt (nt+1)31/(2nt+3) # 

QO 

(2n'+2) -lE H-(nt+3) (nt+2) 1/(2n1+3) 1 2.6"' 
Lo = [-a- (2nt+2) Ka c QO # 

'Q 'W 

(nt+l)  
{2nt+2-(2nt+3)m-(n'+l)q} 3 2.6n' KaQo 

T p = [ -  C-(2nt+3) n' 
'Q " Ec 

CGDO FRACTURES 

-n (n'+l) l /(n'+2) 
PO = [ -  4.6"' Q- -n' KaEc 3 # 

'Q YW 

4.6"' 2 -lH-(n1+2) (n*+2)31/2(nt+2) 
QO wO 2 KaEc 9 

= [ -  a- 

'Q YW 

14.6n')'1 0 (2n +2) K -l E ~ H -  (nt+2) (nt+2)11/2(nt+2) 
QO Lo = -1 (2n'+2) a 9 

yQ YW 

(nt+2) 
{2n'+2-(2n'+4)rn-(nt+2)q} 3 t c = [ -  (2nt+4)H(nt+2)E 

4.6"' KaPo 

'Q C C 

(3.52) 

(3.53) 

(3.54) 

(3.55a) 

(3.55b) 

(3.56) 

(3.57) 

(3.58) 

(3.59a) 

(3.59b) 
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Case O f  Small F l u i d  Leak-Off 

The power-law coe f f i c i en ts  when leak-of f  i s  neg l ig ib le  are i d e n t i c a l  

t o  those given by Equations (3.52), (3.53) and (3.54) f o r  PKN f ractures 

and by Equations (3.56), (3.57) and (3.58) f o r  CGDD f ractures.  The 

dimensional coe f f i c i en t  o can be calculated for PKN and CGDD f ractures 

from Equations (3.55) and (3.59), respect ively.  The time l i m i t  tS f o r  
the small leak-of f  assumption can be computed using Q from the so lu t ion  

t o  the governing equation and the value o f  l3 given by Equation (3.55a) 

( f o r  PKN fractures) and Equation (3.59a) ( f o r  CGDD fractures) i n  the 

fo l lowing Equations: 

PKN FRACTURES 

2n'+2 n f + l  
2n +3 2nf+3 l + r - w  = [y - - s - m l  

CGDD FRACTURES 

Case O f  Small F l u i d  Storasle 

(3.60a) 

(3.60b) 

(3.61a) 

(3.61b) 

The power-law coe f f i c i en ts  when f l u i d  storage i s  neg l i g ib le  are given 

by Equations (3.62), (3.63) and (3.64) f o r  PKN fractures and by Equations 

(3.66), (3.67) and (3.68) f o r  CGDD fractures. The dimensional coe f f i c i en t  

a can be calculated f o r  FXN and CGDD fractures from Equations (3.65) and 

(3.69), respect ively.  
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PKN FRACTURES 

2.6"' B -1 (2n'+l)H-(3nt+2) (nt+l)11/(2n'+2) 
KaC QO 

= [ -- 
PO qQ "L 

I 

-1 -1 -nt (n'+1)11/(2n'+2) 
Qo 

2.6"' B 
KaC w o =  [ -- 

' Q  "L 
I 

(n'+l) 
(2n1+2-(2n'+3)m-(n'+l)q} I 2.6"' KaQo 

'Q C TP= [ - 

CGM) FRACTURES 

2nt (2nt+l) n' -nt 1/2(n*+l) @-2n 
1 4.6"' " Qo I P o = ? [ - -  -2n' KaC 

' Q  ( 2 ~ ~ )  
I 

4.6"' B2 c-2Ec-1H-(nt+2) -(n*+2) I 1/2(nt+l) 
W 0 = [ - -  2 a  QO I 

'Q (2rJ 

(nt+2) 
(2n'+2-(2nt+4)m-(nt+2)q) 

TC= [ 4.6"' - KaQo (2n'+4)H(n1+2) I 'Q C 

(3.62) 

(3.63) 

(3.64) 

(3.65a) 

(3.65b) 

(3.66) 

(3.67) 

(3.68) 

(3.69a) 

(3.69b) 

The time limit tL for the small storage assumption can be computed 
by substituting in the following equations the value of l3 from the 
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so lut ion t o  the governing equation and the value o f  a given by Equation 

(3.65a) ( f o r  PKN fractures) or Equation (3.69a) ( f o r  CGDD fractures): 

PKN FRACTURES 

1/(2n t l / ( l + r - w )  
tL = T p  W 2 Y L )  2)(Yw/2YL) I # 

2n +3 
m 3 .  1+r-w = [ 1 - 2 q - 2n'+2 1 

CGDD FRACTURES 

l / ( l + r - w )  tL = T p  W 2 Y L )  1/2(n'+l)( qw/2qL) 1 ? 

m l -  
n t t 2  nt+2 

9 - -  2n ' +2 l t r - w  = [ 1 - - 2n +2 

3.3.3 Values o f  The Dimensionless Parameters a and t3 

Case O f  Small F l u i d  Leak-Off 

The dimensionless parameter a f o r  neg l i g ib le  f l u i d  leak-of f  and the 

(3.70a) 

(3.70b) 

(3.71a) 

(3.71b) 

dimensional parameter t3 f o r  neg l i g ib le  f l u i d  storage must be computed as a 

pa r t  o f  the so lu t ion  t o  the boundary- in i t ia l  value problems tha t  were 

previously formulated f o r  these conditions. These boundary- in i t ia l  value 

problems are d i f f i c u l t  t o  solve, p a r t i c u l a r l y  f o r  CGDD f ractures which 

involve the so lu t ion  o f  an i n teg ro -d i f f e ren t i a l  equation, and are beyond 

the scope o f  t h i s  work. However, f o r  PKN fractures, ca lcu lat ions 

equivalent t o  those required here were performed by Nordgren [28] f o r  the 

case o f  a Newtonian f l u i d  (n '=l)  and f l u i d  i n j e c t i o n  a t  a constant 
f lowrate (q=O). Nordgren posed h i s  boundary value problem i n  terms o f  a 

s i m i l a r i t y  var iab le tha t  var ied from zero a t  the wellbore t o  an unknown 

value a t  the f rac tu re  t i p .  This unknown value was determined as a pa r t  o f  

the so lu t ion  t o  the problem. Because t h i s  approach i s  f u l l y  equivalent t o  

the boundary f i x i n g  method employed i n  the present work, the corresponding 

value o f  a can be determined from Nordgren's so lut ion by comparing the 
value for the f rac tu re  length power-law coe f f i c i en t  Lo from h i s  Equation 
(C-9) with tha t  given by Equation (3.54): 
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a = 0.228 , 

(3.72) 

(3.73) 

for  nl=l, y -3u/16 and yw=u/4. Q- 

For CGDD f ractures no r e l i a b l e  values o f  a can be obtained from 

previous work i n  the l i t e ra tu re .  Geertsma and De Klerk  [ 9 ]  present an 

approximate power-law expression f o r  L ( t )  but  the assumptions invoked t o  

der ive these resu l t s  are too r e s t r i c t i v e  t o  be e i the r  meaningful or 
r e l i a b l e  f o r  evaluating a. For example, Equation (23) i n  t h e i r  paper 
has been derived assuming tha t  the f l u i d  pressure p r o f i l e  can be evaluated 

by neglecting the storage term i n  the equation o f  mass conservation and by 

using the value f o r  f racture width a t  the wellbore tha t  i s  obtained f o r  a 

f racture subjected t o  a uniform pressure equal t o  (what amounts to)  the 

average f l u i d  pressure i n  the fracture.  If, regardless o f  our reservations 

about the accuracy o f  t h i s  approach, t h i s  Equation i s  used t o  compute a 

by comparing against the power-law coe f f i c i en t  Lo given by Equation 
(3.58), we obtain: 

(3.74) 

a = 1.51 , (3.75) 

for n ' = l  and y - yw=l. Note tha t  i f  an e l l i p t i c a l  cross-section 
i s  assumed f o r  t h i s  CGDD f racture,  then yQ= 3 ~ / 1 6 ,  yw= ~ / 4  

y ie ld ing  a=l.35. 

Q- 

Case O f  Small F l u i d  Storacle 

I n  the case of small f l u i d  storage, the value o f  the dimensionless 

parameter I3 i s  eas i l y  obtained by in tegra t ing  Equation (3.24a) subject t o  
the boundary condit ions given by Equations (3.27) and (3.28): 
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(3.76) 

(3.77) 

For n'=l and m=1/2, Equations (3.76) and (3.77) yield the standard results: 

(3.78) 2 -1 
Q, (Q)  = 1 - ; sin rl 

I3 = 2/a . (3.79) 

The above results are valid for both PKN and CGOO fractures. The 
dimensionless width and dimensionless pressure profiles for PKN fractures 
can be obtained by substituting these expressions in the definition o f  

Q,(rl) given by Equation (3.11) and integrating once more: 

For n'=l and m=1/2, Equation (3.80) gives: 

p (0) = WD(0) = (8/a)'j4 = 1.263 . (3.82) D 

To obtain the width and pressure profiles corresponding to Equation 
(3.81) for CGOO fractures it is necessary to solve an integro-differential 
equation for either the dimensionless width WD(rl) or the dimensionless 
pressure pD(rl). This is a difficult task that is not attempted here. 
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4. EXTENDED ANALYSIS FOR FRACTURES WITH ARBITRARY ASPECT RATIO 

4.1 The Hybrid CGDD-PKN Fracture Model 

Let us now consider the p o s s i b i l i t y  o f  general iz ing the foregoing 

resu l t s  f o r  CGDD fractures o f  uniform width t o  the case o f  f ractures with 

non-uniform width cross-sections, and i n  pa r t i cu la r  t o  cross-sections o f  
e l l i p t i c a l  shape as i n  PKN fractures. The basic d i f ference between PKN and 

CGDD f ractures l i e s  i n  the neglect o f  the cont r ibu t ion  t o  the 

crack-opening st i f fness from e i the r  the l a t e r a l  or the l ong i tud ina l  d i rec- 

t i o n  based on estimates o f  t h e i r  r e l a t i v e  magnitudes. For f ractures that  

do not s l i p  a t  the f rac tu re  boundary, the crack-opening s t i f f n e s s  from a 

given d i rec t i on  i s  a funct ion o f  the curvature o f  the f rac tu re  width pro- 

f i l e  i n  tha t  d i rec t i on  so tha t  the contr ibut ions t o  s t i f f n e s s  from these 

two d i rec t ions  depend on the r e l a t i v e  magnitudes o f  the height H and the 
length L( t ) .  Therefore, we can extend the resu l t s  f o r  CGDD f ractures t o  

a r b i t r a r y  cross-sections tha t  do not s l i p  a t  the ends provided the r a t i o  

L(t)/H i s  s u f f i c i e n t l y  small. Likewise, PKN f rac tu re  assumptions are v a l i d  

only f o r  f ractures f o r  which the r a t i o  L(t)/H i s  s u f f i c i e n t l y  large. The 

assumption o f  a uniform width cross-section with s l i p  a t  the top and 

bottom boundaries i s  now seen t o  be r e a l l y  necessary f o r  CGDD f ractures 

only i f  we i n s i s t  on applying th is  model f o r  a r b i t r a r i l y  la rge  L(t)/H 
r a t i o s  much greater than uni ty .  S imi lar ly ,  i t  i s  seen tha t  the PKN 

f rac tu re  model cannot be v a l i d  f o r  a r b i t r a r i l y  small  L( t ) /H much smaller 

than u n i t y  because the s t i f fness  i n  the long i tud ina l  d i rec t i on  would begin 

t o  dominate f o r  s u f f i c i e n t l y  small  L(t) a t  a f i x e d  value o f  H. 

4.1.1 Character is t ic  Times For Fracture Extension; 
PKN And CGM) Fractures 

These observations imply that, subject t o  the assumptions tha t  the 

f racture does not s l i p  a t  i t s  edges and tha t  the f racture height remains 

constant and uniform a t  a l l  times, the CGDD f racture model would be 
applicable t o  the propagation o f  hydraul ic f ractures a t  ear ly  times such 
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tha t  l ( t ) / H  ( (  1 and the PKN f racture model would be appl icable a t  l a t e  

times such tha t  L(t ) /H > >  1. To determine a t  what po int  i n  time we should 
switch from the CGDD model t o  the FXN model when attempting t o  p red ic t  the 

extension o f  a f racture f rom large t o  small  values o f  L(t)/H l e t  us 
r e s t r i c t  the aspect r a t i o  o f  CGDD f ractures with non-slipping l a t e r a l  

f racture edges to :  

1 > >  L( t ) /H 1 0 ; tHLC >> t L O ,  (4.1) 

and the aspect r a t i o  o f  PKN f ractures to: 

OD > L( t ) /H >> 1 ; > t >> tHLp, 

that  def ine the time ranges and determine the times tHLC 
within which these aspect r a t i o  r e s t r i c t i o n s  are s a t i s f i e d  by each model. 

I f  these times overlap, then any time within the overlap region should be 

sa t is fac to ry  f o r  switching f rom the CGDD model t o  the PKN model as the 
aspect r a t i o  increases beyond u n i t y  with f rac tu re  extension. On the other 

hand, i s  much less than tHLp and a substant ia l  gap ex i s t s  

between them, then a t r a n s i t i o n  model tha t  simultaneously al lows f o r  

s t i f f ness  contr ibut ions from both d i rec t ions  would be required t o  br idge 

the time regime when the aspect r a t i o  i s  i n  the neighborhood o f  un i ty .  

I n t u i t i v e l y ,  i t  would seem tha t  such a t r a n s i t i o n  model would always be 

needed because o f  the coarseness o f  our t r a n s i t i o n  time estimates. These 

estimates can be re f i ned  by de ta i led  ca lcu lat ions using the f u l l  governing 

equations. 

and ~ L P  

i f  tHLC 

For t h i s  analysis, i t  i s  convenient t o  recast the power-law growth 

expressions f o r  f rac tu re  length, f o r  small f l u i d  leak-of f  and small f l u i d  

storage, i n  dimensionless form i n  terms o f  the aspect r a t i o  LD = L(t)/H 
and the dimensionless times t DS = t/THLS and tDL= UTHLL.  Note 

f o r  the small  leak-of f  model and tha t  the charac ter is t i c  t ime T 

f o r  the small storage model are d i f f e r e n t  f o r  these two regimes; 

but, un l i ke  T~ and T they are the same f o r  both PKN and CGW 
models f o r  the same time regime. 

HLS 

HLL 
T 

C’ 
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Case O f  Small F l u i d  Leak-Off 

1/[2n*+2+(nt+2)q] 1 

PKN FRACTURES 

2.6"' a (2n +2) QP 
L o = [ -  (2n1+2) 1 t~~ 

'Q yW 

n'+2 
'P 2n'+3 2n +3 9 .  

2nt+2 + - -  

CGDO FRACTURES 

Case o f  S m a l l  F l u i d  Storage 

FXN FRACTURES 

CGDO FRACTURES 

4.1.2 Aspect Rat io  L imi t ing  Times 

(4.3) 

(4.4a) 

(4.4b) 

(4.5a) 

(4.5b) 

defined by Equations (4.3) and 
(4.6) f o r  the small f l u i d  leak-of f  and small storage l i m i t i n g  condit ions 

and T~~~ 
The parameters 
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are the character is t ic  times f o r  f racture propagation over a distance H, 

and are, therefore, usefu l  indicators o f  the r a p i d i t y  o f  f racture 
extension. By se t t i ng  LD =1 i n  Equations (4.4a), (4.5a), (4.7) and 
(4.8), we obtain the fo l lowing estimates f o r  the aspect r a t i o  l i m i t i n g  
times tHLp and tHLC: 

Case O f  Small F l u i d  Leak-Off 

2.6"' a ( 2n'+2) ,-l/Q 
tHLp = [ - ( 2n ' +2 ) T ~ ~ ~ s  

'Q yW 

(2n * +2) 
THLS. (2n' +2) 

L a  
t~~~ = [ 4.6n' yw 

Case o f  Small F l u i d  Storage 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

It can shown that  the ove ra l l  character is t ic  time T P f o r  PKN-type 

fracture extension, and the ove ra l l  character is t ic  time T C f o r  

CGDD-type fracture extension are re la ted t o  the corresponding small 
f o r  leak-of f  and small storage character is t ic  times T 

each model by: 
HLL and T 

HLS 

and 

(4.14) 
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respect ively.  The above re la t ionships between the charac ter is t i c  times 
tha t  were separately defined f o r  d i f f e r e n t  time regimes i n  apparently 

d i f f e r e n t  models r e f l e c t  the fact  tha t  PKN and CGDD models are not r e a l l y  

d i f f e r e n t  models but tha t  they represent the l i m i t i n g  forms o f  a hybr id  

f racture model f o r  a r b i t r a r y  aspect ra t ios ,  as the aspect r a t i o  var ies 

continuously from small  t o  large values past the aspect r a t i o  o f  un i ty .  

4.2 Bottomhole Pressure Response O f  The Hybrid CGDD-PKN Fracture Model 

An idea l i zed  representation o f  the bottomhole pressure record tha t  

would be obtained f o r  a constant height hydraul ic f rac tu re  described by 
t h i s  extended hybr id  CGDD-PKN model i s  given by curve ABCDEFG i n  Figure 2. 

The corresponding curve f o r  f rac tu re  length i s  given by the curve IJKLM. 
The pumping o f  the f rac tu r ing  f l u i d  a t  a constant r a t e  i s  begun a t  A and 

t h i s  leads t o  a rap id  r i s e  i n  pressure t o  B fol lowed by breakdown of the 

formation and extension of the f rac tu re  beyond the borehole stress cage t o  

the po in t  C. Between C and 0 the f racture extends as a CGDD type f rac tu re  

with the bottomhole pressure dec l in ing with time. The aspect r a t i o  

approaches one i n  the neighborhood o f  D and beyond D the mode o f  f racture 

extension gradual ly becomes o f  the PKN-type. As a resu l t ,  the bottomhole 

pressure begins t o  increase with time as ind icated by the por t ion  DE o f  
the pressure curve. A t  E the pumps are  stopped, the flow e f f e c t i v e l y  

ceases i n  the f racture,  and the f l u i d  pressure achieves the instantaneous 

shut- in pressure value (ISIP) which is taken t o  be equal t o  the minimum 

p r i n c i p a l  stress S ac t ing  t o  close the f racture.  Due t o  f l u i d  leak-of f ,  

the pressure w i l l  decl ine thereafter;  t h i s  i s  ind icated by the segment FG. 

Because o f  the stored energy o f  the f racture,  f rac tu re  f l u i d  f low and 

f rac tu re  extension does not ac tua l l y  cease imnediately with the shutdown 
o f  the pumps. This i s  ind icated by the curve f o r  f rac tu re  length which 
continues t o  increase u n t i l  po in t  L beyond the pump shutdown time. 
Thereafter, i t  does not extend and gradually begins t o  close as the 

pressure i n  the f rac tu re  decl ines with f l u i d  leak-of f .  
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The bottomhole pressure curve ABCDHFG ind icates how the bottomhole 

pressure would continue t o  decl ine past the point  D i f  the f racture 
continued t o  respond as a t rue  CGDD f rac tu re  having a cross-section o f  
uniform width and undergoing s l i p  a t  the top and bottom edges o f  the 

f racture.  The corresponding va r ia t i on  o f  f rac tu re  length with time i s  

given by the curve IJKNO. 

The increase o f  bottomhole pressure with time displayed by the segment 

DE tha t  is associated with s tab le PKN-type f rac tu re  extension i s  o f ten  

present i n  hydraul ic f rac tu r ing  pressure records. However, add i t iona l  

complications not ind icated i n  Figure 2 can intervene between the po in t  E 

and the shutdown o f  the pumps. These are usual ly  re la ted  t o  sand-out i n  

the f racture,  screen-out a t  the wellbore, s tab le f racture height extension 

or rap id  unstable growth o f  f rac tu re  height [26,27]. Sand-out i n h i b i t s  
f racture f l u i d  f low and f rac tu re  propagation, and leads t o  a sharp increase 
i n  the slope o f  the bottomhole pressure curve. Stable f rac tu re  extension 

contr ibutes added compliance t o  the f rac tu re  and leads t o  a smaller, even 

zero, slope i n  the bottomhole pressure vs. t ime curve. On the other hand, 

rap id  unstable growth o f  f rac tu re  height i s  characterized by a negative 

slope and decrease i n  the bottomhole pressure from a previously at ta ined 

high. These complex phenomena are beyond the scope o f  the present analysis 

and are not dea l t  with here. 

It i s ,  however, o f  i n te res t  tha t  a CGDD-type f rac tu re  extension event 

o f  the k ind  predicted by the hybr id  model a t  ear ly  times is not o f ten  

observed i n  hydraul ic f rac tu re  pressure records even i n  s i tua t ions  where 

there i s  reason t o  bel ieve tha t  there i s  no substant ia l  growth i n  f rac tu re  
height a t  ea r l y  times. When behavior o f  t h i s  k ind  i s  observed, i t  i s  

usual ly a t t r i bu ted  t o  height growth a t  these ea r l y  times. One possible 

explanation i s  tha t  the time range within which pressure decl ine due t o  

CGDO-type f rac tu re  extension occurs i s  very small so tha t  the point  D i s  

too close t o  C t o  be separately ident i f ied ,  p a r t i c u l a r l y  because there 
usual ly i s  a substant ia l  amount o f  short term f luc tua t ions  and noise i n  

the pressure record immediately a f t e r  the sudden breakdown o f  the 
formation. To explore t h i s  po int  fur ther,  l e t  us estimate the times tHLp 



f o r  a hydraul ic f rac tu r i ng  job having the parameters given i n  
Table I. A Newtonian f l u i d  i s  assumed t o  permit the use o f  the previously 

calculated values o f  a and 8.  

and t~~~ 

TABLE I. 

Pumping Rate Qo ...................... 10 bbl/min. 

Fracture Height H ..................... 100 ft. 
-1/2 F l u i d  Leak-Off Coef f i c ien t  C ......... 0.0015 ft.min . 

Flow Law Index n' .................... 1.0 

Apparent F l u i d  Viscosi ty K,........... 100 cp. 
Poisson's Rat io v . . . . . . . . . . . . . . . . . . . . .  0.15 

E l a s t i c  Shear Modulus G .............. 2.6 x 10 p-si. 
6 

These values y i e l d  the fo l lowing estimates f o r  tHLp and tHLC f o r  a 

f rac tu re  extending as a PKN fracture. We are not able t o  compute the 

corresponding values f o r  a CGDD f rac tu re  because a r e l i a b l e  value f o r  the 

dimensionless parameter a i s  not avai lable. To obtain t h i s  value the 
s i m i l a r i t y  boundary value problem previously i d e n t i f i e d  f o r  t h i s  case 

would have t o  be solved. 

1 HLS = 49 sec. 

= 4.3 sec. HLL 1 

9 
iP = 5.36 x 10 sec. 

Estimates From Small F l u i d  Leak-Off Model 

tHLp = 11.2 iHLS = 549 sec. 

tHLC = 5.15 iHLS = 252 sec. 

8 tS = 1.04 x 10 sec. 
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Estimates From Small F l u i d  Storage Model 

tHLp = 9.86 T~~~ = 42 sec. 

tHLC = 0.274 T~~~ = 1.1 sec. 

8 tL = 2.06 x 10 sec. 

I f  the f rac tu re  extends as a PKN f racture,  storage e f fec ts  w i l l  

dominate leak-of f  u n t i l  very large times because the times tS and tL 
are much la rger  than t y p i c a l  pumping times f o r  f rac tu r ing  jobs. Therefore, 
the appropriate model t o  use f o r  evaluating tHLp and tHLC i s  the small  

from the leak-of f  model. From the r e s u l t s  computed f o r  tHLp 
small leak-of f  model we see tha t  the aspect r a t i o  becomes equal t o  u n i t y  

i n  the neighborhood o f  the time range 252 sec. t o  549 sec. I f  the t ran-  

s i t i o n  time i s  smaller than the lower l i m i t  o f  t h i s  time range, i t  i s  

possible f o r  the pressure decl ine per iod due t o  CGDD-type f rac tu re  exten- 

s ion not t o  be we l l  defined on the bottomhole pressure record i n  t h i s  

f rac tu r ing  job. However, i t  can be seen from Equation (4.4) t ha t  T~,,, 

increases with decreasing pumping rate,  and increasing apparent f l u i d  

and t~~~ 

viscos i ty ,  and is a strong funct ion o f  f rac tu re  height. Therefore, each 

f rac tu re  job must be separately evaluated f o r  the existence o f  an i n i t i a l  
pressure decl ine segment i n  the bottomhole pressure record. 
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5. SENSITIVITY ANALYSIS AND ERROR ESTIMATES 

5.1 Simpl i fy ing Assumptions 

The primary mot ivat ion f o r  undertaking t h i s  analysis i s  t o  determine 
the f e a s i b i l i t y  o f  est imating the crack-opening modulus Ec from 

hydraul ic f rac tu r ing  bottomhole pressure records. I n  t h i s  Section we 

examine under what condit ions t h i s  would be possible, through analysis 
based on constant height models. For t h i s  purpose we use the equation: 

We assume tha t  the dimensionless pressure a t  the wellbore pD(0) and 
the dimensionless parameters a and B are computed by solving the 

appropriate nonl inear ordinary d i f f e r e n t i a l  equations given i n  t h i s  repor t  

f o r  small leak-of f  and small storage l i m i t i n g  condit ions. These quant i t ies  

are i n  general functions o f  the power-law exponents q, n' and m and the 

type o f  model (PKN or CGDD) being used t o  analyze data from a pa r t i cu la r  

t ime regime o f  the f rac tu r ing  process. We w i l l  pay specia l  a t ten t ion  t o  
the case o f  q=O f o r  a constant r a t e  o f  i n j e c t i o n  o f  the f rac tu r ing  f l u i d  

and w i l l  assume tha t  the rheology o f  the f l u i d  characterized through 

laboratory measured K' and n' remains v a l i d  within the f rac tu re  under 

reservo i r  condit ions. Thus, we exclude the p o s s i b i l i t y  o f  f r i c t i o n a l ,  

thermal and chemical degradation o f  the f rac tu r ing  f l u i d .  We also assume 

tha t  the f l u i d  leak-of f  behavior i s  w e l l  defined by the leak-of f  
coe f f i c i en t  C and the exponent m measured i n  the laboratory. F ina l l y ,  we 

assume tha t  an accurate estimate o f  the minimum i n - s i t u  p r i n c i p a l  stress 

S, perhaps obtained through pump-in/flow-back tests, i s  avai lable.  As a 

r e s u l t  o f  these s impl i fy ing assumptions, only the crack-opening modulus 

E and the f rac tu re  height H remain as uncertain parameters. 
C 

I n  addi t ion t o  the uncertainty o f  these parameters tha t  are required 

as input  t o  the present model there are other uncer ta in t ies tha t  a r i se  as 

a r e s u l t  o f  the modell ing approximations tha t  are embedded i n  the models 
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themselves. These include the assumption o f  constant and uniform f racture 

height, the crack-opening s t i f f ness  assumptions, the assumption of flow 

between smooth p a r a l l e l  wal ls instead o f  f low w i th in  a rough wavy 

fracture,  the assumption o f  one-dimensional pressure-independent leak-of f  

t o  the formation, the neglect o f  the d e t a i l s  o f  f l u i d  f low and stress 

d i s t r i b u t i o n  near the crack- t ip  and the e f fec ts  o f  non-uniform i n - s i t u  
modulus and stress d is t r ibu t ions .  I f  the proppant i s  added t o  the 
f rac tu r ing  f l u i d ,  then we must a lso consider the e f fec ts  o f  proppant 
s e t t l i n g  and entrapment between the f rac tu re  wal ls on f l u i d  f low and 

f rac tu re  closure. We do not in tend t o  e i t he r  analyze or account f o r  a l l  o f  

these complexit ies i n  t h i s  report ,  but  we w i l l  consider the e f f e c t  o f  

uncertainty i n  f rac tu re  height on our assumptions because the assumed 

f rac tu re  height is one o f  the major uncertain parameters i n  constant 

height models. 

5.2 Bottomhole Pressure Time Response o f  PKN and CGDD Fractures 

Let us f i r s t  examine the e f f e c t  o f  the PKN and CGDO model assumptions 

on the time h i s to ry  o f  the bottomhole pressure. To present the resu l t s  for 
both types o f  f ractures on the same p l o t  Equation (5.1) i s  recast in the 

form: 

where T= T and fC for  PKN and CGDD fractures, respect ively.  
This re la t ionsh ip  i s  p l o t t e d  i n  Figure 3 for  PKN and CGDD f ractures f o r  

the small leak-of f  and small  storage l i m i t i n g  condit ions and f o r  parameter 

values o f  q=O, m=1/2 and n'=1,1/2. As expected, the bottomhole pressure 

grows with time f o r  PKN fractures while i t  decays with time f o r  CGDD 

fractures. Both models are sensi t ive t o  the f l u i d  power-law index n' i n  

the small leak-off and the small  storage l i m i t s .  The trend f o r  PKN 

fractures is towards higher pressures with increasing non-Newtonian 

behavior ( i .e.  decreasing n') o f  the f ractur ing f l u i d .  An opposite t rend 
with lower bottomhole pressures i s  exhib i ted by CGDO f ractures f o r  

increasingly non-Newtonian f racture f lu ids.  Also, the e f fec t  of 
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neglect ing f l u i d  leak-of f  whi le re ta in ing  the f l u i d  storage term on PKN 

fractures is opposite t o  tha t  f o r  CGOO fractures.  I n  PKN fractures,  

neglect o f  f l u i d  leak-of f  f o r  constant f low r a t e  i n j e c t i o n  increases the 
bottomhole pressure. For CGDD fractures, neglect o f  f l u i d  leak-of f  

resu l t s  i n  lower bottomhole pressures. These di f ferences r e s u l t  f rom the 

fac t  tha t  f rac tu re  length i s  d i r e c t l y  coupled through the crack-opening 

r e l a t i o n  t o  the pressure d i s t r i b u t i o n  i n  CGW) f ractures whereas t h i s  

coupling is only through the f l u i d  mass conservation equation i n  the case 
o f  PKN fractures.  

As previously stated, a time per iod during which the bottomhole 

pressure increases a t  a r a t e  consistent with s tab le f rac tu re  extension a t  

constant height predicted by PKN models i s  o f ten  observed i n  pressure 

records. I f  the i n - s i t u  min imum p r i n c i p a l  stress S i s  known, then 

(pw(t)-S) can be computed from the bottomhole pressure data and p l o t t e d  
against t ime on a log- log p l o t .  From Equation (5.1) we see that:  

so tha t  the pressure power-law exponent p and the product 
{popD(0)} can be obtained f rom the slope and in tercept ,  
respectively, o f  the log- log p l o t .  A procedure f o r  ext ract ing the value of 

the crack-opening modulus Ec can, therefore, be based on f i r s t  using the 
value o f  p thus determined t o  se lect  the appropriate power-law model for 

analysis and then using the value o f  the product {popD(0)} t o  

determine the value o f  the crack-opening modulus E f rom the resu l t s  for 
the power-law coe f f i c i en t  f o r  tha t  model. Note that ,  as previously stated, 

t h i s  assumes tha t  the necessary ca lcu lat ions have been performed t o  
determine a, 13 and p,.,(O) f o r  each model as a functions o f  q, n' and m. 

C 

5.3 S e n s i t i v i t y  O f  Bottomhole Pressure Coef f i c ien t  To Crack-Opening 

Modulus And Fracture Height 

For any two sets o f  the parameters governing the hydraul ic f rac tu r i ng  

process the uncertainty o f  the power-law pressure coef f i c ien ts  po can be 
calculated f rom Equations (3.52), (3.56), (3.62) and (3.66). If it is 
assumed, f o r  convenience, tha t  there i s  no uncertainty i n  any parameters 
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other than E, and H, the following results are obtained from the 
different models for the sensitivity of the pressure coefficients p 0 to 
these parameters: 

5.3.1 Case Of Small Fluid Leak-Off 

PKN FRACTURES 

0 nt i 1 for fixed H , 

0 

e 
p, - E, ; 

Po - Hh; 

2/3 i e 1415; 

- 1 i h L -6 /5 ;  n' i 1 for fixed E, . 

CGDD FRACTURES 

e p, - E, ; 1/2 e i 2/3; 0 nt 1 for fixed H , 

5.3.2 Case of Small Fluid Storage 

PKN FRACTURES 

(5.4a) 

(5.4b) 

(5.4,) 

(5.5a) 

(5.5b) 

(5.6a) 

, 
p, - E, e ; 1/2 e 3/4; 0 i nt  1 for fixed H , (5.6b) 

Po - Hh ; - 1 h i -5/4; 0 nt i 1 for fixed E, . (5.6,) 
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CGDO FRACTURES 

. 

(211'+1)/(2n'+2)(~ /H n'/(2nt+2) 
(P02/P01) = 2 1  9 

(5.7a) 

po - Ece; 1 /2 i e i 3/4 ; 0 1 n' j. 1 f o r  f i xed  H , (5.7b) 

Po - Hh ; - 1 h i -1/4; 0 n' 11 f o r  f i xed  Ec . (5.7c) 

The s e n s i t i v i t y  o f  the pressure coe f f i c i en t  po t o  va r ia t i on  o f  the 
crack-opening modulus E and the assumed f rac tu re  height H can be 

assessed from Equations (5.4) t o  (5.7). The va r ia t i on  o f  p /p as 

e i the r  the crack-opening modulus E or the f rac tu re  height H vary over a 

fac to r  o f  four are graphed i n  Figures 4 and 5 f o r  the values o f  n ' = l  and 

nv=1/2. A factor o f  two uncertainty i n  the crack-opening modulus alone 

resu l t s  i n  approximately a fac to r  o f  1.5 uncertainty i n  the pressure 

coe f f i c i en t  r a t i o  f o r  a l l  models. A t  greater values o f  modulus 

uncertainty, the di f ferences i n  the models leads t o  la rger  or smaller 

uncer ta in t ies with model type and the power-law index n'. For PKN and CGOD 

models, the value o f  n' (chosen t o  be 1/2 or  1) has a greater impact on 

the s e n s i t i v i t y  o f  the pressure coe f f i c i en t  r a t i o  than the choice o f  the 

small  leak-of f  or small storage approximation. These r e s u l t s  are usefu l  

f o r  judging how sensi t ive the pressure record would be t o  the i n - s i t u  
crack-opening modulus and how much o f  a d i f ference i n  the measurements we 

can expect f o r  a given uncertainty i n  t h i s  parameter. 

C 

02 01 

C 

5.4 Uncertainty i n  the Calculated Crack-Openins Modulus Due t o  Uncertainty 

i n  Fracture Height 

While the above resu l t s  ind ica te  how sensi t ive the pressure response 

would be t o  the crack-opening modulus and f rac tu re  height, the s e n s i t i v i t y  
o f  the crack-opening modulus, computed from a given pressure record, t o  
the choice o f  the model used t o  i n te rp re t  the pressure data and t o  the 

assumed f rac tu re  height i s  o f  greater in te res t .  To evaluate th is ,  we set 

i n  Equations (5.4a), (5.5a), (5.6a) and (5.7a) t o  obtain: Po2 = 
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5.4.1 Case O f  Small F l u i d  Leak-Off 

PKN FRACTURES 

3/2 
(Ec2/Ec1) = (H2/H1) I 

CGDD FRACTURES 

5.4.2 Case O f  Small F l u i d  Storage 

PKN FRACTURES 

E, - Hh; 2)h,5/4;  O < n ' l .  

CGDD FRACTURES 

(5. loa) 

(5. lob) 

(5. l l a )  

(5 . l lb)  
h 

E, - H ; 1/2 h i 3/4; 0 i n'  1 1  , 

The s e n s i t i v i t y  o f  the crack-opening modulus Ec t o  va r ia t i on  o f  the 
assumed f rac tu re  height H can be assessed from Equations (5.8) through 

(5.11) and i s  p lo t ted  i n  Figure 6 f o r  n ' = l  and 1/2. 

dominant dif ference i s  i n  the model used t o  i n te rp re t  the data. For CGDO 

models, the computed crack-opening modulus i s  r e l a t i v e l y  insens i t i ve  t o  

f racture height, a feature tha t  can be explo i ted t o  our advantaae i f  the 
f rac tu r ing  job i s  designed t o  y i e l d  a we l l  defined period o f  CGDD-type 

f rac tu re  extension a t  ear ly  times. The crack-opening modulus computed 

I t  i s  seen tha t  



! - 55 - 

from the PKN model, on other hand, i s  very sensi t ive t o  f rac tu re  height 

and y ie lds  a three-fold increase i n  modulus f o r  a two-fold increase i n  
assumed f rac tu re  height. The PKN model f o r  both small leak-o f f  and small 

storage condit ions i s  equally sensi t ive t o  f rac tu re  height a t  uncertainty 
r a t i o s  less  than 2, but t h i s  di f ference increases with increasing f rac tu re  

height uncertainty r a t i o .  The di f ference between PKN models f o r  small 

leak-o f f  and f o r  small storage i s  general ly greater than the dif ferences 
due t o  the non-Newtonian power-law exponent n' over the range 1/2 t o  1. 

The e f f e c t  o f  nowNewtonian f rac tu r ing  f l u i d  behavior i s  t o  increase the 
uncertainty i n  modulus when the PKN small storage modulus i s  used. The 

e f f e c t  on the uncertainty i n  the modulus with change i n  n* i s  not 

s i g n i f i c a n t  f o r  CGOO fractures. 

Because many bottomhole pressure records exh ib i t  a time per iod during 
which the'bottomhole pressure response i s  consistent with stable PKN-type 

f rac tu re  extension a t  constant height, the high degree o f  s e n s i t i v i t y  o f  

the crack-opening modulus t o  the assumed f rac tu re  height i s  unfortunate. 

As can be seen from Figure 6 even a 50% uncertainty i n  f rac tu re  height 

during t h i s  time per iod w i l l  lead t o  an e r ro r  o f  100% i n  the crack-opening 

modulus with the e r ro r  doubling t o  200% i f  the f rac tu re  height i s  i n  e r ro r  

by 100%. The uncertainty i n  f rac tu re  height can a r i se  from many causes. 

For example, the f rac tu re  height can be uncertain due t o  v e r t i c a l  growth 
o f  the f rac tu re  during i t s  extension because i n - s i t u  stress and modulus 
ba r r i e rs  tha t  favor containment o f  the f rac tu re  do not ex i s t .  On the other 

hand, a f rac tu re  may be w e l l  contained by such ba r r i e rs  but the height a t  

which i t  i s  contained could be uncertain because the locat ions o f  the 

ba r r i e rs  themselves r e l a t i v e  t o  the perforat ions are uncertain. Another 
p o s s i b i l i t y  i s  t ha t  the perforated height a t  the wellbore i s  much smaller 

than the b a r r i e r  height so tha t  substant ia l  equidimensional f rac tu re  

growth w i l l  occur before the ba r r i e rs  are reached. 

A va r ie t y  o f  d i f f e r e n t  analyses s im i la r  t o  the present s e n s i t i v i t y  

study can be performed using the basic re la t ionsh ips  derived i n  Section 3,  
by making d i f f e r e n t  choices o f  the uncertain variables. These choices are 

best guided by the spec i f i c  f rac tu r i ng  condit ions p reva i l i ng  i n  the f i e l d .  
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We have focused on the f racture height problem because, i n  most 

s i tuat ions,  the condi t ions are not favorable t o  containment o f  the 

f racture a t  a uniform and constant height. However, up t o  a ce r ta in  po int  

tha t  depends on the s ize o f  the f rac tu re  t o  be created, i t  i s  possible t o  

choose the f rac tu r ing  f l u i d  rheology, the pumping r a t e  and the loca t ion  o f  

the per forat ions r e l a t i v e  t o  ba r r i e rs  t o  prolong the containment of the 
f racture by any ex i s t i ng  barr iers .  Ul t imately,  i f  the pumping i s  

continued long enough a t  a s u f f i c i e n t l y  h igh rate,  the pressure a t  the 
wellbore w i l l  become large enough t o  overcome any ex i s t i ng  favorable 
stress contrasts and modulus ba r r i e rs  and height growth w i l l  occur. 

Whenever s ign i f i can t  height growth occurs, analyses based on constant 
height f rac tu re  models must be abandoned i n  favor o f  models tha t  a l low 

simultaneous growth o f  the f rac tu re  i n  the long i tud ina l  and l a t e r a l  

d i rect ions.  
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6.  SUMMARY AND CONCLUSIONS 

In this report the analysis of constant height PKN and CGDD types of 
models for hydraulic fracturing of underground rock formations was brought 
within a unified theoretical framework. A relatively transparent, but 
rigorous, similarity analysis of the governing equations was used to 
extract the time dependence of the solutions for the fluid pressure, 
fracture width, fluid flow rate and fracture length of hydraulic fractures 
created by fluid injection at the wellbore at a rate that varies as a 
power of time. To obtain the distribution of each of these quantities 
over the fracture it is necessary to solve the nonlinear ordinary 
differential equation that governs the similarity solution. This task is 
beyond the scope of the present effort but must be undertaken to complete 
these  so lu t ions .  The growth laws that  r e s u l t  f r o m  t h i s  a n a l y s i s  provide a 

systematic means for assessing the differences, limitations and domains of 
applicability of constant height fracture models (PKN and CGDD), and for 
evaluating their sensitivity to the physical parameters that govern 
hydraulic fracturing. Furthermore, as a natural outcome of this unified 
approach, it has been possible to develop an extended view of constant 
height fractures as a hybrid of CGDD fractures at small aspect ratios that 
evolve into PKN fractures at large aspect ratios. The power-law 
similarity solutions were used to devise a procedure to determine the 
crack-opening modulus from bottomhole pressure records. Results of the 
model development results and of the sensitivity study on the estimation 
of the crack-opening modulus from bottomhole pressure data are summarized 
below. 

6.1 Modelling Results 

The special features and results given in this report for the PKN, 
CGDD, and hybrid constant height fracture models are: 

c 

o Cross-sections of arbitrary shape which are allowed through the shape 

Q' factors y and y 
W 



Non-Newtonian power-law rheology o f  the f rac tu r ing  f l u i d  tha t  i s  

characterized by K 1  and nl. 

F l u i d  leak-of f  t ha t  var ies as an a r b i t r a r y  power m o f  the elapsed time. 

F l u i d  i n j e c t i o n  r a t e  tha t  var ies as an a r b i t r a r y  power q o f  time. 

Power-law coef f i c ien ts  and power-law exponents f o r  f rac tu re  f l u i d  
pressure, f rac tu re  width, f rac tu re  f l u i d  f low and f rac tu re  length. 

Estimates provided f o r  the times tS and tL that  def ine the time 
regimes when the small leak-of f  and small  storage assumptions can be 

invoked. 

Presentation o f  an extended view o f  constant height models as a hybr id  

o f  CGDD and PKN models. 

tha t  def ine the and t~~~ Estimates provided f o r  the times tHw 
t r a n s i t i o n  between CGDD-like and PKN-like f rac tu re  behavior. 

S e n s i t i v i t y  analysis o f  the e f f e c t  o f  f rac tu re  height on crack-opening 

modulus computed from bottomhole pressure data. 

Because constant height f rac tu re  models have been the subject o f  

considerable previous work i t  i s  appropriate t o  b r i e f l y  i d e n t i f y  here 

where the present work extends previously reported resu l ts .  The complete 

so lu t ion  t o  the s i m i l a r i t y  equations f o r  PKN f ractures was given by 

Nordgren [28] f o r  the special  case o f  a Newtonian f luid, the half-power 

f l u i d  leak-of f  law and constant f l u i d  i n j e c t i o n  rate.  Cleary [6] has 

presented the most general s i m i l a r i t y  solut ions f o r  PKN f ractures with 

non-Newtonian power-law f l u ids ,  generalized power-law f l u i d  leak-of f and 
power-law f l u i d  i n j e c t i o n  rates. However, as i n  the present work, no 

r igorous computational r e s u l t s  comparable t o  Nordgren's work were given by 
him. Geertsma and De Klerk  [ 9 ]  provided an approximate so lu t ion  f o r  CGDD 

fractures tha t  neglects the f l u i d  storage term and approximates the 
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crack-opening relationship. Their work is limited to Newtonian fluid flow 
in the fracture, half-power fluid leak-off to the rock formation and a 
constant rate o f  fluid injection. Daneshy [7] has reported an approximate 
extension of this model to power-law fracturing fluids but information is 
not available in sufficient detail regarding this improvement. 

In summary, a general theory has been presented by Cleary for PKN 
fractures but no rigorous computations of the similarity equations are 
available. For CGDD fractures, no similarity analysis that accounts for 
all of the features included in the model presented in this document has 
been previously reported in the literature. With the exception of the 
results reported by Nordgren for a special case of PKN fractures, the 
extended treatment of constant height fractures as a hybrid of CGDD 
fractures at small aspect ratios that evolve into PKN fractures at large 
aspect ratios has not been reported previously. In particular, with the 
exception of T~ that is embedded in Nordgren’s work, estimates of the 

and the 
have not been previously transition times tS, 

identified for PKN and CGDD fractures or for the newly proposed hybrid 
extended CGDD-PKN model for constant height fractures. 

HLP and T HLS ‘I C’ characteristic times fp, T 

t ~ t  ~ L P  and t~~~ 

6.2 Estimation of Crack-Opening Modulus 

If the hydraulic fracture is well contained and extends stably at 
constant height, then the similarity power-law growth expressions derived 
here for the bottomhole pressure provide a simple means of computing the 
crack-opening modulus from the bottomhole pressure history. Under these 
conditions: 

o The fracture will extend initially as a CGDD-type fracture at small 
aspect ratios (L(t) ( ( 1) and evolve into a PKN-type fracture at 
large aspect ratios (L(t)/H ) ) 1). Depending on the fracturing 
conditions both of these regimes may not be observed. The time 
estimates that are given in this report provide a means of designing 
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f o r  a per iod o f  stable f rac tu re  extension tha t  w i l l  exh ib i t  a t  leas t  

one we l l  defined segment o f  the bottomhole pressure record tha t  can be 

analyzed using the expressions given here f o r  the power-law 
coe f f i c i en t  and power-law exponent o f  the bottomhole pressure f o r  PKN 

and CGDD f ractures.  

o The calculated crack-opening modulus values are sensi t ive t o  the 

choice o f  model used t o  analyze the data. I f  the bottomhole pressure 
decays with t ime, a CGDD-type model should be used t o  analyze the data 

provided the time estimates ind ica te  tha t  the use o f  the CGOD model i s  
va l id .  S imi lar ly ,  i f  the bottomhole pressure increases with time the 

PKN model should be used provided the time estimates ind ica te  tha t  

t h i s  i s  appropriate. I n  both cases, comparison o f  the measured and 

computed bottomhole pressure power-law exponent w i l l  serve as an 

independent check on the v a l i d i t y  o f  the analysis. 

o Subject t o  the modell ing approximations and the assumption tha t  there 

i s  no uncertainty i n  the f l u i d  propert ies, the uncertainty i n  the 

crack-opening modulus w i l l  be mostly due t o  the uncertainty i n  the 

assumed f rac tu re  height. The crack-opening modulus computed from the 

CGM) f rac tu re  model i s  insens i t i ve  t o  the choice o f  f rac tu re  height, 

whi le the opposite i s  t rue  for PKN-type f racture extension. Therefore, 
CGDD-type extension i s  preferable t o  PKN-type f racture extension for 
determining the crack-opening modulus, and should be considered t o  be 

a design goal f o r  the purpose o f  determining the crack-opening 

modulus. I f  the  PKN-type model i s  the model tha t  must be used t o  

compute the crack-opening modulus, then i t  should be recognized tha t  

f racture height must be known with greater accuracy than the accuracy 

with which we desire t o  measure the crack-opening modulus. 

o I f  f racture height i s  s i g n i f i c a n t l y  nonuniform or growing i n  time, 
then the resu l t s  given here do not ho ld and var iab le height models 

must be used f o r  analyzing the bottomhole pressure data. Height growth 
i s  pervasive; i t  cannot be completely suppressed and i s  s ign i f i can t  a t  
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even moderately favorable stress contrasts a t  the stress bar r ie rs .  

Therefore, t o  conduct a systematic study o f  the impact o f  height 
growth on the bottomhole pressure and o f  the s e n s i t i v i t y  o f  the model 
assumptions on the computed crack-opening modulus a r e l i a b l e  var iab le 

height simulator, preferably belonging t o  the th i rd  generation o f  

models, would be required. 
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7. NOMENCLATURE 

Engl ish Symbols 

- F l u i d  leak-of f  coe f f i c i en t  (Equation (2.24a)) 

- F l u i d  densi ty (Equation (2.3)) 
- Crack-opening modulus exponent (Section 5.2) 

- Crack-opening modulus G/(l-v) 
- Cross-sectional shape funct ion (Equation (2.6)) 
- Fracture height exponent (Section 5.2) 

- Height o f  the f rac tu re  

- Leak-off height o f  the racture 
- Fracture toughness (Equation (2.22b)) 

- Power-law f l u i d  consistency (Equation (2.12)) 

- Apparent f l u i d  v iscos i ty  o f  power-law f l u i d  
- Fracture length power-law growth exponent 

- Fracture length power-law growth exponent 

- Fracture length power-law growth exponent 

(Equation (2.17)) 
(Equation (3.2)) 

f o r  CGOD f ractures (Equation (4.5b)) 

f o r  PKN fractures (Equation (4.4b)) 

- Length o f  the f rac tu re  

- Dimensionless f racture length L ( t ) /H  
- Leak-off power-law exponent (Equation (2.24a)) 

- Power-law f l u i d  rheology index (Equation (2.12)) 

- F l u i d  pressure i n  the f rac tu re  

- Average f l u i d  pressure i n  the f rac tu re  

- Dimensionless f l u i d  pressure i n  the f rac tu re  (Equation (3 .3) )  
- Pore f l u i d  pressure i n  the f a r - f i e l d  

- F l u i d  pressure power-law coe f f i c i en t  (Equation (3.3)) 

- Flowing bottomhole f l u i d  pressure (Equation (3.30)) 

- Flowrate power-law growth exponent (Equation (3.5)) 
- F l u i d  leak-of f  r a t e  (a t  f rac tu re  cross-section) 

(Equation (2.5)) 
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Dimensionless f l u i d  leak-of f  (Equation (3.6)) 
F l u i d  leak-of f  r a t e  power-law coe f f i c i en t  (Equation (3.6)) 
Flow r a t e  i n  x-d i rect ion across f racture width 
(Equation (2.15)) 

Flow r a t e  i n  x-d i rect ion across f racture cross-section 

(Equation (2.4)) 

Dimensionless f l u i d  f low r a t e  (Equation (3.5)) 

Flow r a t e  power-law coef f ic ient  (Equation (3.5)) 
Flow r a t e  i n t o  the f racture a t  the wellbore (Equation (3.7)) 

F l u i d  leak-of f  power-law growth exponent (Equation (3.6)) 

Minimum i n - s i t u  p r i n c i p a l  stress assumed t o  act  

normal t o  the f racture plane 

time 

Dimensionless time (Equation (5.2)) 
Dimensionless time t / T  f o r  small storage 

large leak-of f  condi t ion (Section 4.1.1) 

Dimensionless time t/THLL f o r  small leak-of f  condi t ion 

(Section 4.1.1) 

Aspect r a t i o  l i m i t i n g  time f o r  CGDD f ractures 

(Equations (4.10)#(4.12)) 

Aspect r a t i o  l i m i t i n g  time f o r  PKN f ractures 
(Equations (4.9),(4.11)) 

. 

HLS 

L im i t i ng  time f o r  small f l u i d  storage assumption 
(Equation (3.70a)) 

L im i t i ng  time f o r  small f l u i d  leak-of f  assumption 
(Equation (3.71a)) 

Fracture f l u i d  ve loc i ty  components i n  the x, y and z 
coordinate d i rect ions 

Fracture width p r o f i l e  a t  a cross-section (Equation 2.6)) 

Fracture width a t  the center o f  each cross-section 

(Equation (2.6)) 

Dimensionless f racture width (Equation (3.4)) 
Fracture width power-law coe f f i c i en t  (Equation (3.4)) 

Spat ia l  coordinates i n  the long i tud ina l  (horizontal),  

normal and l a t e r a l  ( ve r t i ca l )  d i rect ions with respect 

t o  the f rac tu re  

. 
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Greek Symbols 

a 

B 

yL 

yQ 
yW 
c 
n 
U 

E 
P 
Q 

T(X) 

l C  

TP 

HLS 
T 

T~~~ 

T 

w 
XY 

- Parameter tha t  measures the r e l a t i v e  importance o f  

- Parameter tha t  measures the r e l a t i v e  importance o f  

- Rat io o f  the f l u i d  leak-of f  height t o  f rac tu re  height 
- Flow r a t e  shape parameter (Equation (2.18)) 

- Fracture width shape parameter (Equation (2.7)) 
- Dummy in tegra t ion  var iab le 

- Dimensionless s i m i l a r i t y  var iab le (Equation (3.1)) 

- Poisson's Rat io 

- Dummy in tegra t ion  var iab le 

- Average f l u i d  density a t  a cross-section Equation (2.3)) 
- Speci f ic  f racture surface energy (Section 2.3) 
- Time o f  a r r i v a l  o f  f rac tu re  f r o n t  a t  loca t ion  x 

- Character ist ic t ime f o r  extension o f  CGOO fractures 

f l u i d  storage and f l u i d  t ransport  e f fec ts  (Equation 3.21a)) 

f l u i d  leak-of f  and f l u i d  t ransport  e f fec ts  (Equation (3.21b) 

(Equation (2.24a)) 

(Equation 3.55b)) 

(Equation (3.59b)) 

f ractures under small  leak-of f  large storage condi t ions 

(Equation (4.3)) 

f ractures under small storage large leak-of f  condit ions 

(Equation (4.6)) 

- Character ist ic time f o r  extension o f  PKN f ractures 

- Character ist ic t ime for extension o f  PKN and CGDD 

- Character is t ic  t ime f o r  extension o f  PKN and CGDD 

- Fluid shear stress on the f rac tu re  surface (Equation (2.12)) 
- Fracture width power-law growth exponent (Equation (3.4)) 
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