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ABSTRACT

Hydraulic fractures created in oil and gas bearing rock formations can
be made to propagate for a limited time at approximately constant height
if favorable stress, deformation modulus or fracture toughness barriers to
height growth exist and if the fracture design is suitably optimized to
exploit these favorable conditions and reduce height growth.

In this report, a wunified theoretical formulation for the
Perkins-Kern-Nordgren (PKN) and Christianovitch-Geertsma-De Klerk-Daneshy
(CGDD) constant height fracture models is first presented. For a fracture
fluid injection rate that varies as an arbitrary power of time, growth
laws for fracturing fluid pressure, fracture width, and flow rate are
rigorously derived for PKN and CGDD types of fractures. These similarity
solutions account for non-Newtonian power-law fluid flow, transient fluid
storage and generalized power-law fluid leak-off to the rock formation.
They include and extend the results currently available in the literature
for PKN and CGDD fractures.

The results for PKN and CGDD fractures are then generalized to obtain
an approximate hybrid CGDD-PKN fracture model that can be applied to
constant height fractures of arbitrary length/height aspect ratio and
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arbitrary cross-sectional shape. Characteristic 3times for fracture
extension are identified and estimates are given for the transition times
when the fracture evolves from a CGDD-type fracture at small aspect ratio
to a PKN-type fracture at large aspect ratic. These results are useful for
interpreting fracturing data and for designing fractures for crack-opening
modulus measurements.

Because a hydraulic fracture responds to the in-situ properties of a
large volume of rock, at least as large as itself, fracturing can be an
attractive means of determining the in-situ deformation moduli of a rock
mass at different length scales. With this motivation, for fracturing
conditions that lead to constant height fracture extension, a procedure
based on the hybrid CGDD-PKN model is proposed for computing the
crack-opening modulus from suitable bottomhole pressure data. Sensitivity
analysis of the wuncertainty in the measured crack-opening modulus
indicates that the crack-opening modulus computed from the initial
CGDD-type fracture extension phase (if present) will be much 1less
sensitive to the uncertainty in fracture-height than that computed from
the final PKN-type fracture extension phase. If the crack-opening modulus
is to be computed from the final PKN-type fracture extension period, the
fracture height must be known with much 1less uncertainty than the
uncertainty in the crack-opening modulus that is to be resolved through

such measurements.
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1. INTRODUCTION

1.1 Background And Motivation

Hydraulic fracturing is a process by which fractures are created in
underground rock formations by injecting fluid through a wellbore at a
pressure high enough to fracture the rock. Hydraulic fracturing has excited
scientific interest because of the fascinating interactions between the
physical processes that govern it and the challenge posed by the diffi-
culties of its analysis. In the scientific arena it has found application
in determining the state of stress in the earth's crust [1,11,14]}, in
explaining the fracturing phenomena that occur naturally in the subsurface
[5,29] or in man-made structures such as dams and tunnels, and in studies
of the escape of gaseous contaminants from underground explosions [15,32].
Perhaps of greater import is its economic impact on the cost effective
extraction of underground petroleum and geothermal energy resources and on
the subsurface disposal of liquid wastes. For example, during the last
forty years, hydraulic fracturing has been used to increase production from
wells drilled in oil and gas reservoirs [13,35] and in potable aquifers
[33], to enhance the injectivity of liquid waste disposal wells [36], to
create fractured geothermal energy reserveirs in hot dry rock masses [25]
and to measure the in-situ stresses in reservoir rock formations for frac-
ture design purposes [1,35].

The propagation of hydraulically induced fractures in the subsurface
is influenced by in-situ conditions such as the state of stress in the
targeted and neighboring rock formations, the spatial distribution of
deformation moduli and fracture toughness of the rock, and the permeabi-
lity, fluid saturation and pore pressure levels that affect fluid-loss to
the porous rock formation. In addition, the fluid injection schedule, the
rheology and fluid-loss control properties of the fracturing fluid, and the
properties and schedule of the proppant are control parameters that affect
the fracturing process. Many properties, such as the fluid rheology para-
meters and the fluid-loss coefficients that are required as input data to
fracture design models, are measured in the laboratory. We wish to focus
attention here on the crack-opening modulus Echl(l-u), where G= shear



modulus and v = Poisson's ratio, that is the only deformation modulus
used in most simple fracture design models.

There is increasing evidence that suggests that static deformation
moduli measured in the laboratory and dynamic deformation moduli measured
by sonic well-logging methods in the field may not be representative of
the deformation modulus experienced in-situ by a propagating fracture.
Because of the quasi-static nature of hydraulic fracturing and the larger
levels of strain induced by hydrofractures, it would seem from a conceptual
point of view that the static moduli, and not the dynamic moduli, are the
deformation properties that should be used for designing hydraulic frac-
tures. There is a large collection of data [17,18,19,20] that show that
static deformation moduli measured in the laboratory differ significantly
(60% to 600%) from the dynamic moduli measured both in the laboratory and
in the field on the same rock under equivalent stress conditions. There
are even substantial differences between the sonic modulus measurements
made in the laboratory and in the field.

Perhaps of greater relevance to fracture design is the possibility
that in-situ static moduli can be very different from those measured in
the laboratory due to the scale dependence of the moduli that are to be
measured. Spatial scale dependence of deformability has been documented in
the geotechnical engineering literature [12] and arises as a result of
natural fractures and modulus inhomogeneities that occur in the field on
scales much larger than the sizes of laboratory rock samples. The larger
length scales associated with these features are likely to be more
representative of the length scales affecting the rock mass stiffness
experienced by a large hydraulic fracture. It is implied in these state-
ments that the rock mass, though discontinuous and inhomogeneous, can be
viewed as a continuum on the spatial scales on which we wish to assign
average modulus values. If the distribution of these features is too sparse
to permit such an averaging procedure, then the measured moduli cannot be
considered to be constitutive properties but merely deformability measures
that depend upon the specific test configuration and interpretive model
used. While the observed differences between the moduli measured by
different methods may in part be related to factors other than scale



dependence, such as sample disturbance during removal or undetected local
conditions occurring within or near the wellbore in the field measurements,
it is imperative to try to develop an independent method of determining the
in-situ stiffness properties of the rock mass on the length scale of the
hydraulic fractures.

From its very early days [14,11,1] the potential of hydraulic fractur-
ing for acquiring in-situ stress data was recognized; now this is often a
routine preliminary procedure in the design of massive hydraulic fractures
[35]. However, the possibility of using hydraulic fracturing for determin-
ing in-situ deformation moduli does not seem to have been explored. We
propose here to back-calculate the crack-opening modulus from hydraulic
fracturing bottomhole pressure data using an interpretive model that is
appropriate for the conditions in the field. Because a hydraulic fracture
responds to the in-situ properties of a large volume of rock, at least as
large as itself, fracturing can be an attractive means of assessing the
scale-dependence of deformation moduli of the rock mass in-situ. The idea
is even more attractive when it is realized that the fracture dimensions
can be controlled by controlling the pumping schedule and the fracturing
fluid properties so that, conceptually, it should be possible to sample
the stiffness properties of the rock formation at different length scales.
A major difficulty, of course, is the possibility that the discontinuities
or inhomogeneities are sparsely distributed and influence fracture propa-
gation only as discrete entities. Another difficulty that can arise is
that, although the discontinuities and inhomogeneities are sufficiently
profuse to be viewed as continuum features, the fracture may intercept one
or more of them leading to a situation for which the data required for
interpretation cannot be easily acquired in sufficient detail even if a
capability to analyze the problem could be developed.

Subject to these caveats on the fidelity and sophistication of our
models and the availability of supporting data, it may be possible to cal-
culate the modulus on different 1length scales using data from a single
fracture as it extends with time. An alternative procedure is to assign a
single different modulus to each fracture of a different size. For this to
be possible, a reliable means of analyzing hydraulic fracturing pressure



records is an essential prerequisite. The suitability of existing hydraulic
fracturing models must, therefore, be examined and methods of interpreta-
tion and, if necessary, improved models must be developed for this purpose.
In addition, the sensitivity of the calculated moduli to the analysis
procedure and the physical parameters governing the hydraulic fracturing
process must be evaluated. The results presented in this report constitute
a first step in this direction.

1.2 Existing Hydraulic Fracturing Models

Interpretive models of hydraulic fracturing that have been reported in
the open literature over the years can be conveniently classified into
first, second and third generation models. An exhaustive inventory of these
models is not attempted here. Instead, we refer interested readers to the
review by Mendelsohn [22,23] and cite only a few models that are either
representative of a class or are distinctly different in approach. The
first generation models are those which assume that the height of the
fracture is constant in time and uniform in space, and that the resistance
of the fracture to opening under fluid pressure is derived from either the
lateral or the longitudinal direction of the fracture. The best known of
these are the Perkins-Kern-Nordgren (PKN) and Christianovitch-Geertsma-De
Klerk-Daneshy (CGDD) models [31,28; 16,37,9,7). They incorporate varying
degrees of approximation for the crack-opening stiffness, the conservation
of fluid mass in the fracture, the flow law relating the flow rate to the
pressure gradient, and the fluid leak-off into the porous rock formation.
Few, if any, of the first generation models include all of these effects
with a sufficient degree of generality [10]; this provides the motivation
for the derivation of the extended results for constant height fractures
and the hybrid model described in the present report.

The second generation models differ from those of the first generation
in that they allow simultaneous growth of both fracture height and fracture
length. The pseudo-three-dimensional P3DH-type models, first introduced by
Cleary [6], allow for height growth by coupling CGDD-type fracture exten-
sion in the lateral direction with PKN-type fracture extension in the
longitudinal direction. The coupling is through the equation of fluid mass



conservation. This approach yields useful results but requires a great deal
of subjective judgement in choosing model-dependent parameters. Other,
distinctly different, approximate models that allow simultaneous height and
length growth have been introduced by Stout [34] and by Advani et. al. [3].
Both of these models assume a particular shape for the fracture geometry
that is parameterized through time dependent dimensions. The ordinary non-
linear differential equations that govern the growth of these dimensions
in time are obtained by Advani et. al. using a Lagrangian formulation with
non-conservative generalized forces and by Stout by means of a full-fledged
rate variational principle. Advani et. al. obtained approximate power-law
solutions by resorting to approximations regarding the stiffness contribu-
tions from the two principal directions of the assumed fracture shape,
while Stout integrated his ordinary differential equations by an explicit
numerical integration procedure.

Third generation models allow for the evolution of an arbitrary frac-
ture shape but still confine the fracture to growth in a single vertical
plane. These models are based on either hybrid boundary element-finite
element formulations such as that of Abou-Sayed et. al. [2] requiring dis-
cretization of only the fracture surface or full-fledged finite-element
simulators such as that reported recently by Morita et. al.[24]. These
models require substantially greater computatiocnal effort but provide more
flexibility in modelling the actual field conditions. Used with care, they
have the potential to provide the most accurate predictions and can be used
to calibrate and define the domains of applicability of simpler, less

accurate but more convenient, models.

1.3 Scope Of The Present Work

The present study is restricted to first generation models which assume
that the hydraulic fracture remains confined to a single vertical plane
passing through the wellbore and that it extends laterally (i.e. horizon-
tally) away from the wellbore at constant fracture height. It is assumed
that the orientation of the fracture is determined by the direction of the
minimum in-situ principal stress in the far-field and that the minimum
principal stress acts in the horizontal plane. Therefore, the plane of the
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fracture is vertical and its azimuthal orientation is normal to the minimum
in-situ principal stress. In a practical sense, this implies that such
fractures will be created only at depths sufficiently below the surface
where the vertical stress will not be the minimum in-situ principal stress.
It also implies that the difference between the minimum and intermediate
principal stresses is sufficiently large to fix and contain the fracture
within a single unique vertical plane as it propagates in the horizontal
direction. The PKN and CGDD models, the best known models of this class,
are distinguished primarily by whether the stiffness contribution to open-
ing of the fracture by the fracturing fluid pressure is derived from the
lateral (i.e. vertical) direction or the longitudinal (i.e. horizontal)
direction of the fracture.

In the PKN model, shown in Figure 1, it is assumed that the fracture
closes at the top and the bottom of the fracture in the vertical direction
and that the resistance of the fracture to opening under fluid pressure is
derived solely from the elastic stiffness of its cross-section in the ver-
tical direction. This implies that the vertical cross-sections of the
fracture deform independently of each other and, therefore, any contribu-
tion to the stiffness from the horizontal direction is neglected. On the
other hand, in the CGDD model, also shown in Figure 1, it is assumed that
the cross-sections are of uniform width and do not close at the top and
bottom so that the resistance of the fracture to opening under fluid
pressure is derived solely from its elastic stiffness in the horizontal
direction. The uniform width assumption would be strictly valid, for
example, if the fracture terminates in the vertical direction at rock
boundaries at which there is complete slip. In both models the fluid flow
in the fracture is assumed to be pseudo-steady and to take place horizon-
tally while the fracture extends in this direction. Within the confines of
these major distinguishing assumptions, power-law fluid flow, proppant
transport and approximate one-dimensional fluid leak-off into the porous
rock formation have been incorporated in these two models.

In this report a unified theoretical formulation for constant height
fractures of the PKN and CGDD types is presented in Section 2. The govern-
ing equations for constant height fractures of arbitrary cross-sectional
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shape with non-Newtonian power-law fluid flow in the fracture and a
generalized power-law fluid leak-off model are given here. In Section 3 the
equations are recast in dimensionless form and similarity solutions for
fluid pressure, fracture width, flow rate and fracture length that grow as
powers of time are derived. The resulting nonlinear ordinary differential
equations are not completely solved but their 1limiting behaviors are
investigated. Although the distributions of the variables over the fracture
are not determined, the similarity analysis enables the dependence on time,
and on the physical properties that govern the fracturing process, to be
extracted. The time regimes within which either the fluid storage term or
the fluid leak-off term can be neglected are identified in terms of times
that are characteristic of PKN and CGDD types of fracture extension.

In Section 4 these results are extended to a fracture whose
cross-section always remains closed at its top and bottom edges but which
extends at constant height. It is shown that such a fracture can be con-
sidered to be a hybrid CGDD-PKN fracture which behaves as a CGDD fracture
when its length is much smaller than its height but which evolves into a
PKN fracture when the fracture length is much greater than the fracture
height. Estimates of the times of transition between these two behaviors
are derived as an important by-product of this extended view. In Section 5
the results derived for the power-law coefficients and exponents are used
to devise a procedure for computing the crack-opening modulus from bottom-
hole pressure records obtained for a hybrid CGDD-PKN constant height frac-
ture. A sensitivity analysis of the impact of uncertainty in the assumed
fracture height on the crack-opening modulus is presented next. The con-
clusions based on the extended analysis of constant height fracture models
and the sensitivity analysis for the crack-opening modulus are summarized

in Section 5.



2. MODEL FORMULATION FOR CONSTANT HEIGHT FRACTURES

The governing equations are derived here for PKN and CGDD-type
hydraulic fractures of uniform and constant height propagating in a homo-
geneous fluid saturated porous rock formation. Consider the flow of the
injected fracturing fluid along a uniform plane fracture of height H and
an as yet unspecified cross-sectional shape, as shown in Figure 1. We
assume that the plane of the fracture is oriented normal to the minimum
in-situ principal stress S acting in the far-field and that the in-situ
stress S and pore fluid pressure Py distributions are uniform in the
far-field. Injection of fracturing fluid is begun at time t=0 at a rate
Qw(t) and the bottomhole fluid injection pressure pw(t) required to
maintain this injection rate is measured. The present analysis attempts to
approximately predict the bottomhole injection pressure pw(t), the
fracture length L(t)
and the crack-opening width w(x,z,t) of the fracture as a function of the
in-situ stress, the mechanical properties of the rock formation and the
rheological properties of the fracturing fluid. In particular, we wish to
assess the sensitivity of the bottomhole pressure history toc the mechanical
properties of the rock formation and the extent of the uncertainty in the
prediction of these properties from bottomhole pressure data that results
from the approximations embedded in the models.

2.1 Conservation Of Fluid Mass

For one-dimensional fluid flow along the length of the fracture,
conservation of fluid mass in the fracture is approximately expressed in
terms of average cross-sectional quantities by Equation (2.1):

a(pWHY, )
W 3(pQ)
3t tax  t ZpYLHqL =0. (2.1)

In Equation (2.1), YW(x,t) and p(x,t) are the average fracture width
and the average fluid density, respectively, Q(x,t) is the total fluid
flow rate along the fracture and qL(x,t) is the total rate of fluid loss
to the porous formation per unit fracture area at any cross-section of the
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fracture. To account for only a part of the height of fracture being
adjacent to a permeable rock formation, the fluid leak-off rate 9 is
defined with respect to a 1leak-off fracture height HL = YL H that is
less than the height of the fracture. The total flow rate Q(x,t) is equal
to the integral over the height of the fracture of the local flow rate
qx(x,z,t) in the longitudinal direction. The local fluid velocity has
components Vx, v and VZ in the 1longitudinal, lateral and normal
directions with respect to the fracture surface. The local flow rate
qx(x,z,t) is, therefore, equal to the flow velocity Vx(x,y,z,t) at a
fixed height z integrated with respect to y over the fracture width
w(x,z,t). These quantities are defined by:

1 +H/2
wa(xnt) = ﬁ I W(X:Z:t) dz , (2-2)
-H/2
1 +H/2
p(X,t) = i_,_' I d(xsz)t) dz ’ (2'3)
-H/2
+H/2
Qx,t) = [ a(x,z,t)dz, (2.4)
-H/2
+HL/2
q, (x,t) = L J {v.(x,w/2,z,t)-V _(x,-w/2,z,t)}dz , (2.5)
L H y y
L —HL/2
where, Yy is a shape factor that depends on the assumed shape of the

cross-section of the fracture and d(x,z,t) is the average fluid density
over the width of the fracture. If the product form given by Equation (2.6)
is assumed for the cross-sectional shape, then the shape factor \" is
defined by Equation (2.7). For PKN fractures with elliptical cross-sec-
tions and CGDD fractures with uniform cross-sections, the cross-sectional
shape function fw(() (assumed to be an even function of ¢=2z/H) and

Y., are given by Equations (2.8) and (2.9), respectively.

W

w(x,z,t) = W(x,t) fw(ZZ/H) . (2.6)

1 +H/2
Yy = 5 J f,(2z/H) dz . (2.7)
W H -H/2 W
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Elliptic PKN cross-sections: fw(C)=f(1-(2); Yy = w/4. (2.8)
Constant width CGDD cross-sections: fw(()z 1; Yy = 1. (2.9)

If the fluid compressibility is small compared to the compliance of the-
fracture width under the normal effective stress (p - S) (an assumption
valid for liquid saturated fractures), then Equation (2.1) simplifies to
Equation (2.10) for constant height fractures:

N aQ -
YwH 3 * ax * 2YLH q = 0. (2.10)

2.2 Flow Law For Non-Newtonian Fracturing Fluids

For low Reynold's Number of the fluid flow in the fracture, the
pressure gradient in the flow direction is balanced primarily by the
viscous shear forces as given by Equation (2.11). The rheological behavior
of proppant laden fluid is further complicated by the presence of fluid
loss control and viscosity enhancing chemical additives. We conform to
standard practice here and approximate the non-Newtonian rheology of this
composite fluid-solid mixture by the power-law relationship given by
Equation (2.12), where K' is the fluid consistency and n' is the power-law
exponent. The power-law exponent fanges between 0 and 1, and when n'=1 the
fluid is Newtonian and the fluid consistency K' is the Newtonian fluid
viscosity. When Equation (2.12) is used to elimipate T from Equation
(2.11), Equation (2.13) that governs power-law fluid flow in the fracture
is obtained.

d atx
e . X (2.11)
ax ay
3V, (n*-1) , v,
‘rxy = - K! T Ty— ’ (2.12)
av [(M'-1) 5y
3 3
5;!( + W {K' ——ayx ayx } =0. (2.13)
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In writing Equation (2.13) we have neglected the unsteadiness of the
fluid flow, the convective inertial effects and the effects of fluid
leak-off on the local velocity profile. This Equation can be easily solved
for the fluid velocity VX subject to no-slip boundary conditions on the
fracture surfaces, to arrive at the following relationships for the
velocity profile (Equation (2.14)) and the local flow rate qx(x,z,t)
(Equation (2.15)) as a function of the pressure gradient:

v, = G2y (PN L 3BT gy gy (NTHDINY (2.14)
q = G2y H w2)2ND/NT L Al (2.15)

Equation (2.15) can now be substituted in Equation (2.4) to obtain the
desired flow law between the total flow rate Q(x,t) and the pressure

gradient:
y w(2n'+1)
(ﬁg) = ( - 53— )1/n . (2.16)
a

The apparent fluid viscosity Ka and the shape parameter YQ in Equa-
tion (2.16) are defined by:

. o 20n'+1
K a= K' ( 3N ) ’ (2.17)
1 (2n'+1)/n" o0
Yy ={] (O ac}" (2.18)
Q 0 W

1
={] (1-¢ )(2n +l)/2ndC} n' for elliptic PKN cross-sections,

=1 for constant width CGDD cross-sections.

The shape parameter YQ can be computed for any specified value of
n'; for n'=l, for example, it takes the value of YQ = 3%/16. Also,
the standard Poiseuille flow law for Newtonian fluid flow between parallel
plates can be recovered from Equation (2.16) for a constant width fracture
by setting n'=1.



- 13 -

2.3 Crack-Opening Relation

The final relationship required to achieve closure of Equations
(2.10) and (2.16) is that between the fracture width and the effective
stress distribution (p(x,t)-S) acting on the fracture surfaces. The
principal difference between the PKN and CGDD models stems from the
differences in this relationship in the two models.

2.3.1 PKN Crack-0Opening Model

In the PKN model, vertical cross-sections of the fracture act
independently of each other by assumption so that approximately plane
strain conditions prevail at each cross-section. Therefore, for the
elliptic cross-sectional shape, and the uniform fracture fluid pressure
within the fracture acting at each cross-section, the fracture width
w(x,z,t) is given as a function of (p(x,t)-S) by:

W(x,z,t) = - H (p(x,t)-S) £ (2z/H) , (2.19)
£ W
W(x,t) = 1= H (p(x,t)-S) , (2.20)
E
C

where the crack-opening modulus Ec = G/(1-v) and fw(ZZ/H) is defined
by Equation (2.8).

2.3.2 CGDD Crack-Opening Model

In the CGDD model, each cross-section is assumed to be of uniform
width and the elastic stiffness of the fracture is, therefore, derived
solely from its deformation in the lengthwise direction. The fluid
pressure varjes along the fracture due to the viscous shear of the
fracturing fluid with the result that the fracture width at any location

is related to the entire distribution of pressure over the fracture
length. For the plane strain conditions prevailing in the horizontal
plane, the elastic solution to the crack width for an arbitrary pressure
distribution acting on its surface was given by England and Green [8] as:
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1 ¢
2 L(t) 2 Z(p(E,t)-S)
W(n,t) = { I I dt d¢} , (2.21)
Ec T o 0 v(e2-ndyve?ed

where n = x/L(t).

In PKN fractures the cross-section was assumed to be of elliptical
shape with fluid penetrating to the very edges of the fracture
cross-section at uniform pressure. Under these conditions, linear elas-
ticity theory predicts infinite stresses at the crack edge although the
width profile is well defined. Because the fracture height was assumed to
be constant, it was reasonable to ignore this situation in the case of PKN
fractures. However, if this condition were to prevail in the case of CGDD
fractures, infinite stresses would exist at the crack-tip that is respon-
sible for fracture extension in the lengthwise direction. This dilemma
was resolved by Khristianovitch and Zheltov [16,37] who suggested that the
pressure distribution within the crack would adjust itself to yield a
crack-width profile that not only would close at the crack-tip but also
would close smoothly at the crack-tip. The condition of smooth closure of
the fracture tip was later placed on a firmer fracture mechanics
foundation by Barenblatt [4]. This inspired hypothesis is similar to the
Kutta-Joukowsky-Chaplygin condition [21] for potential fluid flow past an
aerofoil with a sharp trailing edge. In this fluid mechanics problem, the
streamlines are required to be tangential to the aerofoil at the trailing
edge to eliminate the infinite fluid velocities that would otherwise exist
at this point. The Kutta-Joukowsky-Chaplygin condition determines the 1lift
on the aerofoil while the Khristianovitch-Zheltov condition determines the
length of the crack. In contrast to this situation for CGDD fractures, the
governing equation for crack width for PKN fractures is of a lower order
than the integro-differential equation for CGDD fractures and, therefore,
can support only the condition that the crack closes at the crack-tip.

When the gradient dW(n)/dn is set equal to zero in Equation (2.21)
we obtain Equation (2.22a) as the condition that must be satisfied by the
pressure distribution to achieve smooth closure at the crack-tip. When



the finite tensile strength (or fracture toughness) of the rock is taken
into account we obtain Equation (2.22b). If the fracture length is large
enough to satisfy the Inequality in (2.22a), where ¢ is the specific
surface energy of the rock, the influence of fracture toughness of the
brittle rock is small and can be neglected [9,30] and Equation (2.22a) is
recovered.

1 2
[ 1213*§1=§l dn = 0 for L(t) > ) 3“2 , (2.223)
0 v(-%) 25

K (2.22b)

= v(aL)
with K = (2weco)1’2.

Geertsma and De Klerk [9] have shown that, except in a small narrow
wedge-like zone near the tip of the fracture, for many hydraulic
fracturing conditions the fracture width profile can be approximated as
being elliptical in shape:

HOx,t) = & Lt (B(-S) F(Ey) - (2.23)

c

where, p(t) is the average fluid pressure in the fracture and fw(n) is
the shape function defined previously by Equation (8) for elliptic cross-

sections.

2.4 The Fluid Leak-Off Model

The fluid loss to the rock formation is assumed to be governed by a
generalized form of Carter's fluid leak-off model given by Egquation
(2.24a):

_c
t - t(ex)"

q (x,t) ’ (2.24a)

x
1]

L(t) . (2.24b)
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In this model, an arbitrary fluid leak-off power index m is used instead
of the standard value of 1/2 because this value is only appropriate for
leak-off controlled by linear pressure diffusion in the rock formation. As
indicated by Equation (2.24b), 1(x) is the time at which the propagating
tip of the fracture arrives at a location x in the formation so that
(t-1(x)) is the elapsed time during which fluid leaked-off into the rock
formation since its first exposure to the fracturing fluid. In hydraulic
fracturing numerical codes the leak-off coefficient C is usually updated
in time to reflect its dependence on the variation in the fluid pressure
in the fracture. In the present analysis, however, we will assume C to be

a constant.

2.5 Governing Partial Differential Equation

With these definitions, the partial differential equation which
governs the extension of both PKN and CGDD type fractures can be written

by combining Equations (2.10), (2.16) and (2.24):

(2n +1) a
ax }

2y
Unty, L_C  _g, (2.25)

a[ﬂ—{—
X W (t-o)"

at

The values of the shape factors Ty and YQ that appear in Equation
(2.25) were given previously for both types of fractures. For PKN

fractures, the crack-opening relation given by Equation (2.20) can be
substituted in Equation (2.25) to obtain the governing Equation (2.26)
solely in terms of the fracture width W(x,t):

(2n'*+1)

YaoE W ' 2y
W a W (t-1)

while the bottomhole pressure pw(t) can be recovered from the fracture
width at the wellbore from:

£
p,(t) = S + ﬁg W(o,t) . (2.27)



In the case of CGDD fractures the situation is more complicated
because W(x,t) is related to the distribution of p(x,t) over the entire

fracture by Equation (2.21), or more approximately, through Equation
(2.23) to the average pressure in the fracture p(t).
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3. SIMILARITY SOLUTIONS FOR PKN AND CGDD FRACTURES

3.1 General Analysis Of Constant Height Fractures

The standard method of solving the problem posed by Equations
(2.7)-(2.10) would be to discretize them in space and/or time by a finite-
difference or finite-element technigue and to solve the resulting set of
coupled nonlinear algebraic equations by some iterative scheme. For our
present purpose, we are primarily interested in analyzing the time history
of the bottomhole pressure for different pumping schedules at the wellbore
and in evaluating its sensitivity to the parameters of the hydraulic frac-
turing process. With this limited aim, a similarity solution technique is
devised here to extract the functional dependence of the bottomhole
pressure on time and on the process parameters, for a limited but realistic
class of power-law pumping schedules, without having to resort to the
rigors of obtaining a complete numerical solution to the problem.

In doing so, we present a unified treatment of both PKN and CGDD
fractures and extend the existing solutions to include fluid rheology,
leak-off and pumping rate governed by generalized power-laws. The complete
solution to the similarity solutions for PKN fractures was given by
Nordgren [28] for the special case of a Newtonian fluid, the half-power
fluid leak-off law and constant fluid injection rate. Cleary [6] has
presented more general similarity solutions for PKN fractures with
non-Newtonian power-law fluid rheology, generalized power-law fluid
leak-off and power-law fluid injection rates. However, no computational
results comparable to Nordgren's work were presented by him. Geertsma and
De Klerk [9] provided an approximate solution for CGDD fractures that
neglects the fluid storage term and approximates the crack-opening
relationship. Their work is 1limited to Newtonian fluid flow in the
fracture, half-power fluid leak-off to the rock formation and a constant
rate of fluid injection. Daneshy [7] has reported an approximate extension
of this model to power-law fracturing fluids but information is not
available in sufficient detail regarding this improvement. In summary, a
general theory has been presented by Cleary for PKN fractures but no
rigorous computations of the similarity equations are available. For CGDD



fractures, no similarity analysis that accounts for all of the features we
propose to include in the present model has been reported previously in
the open 1literature. Furthermore, the results presented here on the
characteristic times and aspect ratio limiting times for hybrid CGDD-PKN
fractures are not available in the literature.

The solutions are found by first transforming the nonlinear partial
differential Equation (2.10) in the two independent variables x and t to
an ordinary differential equation in the single similarity variable n
defined by Equation (3.1). The similarity variable n defined by this
Equation is the dimensionless distance along the fracture and is equal to
the actual distance scaled to the length of the fracture L(t). We further
assume that the fracture length L(t) varies according to the power-law
given by Equation (3.2). We seek similarity solutions for p(x,t), W(x,t),
Q(x,t), qL(x,t) in the form of Equations (3.3), (3.4), (3.5) and (3.6),
respectively, where the corresponding power-law exponents p, w, q, r and
and qLo will be chosen to

the dimensional coefficients po, wo, Qo
obtain a meaningfully scaled dimensionless governing equation that depends
only on the similarity variable n as the sole independent variable. The
dimensionless pressure pD(n), the dimensionless fracture width
WD(n), the dimensionless flowrate QD(n) and the dimensionless
leak-of f rate qLD(n) provide convenient invariant means of
representing the corresponding spatial distributions over the length of
the fracture as it evolves in time.

n(x,t) = x/L(t) , (3.1
wy o= ot (3.2)
p(X,t) -5 = p, pp(m) t¥, (3.3)
Wix,t) = W, Wy(m) t°, (3.4)
Qx,t) = Q, Qm tI, (3.5)

g (x,t) = g, gp(m th . (3.6)
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As the first step we restrict the fracture fluid injection rate
schedules to power-law pumping schedules of the form:

_ _ q
Q) =a@©,t) =q t?, G.7)

where QO and q are known input parameters that are consistent with the
similarity assumption of Equation (3.5). Therefore, from Equation (3.5) we

obtain the boundary condition:
QD(O) =1. (3.8)

Note that for constant injection rate (i.e., q=0) QO is the rate of
injection itself but for q > 0 it has physical units different from that
of flow rate. To obtain the dimensionless form of the flow-law given by
Equation (3.10) we wuse Equations (3.1-3.5) to substitute for the
dimensional variables in Equation (2.16) and obtain Equation (3.9):

- (2n'+1)

H Y%  Po1/n '
qQ = H [ gK - o]l/n [- (2n +1) rlD ]l/n t{w(2n +1)+p- 2}/n (3.9)
ao

For this relation to be consistent with Equation (3.5) the power-law

indices must be related by:
{w(2n'+1)+ p - }/Nn' = q . (3.10)

In addition, we define the dimensionless flow rate QD(n) to be given
by Equation (3.11) and we determine Qo as a function of the power-law
coefficients po, w0 and L0 from Equation (3.12):

[ oW (2D Py Lt (3.11)

QD(n) D an

(2n +l)

_ _Q___________ 1/n'
Q = 6 { 2K L } . (3.12)
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The fluid leak-off rate law given by Equation (2.24a) is next recast
in the form of Equation (3.13) by using Equations (3.2) and (2.24b) to
express t as a function of n and t:

cq-at/YH M (3.13)

q (x,t)

T(x) . (3.14)

i}

Comparing Equation (3.13) with the similarity form of Equation (3.6), we
make the following identifications:

apm  =a-a'HTm, (3.15)
ro=on, (3.16)
Yo = C . (3.17)

Under the similarity coordinate transformation, Equation (2.10) for
conservation of fluid mass transforms to Equation (3.18):

Yo, -1, %o NMp g

e —— r—
Ty {o Wy -in 251 €57 + L, dn T+ M Hg g ptt =0 . 5 g

Equation (3.18) can be rewritten in the form:

dWy(n)

dQ,(n)
D T+~q _
ct{mWD(tl) - n an 0

w+i-g-1
jt + dn + BqLD(n)t =

(3.19)

that is suitable for evaluating the relative magnitudes of the storage and
leak-off terms. The dimensionless ordinary differential equations that
govern the dimensionless similarity variables under different assumptions
regarding the relative importance of the storage, transport and leak-off
terms can be derived from Equation (3.19). For example, when all three
terms are significant, the similarity solutions are governed by Equation
(3.20a) provided the power-law exponents %, w, q and r satisfy the
compatibility relations given by Equations (3.20b) and (3.20c):
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d Wy(n) d Qy (m)

afw WD(n) - n an } o+ an + BqLD(n) =0, (3.20a)
p+L=1+q, (3.20b)
R =qg-r1. (3.20c)

In Equation (3.20a) the parameters a« and B are dimensionless
parameters that measure the importanée of the fluid storage and fluid
leak-off terms, respectively, relative to the fluid transport term. The
fluid transport term is assumed to be significant when the fracture
extends but it may not be the most significant term if the fracture ceases
to propagate. This can occur as a result of a stress barrier, a stiffness
or fracture toughness barrier, or a sand-out condition within the fracture
that prevents the fracturing fluid from approaching the fracture tip. The
parameters a and B are defined by Equations (3.21a) and (3.21b),
respectively:

QR
H

YGHLOWUIQ0 , (3.21a)

B = ZYLHLOQLO/QO . (3.21b)

In Equation (3.20) only one of the two dimensionless parameters a
and B can be independently specified, the other is determined by the
solution itself in establishing the position of the moving fracture front.
We deliberately introduced this problem-determined parameter into the
governing differential equation by choosing to solve the governing
differential equation over the domain 0 ( n ¢ 1 instead of over a domain
of unknown extent 0 ¢ n' ¢ UE The latter domain would require a
different similarity variable n' where n':nL is the position of
the tip of the fracture that must be found as a part of the solution. In
the general case in which storage, transport and leak-off terms are all
taken into account, the dimensionless parameter B is related to « by an

]
expression of the form B = ZYL(aIYw)g(n ) where g(n') is a
known function of n' (i.e. Equations (3.55a) and (3.59a) with (l+r-w)=0).
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It will be shown that similarity solutions of the kind considered here
can be found for this general case only for a certain specific value of
the fluid injection power-law exponent g that is related to the fluid
viscosity exponent n' and leak-off exponent m. This limits the usefulness
of the similarity solution when all three terms are important to this
specific case. However, because limiting forms of the solutions, that are
not subject to the above restriction on the fluid injection power-law
exponent, can be found when either fluid storage or fluid leak-off are
neglected, it is useful to develop the governing equations and solutions
for these two limiting conditions as well. The governing Equation (3.22a)
for the case when leak-off effects are small compared to storage effects
is obtained by neglecting the leak-off term in Equation (3.19):

d Wy(n) d Qp(n)

a{w WD(n) - dn } + an =0. (3.22a)
w+=14+q, (3.22b)
L£q-1. (3.22c)

As indicated by Equation (3.22b) and Inequality (3.22c), only the
power-law balance between the fluid storage and fluid transport terms is
enforced in this case, with the result that 8 is a dimensional parameter
while a is a dimensionless parameter that is an implicit function of the
independent power-law exponents q and n'. The parameter B must be
determined as a part of the solution to Equation (3.22a). The time period
over which this approximation is valid is found by requiring that:

w+l-g-1 r+t-q

at >>B8t

or equivalently,

1/(14r-w)

t <« tS = {a/B }, (3.23)

where tS is identified as the upper limit of the time period when this
large storage small leak-off approximation can be invoked.
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The opposite case when fluid leak-off effects dominate the effects of
fluid storage can be found similarly by neglecting the fluid storage term
in Equation (3.19):

d Qp(n)
an + BqLD(n) =0, (3.24a)
w+L#1l+q, (3.24b)
=qgq-rT. (3.24c)

As before, Inequality (3.24b) and Equation (3.24c) indicate that only
the power-law balance between the fluid leak-off and transport terms is
enforced. Consequently, o is a dimensional parameter while 8 becomes a
dimensionless parameter that is an implicit function of the independent
power-law exponents q, n' and m. The parameter « must be determined as a
part of the solution to Equation (3.24a). The time period during which
this approximation is valid can be found from:

w+l-g-1 r+%-q

at (<(Rt

or equivalently,

tr>t = {osppl/ (HT-0) (3.25)

where tL is identified as the lower limit of the time period when this
large leak-off small storage approximation can be invoked.

It is important to realize that although Equations (3.23) and (3.25)
look similar, they lead to different results because a and B switch
roles as the dimensionless parameter, and the value of the dimensionless
parameter is evaluated using different governing equations and power-law
exponent balance relations. This will become more evident in the explicit
expressions that will be presented later for the dimensional parameters.
In the intermediate time range tS <t S-tL’ storage and leak-off terms
are both important and except for certain specific combinations of q, n',
and m, no similarity solutions of the present kind can be found.
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3.2 Initial And Boundary Conditions For Dimensionless Governing Equations

The initial and boundary conditions that must be satisfied by the
dimensionless governing Equations (3.20a), (3.22a) and (3.24a) are that
the flow rate is specified at the wellbore and that it is zero at the
crack-tip. In addition, the crack must close at the crack-tip for PKN
fractures while it is required to close smoothly for CGDD fractures. The
initial condition is that the crack width and the crack length be zero at

initial time.

PKN_And CGDD Fractures:

Initial Conditions:

wD(m) = pD(w) =0. (3.26)
Boundary Conditions:
wD(n) =0,n)l. (3.28)

Boundary Condition For CGDD Fractures:

d wD(n)

dn =0. (3.29)

n=1

The bottomhole pressure pw(t) that is the focus of interest in this

work is given by:

p, (t) =S+ P, Pp(OOt” . (3.30)
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3.3 Model Specific Analyses Of Constant Height Fractures For PKN And CGDD

Fractures

The analysis up to this point has been the same for both PKN and CGDD
fractures and, in fact, is valid for constant height fractures of arbitrary
cross-sectional shape. The essential difference between the PKN and CGDD
models is embedded in the crack-opening relation between the crack width
W(x,t) and the fluid pressure p(x,t). By substituting the similarity
representations for these two quantities in the crack-opening relation for
PKN fractures given by Equation (2.20) we arrive at:

Wp(n) = pp(n) (3.3D)
w=p, (3.32)
WO = H polEc , (3.33)

so that the dimensionless similarity distributions and the power-law
variations with respect to time at a fixed value of the similarity
coordinate n are the same for both fracture width and fluid pressure.

The corresponding relations for CGDD fractures are less
straightforward. They are obtained by substituting the similarity
representations for W(x,t) and p(x,t) in Equation (2.21):

Wo(n) 2 } ? ¢ Pp(t) dt d ¢ (3.34)
n) = - ’ ‘ B
D T a0 vZ-dw?th
w=p+2, (3.35)
W, = 2L0p0/Ec . (3.36)

We see from Equation (3.35), that unlike in the case of PKN fractures, the
growth exponents for fracture width and fluid pressure of CGDD fractures
are different by an amount equal to the growth exponent for the length of
the fracture. This basic feature is the reason for the radically different
pressure responses exhibited by PKN and CGDD fractures.



The condition of smooth closure of the fracture at its tip can be

either directly imposed on wD(n) as in Equation (3.29) or indirectly
imposed on pD(n) as in Equation (3.37), using the result of Equation

(2.22a):

3.3.1 Power-Law Exponents

pD(“)
f(l-nz)

dn =0.

(3.37)

The power-law exponents for fracture width, fluid pressure and fracture
length can now be obtained in terms of q, n' and m by solving Equations
(3.20b) and (3.20c) together with either Equation (3.32)
for PKN fractures or Equation (3.35) for CGDD fractures. Equation (3.20c)
must be not be enforced for the limiting case of small leak-off effects
while Equation (3.20b) must not be used in the limiting case of small
storage effects. When these Equations are solved simultaneously we obtain
the following results for the power-law exponents:

(3.10), (3.16),

General Case

_ 1 n'+l
P = 03t 2n'e3
6w = 1 + n'+l
- 2n'+3 7 2n'+3
- 2n'+2 n'+2
Y= et 2ntes
[}
q = 2 _ 2n'+3

PKN FRACTURES

1/5 for n'=1, q=0 ,

1/5 for n'=1, q=0 ,

4/5 for n'=1, q=0 ,

3/4 for n'=1, m=1/2 .

(3.38)

(3.39)

(3.40)

(3.41)
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CGDD_FRACTURES

p = n?lz = - 1/3 for n'=1, q=0 , (3.42)
w = n' . L 4 - 1/3 for n'=1, g=0 (3.43)
n'+2 2 T ’ :
_ n'+l 1 _ _ _
P = ne2 Y9 q = 2/3 for n'=1, g=0 , (3.44)
q = &L 9 n = 0 for n'=1, m=1/2 (3.45)
n'+2 ’ ) )

These results indicate that for fluid injection at constant flow rate
(i.e. q=0) fracture width at any fixed value of n, and in particular at
n=0 at the wellbore, increases (i.e. w > 0) for both PKN and CGDD
fractures as the fracture extends (i.e. % > 0) with time. The rate of
increase of the fracture width is generally smaller for PKN fractures than
for CGDD fractures. However, the pressure at a fixed value of n increases
(i.e. p > 0) with time in the case of PKN fractures but decreases
(i.e. p ¢ 0) with time in the case of CGDD fractures yielding a significant
qualitative difference in the bottomhole pressure response. Further, for
both types of fractures these results predict smaller rates of increase or
decrease for Newtonian fluids (n'=1) than for non-Newtonian power-law
fluids that have smaller values of n'.

The apparently strange results of Equations (3.41) and (3.45) in which
the injection flow rate exponent q is given as functions of n' and m merely
reflect the fact that power-law similarity solutions of this kind can be
obtained for the general case when all three storage, transport and
leak-off terms are retained only for the specific value of the pumping rate
exponent g that satisfies this Equation for given n' and m. For example,
for the case of a Newtonian fluid (n'=1) and the standard half-power
(m=1/2) leak-off law, Equation (3.35) for PKN fractures is satisfied only
if gq=3/4 and Equation (3.39) for CGDD fractures is satisfied only if g=0.
Therefore, for general analysis of hydraulic fracturing considering
storage, transport and leak-off terms simultaneously, these similarity
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solutions are not very useful unless the values of n' and m are chosen to
satisfy these equations. However, as we will show, they remain useful for
interpreting the limiting cases of small leak-off when the rate of fluid
leak-of f is negligible compared to rate of change in fluid storage, and
for interpreting the opposite case of large rate of fluid leak-off when
fluid leak-off dominates the rate of change in fluid storage. For these
limiting cases there is no restriction on the pumping rate power-law
exponent q.

Case Of Small Fluid Leak-0Off

The results for this case are obtained by not enforcing Equation
(3.20c) that represents the compatibility of power-law behaviors between
the fluid leak-off term and the fluid transport term in Equation (3.18).
When Equation (3.20c) is neglected, the results that are obtained for p,
w and % are identical to those given above by Equations (3.38), (3.39)
and (3.40) for PKN fractures and by Equations (3.42), (3.43) and (3.44)
for CGDD fractures. No Equations that correspond to Equations (3.41) and
(3.45) are then obtained.

Case Of Small Fluid Storage

Similarly, the results for the case when fluid leak-off dominates
fluid storage effects are obtained by not enforcing Equation (3.20b) that
represents the compatibility of the power-law behaviors between the fluid
storage term and the fluid transport term in Equation (3.18). These
results are given below:

PKN_FRACTURES
P = Znnz * %q = 1/8 for n'=l, q=0, m=1/2 , (3.46)
@ = Zarp ¢ %q = 1/8 for n'=l, g=0, m=1/2 , (3.47)
L = m + q= 1/2 for n'=1l, q=0, m=1/2 , (3.48)
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CGDD _FRACTURES

p =-DM D _y/4 for n'=1, g=0, m=1/2 (3.49)
=Tn+l T 4297 =1 ¢=0, m=l/Z, .
__m n'+2 - _ _ _
W o= SNg ot gn74p 9= 1/4 for n'=1l, g=0, m=1/2 , (3.50)
8 = m + q= 1/2 for n'=1l, g=0, m=1/2 , (3.51)

3.3.2 Power-Law Coefficients

The power-law coefficients po, w0 and L0 can be determined as
functions of Qo, Ec' C, H, K', n' and « and/or B. When the general
case is being solved, a(n',m,B) will be considered to be determined by
the solution as a function of n', m and B. In the limiting case of small
fluid leak-off, the power-law coefficients depend only on the dimensionless
parameter a(q,n'); while in the limiting case of small fluid storage they
depend only on the dimensionless coefficient B8(q,n',m). The expressions
that are given below for these coefficients were obtained by simultaneously
solving Equations (3.12), (3.21a), (3.21b) and either Equation (3.33) for
PKN fractures or Equation (3.36) for CGDD fractures. Equations (3.55a) and
(3.59a) relate the dimensional parameter B to the dimensionless parameter
a for PKN and CGDD fractures in terms of the characteristic times S
and i defined by Equations (3.55b) and (3.59b), respectively. Note
that in Equations (3.55a) and (3.55b), (l+r-w)=0 for this general case.

The estimates for tS and tL’ given below, show that the times L
and i characterize the nature of the solution and its transition from
primarily fluid storage dominated fracture extension at small times to
primarily leak-off dominated fracture extension at large times. Note that
these characteristic times are different for PKN and CGDD models but are

the same for both limiting conditions.
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PKN FRACTURES
o, - [2.6" oy (2n'+2),~(3n'" +3)Q (n'+1);1/(2n"43) (3.52)
Co2.6" o, -L-n'y (n'+1),1/(2n'+3)
W, = [ ot Koo T g, ) , (3.53)
2.6"' o (2n'+2) -(n'43)g (n'42)41/(20"43)
L, = [ (ntezy Ko ECH Q, ] (3.54)
Yo
®/2v,) = (u/Yw)(Zn'+2)/(2n'+})TP-(l+r-m) , (3.552)
n' K.Q (n'+l)
= [ 2.6 {2n'+2-(2n'+3)m-(n'+1)q} (3.55b)
P Yq C-(zn'+3)Hn'Ec . .
CGDD FRACTURES
4.6" o (n'+1),1/(n"+2)
py = [ % — K E ] , (3.56)
o W
n' 2 ] [} L
W= 4.6 o KaEc-lH-(n +2)Qo(n +2),1/2(n"42) (3.57)
o W
a6yl D) (n'42), (n'42)41/2(n'+2)
Lo =1 -1 (2n'+2) a EcH Qo ] ’ - (3.38)
Yo Yy
(B/ZYL) (alyw)(n +1)/(n'+2) C-(l+r-m) , (3.59a)
oK g (D)
[ 4.6 a ]{2n'+2-(2n'+4)m-(n'+2)q}_ (3.59b)

Tty C(2n'+4)H(n'+2)EC
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Case Of Small Fluid Leak-0ff

The power-law coefficients when leak-off is negligible are identical
to those given by Equations (3.52), (3.53) and (3.54) for PKN fractures
and by Equations (3.56), (3.57) and (3.58) for CGDD fractures. The
dimensional coefficient o can be calculated for PKN and CGDD fractures
from Equations (3.55) and (3.59), respectively. The time 1limit tS for
the small leak-off assumption can be computed using o« from the solution
to the governing equation and the value of B given by Equation (3.55a)
(for PKN fractures) and Equation (3.59a) (for CGDD fractures) in the
following Equations:

PKN_FRACTURES

te = 1p [y ) PN+ (y r2y )t/ (1)) (3.60a)

Lirw = (2232 MAL g (3.60b)
CGDD_FRACTURES

b = 1 [aim 20D (y gy 511/ (147-0) (3.61a)

Lo = (T2 - 2q-m) . (3.61b)

Case Of Small Fluid Storage

The power-law coefficients when fluid storage is negligible are given
by Equations (3.62), (3.63) and (3.64) for PKN fractures and by Equations
(3.66), (3.67) and (3.68) for CGDD fractures. The dimensional coefficient
a can be calculated for PKN and CGDD fractures from Equations (3.65) and
(3.69), respectively.
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PKN_FRACTURES
o 2.6" B . -1 (2n'41)-(3n"42), (n'+1)11/(20"+2)
Po = 1 % 24, K.CE, H 0, ] , (3.62)
C2.6" B -1 -l-n', (n'41),1/(2n'+2)
W, = [ S oy ke, ] , (3.63)
B8 ~-1.-1
Lo = [y O Q, 1, (3.64)
(arvy) = (B/2YL)(2"'*3)/(2"'*2) L), (3..650)
n' K.Q (n'+1)
=26 Tao ]{zn'+2-(2n'+3)m-(n'+l)q} (3.65b)
P YQ C(2n +3)Hn Ec
CGDD_FRACTURES
_Loae™ BT ant (2ns)yntg -n* 1/2(n"+1) (3.66)
Po =2 [ Y -2n' "a c 0 ! :
@ (@)
n' 2 ' *
W= a+s o’ _ Kac-zEc-lH-(n'+2)Qo-(n +2),1/2(n'+1) (3.67)
Qv
_r B 1,71
L= [y CTH Y 1, (3.68)
(O‘/Yw) - (B/ZYL)(n +2)/(n'+1) TC(l-l-r-m), (3.69a)
o K (M) ' ' '
10 [ 4.6 ao ]{2n +2-(2n'+4)m-(n'+2)q} ) (3.69b)

YQ C(2n'+4)H(n'+2)Ec

The time 1limit tL for the small storage assumption
by substituting in the following equations the value

can be computed
of B from the
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solution to the governing equation and the value of a given by Equation
(3.65a) (for PKN fractures) or Equation (3.69a) (for CGDD fractures):

PKN FRACTURES

_ 1/(2n'+2) 1/(1+r-w)

tL = 15 [(B/QYL) (YW/ZYL)] ’ (3.70a)
4
LeT-w = [ 1 - % q - %ﬁTf% mi. (3.70b)
CGDD FRACTURES

_ 1/2(n'+1) 1/(1l+r-w)

tL = Tp [(B/2YL) (qw/2q|_)] ’ (3.71a)
[ ] [}

lit-w = [ 1 - gﬁ%%i q - gﬁ%%i mi . (3.71b)

3.3.3 Values of The Dimensionless Parameters a and 8

Case 0Of Small Fluid Leak-0ff

The dimensionless parameter o« for negligible fluid leak-off and the
dimensional parameter B for negligible fluid stbrage must be computed as a
part of the solution to the boundary-initial value problems that were
previously formulated for these conditions. These boundary-~initial value
problems are difficult to solve, particularly for CGDD fractures which
involve the solution of an integro-differential equation, and are beyond
the scope of this work. However, for PKN fractures, calculations
equivalent to those required here were performed by Nordgren [28] for the
case of a Newtonian fluid (n'=l) and fluid injection at a constant
flowrate (g=0). Nordgren posed his boundary value problem in terms of a
similarity variable that varied from zero at the wellbore to an unknown
value at the fracture tip. This unknown value was determined as a part of
the solution to the problem. Because this approach is fully equivalent to
the boundary fixing method employed in the present work, the corresponding
value of o can be determined from Nordgren's solution by comparing the
value for the fracture length power-law coefficient L0 from his Equation
(C-9) with that given by Equation (3.54):
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2.6"" a(2"*2) 1/(2n'43)

T Y_(2n'+2)] = 0.68 , (3.72)
W

[

a = 0.228 , (3.73)

for n'=1, YQ=31/16 and Yw:wla.

For CGDD fractures no reliable values of o can be obtained from
previous work in the literature. Geertsma and De Klerk [9] present an
approximate power-law expression for L(t) but the assumptions invoked to
derive these results are too restrictive to be either meaningful or
reliable for evaluating «. For example, Equation (23) in their paper
has been derived assuming that the fluid pressure profile can be evaluated
by neglecting the storage term in the equation of mass conservation and by
using the value for fracture width at the wellbore that is obtained for a
fracture subjected to a uniform pressure equal to (what amounts to) the
average fluid pressure in the fracture. If, regardless of our reservations
about the accuracy of this approach, this Equation is used to compute o
by comparing against the power-law coefficient L0 given by Equation
(3.58), we obtain:

(2n'+2)

Yo oMY a2y

[ A.sn. Yw(2n,+2)] = 0.68 , (3.74)
a=1.51, (3.75)

for n'=1 and YQ= Yw:l. Note that if an elliptical cross-section

is assumed for this CGDD fracture, then = 3w/l6, Y. = w/4

q W

yielding a=1.35.

Case Of Small Fluid Storage

In the case of small fluid storage, the value of the dimensionless

parameter B is easily obtained by integrating Equation (3.24a) subject to
the boundary conditions given by Equations (3.27) and (3.28):
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1
Q) =8 1 ay(®) dt (3.76)
1
B =1/{ é qLD(E) dg] . (3.77)

For n'=1 and m=1/2, Equations (3.76) and (3.77) yield the standard results:

Q(m) = 1 - Zginta, (3.78)

B =2/% . (3.79)

The above results are valid for both PKN and CGDD fractures. The
dimensionless width and dimensionless pressure profiles for PKN fractures
can be obtained by substituting these expressions in the definition of

QD(n) given by Equation (3.11) and integrating once more:

l l ] 1
Pp(M= Ho(n) = [(20'52) [ (8 ] q(5)8)" ag)t/ (2n'+2) (3.80)
n

For n'=1 and m=1/2, Equation (3.80) gives:

1 1/4

Pp(M) = Wy(n) = [~ v(1-n?) - an(L - Zsin™t mypt4 (3.81)

Ll

pp(0) = Wy(0) = @/m’ = 1.2¢3 . (3.82)

To obtain the width and pressure profiles corresponding to Equation
(3.81) for CGDD fractures it is necessary to solve an integro-differential

equation for either the dimensionless width wD(n) or the dimensionless
pressure pD(n). This is a difficult task that is not attempted here.
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4. EXTENDED ANALYSIS FOR FRACTURES WITH ARBITRARY ASPECT RATIO

4.1 The Hybrid CGDD-PKN Fracture Model

Let us now consider the possibility of generalizing the foregoing
results for CGDD fractures of uniform width to the case of fractures with
non-uniform width cross-sections, and in particular to cross-sections of
elliptical shape as in PKN fractures. The basic difference between PKN and
CGDD fractures lies in the neglect of the contribution to the
crack-opening stiffness from either the lateral or the longitudinal direc-
tion based on estimates of their relative magnitudes. For fractures that
do not slip at the fracture boundary, the crack-opening stiffness from a
given direction is a function of the curvature of the fracture width pro-
file in that direction so that the contributions to stiffness from these
two directions depend on the relative magnitudes of the height H and the
length L(t). Therefore, we can extend the results for CGDD fractures to
arbitrary cross-sections that do not slip at the ends provided the ratio
L(t)/H is sufficiently small. Likewise, PKN fracture assumptions are valid
only for fractures for which the ratio L(t)/H is sufficiently large. The
assumption of a wuniform width cross-section with slip at the top and
bottom boundaries is now seen to be really necessary for CGDD fractures
only if we insist on applying this model for arbitrarily large L(t)/H
ratios much greater than unity. Similarly, it is seen that the PKN
fracture model cannot be valid for arbitrarily small L(t)/H much smaller
than unity because the stiffness in the longitudinal direction would begin
to dominate for sufficiently small L(t) at a fixed value of H.

4.1.1 Characteristic Times For Fracture Extension;
PKN And CGDD Fractures

These observations imply that, subject to the assumptions that the
fracture does not slip at its edges and that the fracture height remains
constant and uniform at all times, the CGDD fracture model would be
applicable to the propagation of hydraulic fractures at early times such
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that L(t)/H << 1 and the PKN fracture model would be applicable at late
times such that L(t)/H >> 1. To determine at what point in time we should
switch from the CGDD model to the PKN model when attempting to predict the
extension of a fracture from large to small values of L(t)/H let us
restrict the aspect ratio of CGDD fractures with non-slipping lateral

fracture edges to:

1» L@)H20 tHLC » t)ao, (4.1)

and the aspect ratio of PKN fractures to:

o) L(E)/HX» 1 5 =>t ¢t (4.2)

HLP’

and determine the times tHLC and tHLP that define the time ranges
within which these aspect ratio restrictions are satisfied by each model.
If these times overlap, then any time within the overlap region should be
satisfactory for switching from the CGDD model to the PKN model as the
aspect ratio increases beyond unity with fracture extension. On the other
hand, if tHLC is much 1less than tHLP and a substantial gap exists
between them, then a transition model that simultaneously allows for
stiffness contributions from both directions would be required to bridge
the time regime when the aspect ratio is in the neighborhood of unity.
Intuitively, it would seem that such a transition model would always be
needed because of the coarseness of our transition time estimates. These

estimates can be refined by detailed calculations using the full governing

equations.

For this analysis, it is convenient to recast the power-law growth
expressions for fracture length, for small fluid leak-off and small fluid
storage, in dimensionless form in terms of the aspect ratio LD = L(t)/H
and the dimensionless times tDS = t/rHLS and tDL= t/THLL' Note
that the characteristic time TLS for the small leak-off model and

THLL for the small storage model are different for these two regimes;
but, unlike tT_ and =

p c’ they are the same for both PKN and CGDD
models for the same time regime.
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Case Of Small Fluid Leak-0ff
L
K H(3n +6)

_ 1/[2n'+2+(n'+2)q]
ws = Lo ] - (4.3)
ca
PKN_FRACTURES
n' (2n'+2) )
_r 2.6 a P
lp = [ Yq '+ 1 ts (4.43)
Ty
] ]
=52+ ots a (4.4b)
CGDD_FRACTURES
Lp =1 : n a(?;;’:i;) ] tl)snC ' (4.53)
4.6 Yy
_n'+l 1
be= g t o5 A - (4.5b)
Case of Small Fluid Storage
oo HAL |1/ (ma) 4.6)
HLL Q,
PKN_FRACTURES
_r B (m+q)
Lp = [ 21, 1ty . 4.7)
CGDD_FRACTURES
-7 B (m+q)
Ly = [ 2, ]ty . (4.8)

4.1.2 Aspect Ratio Limiting Times

The parameters THLS and THLL defined by Egquations (4.3) and
(4.6) for the small fluid leak-off and small storage limiting conditions
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are the characteristic times for fracture propagation over a distance H,
and are, therefore, useful indicators of the rapidity of fracture
extension. By setting LD =1 in Equations (4.43), (4.53), (4.7) and
(4.8), we obtain the following estimates for the aspect ratio limiting
times tHLP and tHLC:

Case Of Small Fluid Leak-0ff

n' (2n +2)

2.6 ST
te = [y @n'+2) | THLS? (4.9)
ey,
Yo o o (20'+2)
.Y -1/%
tuc =0 —nr @y ! C s (4.10)
46" v,
Case of Small Fluid Storage
_ B -1/(m+q)
typ = L 2v, ] T (4.11)
_t B_,-1/(m+q)
tye = [ 2v, ] THLL (4.12)

It can shown that the overall characteristic time L for PKN-type

fracture extension, and the overall characteristic time ™ for

CGDD-type fracture extension are related to the corresponding small

leak-off and small storage characteristic times THLS and THLL for

each model by:

2.6""  Ts{2n'+2+(n'+2)a} 4, 0n0,9 (n141)g-(2n" +3mp
Tp [ YQ 1 (m+q)(2n'+3) (4.13)
HLL
and
n' {2n'+2+(n'+2)q}
4.6 "HLS 1/{2n'+2-(n'+2)q-(2n' +4)m}
=1 (m+q) (2n' +4) (4.14)

Y
Q THLL
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respectively. The above relationships between the characteristic times
that were separately defined for different time regimes in apparently
different models reflect the fact that PKN and CGDD models are not really
different models but that they represent the limiting forms of a hybrid
fracture model for arbitrary aspect ratios, as the aspect ratio varies
continuously from small to large values past the aspect ratio of unity.

4.2 Bottomhole Pressure Response Of The Hybrid CGDD-PKN Fracture Model

An idealized representation of the bottomhole pressure record that
would be obtained for a constant height hydraulic fracture described by
this extended hybrid CGDD-PKN model is given by curve ABCDEFG in Figure 2.
The corresponding curve for fracture length is given by the curve IJKLM.
The pumping of the fracturing fluid at a constant rate is begun at A and
this leads to a rapid rise in pressure to B followed by breakdown of the
formation and extension of the fracture beyond the borehole stress cage to
the point C. Between C and D the fracture extends as a CGDD type fracture
with the bottomhole pressure declining with time. The aspect ratio
approaches one in the neighborhood of D and beyond D the mode of fracture
extension gradually becomes of the PKN-type. As a result, the bottomhole
pressure begins to increase with time as indicated by the portion DE of
the pressure curve. At E the pumps are stopped, the flow effectively
ceases in the fracture, and the fluid pressure achieves the instantaneous
shut-in pressure value (ISIP) which is taken to be equal to the minimum
principal stress S acting to close the fracture. Oue to fluid leak-off,
the pressure will decline thereafter; this is indicated by the segment FG.
Because of the stored energy of the fracture, fracture fluid flow and
fracture extension does not actually cease immediately with the shutdown
of the pumps. This is indicated by the curve for fracture length which
continues to increase until point L beyond the pump shutdown time.
Thereafter, it does not extend and gradually begins to close as the
pressure in the fracture declines with fluid leak-off.
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The bottomhole pressure curve ABCDHFG indicates how the bottomhole
pressure would continue to decline past the point D if the fracture
continued to respond as a true CGDD fracture having a cross-section of
uniform width and undergoing slip at the top and bottom edges of the
fracture. The corresponding variation of fracture length with time is
given by the curve IJKNO.

The increase of bottomhole pressure with time displayed by the segment
DE that is associated with stable PKN-type fracture extension is often
present in hydraulic fracturing pressure records. However, additional
complications not indicated in Figure 2 can intervene between the point E
and the shutdown of the pumps. These are usually related to sand-out in
the fracture, screen-out at the wellbore, stable fracture height extension
or rapid unstable growth of fracture height [26,27]. Sand-out inhibits
fracture fluid flow and fracture propagation, and leads to a sharp increase
in the slope of the bottomhole pressure curve. Stable fracture extension
contributes added compliance to the fracture and leads to a smaller, even
zero, slope in the bottomhole pressure vs. time curve. On the other hand,
rapid unstable growth of fracture height is characterized by a negative
slope and decrease in the bottomhole pressure from a previously attained
high. These complex phenomena are beyond the scope of the present analysis
and are not dealt with here.

It is, however, of interest that a CGDD-type fracture extension event
of the kind predicted by the hybrid model at early times is not often
observed in hydraulic fracture pressure records even in situations where
there is reason to believe that there is no substantial growth in fracture
height at early times. When behavior of this kind is observed, it is
usually attributed to height growth at these early times. One possible
explanation is that the time range within which pressure decline due to
CGDD-type fracture extension occurs is very small so that the point D is
too close to C to be separately identified, particularly because there
usually is a substantial amount of short term fluctuations and noise in
the pressure record immediately after the sudden breakdown of the

formation. To explore this point further, let us estimate the times tHLP
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and tHLC for a hydraulic fracturing job having the parameters given in

Table I. A Newtonian fluid is assumed to permit the use of the previously
calculated values of « and B.

TABLE I.
Pumping Rate Qo ...................... 10 bbl/min.
Fracture Height H .......... eeeeresees 100 ft.
Fluid Leak-Off Coefficient C ......... 0.0015 ft.min t/2.
Flow Law Index n' .....ccveeveecencces 1.0
Apparent Fluid Viscosity Ka ........... 100 cp.
Poisson's Ratio v.....vvevrreenncnnns 0.15
Elastic Shear Modulus G ......cevceues 2.6 x 106 psi.
These values yield the following estimates for tHLP and tHLC for a

fracture extending as a PKN fracture. We are not able to compute the
corresponding values for a CGDD fracture because a reliable value for the
dimensionless parameter a is not available. To obtain this value the
similarity boundary value problem previously identified for this case
would have to be solved.

THLS = 49 sec.
THLL = 4.3 sec.
9
S = 5.36 x 10" sec.

Estimates From Small Fluid Leak-Off Model

tHLP = 11.2 THLS = 549 sec.

tHLC = 5.15 THLS = 252 sec.
8

t = 1.04 x 10 sec.
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Estimates From Small Fluid Storage Model

tHLP.= 9.86 THLL = 42 sec.

tHLC = 0.274 THLL = 1.1 sec.
8

tL = 2.06 x 10 sec.

If the fracture extends as a PKN fracture, storage effects will
dominate leak-off until very large times because the times tS and tL
are much larger than typical pumping times for fracturing jobs. Therefore,

the appropriate model to use for evaluating tHLP and tHLC is the small
leak-off model. From the results computed for tHLP and tHLC from the
small leak-off model we see that the aspect ratio becomes equal to unity
in the neighborhood of the time range 252 sec. to 549 sec. If the tran-
sition time is smaller than the lower limit of this time range, it is
possible for the pressure decline period due to CGDD-type fracture exten-
sion not to be well defined on the bottomhole pressure record in this
fracturing job. However, it can be seen from Equation (4.4) that THLS
increases with decreasing pumping rate, and increasing apparent fluid
viscosity, and is a strong function of fracture height. Therefore, each
fracture job must be separately evaluated for the existence of an initial
pressure decline segment in the bottomhole pressure record.
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5. SENSITIVITY ANALYSIS AND ERROR ESTIMATES

5.1 Simplifying Assumptions

The primary motivation for undertaking this analysis is to determine
the feasibility of estimating the crack-opening modulus Ec from
hydraulic fracturing bottomhole pressure records. In this Section we
examine under what conditions this would be possible, through analysis
based on constant height models. For this purpose we use the equation:

p,(t) - S =p, pp(0) t¥ . (5.1)

We assume that the dimensionless pressure at the wellbore pD(U) and
the dimensionless parameters o« and B are computed by solving the
appropriate nonlinear ordinary differential equations given in this report
for small leak-off and small storage limiting conditions. These quantities
are in general functions of the power-law exponents q, n' and m and the
type of model (PKN or CGDD) being used to analyze data from a particular
time regime of the fracturing process. We will pay special attention to
the case of q=0 for a constant rate of injection of the fracturing fluid
and will assume that the rheology of the fluid characterized through
laboratory measured K' and n' remains valid within the fracture under
reservoir conditions. Thus, we exclude the possibility of frictional,
thermal and chemical degradation of the fracturing fluid. We also assume
that the fluid 1leak-off behavior is well defined by the leak-off
coefficient C and the exponent m measured in the laboratory. Finally, we
assume that an accurate estimate of the minimum in-situ principal stress
S, perhaps obtained through pump-in/flow-back tests, is available. As a
result of these simplifying assumptions, only the crack-opening modulus
Ec and the fracture height H remain as uncertain parameters.

In addition to the uncertainty of these parameters that are required
as input to the present model there are other uncertainties that arise as
a result of the modelling approximations that are embedded in the models
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themselves. These include the assumption of constant and uniform fracture
height, the crack-opening stiffness assumptions, the assumption of flow
between smooth parallel walls instead of flow within a rough wavy
fracture, the assumption of one-dimensional pressure-independent leak-off
to the formation, the neglect of the details of fluid flow and stress
distribution near the crack~tip and the effects of non-uniform in-situ
modulus and stress distributions. If the proppant is added to the
fracturing fluid, then we must also consider the effects of proppant
settling and entrapment between the fracture walls on fluid flow and
fracture closure. We do not intend to either analyze or account for all of
these complexities in this report, but we will consider the effect of
uncertainty in fracture height on our assumptions because the assumed
fracture height is one of the major uncertain parameters in constant

height models.

5.2 Bottomhole Pressure Time Response of PKN and CGDD Fractures

Let us first examine the effect of the PKN and CGDD model assumptions
on the time history of the bottomhole pressure. To present the results for
both types of fractures on the same plot Equation (5.1) is recast in the
form:

py(t) - S

= tP
p
PoPp(OT

= t, ; ty =t/ (5.2)

where 1= LIS and e for PKN and CGDD fractures, respectively.
This relationship is plotted in Figure 3 for PKN and CGDD fractures for
the small leak-off and small storage limiting conditions and for parameter
values of g=0, m=1/2 and n'=1,1/2. As expected, the bottomhole pressure
grows with time for PKN fractures while it decays with time for CGDD
fractures. Both models are sensitive to the fluid power-law index n' in
the small leak-off and the small storage limits. The trend for PKN
fractures 1is towards higher pressures with increasing non-Newtonian
behavior (i.e. decreasing n') of the fracturing fluid. An opposite trend
with lower bottomhole pressures is exhibited by CGDD fractures for

increasingly non-Newtonian fracture fluids. Also, the effect of
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neglecting fluid leak-off while retaining the fluid storage term on PKN
fractures is opposite to that for CGDD fractures. In PKN fractures,
neglect of fluid leak-off for constant flow rate injection increases the
bottomhole pressure. For CGDD fractures, neglect of fluid leak-off
results in lower bottomhole pressures. These differences result from the
fact that fracture length is directly coupled through the crack-opening
relation to the pressure distribution in CGDD fractures whereas this
coupling is only through the fluid mass conservation equation in the case
of PKN fractures.

As previously stated, a time period during which the bottomhole
pressure increases at a rate consistent with stable fracture extension at
constant height predicted by PKN models is often observed in pressure
records. If the in-situ minimum principal stress S is known, then
(pw(t)—S) can be computed from the bottomhole pressure data and plotted
against time on a log-log plot. From Equation (5.1) we see that:

ln{pw(t) - S} = ln{popD(O)} + p In{t} , (5.3)

so that the pressure power-law exponent p and the product
{popD(O)} can be obtained from the slope and intercept,
respectively, of the log-log plot. A procedure for extracting the value of
the crack-opening modulus Ec can, therefore, be based on first using the
value of p thus determined to select the appropriate power-law model for
analysis and then wusing the value of the product {popD(O)} to
determine the value of the crack-opening modulus Ec from the results for
the power-law coefficient for that model. Note that, as previously stated,
this assumes that the necessary calculations have been performed to
determine a«, 8 and pD(O) for each model as a functions of g, n' and m.

5.3 Sensitivity Of Bottomhole Pressure Coefficient To Crack-Opening
Modulus And Fracture Height

For any two sets of the parameters governing the hydraulic fracturing
process the uncertainty of the power-law pressure coefficients p0 can be
calculated from Equations (3.52), (3.56), (3.62) and (3.66). If it is
assumed, for convenience, that there is no uncertainty in any parameters
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other than Ec and H, the following results are obtained from the
different models for the sensitivity of the pressure coefficients p0 to

these parameters:

5.3.1 Case Of Small Fluid Leak-0ff

(Pgp/Pgy) = (EcplEey

(Po2/Pp1) = (Ecof

0

Py ~ B¢

e.

2/3 (e

PKN FRACTURES

)(2n'+2)/(2n'+3)(H2/Hl)-(3n'+3)/(2n'+3)’

< 4/5;

-1<h¢-6/5

1/2 ¢ e

< 2/3;

o ¢n' 1 for fixed H ,

|~

o<n'

f~

1 for fixed Ec .

CGDD_FRACTURES

{(n'+1)/(n'+2)}
Ecl) ’

0<n' <1 for fixed H ,

5.3.2 Case of Small Fluid Storage

(Po2/Po1) = (EcplEey

1/2 € e

){(Zn'+l)/(2n'+2)}(H2/H

£ 3/4;

£ ~-5/4;

PKN FRACTURES

)—(Bn'+2)/(2n'+2)
1 ?

0¢<n' <1l for fixed H ,

0 ¢n' <1 for fixed Ec .
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(5.

(5.

(5.

(5.

(5.
(5.

(5.

4a)

4b)

4c)

5a)

5b)

6a)

6b)
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CGDD_FRACTURES
(Boylpo)) = (E plE, YN+ EN4D gy gy '/ (20142) (5.72)
pp~ESs  L/2¢e <3/4; - 0¢n' <1 for fixed H , (5.7b)
po~H'; -1<hg-1/45  0&n CL for fixed £, . (5.7¢)

The sensitivity of the pressure coefficient p0 to variation of the
crack-opening modulus EC and the assumed fracture height H can be
assessed from Equations (5.4) to (5.7). The variation of pozlp01 as
either the crack-opening modulus Ec or the fracture height H vary over a
factor of four are graphed in Figures 4 and 5 for the values of n'=1l and
n'=1/2. A factor of two uncertainty in the crack-opening modulus alone
results in approximately a factor of 1.5 uncertainty in the pressure
coefficient ratio for all models. At greater values of modulus
uncertainty, the differences in the models leads to larger or smaller
uncertainties with model type and the power-law index n'. For PKN and CGDD
models, the value of n' (chosen to be 1/2 or 1) has a greater impact on
the sensitivity of the pressure coefficient ratio than the choice of the
small leak-off or small storage approximation. These results are useful
for judging how sensitive the pressure record would be to the in-situ
crack-opening modulus and how much of a difference in the measurements we

can expect for a given uncertainty in this parameter.

5.4 Uncertainty in the Calculated Crack-Opening Modulus Due to Uncertainty

in Fracture Height

While the above results indicate how sensitive the pressure response
would be to the crack-opening modulus and fracture height, the sensitivity
of the crack-opening modulus, computed from a given pressure record, to
the choice of the model used to interpret the pressure data and to the
assumed fracture height is of greater interest. To evaluate this, we set
in Equations (5.4a), (5.5a), (5.6a) and (5.7a) to obtain:

Po2 = Po1
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5.4.1 Case Of Small Fluid Leak-0ff

PKN _FRACTURES

3/2
(ECZ/Ecl) = (HZ/HI) ’ (5.8)

CGDD_FRACTURES

(ECZ/ECI) =1 (5.9)

S.4.2 Case 0Of Small Fluid Storage

PKN FRACTURES

(E,/E) = (HZ/HI)(Bn'+2)/(2n'+1), (5.10a)
c2'"¢c

Ec ~H; 2> h ) 5/4 0o¢n'1. (5.10b)

CGDD_FRACTURES

(En/Eqy) = (HZ/HI)'”'/(Z"'+1) , (5.11a)

E. ~ Hh; 1/2 < h £ 3/4; o¢n' <1, (5.11b)

The sensitivity of the crack-opening modulus Ec to variation of the
assumed fracture height H can be assessed from Equations (5.8) through
(5.11) and is plotted in Figure 6 for n'=1 and 1/2. It is seen that the
dominant difference is in the model used to interpret the data. For CGDD
models, the computed crack-opening modulus is relatively insensitive to
fracture height, a_feature that can be exploited to our advantage if the
fracturing job is designed to yield a well defined period of CGDD-type
fracture extension at early times. The crack-opening modulus computed
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from the PKN model, on other hand, is very sensitive to fracture height
and yields a three-fold increase in modulus for a two-fold increase in
assumed fracture height. The PKN model for both small leak-off and small
storage conditions is equally sensitive to fracture height at uncertainty
ratios less than 2, but this difference increases with increasing fracture
height uncertainty ratio. The difference between PKN models for small
leak-off and for small storage is generally greater than the differences
due to the non-Newtonian power-law exponent n' over the range 1/2 to 1.
The effect of non-Newtonian fracturing fluid behavior is to increase the
uncertainty in modulus when the PKN small storage modulus is used. The
effect on the uncertainty in the modulus with change in n' is not
significant for CGDD fractures.

Because many bottomhole pressure records exhibit a time period during
which the bottomhole pressure response is consistent with stable PKN-type
fracture extension at constant height, the high degree of sensitivity of
the crack-opening modulus to the assumed fracture height is unfortunate.
As can be seen from Figure 6 even a 50% uncertainty in fracture height
during this time period will lead to an error of 100% in the crack-opening
modulus with the error doubling to 200% if the fracture height is in error
by 100%. The uncertainty in fracture height can arise from many causes.
For example, the fracture height can be uncertain due to vertical growth
of the fractdre during its extension because in-situ stress and modulus
barriers that favor containment of the fracture do not exist. On the other
hand, a fracture may be well contained by such barriers but the height at
which it 1is contained could be uncertain because the locations of the
barriers themselves relative to the perforations are uncertain. Another
possibility is that the perforated height at the wellbore is much smaller
than the barrier height so that substantial equidimensional fracture
growth will occur before the barriers are reached.

A variety of different analyses similar toc the present sensitivity
study can be performed using the basic relationships derived in Section 3,
by making different choices of the uncertain variables. These choices are
best guided by the specific fracturing conditions prevailing in the field.
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We have focused on the fracture height problem because, in most
situations, the conditions are not favorable to containment of the
fracture at a uniform and constant height. However, up to a certain point
that depends on the size of the fracture to be created, it is possible to
choose the fracturing fluid rheology, the pumping rate and the location of
the perforations relative to barriers to prolong the containment of the
fracture by any existing barriers. Ultimately, if the pumping is
continued long enough at a sufficiently high rate, the pressure at the
wellbore will become large enough to overcome any existing favorable
stress contrasts and modulus barriers and height growth will occur.
Whenever significant height growth occurs, analyses based on constant
height fracture models must be abandoned in favor of models that allow
simultaneous growth of the fracture in the longitudinal and 1lateral
directions.
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6. SUMMARY AND CONCLUSIONS

In this report the analysis of constant height PKN and CGDD types of
models for hydraulic fracturing of underground rock formations was brought
within a unified theoretical framework. A relatively transparent, but
rigorous, similarity analysis of the governing equations was used to
extract the time dependence of the solutions for the fluid pressure,
fracture width, fluid flow rate and fracture length of hydraulic fractures
created by fluid injection at the wellbore at a rate that varies as a
power of time. To obtain the distribution of each of these quantities
over the fracture it 1is necessary to solve the nonlinear ordinary
differential equation that governs the similarity solution. This task is
beyond the scope of the present effort but must be undertaken to complete
these solutions. The growth laws that result from this analysis provide a
systematic means for assessing the differences, limitations and domains of
applicability of constant height fracture models (PKN and CGDD), and for
evaluating their sensitivity to the physical parameters that govern
hydraulic fracturing. Furthermore, as a natural outcome of this unified
approach, it has been possible to develop an extended view of constant
height fractures as a hybrid of CGDD fractures at small aspect ratios that
evolve into PKN fractures at 1large aspect ratios. The power-law
similarity solutions were used to devise a procedure to determine the
crack-opening modulus from bottomhole pressure records. Results of the
model development results and of the sensitivity study on the estimation
of the crack-opening modulus from bottomhole pressure data are summarized

below.

6.1 Modelling Results

The special features and results given in this report for the PKN,
CGDD, and hybrid constant height fracture models are:

o Cross-sections of arbitrary shape which are allowed through the shape
factors Ty and YQ'
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o Non-Newtonian power-law rheology of the fracturing fluid that is
characterized by K' and n'.

o Fluid leak-off that varies as an arbitrary power m of the elapsed time.

o Fluid injection rate that varies as an arbitrary power g of time.

o Power-law coefficients and power-law exponents for fracture fluid
pressure, fracture width, fracture fluid flow and fracture length.

o Estimates provided for the times tS and tL that define the time
regimes when the small leak-off and small storage assumptions can be

invoked.

o Presentation of an extended view of constant height models as a hybrid
of CGDD and PKN models.

o Estimates provided for the times tHLP and tHLC that define the
transition between CGDD-like and PKN-like fracture behavior.

o Sensitivity analysis of the effect of fracture height on crack-opening
modulus computed from bottomhole pressure data.

Because constant height fracture models have been the subject of
considerable previous work it is appropriate to briefly identify here
where the present work extends previously reported results. The complete
solution to the similarity equations for PKN fractures was given by
Nordgren [28] for the special case of a Newtonian fluid, the half-power
fluid leak-off law and constant fluid injection rate. Cleary [6] has
presented the most general similarity solutions for PKN fractures with
non-Newtonian power-law fluids, generalized power-law fluid leak-off and
power-law fluid injection rates. However, as in the present work, no
rigorous computational results comparable to Nordgren's work were given by
him. Geertsma and De Klerk [9] provided an approximate solution for CGDD
fractures that neglects the fluid storage term and approximates the
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crack-opening relationship. Their work is limited to Newtonian fluid flow
in the fracture, half-power fluid leak-off to the rock formation and a
constant rate of fluid injection. Daneshy [7] has reported an approximate
extension of this model to power-law fracturing fluids but information is
not available in sufficient detail regarding this improvement.

In summary, a general theory has been presented by Cleary for PKN
fractures but no rigorous computations of the similarity equations are
available. For CGDD fractures, no similarity analysis that accounts for
all of the features included in the model presented in this document has
been previously reported in the literature. With the exception of the
results reported by Nordgren for a special case of PKN fractures, the
extended treatment of constant height fractures as a hybrid of CGDD
fractures at small aspect ratios that evolve into PKN fractures at large
aspect ratios has not been reported previously. In particular, with the
exception of H that is embedded in Nordgren's work, estimates of the
characteristic times Tps Tes TS and TP and the
transition times tS, tL, tHLP and tHLC have not been previously
identified for PKN and CGDD fractures or for the newly proposed hybrid

extended CGDD-PKN model for constant height fractures.

6.2 Estimation of Crack-Opening Modulus

If the hydraulic fracture is well contained and extends stably at
constant height, then the similarity power-law growth expressions derived
here for the bottomhole pressure provide a simple means of computing the
crack-opening modulus from the bottomhole pressure history. Under these

conditions:

o The fracture will extend initially as a CGDD-type fracture at small
aspect ratios (L(t) < < 1) and evolve into a PKN-type fracture at
large aspect ratios (L(t)/H > > 1). Depending on the fracturing
conditions both of these regimes may not be observed. The time
estimates that are given in this report provide a means of designing
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for a period of stable fracture extension that will exhibit at least
one well defined segment of the bottomhole pressure record that can be
analyzed wusing the expressions given here for the power-law
coefficient and power-law exponent of the bottomhole pressure for PKN
and CGDD fractures.

The calculated crack-opening modulus values are sensitive to the
choice of model used to analyze the data. If the bottomhole pressure
decays with time, a CGDD-type model should be used to analyze the data
provided the time estimates indicate that the use of the CGDD model is
valid. Similarly, if the bottomhole pressure increases with time the
PKN model should be used provided the time estimates indicate that
this is appropriate. In both cases, comparison of the measured and
computed bottomhole pressure power-law exponent will serve as an
independent check on the validity of the analysis.

Subject to the modelling approximations and the assumption that there
is no uncertainty in the fluid properties, the uncertainty in the
crack-opening modulus will be mostly due to the uncertainty in the
assumed fracture height. The crack-opening modulus computed from the
CGDOD fracture model is insensitive to the choice of fracture height,
while the opposite is true for PKN-type fracture extension. Therefore,
CGDD-type extension is preferable to PKN-type fracture extension for
determining the crack-opening modulus, and should be considered to be
a design goal for the purpose of determining the crack-opening
modulus. If the PKN-type model is the model that must be used to
compute the crack-opening modulus, then it should be recognized that
fracture height must be known with greater accuracy than the accuracy
with which we desire to measure the crack-opening modulus.

If fracture height is significantly nonuniform or growing in time,
then the results given here do not hold and variable height models
must be used for analyzing the bottomhole pressure data. Height growth
is pervasive; it cannot be completely suppressed and is significant at
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even moderately favorable stress contrasts at the stress barriers.
Therefore, to conduct a systematic study of the impact of height
growth on the bottomhole pressure and of the sensitivity of the model
assumptions on the computed crack-opening modulus a reliable variable
height simulator, preferably belonging to the third generation of
models, would be required.



- 63 -

7. NOMENCLATURE

English Symbols

~H» M ® A O
(o]

o o ’_II:J':
7~~~
™~
~

© o X X X

o

Fluid leak-off coefficient (Equation (2.24a))

Fluid density (Equation (2.3))

Crack-opening modulus exponent (Section 5.2)

Crack-opening modulus G/(1l-v)

Cross-sectional shape function (Equation (2.6))

Fracture height exponent (Section 5.2)

Height of the fracture

Leak-off height of the racture

Fracture toughness (Equation (2.22b))

Power-law fluid consistency (Equation (2.12))

Apparent fluid viscosity of power-law fluid (Equation (2.17))
Fracture length power-law growth exponent (Equation (3.2))
Fracture length power-law growth exponent

for CGDD fractures (Equation (4.5b))

Fracture length power-law growth exponent

for PKN fractures (Equation (4.4b))

Length of the fracture

Dimensionless fracture length L(t)/H
Leak-off power-law exponent (Equation (2.24a))

Power-law fluid rheology index (Equation (2.12))

Fluid pressure in the fracture

Average fluid pressure in the fracture

Dimensionless fluid pressure in the fracture (Equation (3.3))
Pore fluid pressure in the far-field

Fluid pressure power-law coefficient (Equation (3.3))

Flowing bottomhole fluid pressure (Equation (3.30))

Flowrate power-law growth exponent (Equation (3.5))

Fluid leak-off rate (at fracture cross-section)

(Equation (2.5))
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Dimensionless fluid leak-off (Equation (3.6))

Fluid leak-off rate power-law coefficient (Equation (3.6))
Flow rate in x~direction across fracture width

(Equation (2.15))

Flow rate in x-direction across fracture cross-section
(Egquation (2.4))

Dimensionless fluid flow rate (Equation (3.5))

Flow rate power-law coefficient (Equation (3.5))

Flow rate into the fracture at the wellbore (Equation (3.7))

Fluid leak-off power-law growth exponent (Equation (3.6))
Minimum in-situ principal stress assumed to act

normal to the fracture plane

time

Dimensionless time (Equation (5.2))

Dimensionless time t/z for small storage

large leak-off conditighs(Section 4.1.1)
Dimensionless time t/rH L for small leak-off condition
(Section 4.1.1)

Aspect ratio limiting time for CGDD fractures

(Equations (4.10),(4.12))

Aspect ratio limiting time for PKN fractures

(Equations (4.9),(4.11))

Limiting time for small fluid storage assumption
(Equation (3.70a))

Limiting time for small fluid leak-off assumption
(Equation (3.71a))

Fracture fluid velocity components in the x, y and z
coordinate directions

Fracture width profile at a cross-section (Equation 2.6))
Fracture width at the center of each cross-section
(Equation (2.6))

Dimensionless fracture width (Equation (3.4))

Fracture width power-law coefficient (Equation (3.4))

Spatial coordinates in the longitudinal (horizontal),

L

normal and lateral (vertical) directions with respect
to the fracture
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Parameter that measures the relative importance of

fluid storage and fluid transport effects (Equation 3.213))
Parameter that measures the relative importance of

fluid leak-off and fluid transport effects (Equation (3.21b)
Ratio of the fluid leak-off height to fracture height

Flow rate shape parameter (Equation (2.18))

Fracture width shape parameter (Equation (2.7))

Dummy integration variable

Dimensionless similarity variable (Equation (3.1))
Poisson's Ratio

Dummy integration variable

Average fluid density at a cross-section Equation (2.3))
Specific fracture surface energy (Section 2.3)

Time of arrival of fracture front at location x

(Equation (2.24a))

Characteristic time for extension of CGDD fractures
(Equation 3.55b))

Characteristic time for extension of PKN fractures
(Equation (3.59b))

Characteristic time for extension of PKN and CGDD

fractures under small leak-off large storage conditions
(Equation (4.3))

Characteristic time for extension of PKN and CGDD

fractures under small storage large leak-off conditions
(Equation (4.6))

Fluid shear stress on the fracture surface (Equation (2.12))
Fracture width power-law growth exponent (Equation (3.4))
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