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Abstract

The von Mises stress is often used as the metric for evaluating
design margins, particularly for structures made of ductile
materials. For deterministic loads, both static and dynamic, the
calculation of von Mises stress is straightforward, as is the
resulting calculation of reliability. For loads modeled as random
processes, the task is different; the response to such loads is itself
a random process and its properties must be determined in terms
of those of both the loads and the system. This has been done in
the past by Monte Carlo sampling of numerical realizations that
reproduce the second order statistics of the problem. Here, we
present a method that provides analytic expressions for the
probability distributions of von Mises stress which can be
evaluated efficiently and with good precision numerically.
Further, this new approach has the important advantage of

Nomenclature

Flo,T) FFT of imposed load sampled over period T
Efe] expected value operator

Serp(w) cross-spectral density matrix of imposed loads
q,(1) modal coordinate of n’th mode

q(t) array of all modal coordinates

o(t, x) stress vector at location x and time ¢

o, (x) stress vector at locationx associated with mode »
p(i, x) von Mises stress at location x and time ¢

S . covariance matrix of modal coordinates

providing the asymptotic properties of the probability
distribution.

Introduction

The primary purpose of finite element stress analysis is to
estimate the reliability of engineering designs. In structural
applications, the von Mises stress due to a given load is often
used as the metric for evaluating design margins. For
deterministic loads, both static and dynamic, the calculation of
von Mises stress is straightforward, e.g. Shigley, 1972. For loads
modeled as random processes, the task is different; the response
to such loads is itself a random process and its properties must be
determined in terms of those of both the loads and the system.
There are many ways to analyze such systems (see for example
Lin, 1967, Soong, 1993 or Jazwinski, 1970). In a previous paper

C covariance matrix defined in equation 12

D diagonal intrinsic covariance matrix defined in
equation 13

N rank of D

E({D},Y) N dimensional ellipse about origin whose semi
axes are the diagonals of D

Vi, ({D}, Y, o) collection of N dimensional boxes that contain
the ellipse E({D}, Y), indexed by parameter a.
V, ({D},Y, a)collection of N dimensional boxes that are

contained in the ellipse E({D}, Y), indexed by
parameter o .
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(Segalman er al, 1998), a computationally efficient method of

estimating the RMS value of von Mises stress for the case of . .
input force of Gaussian distribution with zero mean was

presented. '

The reliability calculations for a structure of ductile material
require a linear model for the structure and a statistical
specification of the input forces. In principle, from the linear
model one can deduce all required transfer functions. Input
forces are specified by their auto spectral densities. In the case of
multiple force inputs, the forces may be specified by a cross
spectral density matrix. It is demonstrated here how that

information can be used to calculate the probability distributions '
for the von Mises stress at different locations on the body. An =~ -

integral formulation is presented for cumulative probabilities and
a method for approximating those integrals is also presented.

These results may be compared to a sampling of many
realizations of random input and corresponding output quantities
(see for example Chen and Harichandran, 1998). This Monte
Carlo simulation requires computation of long series of values of
von Mises stress and determination of probability distributions
from histograms of that data. This method was used to check and
compare results generated by the core method of this paper. One
notes that there are two serious deficiencies of this sampling
based approach: ,

*  The method is computationally expensive especially when
output is required at a great many response locations in a
large model. ) L

*  The asymptotic properties of the distribution can only be
determined with extremely large sample sizes. It is these
asymptotic properties that are important in reliability esti-
mation. o

Problem Formulation

Where the applied random load involves either forces applied
at several locations or forces applied at one location but in more
than one direction, the loads are usually represented by the cross
spectral density matrix: (Bendat and Piersol, 1986),

1

. £ T
Spp(©) = lim 5—E[F(0, T)F(,T)'] Eql

where F(®, T) is the finite Fourier transform of the vector of

force components sampled over at period T (*)7 denotes the
matrix transpose: (*) denotes the complex conjugate; and E[e] is
the operator of mathematical expectation. In the case of a single
scalar input force. this reduces to the auto spectral density. The
above assumes that the loads constitute stationary, continuous
processes.

The stress at the point in question can be assembled from the
contributions of each mode:

ot x) = an(t)on(.r) Eq2

where ¢, is the n® modal coordinate and G, (x) is the stress

vector at location x associated with that mode, comprised of the

six non-redundant terms for the stress tensor. In what follows, we
use the vector g(f) = {q,(r)} of modal coordinates.

The square of the von Mises stress can be expressed as a
quadratic operator on the stress vector

Pt x) = o(t,x) A o(t,x) Eq3
where
T
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To obtain the probability distribution of von Mises stress we
begin with the covarance matrix of modal coordinates

S,q = Elq(1)g()"], which may be obtained directly from
Sgp(®) and the modal response of the structure (Soong and
Grigoriu, 1993).

We use the standard methods to decompose § . and to map
the modal coordinates into uncorrelated variables. Observing that

S 9 is symmetric and positive semi-definite, its singular value

decomposition is (Strang 1988),
2,.T
Sge = 0X°0 Eq5
where X is a diagonal matrix whose dimension is the rank of

Sqq and Q is a rectangular matrix having the property that

QTQ = [ is the identity whose dimension is the rank of § pon

{Here we retain only the nonzero terms of the diagonal matrix
and the corresponding columns of the rotation matrix. For a
symmetric, positive semi-definite matrix eigen analysis and
singular value decomposition are the same.) Defining

B=x"0"g, Eq6

we find that components of f are independent, identically
distributed (IID) Gaussian processes, each with unit variance.

T
E[Bp' ) =1 Eq7
We define another set of random variables by
. T
q=0XB=00g. Eq8
A little algebra shows that
El(g-9)g-4)"1=0 Eq9

from which we conclude that
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g=4q = QXp Eq 10

This indirect derivation is necessary because Q is generally a
rectangular, non-invertible matrix. In our new coordinates, B,
the square of the von Mises stress is

2 T
p =pCB Eq1l
where
€y = Y (0hACK,.K,, Eq12
mn

and K = X . Matrix C is square having dimensionality equal
to the rank of § P but possibly much lower rank. Note that the

rank of C is the minimum of the rank of A, the rank of Sqq and the

dimensionality of the stress vectors. Because the rank of 4 is five,
the rank of C can be at most five.

We exploit the symmetry and the positive semi-definiteness of
C in doing its singular value decomposition:

¢ = RD’RT Eq13

where the matrix D is diagonal and has dimension equal to the

rank of C and R is a rectangular matrix having property that

RTR = [ is the identity matrix whose dimension is the rank of
C . The von Mises stress is now

p? = BTRDRTB Eq 14
This suggests yet another change of variables:
y=R'B Eq15

It is easily shown that the elements of y are IID, Gaussian
processes with unit variance. The advantages of the above
transformation are first that it reduces the number of random

variables of this problem to the rank of C (at most five) and

second that it aligns the random variables in the directions of the
axes of the ellipsoids of constant von Mises stress.

p—xD)—ZyD' Eq 16

The mean square of the von Mises stress is

Ep' = [..[ p[Io.00]]4y,

—co

= j _[)'TDZ)'HP,()’,)der

—ca

Eq 17

Noting that I )'fp,( ¥,)dy, = 1, the above becomes

—o0

Elp’1 = YD} Eq18
r

We see that Df is the contribution of the 2 random process to

Ef p2] and the rank of D is the number of independent random
processes taking place at that location. For convenience, we refer

’ 2

We now calculale the probability of the von Mises stress being
less than some value ¥:

P(p<Y) = ITe.00][ 14, Eq19
E({DL, '

where E({D},Y) is the N-dimensional ellipsoid containing
points y associated with von Mises stress less than ¥:

E({D},Y) = {3:b' D*y)< ¥} Eq20

and N is the rank of D . The integral of Equation 19 is difficult
to evaluate.

Quadrature by Boxes

We discuss here how to achieve upper and lower bounds for
the integral in Equation 19. This discussion then leads to
reasonably good approximations for that integral.

We first note that the integral of Hpr(yr)d_v, over an N

dimensional box, B, having faces normal to each of the
coordinates y, , can be calculated analytically:

N
(o] [o2]
1}[ (. mazx) = P(=¥,, min)] Eq2i

where y, ., and y define the boundaries of B and

- T mln
X
O(x) = — | exp(=s>/2)ds Eq22
T

is the cumulative distribution function for a standard normal

distribution (Wirsching et al, 1995).
We next consider volumes V,({D},Y,a) and

Vy({D}, Y, @) each of which is a union of N dimensional

boxes selected so that

Vi({D}.Y,0) cE({D},Y)c Vy({D}.Y,0)  Eq23

The parameter « is an indicator of the level of refinement so that




VL({D}’ Y, a), VU((D}’ Y, o)—= E({D}, Y) as Ot =) oo,

These contained and containing volumes are jllustrated for a
problem of two processes (N = 2)inFigure 1.

e
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Figure 1. A collection of boxes entirely contained in
the ellipsoid, is an admissible V,({D},Y, a)

Expressing each of these volumes in terms of its component
boxes:

V,({D}LY,a) = thijk({D}, Y,a) Eq24
and

Vy({D}LY,0) = kkJBu,k({D}, Y,a) Eq25
The integral is now approximated by:

[Ie.o0dy, = |

HP,(y,)d').‘.,

V({D}.Y,a) U8B, ({D}.Y,a)
4
= X.Ps, by, v.)
k Eq26
and by
HP,()‘,)d)', = I Hpr(yr)dyr
Vy({D}. Y, @) By {{D} Y. 0)
4
= Y. P, 17,0
k Eq27

Recalling Equation 23 and observing that the integrand is
positive, we have upper and lower bounds for P(p<Y):

IIe-on] T,

ZPB“({D}_ v SPp<Y) =
k E({D}LY)

<Py
{DLY, @)
Pl Eq28

We also note that

YPs, ipLY.0) » LPB, D) .y P(P<Y)  Eq29
k k

as . —» = and that convergence is assessed by the difference of
the upper and lower bound quadrature.

The mathematics discussed above has been implemented in a
simple recursive C language procedure which is listed in the
Appendix.

Numerical Comparison

To evaluate the algorithm, we consider a case for which two
independent random processes contribute equally to the von
Mises stress, D, = D, = 1. This occurs on a surface with
independent x and y components of normal stress and no shear.
The resulting probability density can be computed analytically
and is found to be a Rayleigh distribution. Figure 2 compares the
Rayleigh distribution with approximate results obtained using the
algorithm above. '
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Figure 2. Comparison of exact ({1 - exp(—Yz/Z)] )
cumulative distribution function for D, = D, = 1
and numerical quadrature. Quadrature generates

upper and lower bounds which almost overly the
analytic curve.

o
o

The numerical quadrature used here employed 1282 boxes in

the calculation of the lower bound and 1297 in the calculation of
the upper bound. The error is shown in Figure 3. The maximum

error in this case was 2.0x107 and occurred near the RMS
value of von Mises stress. In the quadrature employed, the
magnitude of the upper-bound error was almost exactly the
magnitude of the lower-bound error. Also interesting is the
comparison of the magnitude of the error and the function 1-P,
the difference between the cumulative probability and 1.0. It is
seen that the error stays substantially below 1- P, indicating
that the quadrature remains accurate even out to high values of
von Mises stress.
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Figure 3. The quadrature error and 1 - P for the
cumulative distribution functionfor D, = D, = 1.

Summary

The authors have derived and presented an expression for the
cumnulative probability distribution for the von Mises stress
resulting from random loadings that are Gaussian and of zero
mean. This is an important result for reliability of structures
subject to such loads.

Additionally, a convenient set of expressions were derived for
upper and lower bounds to the cumulative probability.

Finally, it should be noted that the derivation of the cumulative
probability integral and of the approximations for it could also be
applied to any other quadratic function of the load.
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Appendix: Code Fragment for Recursive
Calculation of Lower-Bound Quadrature

// recursive routine to calculate a lower

// bound for the integral

double root2 = sqgrt(2.0);

double slabL{(double *D, int generation,
double remain, double *xi,
int Inner)

double ymax=sqgrt(remain)/D[generation];
if (generation==4)
return(erf (ymax/root2));
if(D[{generation+l] < D[0]}*0.01)
return(erf (ymax/root2});
double sum=0;
double v1, y2;
vyl = 0;
int i;
// in the following, it is assumed that
//xi[Inner] < 1;
for(i=0; i<Inner; i++){
yl = xi{i] ‘*ymax;
y2 xifi+1])*ymax;
double remain2 = remain-
{(y2*D[generation])
* (y2*D[generationl]);
sum += (erf(y2/root2) -
erf(yl/root2))*
slabL{ D, generation+l,
remain2, xi, Inner};

return(sum) ;




