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This paper presents a Generalized Logistic (gLG)

[1] distribution as a unified model for Log-domain
Synthetic Aperture Radar (SAR) data. This model stems
from a special case of the G -distribution [2] known as

the G0 -distribution. The G -distribution arises from a
multiplicative SAR model and has the classical X -

distribution as another special case. The G0 -distribution,
however, can model extremely heterogeneous clutter
regions that the K -distribution cannot model. This
flexibility is preserved in the unified gZLG model, which

capable of modeling non-polarimetric SAR returns from
clutter as well as man-made objects. Histograms of these
two types of SAR returns have opposite skewness. The
flexibility of the gLG model lies in its shape and shift

parameters. The shape parameter describes the differing
skewness between target and clutter data while the shift
parameter compensates for movements in the mean as the
shape parameter changes. A Maximum Likelihood (ML)
estimate of the shape parameter gives an ‘optimal’
measure of the skewness of the SAR data. This measure
provides a basis for an optimal target detection algorithm.
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I. Introduction

The automatic recognition of targets in SAR
imagery can be computationally intensive. One approach
for reducing the computational load, applies a simple
detection algorithm over the entire scene. The detector
locates regions that may contain objects of interest.
Following the detection process, the more
computationally intensive target recognition process is
performed on the regions located by the detector.

The development of an optimal target detection
algorithm depends on precise statistical modeling of the
underlying clutter and target regions. Several models
have been proposed in the past for clutter data. For
example, Rayleigh [3] or Gaussian distributions are
commonly used to model the backscatter associated with
homogeneous regions such as bare ground surfaces, dense
forest canopies or snow-covered ground. For other clutter
types, such as sea surface backscatter, the Lognormal [3]
and Weibull [3] have been used. In another example, the
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Modified Beta [4] has been proposed as a model for
backscatter from different ice types.

For heterogeneous backgrounds many of these
models are inadequate. Here, the K -distribution has
been used extensively [5]. Also, since it was originally
proposed by Jakeman and Pusey [6] to model microwave
sea echoes, the K -distribution has become popular for
modeling multilook [7] as well as polarimetric SAR
signatures [8]. In addition, the K -distribution is
attractive since it has been justified in terms of SAR
backscattering processes. More recently, a new class of
distributions known as the G -distribution [2] has been
proposed to model SAR data. The classical K and the

new G distributions are special cases of this new class.

However, in contrast with the K -distribution, the GO-
distribution can model extremely heterogeneous clutter,
such as urban regions, that the K -distribution cannot
properly model [2].

Empirical measurements indicate that histograms of
many naturally occurring clutter types have different
skewness from those of man-made objects. Here, the
Log-domain histograms of naturally occurring clutter
exhibit broad left tails whereas those of man-made objects
can exhibit a range of distributions which include
symmetric to right-skewed distributions.  Therefore, a
likely measure of the skewness or shape of these
distributions can distinguish between these classes of
SAR returns. In one such example, Pearson’s Second
Coefficient of Skewness served as basis for this measure

[9].

An ‘optimal’ approach finds a probability density
function whose parameters we can adjust and estimate to
measure the shape of SAR returns from naturally
occurring clutter to man-made objects. Additionally, this
measure should produce reduced false alarm rates over
those associated with less optimal approaches including
skewness-based measures.

This paper proposes a Generalized Logistic or gLG
[1] [10] distribution as a model for Log-domain clutter

and target data. We will derive this model from the G°.-
distribution. In particular, the single-look case of the

G0 -distribution reduces to the Generalized Beta-Prime
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(gBP) [1] distribution with two of its parameters set to

one. We refer to this 2-parameter version as the Beta-
Prime (BP) distribution. When Log-transformed, this

yields the gLG distribution. This paper shows that this

model provides a good fit to both Log-domain target as
well as clutter data. The gLG distribution possesses two

fixed parameters (scaling and offset) resulting from the
Log transformation in addition to the Beta-Prime
distribution parameters. The latter are the shape and shift
parameters known as ¢ and b respectively.

The gLG distribution lends itself, in part, to a

Maximum Likelihood estimate of the shape parameter ct.
Here, we derive a closed form expression for the ML
estimate of &¢. However, this expression is not only a
function of the data samples, but also of the nuisance
parameter b. Therefore, it would seem appropriate to
derive the closed form expression for ML estimate for b
then solve the system of two equations and two
unknowns. However, a closed form expression for b
does not exist. An alternate approach is to use the
method-of-moments (MOM) to estimate &. However,
the MOM cannot estimate the full range of ¢«. This
paper discusses one possible approach for estimating
these parameters and contrasts it with a moment-based
approach. Using the estimates resulting from the ML
approach, we propose an ‘optimal’ detector whose
performance can be determined analytically.

I1. Classical SAR Model

SAR returns have been modeled as a distributed
collection of radar scatterers each having a different
amplitude and phase. The field strength from the i-th
scatterer may be expressed as:

E; = KiE;,e’" )
where K; is the system constant that accounts for radar
system factors including propagation losses and antenna
directivity gain, E;, is the field strength, and ¢; is the

instantaneous phase expressed as:
¢ =wt—-2kR +0 )
1 1 1

In the above expression, 8, is the scattering phase, R; is

the antenna to the scatterer range, @ is the carrier
frequency and k& is the wave number.

Assuming statistically independent scatterers, the
total instantaneous field due to N scatterers can be
expressed as a coherent sum of the scatterers in the usable
portion of the radar beam. If we further assume that the
area on the ground is small compared to the range from
the radar platform to the ground, and that the antenna gain
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is uniform across the area (i.e. K; = K) we can write the

total instantaneous field as:

E=KY E,e'" ©)

III. Classical Clutter Model

For a large number of randomly range-distributed
scatterers, applying the central limit describes the
scattering amplitude and instantaneous phase as a
complex process:

E% =y +jv @
where U and V are independent, normally distributed,

zero-mean random variables. The SAR image formation
process transforms the phase histories, z =U + jV, into

a new random variable w= I+ jQ, where I and Q are
independent identically distributed N(0,0,) random
variables. The received power of each pixel in the
formed image can be described by:

p=1*+0? )

whose statistics are described by the following
exponential distribution:
. 2
1 20
G
= e
p:og >0

A Log-domain transformation, g =7Log,(p)+a’, of

the exponential random variable yields:

1
fe(@)= e e
G 20(2;11 ™

n.a,65 >0 geR

which is also known as the Gumbel distribution where 7

and a’ represent fixed scale and bias constants. This
distribution typically models Log-domain homogeneous
clutter regions. Here, the parameter o is a function of

the back-scatiering characteristics of the given
homogeneous clutter type. Similarly, by applying the

transformation of variables m =+p we arrive at a

Rayleigh distribution in the magnitude domain. Note that
other models, such as the Weibull distribution can fit
homogeneous clutter as well. This model approaches the
Rayleigh distribution given an appropriate choice of
parameters.




IV. Models for Man-Made Objects

A coherent sum of individual scatterers can also
mode] man-made object radar returns. Unlike clutter, a
small number of scatterers typically dominate the total
instantaneous field. Therefore, the central limit theorem
is not valid and the resulting scattering amplitude and
Jo;

instantaneous phase Fe” ' =U + jV =z may not yield

Gaussian (U/,V) components.

Empirically, Log-domain probability density
functions from man-made objects have broader right tails
than from homogeneous clutter. From the classical model
described earlier, these should fit the Gumbel distribution.
Figures 1 and 2 show histograms that demonstrate this.
Here, the bright and diffuse parts of a T-72 tank at
approximately 230 different aspects were used for the
target histogram. The clutter was histogramed from the
homogeneous grassy regions of a similar set of imagery.
For these examples, we used one foot resolution, single-
look, HH-polarized, X-band SAR data at 17 degrees

depression collected for the MSTAR1 program.

V. Unified Model for Clutter and Targets

Equations (8), (9) and (10) show the G°-
distribution proposed by Frery, et. al. [2], for the
complex, magnitude and power domains respectively.
Where (8) gives the distribution of either / or Q in

w =1+ jO and nrepresents the number of looks.

pOT(1/2 + )
fo(o ()= 2 1/2va
JrT(o)®b + x2) ®)
oa,b>0, xeR
o (m) 20"b%T(n + oc)mzn"1
m) =
M ()T ()b + nm>)"™ ©)
a,b,nm>0
" T(n + ot)pn_l
fe(p)= v,
T(n)T ()b + np) 10)
a,bn,p>0
For the single look case (rn =1), (10) reduces to (11):
abo:
P =——
P e )t a1
a,b,p>0

! Publicly available data collected for DARPA’s Moving
and Stationary Target Acquisition and Recognition
(MSTAR) program.

where T(x+1)/T(a)=c. This form for the power

domain distribution is also known as the Generalized Beta
Prime distribution gBP(b,y, p,cx) [1] with parameters

y=p=1. We refer to (11) as the Beta Prime
distribution BP(b,ar). Applying the transformation of
variables g =7Log,(p)+a’ to this expression, we

obtain the gLG(a’,77,1b, @) distribution shown in (12):

ob® e
fG(g)= 7 (z=d)

b+ n H+a (12)
e )

o,bn>0, g,aeR

Here, 11 and a’ represent the fixed scaling and offset

parameters whereas « and b affect the distribution
shape and translation respectively. Figures 1 and 2
demonstrate the fit achieved with the Generalized
Logistic distribution using ML estimates of & and b.
These estimates are discussed in more detail in section VL.
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Figure 1. gLG distribution fitted to Log-domain
histograms of T-72 Tanks.

0.08 T f\

Clutter f(g)
e e
o )
E K
! ¥
[

e

=

~
)
]

0 1 1
-60 -40 -20 0 20

g (Intensity: dB)

Figure 2. gLG distribution fitted to Log-domain
histograms of homogeneous grassy regions.




VL. Parameter Estimation

Unfortunately, closed form parameter estimates for
many popular distributions do not exist. For example, in
both the Weibull and 3-parameter Lognormal [1]
distributions, the ML approach yields a system of
equations in which one of the parameters must be
estimated numerically. One parameter estimation
approach that leads to a closed form solution, is the
method-of-moments. This technique has been proposed

for the G° {2] and Modified Beta (MB) [4] distributions.

The MB distribution is similar to the gBP

distribution. However, there are important differences
between the two. For example, the MB distribution
encompasses only three parameters while the gBP

distribution has four. Also, the gBP distribution cannot

be transformed to the MB distribution simply by
choosing its parameters appropriately. However, an
appropriate choice of the MB distribution parameters
yields the BP distribution discussed in section V:

BP(b,a) = MB(1,cx,1/ b) 13)

Given this equivalency, we decided to examine the utility
of the MOM approach proposed by Maffett and
Wackerman [4]. This approach proposes the following
moment combinations for estimating & and b :

2

w= i, I m (14)
g’ = 1y I(p,m) (15)
G=(A4w-3g"-2)/2w-g") (16)
b =m(é-1) a”n

Here, w and g’, defined as the "width" and
"modified skewness", are calculated from SAR data. The
moments include the sample mean (m), the sample
variance (4,), and the third central moment (i,).
Here, w must be greater than zero since the variance and
the mean squared are both greater than zero for (13). In
addition, there is good reason to believe that g, will also
be positive for this distribution [11].
should be positive as well. However, if we substitute the

Therefore, g’

analytical expressions for m, y,, and p,; from (11) into

(14) and (15) we observe a conflict in the resulting
expressions:

w=olloa-2) (18)

g =2+ /(x-3) (19)
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Namely, if o has a value less than two, the positive
condition on both (18) and (19) is violated. This result
tells us that the estimates produced by (16) and (17) will
be invalid for Beta Prime distributed data whose inherent
shape parameter has values less than two. This is
problematic if we expect SAR data of this type. Here, the
MOM approach has limitations that make it inapplicable
to our problem.

Alternately, using standard Maximum Likelihood
estimation techniques and the marginal distribution
described by (11), we can arrive at expressions that give

& and b in terms of the samples from the marginal
distribution. We use the Beta Prime distribution instead
of the Generalized Logistic, since it is slightly easier to
manipulate. However, either expression should give
equivalent results, since a monotonically increasing
transformation moves one to the other. Equation (20)
describes the result of the ML estimate on & :

-1
1 & )2
G={— ) Log, (1+-%)
(NZ ¢ b

i=1

(20)

However, a simple solution for the estimate of b in terms
of ¢ and the N data samples p; is not possible as can

be seen from (21):

A O'Z 1 il P 4
b)= - 1 —AL 21
£(6) N2(+b) @21)

(1+@)

i=1

This expression results from the ML estimate on b.
However, setting (21) equal to zero and solving for b

would require solving an N h degree polynomial. Instead

we chose to use Newton’s method to estimate b .

Table 1 shows example results for the ML and
MOM approaches using data samples produced with a
Monte-Carlo simulation for the Beta Prime distribution
given typical parameters. These approaches were applied
to 20 sets of N=100,000 data samples each. The average
estimate is shown below:

Parameters Avg. ML Est. Avg. MOM Est.
o b a b éa b
05 {001 | 05008 | 0.01003 { -0.3006 | -3110.2
1.0 | 0.01 | 1.0012 | 0.01001 | 3.1334 0.1834
25 (001 | 25121 § 0.01006 | 3.3556 0.0156
3.5 ] 0.01 | 3.4927 | 0.00997 | 3.8338 0.0113
4.5 ] 0.01 | 4.5057 | 0.01001 | 4.5864 0.0102

Table 1. Average parameter estimates for synthetic Beta
Prime data.




Clearly, for these examples, the MOM approach is unable
to estimate the parameters for Beta Prime distributed data
whose ¢ parameter is in the range discussed earlier.
Qutside this range, the MOM appears to be less accurate
than ML. Based on these results and our analytical
analysis, we conclude that ML is better at estimating the
parameters for our data of interest.

In Table 2, we present example results for the ML
and MOM approaches on approximately N=100,000
samples from the target and homogeneous grass data
described in section IV. Given our earlier analysis, we
expect the ML estimates to be more reliable.

ML Estimate MOM Estimate

REGION a b & b
Target 1.177 0.0503 3.649 | 04174
Grass 5.902 0.0142 | 9.362 | 0.0241
Table 2. Parameter estimates for SAR target and

homogeneous grassy regions.

Here, the ML estimates give consistent results for o
when the shape of the gLG distribution changes. That

is, for O<a<l, =1, and ax>1 we expect right-
skewed, symmetric, and left-skewed distributions
respectively.  The histograms in Figures 1 and 2
demonstrate this. Here, the target region histogram has a
nearly symmetric shape whereas the clutter region
histogram has a significantly left-skewed shape. Using
these parameter estimates we can implement an ‘optimal’
detector as shown in Figure 3.
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Figure 3. Conceptual detector block diagram.

VII. Conclusions

We have presented the Generalized Logistic
distribution as useful for modeling both man-made as
well as natural clutter. We have based this model on the
multilook Go-distribution, which can model extremely
heterogeneous clutter {2]. This model and the classic X -
distribution both stem from the same parent G-
distribution. An attractive quality of this distribution is its
justification in terms of an established multiplicative
model and physical backscattering processes. For the

single-look case, this distribution fits homogeneous
clutter as well as target data. We can compute the shape
from data using Maximum
augmented with

and shift parameters

Likelihood estimates numerical

techniques. This estimation approach has been contrasted
with a popular method-of-moments approach, which has
problems in some cases. Finally, we have proposed the
basis for a detector whose performance can be determined
analytically.
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