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ABSTRACT

Computer codes which simulate hydrogen detonators in planar,
cylindrical, spherical and two-dimensional axisymmetric geometries
have been developed. The computational method is based on the
Random Choice Technique which can handle accurately sharp discontin-
uities. The detonation front is represented in the model as a dis-
continuity which changes the still unburnt gas to a completely burnt
one, according to the Chapman-Jouguet conditions. Numerical results
for one-dimensional geometries show good agreement with available
analytical solutions. The one-dimensional code was modified to
include coupling with an elastically deformable wall and the modified
version was used to demonstrate that for typical concrete containment
structures interaction of the waves with wall deformations has in-
significant effects on the wave properties, and can be neglected.

The two-dimensional axisymmetric code was used to calculate pressure
time histories at the wall of a cylindrical containment capped with

a semi-spherical dome. Dimensions were similar to the ones of the
containment of the Indian Point Nuclear Power Plant. The detonations
simulated had initiation at either the center of the base mat or at

a point on the axis at approximately two-thirds the cylinder height,
and were for two different intensities. Computed pressures included
repeated reflections at the walls and died out within a few tenths

of a second.
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CHAPTER I
INTRODUCTION

1.1 Background Information

After the Three Mile Island accident of March 28, 1979,
questions haye been raised concerning the safety of Nuclear Power

Plants if a rapid hydrogen explosion occurs.

Internal explosions are a severe test for the integrity of
the containment structure of Nuclear Power Plants. In Light-Water-
Reactors (LWR) such events may result from hydrogen detonations
(due to exothermic chemical reactions between hydrogen and oxygen)
or steam explosions. Hydrogen is generated from the coolant water,
both during normal operations and during accidents. Sources of
hydrogen during normal operation include agueous corrosion of
core metals, electrolysis and radiolysis. During an accident that
involves core heatup, hydrogen may be produced in the core by the
high-temperature reaction of water with metals, namely with zirconium
from the zircaloy fuel cladding and with iron from the molten steel.
Large quantities of hydrogen gas may thus accumulate in the reactor
pressure vessel, as was actually the case in the Three Mile Island
accident. The sources of oxygen are primarily in-leakage of air,

and again, water electrolysis and radiolysis.
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In the event of such internal explosions, the consequences
could be catastrophic as they may cause the failure of several
Engineering Safety Systems and hence, the containment structure is
the last line of defense against early release of radioactive

fission-products to the atmosphere.

1.2 Hydrogen Combustion

If the hydrogen is homogeneously distributed in a contain-
ment, deflagrations or detonations may occur if the composition of
the hydrogen-air mixture falls within the corresponding range on
the Shapiro and Moffette [1.1] tripartite diagram. Flammability
1imits depend on the pressure, temperature and direction of the
flame. Considerable uncertainty exists on the exact location of the
detonability limits. Shapiro and Moffette assumed these limits to
be 19% and 45% hydrogen for air-hydrogen mixtures and drew the limits
conservatively, almost parallel to the flammability 1imits. Deton-
ation 1imits also depend on the pressure and were found to be equal
to 20% and 65% in hydrogen-air mixtures at room pressure and temp-

erature [1.2].

Detonation is a shock wave driyen and sustained by the
chemical energy released from oxygen-hydrogen reaction. The shock
wave and the chemical reaction propagate together at a supersonic
speed relative to the burnt medium. The shock front is character-
ized by an abrupt increase in pressure, temperature and density of

the gas and by a net forward movement of the gas particles.
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Detonation may start as a result of minor sparks, contact
to metal surface, temperature above the spontaneous ignition temperature,
minor shock propagating in the gas or by transition from deflagration.
Although a detonation is very unlikely to happen in a LWR containment,
the possibility should not be disregarded because of the high
temperature and pressure, and the intense radiation in case of an

accident.

1.3 Previous Work in the Area

The effect of the quasi-static increase of pressure
(resulting from slow burning) on containments integrity has been
studied by the U.S.N.R.C. [1.3] and Fardis [1.4]; however, little
has been done on the effect of a detonation on the containment
structure.

Morrison et al., [1.5] have treated the hydrogen
detonation and steam explosion in an over-simplified manner. They
modeled these phenomena as TNT explosions occurring at the center of
a containment (idealized as a sphere), through an equivalence be-
tween released energy and TNT mass. Then they computed the peak
overpressure at a distance equal to the containment radius. They
neglected the effect of the reflection at the wall pressure (the
reflection can increase the overpressure by a factor of the order

of 2 to 3).

In a better attempt, Carbiener et al. [1.6] tried to

solve the same prob]ém; however, they neglected the fact that the
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shock pressure takes a finite time to decay from its Chapman-Jouguet
plane to the steady state pressure (the Chapman-Jouguet plane is the
detonation front plane); thus, the impulse calculated on the basis of
this assumption may be 300-400 times smaller. They also neglected

the effect of repeated refiections.

After the Three Mile Island accident, the interest in this
area rose again; Byers [1.7] studied the effect of the hydrogen
detonation on the containment structure using a code based on
"artificial viscosity". The code was originally used for continuum
mechanics problems and it is difficult to adapt it to hydrogen
detonations. Running such a program requires a large amount of CPU

time.
1.4 Objective

Development of a numerical model able to predict correctly ‘
the behavior of the gas in an axisymmetric containment in case of |
an explosion is required in order to assess the capability of the |
structure to contain the explosion. Because of many uncertainties
in the physical models, it is very difficult to develop a computer
program to predict the initiation and development of a hydrogen
detonation. It has been assumed in this work that a hydrogen
detonation can be developed instantaneously after ignition. Such
conditions present a higher challenge for the containment structure
since pressure waves induced by detonation are expected to be

larger than pressure waves induced. by a slow combustion (deflagration).
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In this research, a reliable computer code is developed
capable of solving the hydrogen detonation problem for axisymmetric

geometries.

The gas dynamics equations for planar, cylindrical and
axisymmetric geometries are derived in Chapter II; the following

assumptions are made:

1) homogeneous mixing of the hydrogen with steam and
air in the containment volume,

2) the energy due to radiation is negligible

3) heating of the containment wall by the gases is
negligible.

The Random Choice Technique is used for solying numerically the
equations of motion. Chapter III includes the principles, the
advantages and the implementation of the method for planar, spherical
and axisymmetric geometries. Validation of the method, pressure
histories and interactions with the wall are included in Chapter IV.
Chapter V presents the application of the two-dimensional code in
computing the pressure histories generated by a hydrogen detonation
in a realistic nuclear containment building. The conclusions are

summarized in Chapter VI.
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CHAPTER II
COMPRESSIBLE FLOW EQUATIONS

In this chapter the-basic gas dynamics equations which con-
stitute the starting point of the aha]ysis are presented. The derivation
can be found in any gas dynamics book (see for example Landau & Lifshitz

[2.1]).

The equations describing the motion of a compressible inviscid

gas are:
B 4oV -yuy=0 (2.1a)
5t =0 :
oy ) I
T"'E V~ o vp, (2.]b)
22+ 7 - (etp) u= o0, (2.1¢)

where p is the density, u is the velocity, p is the pressure, e is the
total energy per unit volume, and t is time. The energy due to external
sources or sinks, Q, is considered to be equal to zero. The total energy,

e, is given by

pe + —%—- |E|2’ (2.2)

(12
"

where

e=¢g. *+q, - (2.3)



and

e, = —1 Jg_ (2.4)

In equations (2.2), (2.3) and (2.4) £ is the internal energy
per unit mass, y is a gas constant equal to Cp/Cv, Yy > 1 and g is the

energy released by chemical reactions.

2.1 One-Dimensional Cartesian Coordinate System

The equations in one-dimensional cartesian coordinate system

follow directly from equations (2.1). The gradient and divergence are

_ 8
) S L (2.1.1)
and
Bux
Veu = — R (2.1.2)

where i is the unit vector in the x direction , and u = uxi. After re-

~

arranging the gas dynamics equations, we get:

ap om_ _
—a—t—+ M 0, (2.].33)
2
om g (. m -
ot ot 0 +p) =0, (2.1.3b)

B+ (D Aetp))

1]
o

(2.1.3c)
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where m = U, is the momentum flux. Observe that the equations in one-

dimensional cartesian system can be written in a conservation form without

source or sink terms.

2.2 One-Dimensional Spherical and Cylndrical Coordinate Systems

- _9¢
Vo = s d > (2.2.1)
and
. du u
. —r - r
\Y u ™ + (n-1) g (2.2.2)

where j is the unit vector in the r direction and n = 3 for spherical,

~

n = 2 for cylindrical coordinates.

By inserting these relations in the gas dynamics equations (2.1),

we obtain
_g_g._ g"'j = -(n-1) .g_ , (2.2.3a)
2 2
9 ]
3‘: + T: ( ":) + p) = _(n-]) ?;Y‘ s (2.2.3b)
¢, 3 (. m (e+p)) = -(n-1) —m-—(e+p) (2.2.3c)
5t T T o e

where in this case, m = pu.. is the momentum flux and U is the radial
velocity. Observe that in cylindrical or spherical coordinates, the

equations have sink terms.
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2.3 Axisymmetric (Two-Dimensional Cylindrical) Coordinate System

In a two-dimensional cylindrical coordinate system, the

gradient and the divergence are

. 9% ., 9%
au Ju u
- - r Z z
V-u 50 it = (2.3.2)

The gas dynamics equations for the axisymmetric problem become

am am m

3p r z ___r
= * ~3r + - (2.3.3a)
2 2
om m mm m
r + 3( r +p) + ) ( Y‘.Z ) = _ r ,
ot } p d P pr
(2.3.3b)
amz 5 m mZ 3 mi mrmz
ot * T 0 )+ 9z ' p tp)= pr °?’
(2.3.3c)

m m m
de d (T ¢ (' Z fourYye _ T
* g {ep)) + g-(—e+p))= - —Hetp),

(2.3.3d)
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where mr = pu, is the momentum flux in the radial direction and m_=pu,,

is the momentum flux in the z direction.

Equations (2.3.3) can be written in the general vector form
used by Sod (1980)

Uy + F(U), + G(U), = -W(U), (2.3.4)

where subscripts indicate differentiation. In equation (2.3.4)

P gr‘ mZ g‘r‘/r

m. mr/p+p m,m,/p mr/pr
U=l = fmse [ = fagote | ucw) = fmnsor

e m.(e+p)/p m_(e+p)/p m, (e+p)/or.

It is worth noticing at this point that equations (2.1.3) for

the one-dimensional cartesian problem can be recovered from equation

(2.3.4) by setting g(g) W(g) = 0. Similarly, equations (2.2.3) can be

obtained by taking g(g) 0.

2.4 Chapman-Jouguet (C-J) Conditions

The one-dimensional cartesian equations (section 2.1) can be
solved in a closed form (see Williams [2.2]) or Courant and Friedrich
[2.3]).

In the following discussion the subscript u refers to the
unburnt gas (i.e., gas which has not yet undergone chemical reaction)

and the subscript b refers to the burnt gas. By defining

wb = U - U and w, = uu - U,
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where U is the velocity of the reaction zone and u is the particle vel-
ocity in the Eulerian reference frame, we can express the continuity and

momentum equation by

pbwb = oW T -M, (2.4.1)
2 _ 2
oW, * Py = PpW, * Dy (2.4.2)

From these relations we can deduce

M = (py - b/ - 1) (2.4.3)

where T = 1/p. From the energy equation an expression for T in func-

tion of T 2Y29:P, and P can be derived

2
p,tup 2
2u b ) + 2u-q

up, * Py WP tPy

=1 ( . (2.4.4)‘

b u

where u2 = %—i—%—; in deriving equation (2.4.4), it has been assumed

that Yp =Y = y.

u
A C-J detonation moves with respect to the burnt gas with a
velocity equal to the velocity of sound in the burnt gas, e,

1/2

b ) (2.4.5)

Py

Iwb’ =Cb=(

Using equations (2.4.1), (2.4.2) and (2.4.5) we can find

an expression for Ph>
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pg + 2bpy + ¢ =0, (2.4.6)
where
4+
b = -p, - ap,(y-1), (2.4.7a)
and
= b2 2 :
c=p,*2up,ea; (2.4.7b)

A trivial calculation shows that b2 -c>01ify>1and q< 0
(exothermic reaction). Thus,

1/2

2 _ c) , (2.4.8)

Pej Pp = b+ (b
where the + sign is mandatory since a detonation is compressive. There-
fore, given the properties of the unburnt gas and the energy per unit
mass released by the combustion, we can find the pressure behind a C-J.

detonation; equation (2.4.4) is used to find the density Ocj From

equation (2.4.1) we find the expression for the detonation speed,

usy = loguy + (e s/0c5)" 2 /0y (2.4.9)

and then,

Uej = ch - ch' (2.4.10)

If a C-d detonation occurs, it is followed by a rarefaction
wave to adjust to the boundary conditions. For a still wall behind the
detonation, the gas has to adjust itself to a zero velocity at the wall.

A non-dimensional analysis has been performed by Taylor [2.5] to deter-

+Notice that in Chorin [2.4] the second term of this expression is
multiplied by 2 which is incorrect.
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mine the behavior of the gas behind a detonation if bounded by a wall.

The resulting curves are shown in Figures 2.4.1-3. The solution of this
planar problem was obtained by taking into account the consistency

of the Riemann invariants in the rarefaction region. The solution is
hence dependent on the gas constant y. It is seen from the figures

that the gas has constant properties until about a mid-distance be-
tween the wall and the detonation front; at this point a discontinu-

ity occurs and the velocity starts increasing linearly towards the

C-J velocity; the equations describing the pressure and density curves

are polynomials of order 5 and 7.

An analysis similar to Taylor's has been performed for
radially symmetric detonations by Barenblatt et al.[2.6]. For
v = 1.4 the results are shown in Figures 2.4.1-3. It can be seen that
the gradients of the velocity, pressure and density near the detonation
front are larger in the cylindrical coordinate system than in the planar

one. They become even larger for a spherical detonation.

In the next chapfer we will present the numerical techniques

used for solving the equations of motion.
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CHAPTER III

NUMERICAL SOLUTION OF HYDROGEN DETONATION BY
THE RANDOM CHOICE METHOD

The gas dynamics equation (see Chapter II) form a non-linear
unsteady hyperbolic system. A general analytic solution of the gas
. dynamics equations is not possible for an arbitrary geometry including
repeated reflections from walls. Various numerical methods have been

developed to solve these equations (see e.g. Sod [3.1]):
1) Finite-difference methods;
2) The random choice method; and recently:
3) Spectral transformation and finite element methods.

The finite-difference methods have the disadvantage to broaden, a

time increases, expected discontinuities (1ike shock waves) of the flow.
Recently correction terms have been proposed to counteract the diffusion
of the width of a discontinuity (see Boris and Book [3.2]).  Spectral
and finite element methods are promising because they may reduce con-
siderably the computation time; however, they are still in an experi-

mental stage.

A method that produces infinitely sharp shocks is the method
of Glimm [3.3]. Alexander Chorin [2.4] developed and applied Glimm's
method for the fluid dynamical part of a combusting gas flow; here an arti-
ficial amount of diffusion would grossly distort those phenomena, like

flame propagation, which depend on the rage of energy production. For
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these reasons, we have decided to use in this program the random choice
method to calculate the pressure histories generated by hydrogen

detonations in a nuclear reactor containment.

The random choice method is described in the following sections,

for one-dimensional plane, spherical and axisymmetric geometries.

3.1 One-Dimensional Plane Geometry

3.1a Gas dynamic flows without detonations

For one-dimensional plane geometry, the equations can be

written in the following form:

u, + F(V), = 0 (3.1.1)
where o m
u = and  F(U) = | n/o+p
(m/p)(etp)

We discretize the time in intervals of length At and the space in inter-
vals Ax. The solution advances at each grid point in time from t to

t + At by first calculating the values of the variables atmid gridpoints
at time t + At/2 and then, advancing in a similar fashion the solution
to time t + At. The solution at each half time step is found by solving
a Riemann problem between adjacent grid points. The solution is
evaluated at times nAt, where n is a positive integer, at the spacial
grid points iAx, where i = 0, + 1, + 2, ..., and at times (n + —%—)At

at (i + —o-)ix.
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Let u? approximate U(iAx, nAt) and unﬂ/2

approximate U((i + —%—)Ax,
it1/2 -

(n + —%~3At). To find u"+:;§, consider the system (3.1.1) assuming
i+
piecewise constant initial data (time t = nAt)
_ N L1
Ulxs nat) = ugy s x> (3 + —)ax,
= " x < (i + —J—OAX
i 2 ’

This defines a sequence of Riemann problems. If At < Ax/2(|u]+c),
where ¢ is the local sound speed and |u| is the absolute value of the
particle velocity, the waves generated will not interact. Hence, the
solution V(x,t) to the Riemann problem can be combined into a single
exact solution (see Figure 3.1.1). The solution at the time step

t + At/2 is found, following Glimm's method, by sampling the exact
solution to the Riemann problem V(x,t) at time t + At/2. Let En be a

uniformly distributed random variable in the interval [- 3 s ! ]. Define
7 2

un+]/2

= V((i *+ )8, (n + —-)at);  (3.1.3)
i+1/2

(see Figure 3.1.2).

At each time step the solution is approximated by a piece-
wise constant function. The solution is then advanced in time exactly

and the new values are sampled.

A method of choosing the random variable En has been studied

by Chorin [2.4, 3.4]. He suggested choosing one random variable &
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[ [] Il 1 i i 1 t=(n+.,)At
t=(n+l)At
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2 (i-1)Ax 2 iAX 2 (i+1)Ax 2

FIGURE 3.1.1: SEQUENCE OF RIEMANN PROBLEMS ON GRID
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FIGURE 3.1.2: SAMPLING PROCEDURE FOR THE GLIMM'S METHOD
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per time level rather than one for each point and each time level.

In order that the variance of the solution be further reduced by

making & reach approximate equidistribution over [- '%r“ —%—J at a faster
rate, Chorin [2.4] suggested the following procedure. Let Mys Mo,

my < m, be two mutually prime integers. Consider the sequence of
integrers

i <
n, 9iven, n, <m,,

Njeq = (nj + m])(mod m2),

then,

Ej = (nj + Ej)/mz,

]
where Ej is the random number and gj is the pseudorandom number which

is actually used for sampling; j indexes the time.

In each time step, the solution consists of three states:
Sr’ Sl’ and a middle state S, with u = u,, p = p,, Separated by waves
which may be either shock or rarefaction waves. A slip Tine ~%%-= Uy
separates the gas initially at x < (i + —%—)Ax from the gas initially
at x > (i + —%—)Ax with possibly different values of p, but equal values

of u, and p, (see Figure 3.1.3).

The first step is to calculate the pressure p, and the
velocity u, in state S,. This is done by a method due to Godunov
[3.5]. The outline of this method can be found in Appendix A. Now

there are four cases to be considered:
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FIGURE 3.1.3:

SOLUTION OF THE RIEMANN PROBLEM
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Case 1 The sample point P lies to the right of the slip
Tine (£'Ax > u*—%}—), and the right wave is a
shock (px > p,);

Case 2 P lies to the right of the slip line and the right

wave is a rarefaction wave (£'Ax > u, ﬁ; and

Pa < PL)3

Case 3 P Tlies to the left of the slip line and the left
wave is a shock (£'Ax < u*—%}— and p, > pz); and

Case 4 P lies to the left of the slip line and the left

wave is a rarefaction wave (E£'AXx < u, %; and

Px < Py)-

For Case 1, the velocity, Ur of the right shock can be found by using

equation (A.2). If P lies to the right of the shock line dx/dt = Uy

we have pp = Pps up = ur, Pp

b Uy s pp = Pxs o) = Px CAN be found from equation (A.2). In solving
)1/2

= Py If P Ties to the left of the shock,

u
Case 2 we let ¢ = (yp/p be the sound speed. If P lies to the right
of the rarefaction, pp = Pps up = Ups pp = Pps If P Ties to the left

of the rarefaction Py = Py up = Uy pp = Pss Py 1s found from the con-

stancy of the Riemann invariant

-1 -1
r.= 2C,(y-1) " -u, = 2cr(Y_]) - U
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D and pp can be derived by

equating the slope of the characteristic dx/dt = u+c to the slope

If P lies inside the rarefaction, pp, u

of the 1ine defined by the origin (which in this case is the grid point)

and P

— 1 AX
up + cp = 2¢ At °

then using the constancy of the Riemann invariant and the isentropic

law po~" = constant.
Cases 3 and 4 are essentially identical to cases 1 and 2.

3.1.b A method to incorporate the detonation discontinuity
in the random choice method

The objective of the present work was to predict pressure
histories generated by hydrogen detonations in an enclosure. It is
assumed that a hydrogen detonation will be initiated and developed if
the hydrogen concentrations are within the detonability limits
(Herzberg [3.6].  To avoid treating the chemical kinetics of com-
bustion, we decided to represent the detonation as a sharp discon-
tinuity which changes the still unburnt gas to a completely burnt
gas according to the Chapman-Jouguet conditions (see section 2.4).
This proposition is consistent with the observation that the chemical

kinetic reaction rates are very large.:

For each hydrogen concentration within the detonability
limits, the Chapman-J~'7vret state behind the detonation can be calcu-
lated (see section 2.4). For the numerical solution, we associate

a variable ¢ = 1 if the gas is unburnt and ¢ = 0 otherwise. The
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propagation of the detonation is calculated numerically by using the
random choice method. Consider two adjacent grid points with their states

represented at time t = nAt by

S,Q, = (pl, ug,, pg 3 ¢2)9 x < (.i + _;—)Ax’

w
1]

c, ]
p = (ops U Pes 8, x> (1 + —-)Ax. (3.1.4)

If ¢g = ¢r’ detonation does not occur between these points and Glimm's
method (see section 3.1a) is used to advance the solution; if ¢2 =0
and ¢r = 1 a detonation wave will propagate from left to right (see

Figure 3.1.4). Its speed will be (see section 2.4)

U.=u., +c_. (3.1.5)

where ucj = U is the particle velocity and cCj =cy

corresponding to Chapman-Jouguet conditions corresponding to the state

is the sound speed

of the unburnt gas (pr, Uy.s pr).

The solution is advanced in a similar way as in the Riemann
problem (see section 3.1a) by sampling the detonation discontinuity
(see Figure 3.1.4) using the same random numbers as in the Riemann
probiem.

The computer program CRTDET for solving the one-dimensional
plane gas dynamics equations including detonation is listed in Appen-

dix B.




-29-

Detonation dx _ U
Wave dt cJ
At/2 SQ’ ¢g =0 Sr’ ¢r =]
l —
X

FIGURE 3.1.4: SOLUTION OF THE DETONATION PROBLEM
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3.2 Boundary Conditions

Particular attention should be given to the boundary con-
ditions especially as far as sampling is concerned. Assume the
location of the boundary point is to the right of the region of flow
at x = iOAx and moving with a certain velocity V. To model the
reflection at the wall we create a fake state to the right of x at

(i + —%—)Ax such that

o

Pig+1/2 7P =172 (3.2.1a)
u =2V -u, (3.2.1b)

i, +1/2 i,-1/2
(3.2.1¢)

Ps =P
ip +1/2 i, 1/2

(see Chorin [3.4]or Courant [2.3]). This will make a simple wave
to propagate on both sides of the boundary point; the constant state

in the middle of the Riemann solution is the wall state.

Special care should be taken in the sampling procedure.
If E] and £2 are the values of £' at two successive time steps, we

should make sure that the resulting physical point does not lie to

dx
dt

at the wall. This condition can be satisfied in different ways de-

the right of the wall line = V, so that no information is lost

pending on each problem.
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To satisfy the previous condition in the present case,

g' and £' can be chosen as follows: pick £' in the interval
1 2 1

[- %? . %? ] according to the usual procedure and choose £' = -£'

2 1
This method also ensures the physical point to Tie within the boundary

and avoids the problem of singular points.

3.3 One-Dimensional Spherical Geometry

The system of differential equations for the one-dimensional
spherical problem is given by the set of differential equations (2.2.3).

These equations can be written in the vector form

H

u, + F(U)r

~ ~ o~

=2 W(U)s (3.3.1)

U, F and W were defined in section 2.3.

~

To solve the equations (3.3.1), we use the method of operator
splitting used by Sod [3.7]. In a first step we remove the inhomogeneous

term - 2W(U) thus, we solve the homogeneous system

U, + E(g)r =0, (3.3.2)
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which represents the one-dimensional equations of gas dynamics in
cartesian coordinates and whose solution was presented in detail in

the previous two sections.

The second step consists of solving the system of ordinary

differential equations

U

-t = 'ZH(E) [}

using the results of the solution of equation (3.3.2).
This is done as follows: Once the solution G?+] of (3.3.2) is found,

equation (3.3.3) is approximated by

T
i i = -2 w(ﬁ?*‘) , (3.3.4)
At ~
or
u?+] . a?*‘ - 2t y(i?*‘). (3.3.5)

This scheme is only first order accurate, however there is no reason
to use a higher order method since the random choice method is also at

the most first order accurate.

The boundary conditions at the wall was chosen to be similar
to the cartesian case, i.e., gé = 0 at the wall. The center of the
detonation is treated similarly to the wall problem however, because of

the singularity at the center, the appropriate sampling scheme dis-

cussed in section 3.2 should be used. '
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SPHDET is the computer program which is used to solve the

one-dimensional spherical detonation problem (see Appedix C).

3.4 Axisymmetric (Two-Dimensional Cy11ndrica1) Geometry

The numerical technique of solving the equations of the
axisymmetric problem (2.3.4) is an extension of the one-dimensional
case. Chorin [2.4] and Sod [3.8, 3.9] have already used it for the
shock problem.

The basic procedure consists of two major steps:

1. use the operator splitting technique in the spatial
coordinates and solve the equation

U, + F(U), + 6(U), = O, (3.4.1)
2. solve the equation

u, = -W(u). (3.4.2)

Solving the ordinary differential equation (3.4.2) is exactly identical
to solving equation (3.3.3). Equation (3.4.1)is so1ved)using an

extended version of Glimm's method. At each time step, four quarter time
steps of duration’ %}- are performed; each quarter time step is a

sweep in either r or z direction. Again, the operator splitting
technique in the spatial coordinates is used to reduce the system of

two-dimensional equations into two sets: of one-dimensional ones.

Hence, the equations to be solved in the r sweeps are
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ap 3

3t a—r(pur) = 0, (3.4.3a)

2 (o) + 2 (pul + p) = o, (3.4.3b)
-§——( u.) + —2—( uu.) = 0 (3.4.3c)
5t \PY; ar P, ’ o
ae 9 _
¢t jﬁr((e+p)ur) = 0. (3.4.3d)

ou auz
+uy, —x—— =0 (3.4.4)

ot r ar
i.e., the convective derivative of u, is equal to zero and hence, in
the r sweeps u, is transported as a passive scalar. Similar equations

hold in the z sweeps.

Now, given equations (3.4.3a, b, d) coupled with equation
(3.4.4), the G1imm's method can be used. At each partial step, the
solution vector is approximated by a piecewise constant vector.
In the r sweeps the resulting waves in the r direction are found and
in the z sweeps thewaves in the z direction are found. In order to

account properly for the interaction of the r and z waves, the follow-
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ing scheme is used: at the beginning of the time step o, p, u. and
u, are known at point (iAr, jAz). After an r sweep, the solution is
found at ((i + —%—QAr, jaz) (see Figure 3.4.1). ((i + —%—JAr, jaz)
and ((i + —%—)Ar, (j + 1)Az) can then be used to find the solution

at ((1 + —%—OAr, (j + —%;QAZ) by a z sweep. An r sweep then leads to
(iar, (j + —%—)Az) and a z sweep back to (iAr, jAz). One pseudorandom

variable is used per quarter step.

The detonation conditions are handled in a similar way as

in the one-dimensional case, however, one should bear in mind that
the C-J velocity represents the total velocity which should be splitted
into its r and z components. For example, consider two points iAr and
(i+1)Ar (z the same) with ¢=0 at iAr and ¢=1 at (i+1)Ar. In accordance
with our approach, a detonation is expected between these points. The
conditions behind the detonation are known as a function of hydrogen
concentration. By using the operator splitting technique in space,
the two components of particle velocity can be calculated. Then, the
solution is advanced by using the random choice method.

The boundary conditions are handled in the same way as 1in
the one-dimensional problem. A curved boundary is represented by a
stepwise 1ine paraliel to the mesh.

The computer prgram TWODIM (see Appendix D) uses the method

outlined to solve the axisymmetric problem.




-36-

Ar

|e —»
(iar, (§+1)az) ((i+1)pr, (j+1)az)
o C(1 +3)ar, (3 +3)82)
D(iar,(J+§)Az) 2772 T2
P - © Az
A(iarjaz) B((i +3)42,jAz) ((i+1aF,jaz)
FIGURE 3.4.1: DIRECTION OF THE COMPUTATION AT EACH

TIME STEP FOR THE AXISYMMETRIC PROBLEM
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CHAPTER IV

COMPUTER CODE DEVELOPMENT AND RESULTS

4.1 One-Dimensional Planar Geometry

The main task of this section is to verify the validity
of the numerical method described preyiously. To achieve this goal,
the pressure, density and velocity histories of a hydrogen detonation
in a one-dimensional cartesian coordinate system haye been studied.
The numerical results were compared with existing analytical solu-

tions prior to reflections (see Figures 2.4.1, 2.4.2 and 2.4.3).

The first problem we investigated simulates a detonation
initiated at the center of a shock tube, 2m long, bounded by a wall
at both sides. As a result of the symmetry with respect to the
initiation plane, the study was limited to half the length, the
origin behaving as a wall. A mesh of one hundred and one grid points,
equally spaced, was used. The time intervals were of variable length
to meet the condition of non-interaction between the waves (see
Section 3.1.a). Initially the unburnt gas was considered to be at
rest, with a pressure of 10100 N/m2 and a density of 0.1188 Kg/m3.
The hydrogen concentration was considered to be stoichiometric. The
detonation was assumed to have reached the second grid point from the
origin. Those grid points were assigned the yalues corresponding to
the Taylor curyes (Figures 2.4.1 to 2.4.3). The detonation front

propagates with constant gas properties (The Chapman-Jouguet condi-
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tions); the C-J pressure is approximately 15 times the pressure of

the unburnt gas.

The computer program CRTDET (see Appendix B) was used to
solve this problem. After 0.47 ms, the detonation wave progressed
in the cylinder and was ready to contact the wall. Non-dimensional
plots for the pressure, density and velocity as a function of the
non-dimensional distance (defined as x/UCjt), are shown in Figures
4.1.1-4.1.3. These are close to the analytical Taylor curves; the
gas reaches steady conditions with zero velocity at approximately
half distance between the origin and the detonation front; however,
as noted by Sod [3.8], because of the randomness of the sampling,
the rarefaction waves occurring just behind the detonation front
are not reproduced by a smooth curve. Figures 4.1.4 to 4.1.6 show
the pressure, density and velocity distributions in the shock tube
at five different times. After the wave is reflected by the wall,
there is an increase of pressure; the pressure exerted on the wall
becomes 2.3 times higher than the C-J pressure or 37 times the initial
one. These results are in agreement with the analytical equation
given by Landau and Lifshitz [2.1] to determine the reflected
pressure. After the wave has reached the wall, all the gas in the
shock tube has already been burnt and the reflected wave is a strong
shock which decreases in strength as it goes back towards the origin.
When it reflects at the center the shock increases in strength and
travels again towards the wall. Eventually, the wave decays and the

gas reaches steady state conditions.
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As previously noted, to ensure that waves do not inter-
act, At < Ax/(|u|+c) must hold true. The effect of choosing
different time intervals was studied next. Figures 4.1.7 to 4.1.9
show that a time step (SIGMA = 0.4; see Appendix B) equal to half
the previous one (SIGMA = 0.8; see Appendix B) has little effect on
the solution (Figures 4.1.1-4.1.3). The only difference noted was in
reproduction of the rarefaction wave; this is due to the randomness
of the sampling. The time steps should not be very small because
the explicit technique used can lead to numerical instabilities,
causing the wave to move backward. Hence, to ensure the stability

of the solution it was found that

At
AX

0.3 < (Jul+c) < 1.0.

Next we examined the effect on the numerical solution of the
number of the initial grid points behind the detonation wave. In
Figures 4.1.10 to 4.1.15, at the beginning of the computation, eight
initial grid points were assigned in accordance with the Taylor solu-
tion. The pressure, density and velocity histories agree with those
in Figures 4.1.1 - 4.1.6 where only two initial grid points were em-

ployed before the detonation wave started to expand.

The most important output of the numerical analysis was the
evaluation of the variation of the pressure with time,close to the
wall. For the problem described above, the pressure and density pro-
files at a still wall, Im distant from the origin of the detonation,

are shown in Figures 4.1.16 and 4.1.17. At a time 0.58 ms after the
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initiation of the detonation, the detonation front is reflected by
the wall which results in an increase in pressure (approximately
37 times the pressure of the unburnt gas). Then, the pressure
starts to decrease until it reaches a constant value at t = 1.2 ms.
This value of the pressure is close to the pressure of an expanding
detonation close to the center where the velocity of the gas

equals zero. At t = 1.3 ms, the wave gets reflected at the center
(Figures 4.1.18 and 4.1.19). At the origin, the shock increases

in strength and the pressure reaches a value 23 times greater than
the initial pressure. Then the wave moves back towards the wall.
At t = 2.3 ms, a second reflection against the wall occurs; this
reflection is much weaker than the first reflection; the pressure

is 16 times the initial pressure of the unburnt gas.

Next, a detonation was investigated in a plane geometry
of size comparable to a nuclear reactor containment. The gas was
confined by walls at a distance of 20 m apart. The initial pressure
and density of the gas in the containment was considered to be
atmospheric. The mesh was composed of 201 grid points 0.1 meter
apart. We let the programs run for 100 time steps (t = 45 ms);
the computational time on an IBM - 370 was approximately 8 CPU
minutes. The results for the pressure and density profiles at the
wall and at the centerline are shown in Figures 4.1.20 to 4.1.23.
The shape of the curves are, as expected, similar to those shown in
Figures 4.1.16 - 4.1.19. MWe should also note here, that the relative

pressures are almost identical in both problems studied in this sec-
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tion; this is a result of considering in both cases the same

hydrogen concentration.

4.2 Deformable Wall

In the problems discussed in Section 4.1, we assumed the
walls to be rigid; however, if the increase of pressure, due to the
detonation and reflected waves, is very large, the wall may start to
deform and vibrate because of the elasticity of the material. The
velocity of the wall, if it becomes large enough, might have some
effects on the properties of the flow. These effects are studied

in this section.

The equations governing the motion of the wall can be

written as
Mv + Kw=P, (4.2.1)
where M = tp, and for the elastic part of the stress-strain curve of

the wall material, K = (n-1) —%?(AR + AL); the symbols in equation
R

(4.2.1) are defined as follows:

w = wall displacement from its equilibrium position
P = pressure exerted on the wall,
t = wall thickness,

o = wall density,

n = 2 for cylindrical wall, 3 for spherical wall,

E = Young's modulus of steel,

R = radius,

AR = area of hoop reinforcing bars,per unit wall height,
AL = Tliner thickness .
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Equation (4.2.1) can be discretized in time, to become

W~ 2wn-1 W2

0 (4.2.2)

=|o

K
+ oW =
At2 M 'n

where wn-is the dsiplacement of the wall at time nAt. The velocity of
the wall can be approximated by
Ve=i= n" "1 [;tw“J (4.2.3)

Equation (4.2.2) can be easily incorporated in the algorithm described
in Chapter III; equation (4.2.3) can be combined with equation (3.2.1b).

In the application, the values of K and M in Equation (4.2.2)
were selected equal to those of an 1 m-high segment of the cylindrical
wall of the Indian Point containment. The 1.37 .m-thick reinforced
concrete wall was considered cracked, and only the contribution of the
horizontal steel bars and the liner plate were taken into account. These
latter steel components were considered elastic. The distance between the
initiation axis and thewall was taken equal to the internal radius of the
containment (20.7 m). Results are shown in Figures 4.2.1 - 4.2.3: When the
detonation starts, the wall is at rest with zero displacement and zero velocity.
It remains in this condition until t = 11 ms, when the detonation wave con-
tacts the wall. The increase in pressure is transmitted to the wall, which
acquires a small velocity; this velocity increases until it reaches its maxi-
mum value of 4.5 m/s at t = 20 ms,before it starts decreasing. This
sinusoidal behavior of the velocity seems to have negligible effects on
the pressure and on the density of the gas (less than 1%). The corresponding
graphs (Figures 4.2.2 and 4.2.3) are almost identical to those of the rigid
wall problem (Figures 4.1.20 and 4.1.21); the reason for this similarity is

mainly the fact that the velocity of the wall is negligible compared to the
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wave velocity (1787 m/s). This lack of shock-wall interaction is expected

to hold even when multiple reflections are considered, since the interarrival
time of waves (~0.04 sec.) is much shorter than the period of the wall (0.1
sec.). Sensitivity studies have shown that increasing or decreasing the value

of K by 2 orders of magnitude do not change the conclusions above.

4.3 One-Dimensional Spherical Geometry

An approach similar to the one followed in éection 4.1 has
been adopted here to test the one-dimensional spherical algorithm in

the computer program SPHDET (see Appendix C).

The first problem studied is that of a detonation wave
initiated at the origin of a 1 m radius sphere bounded by a rigid
wall. A mesh of 101 grid points, 0.01 m apart was constructed. In-
itially the gas is at rest at a pressure Py = 10100 N/m2 and a

density Py = 0.1188 Kg/m3. The chemical composition is stoichiometric.

It was necessary to assign the Taylor conditions to a
minimum of 20 grid points. This is due to two reasons: Glimm's
method is basically the solution of the one-dimensional planar
problem; and the gradient of the pressure,density and velocity profiles
Jjust behind the detonation front are very large (see Figures 2.4.1,2.4.3
and 2.4.3).

The non-dimensional graphs (Figures 4.3.1 - 4.3.3) at
t = 0.55 ms show the good agreement of the solution with the Taylor
curyes; however, because of the randomness of the sampling, the

curves are not reproduced smoothly. It is worth noting that the values
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near the center do not follow the prediction of the Taylor solution.

The pressure, density and velocity histories inside the
sphere are shown in Figures 4.3.4 - 4.3.6,'f0r five different times.
It can be seen how the detonation wave propagates inside the sphere
(times (1) and (2)); then, the wave is reflected by the wall. The
resulting shock wave travels back towards the center. First, the
shock decreases in strength but as it approaches the center, the
shock front properties increase steadily until the wave reaches
theorigin; there, the pressure behind the reflected wave becomes 43 times
the pressure of the initial unburnt gas. This implosion phenomenon,
for spherical and cylindrical converging waves has already been noticed
experimentally by Perry and Kantrowitz [3.10] and analytically by
Oswatitsh [3.11] and Sod [3.7].

The pressure and density profiles at the still wall (Figures
4.3.7 and 4.3.8) are similar to the cartesian problem. The wall re-
mains at the constant initial pressure (10100 N/m2) and density
(0.1188 Kg/m3) until the combustion wave is reflected by the wall at
t = 0.53 ms; then, the pressure rises to approximately 40 times the
initial pressure. It starts decreasing to reach a stable pressure of

65000 N/mz, for the remaining of the interval of time shown.

The computer analysis was extended to conditions expected
in a nuclear containment of épherica] geometry: the initial pressure
was set at 1 atm, the initial density was set at 1.19 Kg/m3, the gas

was bounded by a 20 m radius sphere. The results are shown in Figures
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4.3.9 and 4.3.10. The shape of the curves are similar to the previous
case; the pressure rises to 40.5 atm at t = 11 ms, when the wave con-
tacts the wall, and decreases to 6.5 atm at t = 23 ms.

For an interval of time longer than that shown, it is expected that
another reflection takes place at the wall; another spike, with smaller
magnitude than the first one would be recorded. For 1500 time steps

(t=40 ms) the computation time was 22 CPU minutes.

4.4 Axisymmetric Geometry

In this section we consider the axisymmetric program TWODIM
(see Appendix D). For this purpose we evaluated the capability of
this program to reproduce a one-dimensional spherical detonation

(whose solution can be obtained using SPHDET).

The non-dimensional pressure, density and velocity profiles
of a spherical detonation in a 1 m radius sphere (pu = 10100 N/mz,

o, = 0.1188 Kg/m3) can be seen in Figures 4.4.1 - 4.4.3.

To solye the equivalent problem in an axisymmetric coor-
dinate system we took 101 grid points in the x and y directions,
0.01 m apart. We assigned the initial conditions to all the grid
points within a 0.2 m radius according to the Taylor [2.5] solution; the
program was run for 80 time steps (t = 0.4 ms). The properties were
recorded at the grid points lying on the 45° diagonal line. The non-
dimensional plots of these properties are shown in Figures 4.4.4 - 4.4.6.

These graphs compare well enough with the graphs obtained from the




-80-

48¢0g

43000
t

LTI R

-~ eryn
pprrrSaiat o ooty

L PRESSURE 107 (N/n%)

..
L
1803
Wl
¢
w—————

L] W
8 - \.‘ ,,f"""m’

canamrmese

\w.-f-""

i
0

&k e
8 - e - - T ;
. 001 .65 .817 025 .653 .ok

TIkz (58C)

FIGURE 4.3.9: PRESSURE PROFILE AT THE WALL OF A 20 m RADIUS SPHERE
p, = 1atm, o, = 1.19 Kg/m




-81-

(<)

“t
t
Lo

e

-~
[
. —

SR 3
11 CENZITY (Kg/m™)

%

1.89
i

.
[ 4
1,
R — \\ ’Jw,f
L., -
. o
\w-e..w“”p

L] .
Qs - -~ 7 R neaem
-on .o09 .017 025 53 o
TIRE (SEC)

FIGURE 4.3.10: DENSITY PROFILE AT THE WALE'OF A 20 m RADIUS SPHERE
Py = 1 atm, Py = 1.19 Kg/m




-82-

3

H
LN——
-]
“
I
AW
o
U
N
2

TIME (SEC.)

.98

.84

.70

(P/Px)

"D -t
0 /

PRESSURE
U2
i

.28
)

.14

©
o v -
i 4

' -.0 . .8 1.2 1.8 .0
RADIUS X/

FIGURE 4.4.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET

n




(RG/A0%)
.88

OENSITY
.81

S

(O]
.

.34

-l

e -

. ey

-t

1 H
-0 A B 1.2 1.8 2.C

REGIUS (X/3)

FIGURE 4.4.2: NON-DIMENSIONAL DENSITY DISTRIBUTION FOR THE

ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET




-84-

o TIME (SEC.) =0.00028520
)
2 f

{(U/7U)
‘\

cCcITY
sg
L
~—

;e
VELGC
5

.20

& VMN\\/IJ/QK

fow}
- T f Y ]
i 1. 1.6 2.9

.8 2
RACIUS (X/ R}

FIGURE 4.4.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR .THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET




.8y

.10

(P/F~)

g |

=
L
c
~
)

o™

PRESSUR

.28

L
I

o
cl

-85-

TIME (CEC.) =0.00028520

1 -0

FIGURE 4.4.4:

1)2 1}8 zfu 3}0
RADIUS (X/R)
NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE

ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE
AXISYMMETRIC ALGORITHM

o



.88

-48

FIGURE 4.4.5:

o ———T

-86-

et
L

l’\

i.c
RAODIUS (

1
1.
N

,\

B
/R

NON-DIMENSIONAL DENSITY DISTRIBUTION FOR THE

ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE
AXISYMMETRIC ALGORITHM




1.12

.SF .70 .85
I

'
.42

~-87-

TIME(SEC.) =0.,00C

N
0

FIGURE 4.4.6:

r S L
1.2 1.8 2.u 3.0

RAGIUS 0/

a—

NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE
AXISYMMETRIC ALGORITHM

)

AN
.t




-88-

spherical code. However, more oscillations are observed in the results
for the two-dimensional axisymmetric code. This behavior may be ex-
plained by the randomness of the technique; while in the one—dimén«
sional case two half time steps -are needed (i.e. two different
pseudorandom numbers), for a two-dimensional geometry four quarter

time steps are used (i.e. four different pseudorandom numbers).

More computer runs are required to validate the two-dimensional program.

The computation time taken to solye this problem (101x101
grid points and 80 time steps) on an IBM-370 was approximately 40 CPU

minutes.

4.5 Summary

The summary of the work done 'is presented in Table 4.5.1;
different geometries have been studied (planar, spherical and axis-
ymmetric). We validated the one-dimensional codes by comparing the
results to the Taylor solutions. The axisymmetric code was validated
by using it to solve the spherical geometry problem. The results
- for the pressure at the wall were obtained for the one-dimensional
geometries and the interaction with the wall has been studied for

the planar geometry.

The computer time depends on the code used. More iterations
are needed in SPHDET than in CRTDET to correct for the inhomogeneous
terms; hence, the CPU time per time step per grid point is larger in
SPHDET (by a factor of 2). The efficiency of the TWODIM code has been
improved by bypassing the calculations for those grid points ahead of
the detonation front; this'reduces the CPU time per time step and grid

point by approximately 25%.




TABLE 4.5.1: DETONATION CONDITIONS AND RESULTS

GEOMETRY H, CONCENTRATION ~ UNBURNT GAS'
CONDITIONS

Planar Stoichiometric (1)and(2)
Spherical Stoichiometric (1)and(2)

Axisymmetric Stoichiometric (M

*
By comparison with the Taylor solution.

**By comparison with the spherical solution.

* 2 3
(1) p,=10100N/m",p =0.1188 kg/m

(2) pu=1 atm,pu=1.19kg/m3

VALIDATION OF PRESSURE OF INTERACTION
THE PROGRAMS THE WALL WITH THE WALL
yes* yes yes
*

yes yes no
*%

yes yes no

-68-
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CHAPTER V
PRESSURE CALCULATIONS FOR THE INDIAN POINT CONTAINMENT

The two-dimensional axisymmetric program described in sections
3.4 and 4.4 was used to calculate pressure time histories inside the
containment building of the Indian Point Nuclear Power Plant. The
geometry of the containment is shown in Fig. 5.1. No obstacles inside
the containment building were considered.

The program allows for detonation initiation at any point
on the axis of the containment structure. No attempt was made to
model the initial growth of the detonation. Instead it was assumed
that the detonation progresses spherically to an arbitrary radius
from the initiation point. This arbitrary radius was always selected
less than the closest distance of the initiation point from the con-
tainment wall. The initial conditions behind the initial spherical
detonation were taken as the conditions given by the Taylor [2.5] solu-
tion for the selected detonation radius [see section 2.4].

A uniform concentration of hydrogen was assumed inside the
containment, so that the strength of the detonation is the same everywhere.
For a uniformly dispersed detonable mixture and for a given initiation
point, the pressure P at a point x inside the containment and at time ¢,
is proportional to the initial uniform containment pressure Po’ and
is a function of 1) the gas constant, y = Cp/Cv; and 2) the ratio of
the heat generated by the detonation, q (which is proportional to hydrogen

concentration), to the product of the initial absolute containment
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Ts 41.44 m

20.72 m

45.11 m

Fig. 5.1 - Geometry of the Containment of the Indian Point

Nuclear Power Plant
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temperature, To, and the universal gas constant R [2.1, 3.11].
Symbolically, and in terms of dimensionless quantities,

P(t,x) tC

X
—_— = f ° . =) (5.1
= . )

TR T
where CO is the speed of sound at the initial conditions and L
is a characteristic linear scale of the containment. Eq. 5.1 is
valid for geometrically similar containments.

In the pressure calculations performed, any variations in
the gas constant, vy, were neglected and its value was taken equal to
1.4. For hydrogen concentrations less than or equal to stoichiometric,
the dimensionless heat release rate q/RT0 is equal to:

9 - C M (5.2)

o} H2 T0

where CH2 is the volume concentration of hydrogen, in percent, and

the initial containment temperature, To’ is in degrees Kelvin [1.1,
3.6]. The ranges of hydrogen concentration and initial temperatures
that can realistically be expected in a containment following an
accident, are shown in Fig. 5.2. Computer calculations were performed
here for two values of the dimensionless heat release rate, equal

to 17 and 23. Fig. 5.2 shows that these two values of q/RT0

cover an important portion of the range of possible hydrogen concen-
trations and initial temperatures.

The spatial discretization in the r-z plane had a variable

grid size and consisted of 28 points in the radial (r) and 59 in the
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Vertical direction. Figure 5.3 presents the calculation grid for

the Indian Point containment. The dome was approximated by a stepwise
line, consisting of segments parallel to the r and z directions.
Although a variable grip size can be used in the program for calculation
efficiency, very large differences in the grip should be avoided,
because they may induce fluctuations due to large differences in the
characteristic Courant number %%— (compare also with the discussion

in section 4.1).

Preliminary computer runs were made to check the stability
of the code and its ability to reproduce exactly the times of first
arrival of the detonation front to the walls, which can be calculated
easily.

Results were obtained for two initiation points, one at the
center of the base mat and another at a point on the axis 34.5 m above
the base, and for two values of the dimensionless heat release rate,

17 and 23. Calculated pressure time histories at several points on

the wall are presented in Appendix E. A1l pressure values are normal-
ized with respect to the initial containment pressure, PO, and are

given as a function of the dimensionless time tCO/r, where r is the
inside radius of the cylinder and the dome. In the present case, the
non-dimensionalizing constant, P/CO, equals 0.06 sec. Results typically
show a series of decaying pressure peaks. The first peak is due to

the first arrival of the detonation front. Subsequent peaks represent
reflections of shocks which have been reflected before at the containment

axis. Pressure peaks at nearby points occur at approximately the same
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times. After a few reflections (3 or 4, at‘most), pressures decay
to an almost constant value. Decay is faster for initiation at a
point 34.5 m above the base than for initiation at the center of the
base mat, because the stronger three-dimensionality of the shocks in
the former case produces more scattering of the waves. For given
initiation point, decay is faster for the larger of the two heat
release rates, but peak pressures are slightly higher.

The pressure time histories obtained show considerable high
frequency oscillations. These oscillations are believed to be numerical
and can be attributed to: 1) the randomness built in the code by using
the random choice technique; 2) the variable gfid size; 3) the stepwise
approximation of the dome geometry. (Notice that at the points of
the dome there are, in general, more oscillations). Performing the
computations with different time stepé has shown that the high
frequency oscillations do not affect the lower frequency trends in
the pressure time histories, which are real and not numerical,and are
important for the dynamic response of the structure.

The results reported herein agree qualitatively with those
reported in Ref. [1.7]. The results in the latter reference were
obtained by a Finite Difference code which introduces artificial damping
and smooths sharp discontinuities. On the contrary the method used
in this work preserves exactly the sharpness of the shock front, but
introduces some artificial high frequency components. This fundamental
difference between the two methods is the reason for the fact that
significantly higher peak pressures are calculated by the present

method.
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CHAPTER VI
SUMMARY AND CONCLUSIONS

Computer codes for solving the hydrogen detonation problem
in the containment of a nuclear reactor were developed and used. The
compressible flow equations including detonation were solved using a
new numerical technique due to Glimm.

The computer codes CRTDET, SPHDET and TWODIM have been
developed and tested; they reproduce satisfactorily existing analytical
results. CRTDET solves the one-dimensional planar problem.

The one-dimensional spherical or cylindrical geometries are handled

by SPHDET, which is very similar to CRTDET; it solves for the in-
homogeneous terms in the equations of motion by using the operator
splitting method. The computer program TWODIM is a natural extension of
CRTDET and SPHDET, since it uses the same techniques used in these two
codes; however, to account properly for the wave in the r and z directions,
we used a splitting technique with a four-sweeps cycle; the duration for
each sweep is %;u

Pressure histories on the wall for a plane and spherical
geometry have been calculated. Interactions with an elastic wall have
been evaluated numerically only in a plane geometry. The results indi-
cate that the effect of the motion of the wall on the pressure histories
is negligible.

The two-dimensional axisymmetric program was validated by

using it to predict pressure histories in a spherical geometry. Pressure
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histories have been calculated for an actual nuclear containment building,
that of the Indian Point Nuclear Power Plant. Hydrogen concentration
in the containment volume was assumed uniform, any obstacles inside the
containment were neglected, and a hydrogen detonation was postulated.
The probability of such a detonation and the question of the initial
detonation growth were considered out of the scope of the present work.
The numerical results for wall pressures are presented in dimensionless
form, which allows their use for different combinations of hydrogen
concentrations and initial conditions. Three cases were considered in
the calculations,which include two sets of dimensionless heat release
rate and two initial points of the detonation: one at the center of the
base mat and another 34.5 on the containment axis above the base. The
results are in qualitative agreement with previous ones obtained by
using the Finite Difference code CS). However, higher pressures (sometimes
by a factor of two) are predicted in general by the present method.
This can be attributed to the absence of artificial viscosity which
allows a more accurate description of pressure discontinuities.

Due to multiple reflections, peak pressures at some points
are very high (e.g.,fifty times the initial containment pressure), but
they last for very short times, and the dynamic pressures decay to almost
constant values within approximately 0.1 sec. for initiation 34.5m
above the base, or within approximately 0.2 sec for initiation at the
center of the base. Decay was faster for the highest of the two non-
dimensionless heat release rate values, but peak pressures were, in

general, slightly higher. Due to multiple reflections, most pressure
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histories exhibit three or four peaks. These peaks are not expected
to cause resonance of the structure, because their interarrival times
are too short in comparison to the top few natural periods of the

containment.




.....
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NOMENCLATURE
Latin Alphabet
c sound speed
<y sound speed in the burnt gas
ccj Chapman-Jouguet sound speed
u sound speed in the unburnt gas
e energy per unit volume
K wall stiffness
M mass of the wall
m momentum flux
P pressure exerted at the wall
P gas pressure
Py pressure of the burnt gas
pcj Chapman-Jouguet pressure
Pu pressure of the unburnt gas
Q energy due to external sources or sinks
q energy released by chemical reactions
t time
u wave velocity
u particle velocity
up particle velocity of the burnt gas
uCj particle velocity given the Chapman-Jouguet conditions
u, particle velocity of the unburnt gas
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burnt gas velocity in the Eulerian frame
unburnt gas velocity in the Eulerian frame
displacement of the wall

velocity of the wall

acceleration of the wall

Greek Alphabet

&5

n

L B

oy e L

internal energy per unit mass

integer equal 2 for cylindrical coordinates, 3 for spherical
labeling integer equal 1 forunburnt gas and 0 otherwise
Riemann invariant

gas constant equal to Cp/Cv

defined by equations (A.7)

random number

pseudorandom number

gas density

Chapman—Jouguét gas density

density of the burnt gas

density of the unburnt gas

Other symbols are defined in the text.
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APPENDIX A
THE GODUNOV METHOD

This method of calculation of the conditions behind the detonation
front was first implemented by Godunov [3.5] and then modified by Chorin [2.4]
and Sod [3.1]. The method is used by the computer codes developed herein, and
is described in this Appendix for completeness.
Given the equation (3.1.4), we would like to find the proper-

ties pyus Uygs Py in state S,. Let us define

=
]

r (pr = p*)/(ur = U*)s (A.])

and

=
1

9 "(pz = p*)/(u2 = U*). (A.Z)

It can be easily shown that if the right wave is a shock,

M. = —pr(ur - Ur) = —p.lu, - Ur)’ (A.3)

where p, is the density in the region adjacent to the right shock

and Ur is the velocity of the right shock.

Similarly, if the left wave is a shock,

MQ = OQ(UQ - Uz) = -p*(u* - UQ)’ (A.4)

where p, is the density in the portion of S, adjacent to the left
shock and UQ is the velocity of the left shock. Mr and M2 can be

can be written in the form
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1/2

M= (po,) 2 wipalp,) (A.5)
1/2 :
M, = (pgog) /% w(pu/py), (A.6)
where
1/2
P(w) = (I%l-w + I%lﬁ , forw> 1,
(A.7)
- 1-w , for w< 1.
ZY]/Z ]_W(Y'])/ZY
Upon elimination of u, from (A.1) and (A.2), we obtain
- ul - ur * pQ/MQ N pr/Mr (A 8)
P M+ 1M '

Equations (A.5), (A.6) and (A.8) are thre
for which there exists a real solution.

iteratively by choosing a starting value

compute pi+], M3+], Mi+], q > 0 using
p% = (up-utp, /MY + p,/MD)/ (/M
pi’! = max(es PV,
M3+] = (prpr)”2 w(p3+1/pr),
Mg+1 = (p,Lo,L)]/2 w(pi+]/p2)-

e equations in three unknowns
The solution can be found

po(or Mr or Mz), and then

q
3 + 1/M2), (A.9b)

(A.9b)
(A.9c)

(A.9d)
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Equation (A.9b), where £ is a very small number (”10'6), is used to

prevent the pressure of becoming negative.

Once py4» Mr and M2 are found, we may obtain u, by eliminating

p, from (A.1) and (A.2),

u, = (pQ -p.tMu.+ MQUQ)/(Mr + MQ). (A.10)
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APPENDIX B

THE COMPUTER PROGRAM CRTDET

B.1 General Description

The program consists of the main program, the subroutine

GLIMM and the output section. The overall idea behind the main

program can be found in the flow chart of Figure B.1. The major

steps to follow in order to run this program are

1.

Select the grid spacing for each specific problem
and adjust accordingly the values of N and DX;

Decide about the number of time steps necessary
(NSTOP) and the time intervals for which a printed
output of the properties is required (NPRINT);

Assign the parameters defining the initial con-

ditons of the gas and the properties of the combustion.
GAMMA and DELTA are respectively, the gas constant

and the energy released by the combustion. PR, RR

and UR are the initial conditions of the unburnt gas
and PL, RL and UL are the C-J conditions of the

burnt gas. On the other hand, the grid points behind
the detonation front should be given their appropriate
va]ue§ obtained from the Taylor curves (Figures 2.4.1-
2.4.3).

| The subroutine GLIMM solves the Riemann problem for each

grid point.
Sod (1978).

The major part of this subroutine has been described by

However, the last section of the subroutine has been

added to solve the detonation problem.
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START

|

ASSIGN INITIAL VALUES FOR
p, o AND u AT EACH
GRID POINT

REPEAT NSTOP TIMES

Y
CALCULATE HALF THE
TIME STEP —ﬁgi-

!
SOLVE THE RIEMANN PROBLEM
AT MID DISTANCE BETWEEN
ADJACENT GRID POINTS
AFTER HALF TIME STEP

SOLVE THE RIEMANN PROBLEM
AT EACH GRID POINT
AFTER ANOTHER HALF

TIME STEP

PRINTED OUTPUT EVERY NPRINT
TIME STEPS

!
END

FIGURE B.1: FLOW CHART FOR CRTDET
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B.2 Dictionary of the Key Terms in the Program

B
C
CL

CR

CSTAR
DELTA
GAMMA
GGUBFS
ML
MR
MUSQ
N

- NPRINT

NSTOP
PHI(I)

PRE(1)
PSI
‘ PSTAR
1 RHO(1)
‘ RSTAR
SI

’ SIGMA

Defined in equation (2.4.7a)
Defined in equation (2.4.7b)

Sound speed in the left state of the solution of the Riemann
problem

Sound speed in the right state of the solution of the
Riemann problem

Sound speed in state S, or C-J sound speed
Chemical energy released by the combustion process
Gas constant = Cp/Cv

Random number generator; IMSL function subroutine
Defined in equation (A.2)

Defined in equation (A.1)

Defined in equation (2.4.4)

Number of intervals generated by the grid points

Controls the output section; the properties at each
grid point will be printed every NPRINT time steps

Number of time steps

Variable indicating whether the gas is burnt or not at
grid point I

Pressure of the gas in N/m2 at grid point I
Function subroutine defined by equation (A.7)
Pressure in state S, or C-J pressure

Density of the gas in kg/m3 at grid point I
Density in state S, or C-J density
Pseudorandom number in the interval [0,1]

Coefficient in ]0,1] to control the length of each time
step




TIME

ucdJ
USTAR
ux(1)
XI
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Total time in seconds elapsed since the origin
of the detonation

Detonation front velocity given C-J conditions
Particle velocity in state S, or particle C-J velocity
Particle velocity in m/s at grid point I

Pseudorandom number in the interval Enlgﬁu ﬁ? ]
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C

CRTDET c

c

ONE DIMENSIONAL PROGRAM(CARTESIAN) TO CALCULATE c
PRESSURE ,DENSITY AND VELOCITY HISTORY IN A REACTIVE c
MIXTURE C
c

c

ccccccecececececeeeeccececcecceccececececceccecccecececcecccecececcecceccccecceccceccccecccceccccc

[eNsRoNeNosNoNoNsNoNe]

COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA
1,KIM
COMMON/OUT/TIME,N,DX,RH0O(2001) ,PRE(2001),UX(2001)
1,PHI(2001)
COMMON/RAD/ETA
COMMON/LIN/LAM

REAL LAM

DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
NPRINT=25

NSTOP=1000

N=200

NP1=N+1

NM1l=N-1
DX=20.0/FLOAT(N)
DT=0.01
TIME=0.1/1787.7
VMAX=0.

NP=0

GAMMA=1.4
DELTA=1447716.8
BLIP=0.0DO

Kl=11

K2=7

NU=2

SIGMA=0.8

ETA=1.

c SET INITIAL CONDITIONS

RL=2.10939
PL=1539126.7
UL=777.0
RR=1.19242
PR=101325.
UR=0.

DO 15 I=1,2
PHI(I)=0
RHO(I)=RL
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PRE (I)=PL
UX(I)=UL
CONTINUE
RHO(1)=0.91546
PRE(1)=478350.0
UX(1)=0.0

DO 16 I=3,NP1
PHI(I)=1
RHO(I)=RR
PRE(I)=PR
UX(I)=UR
CONTINUE

BEGIN TIME STEP
DO 100 TSTP=1,NSTOP

NP=NP+1
DO 8 I=2,N

VMAX1=ABS(UX(L))+SQRT(GAMMA*PRE(I)/RHO(I))

IF (VMAX1.GT.VMAX) VMAX=VMAX1
CONTINUE
DTT=SIGMA*DX/ (2 . *VMAX)
IF(DTT.LT.DT) DT=DTT
TIME=TIME+2.*DT
LAM=0.5/VMAX

COMPUTE FIRST HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
BLIP=BLIP+2.DO
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)

X1 LIES BETWEEN -DX/2 AND +DX/2

DO 40 I=2,NP1
XI=SI*DX~0.5%DX
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI(I)
IF(I.EQ.2)GO TO 43
RL=RIM1

PL=PIM1

UL=UIM1

GO TO 44

BOUNDARY CONDITION AT AXIS R=0
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RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI(1)
GO TO 44

COMPUTE FIRST HALF STEP OF GLIMM

CALL GLIMM
RIM1=RHO(I)
RHO(I)=R
PIM1=PRE(I)
PRE(I)=P
UIM1=UX(I)
UX(I)=U
KIM=PHI(I)
PHI(I)=KPHI
CONTINUE

COMPUTE SECOND HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)

XI LIES BETWEEN -DX/2 AND +DX/2

KIM=PHI(1)

DO 60 I=1,NP1l
XI=SI*DX-0.5*%DX
RL=RHO(I)

PL=PRE(I)

UL=UX(I)

IF(I.EQ.NP1) GO TO 63
KPHI=PHI(I+1)
RR=RHO(I+1)

PR=PRE (I+1)
UR=UX(I+1)

IF(I.EQ.1) GO TO 62
GO TO 64

BOUNDARY CONDITION AT R=1.
RR=RL

UR=-UL

PR=PL

KPHI=PHI(I)

XI=0.0

GO TO 64
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COMPUTE SECOND HALF STEP OF GLIMM

A0

2 XI=0.0
RL=RR
UL=-UR
PL=PR
64 CALL GLIMM
RHO(I)=R
PRE(I)=P
UX(I)=U
KIM=PHI(I+1)
PHI(I)=KPHI
60 CONTINUE
WRITE(15,20000) TIME
20000 FORMAT(1H1,7d TIME = ,F11.7)
WRITE(15,20001) RHO(1l),PRE(1)
WRITE(15,20001) RHO(NP1) ,PRE(NP1)
20001 FORMAT(1HO,2F13.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0
100 CONTINUE
STOP
END

\

c SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

SUBROUTINE GLIMM
COMMON//DT,GAMMA,RL,UL,PL,R,U,P ,E,RR,UR,PR,XI,KPHI,DELTA
1,KIM

COMMON/RAD/ETA
COMMON/LIN/LAM

REAL MR,ML,MRP1l,MLP1
REAL LAM,MUSQ
EPS=1.E-6

IT=0

ITSTOP=20
KPHIP=KPHI*KIM

IF KPHI=1 , MIGHT HAVE A DETONATION

(e NoNe]

IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111

CONSTRUCTION OF RIEMANN PROBLEM
ALFA 1S THE CONVERGENCE FACTOR

e N NeNe]

ALFA=1.
ALFAM=1.-ALFA

an

INITIAL ML AND MR
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ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT (PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV=0.5%* (RL+RR)
PAV=0.5%(PL+PR)
A=PAV / (RAV* *GAMMA)
R=RAV-LAM* (UR*RR-UL*RL)
PSTAR=A* (R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=IT+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

PSTAR=AMAX1(EPS,PSTAR)
COMPUTE MR AND ML AT STEP Q+l

MLP1l=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS(MLP1-ML)
DIFMR=ABS(MRP1-MR)

ML=MLP1

MR=MRP1

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1l./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS(PSTAR-PSTARP) .LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.

ALFAM=1,-ALFA

IF(ALFAM.LT.EPS) GO TO 40

IT=0

IF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION

USTAR=(PL-PR+MR*UR+ML*UL) / (ML+MR)
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BEGIN GLIMM'S METHOD

IREGL=1

IF(PSTAR.LT.PL) IREGL=2
IREGR=1

IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE
IF(IREGL.EQ.2) GO TO 110

COMPUTE LEFT SHOCK SPEED
U=UL-ML/RL

X=U*DT

IF(XI.GE.X) GO TO 100

LEFT OF LEFT SHOCK

R=RL

U=UL

P=PL

GO TO 500

RIGHT OF LEFT SHOCK
R=ML/(USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE
CL=SQRT(GAMMA*PL/RL)

X=(UL~-CL)*DT

IF(XI.GE.X) GO TO 120

LEFT OF LEFT FAN

R=RL

U=UL

P=PL

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A

A=PL/(RL**GAMMA)
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COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR

CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130

IN LEFT FAN

U=(2./(GAMMA+1.))*(XI/DT+CL+0.5% (GAMMA-1. )*UL)
RINT=CL+0.5% (GAMMA~1.)* (UL-U)
R=(RINT*RINT/(A*GAMMA) )**(1./(GAMMA-1.))
P=A*(R**GAMMA)

GO TO 500

RIGHT OF LEFT FAN

R=RSTAR
U=USTAR
P=PSTAR
GO TO 500

RIGHT SIDE
IF(IREGR.EQ.2) GO TO 220
COMPUTE RIGHT SHOCK SPEED
U=UR+MR/RR

X=U*DT

IF(XI.GE.X) GO TO 210
LEFT OF RIGHT SHOCK
R=-MR/ (USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

RIGHT OF RIGHT SHOCK

R=RR

U=UR

P=PR
GO TO 500
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COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/ (RR**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)

COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT

IF(XI.GE.X) GO TO 230

LEFT OF RIGHT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE
CR=SQRT(GAMMA*PR/RR)

X=(UR+CR)*DT

IF(XI.GE.X) GO TO 240

IN RIGHT FAN
U=(2./(GAMMA+1.))*(XI/DT-CR+0.5% (GAMMA-1.)*UR)
RINT=CR+0.5*(GAMMA-1.)*(U~UR)
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=A*(R**GAMMA)

GO TO 500

RIGHT OF RIGHT FAN

R=RR

U=UR

P=PR

GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR-DELTA* (GAMMA-1. ) *RR
MUSQ=(GAMMA-1.)/(GAMMA+1.)
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA
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PSTAR=-B+SQRT ( (B*B)-C)
RSTAR=(PSTAR*(GAMMA+1.)-PR)*RR/(GAMMA*PSTAR)
UCJ=SQRT (GAMMA*PSTAR*RSTAR) /RR+UR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
USTAR=UCJ-CSTAR

USTAR=777.0

PSTAR=1539126.7

RSTAR=2.10939

CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
UCJ=USTAR+CSTAR

BEGIN GLIMM'S METHOD

X=UCJ*DT
IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333

COMPUTE SOUND SPEED IN LEFT STATE

CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT
IF(XI.GE.X) GO TO 444

LEFT OF RAREFACTION FAN

R=RL

U=UL

P=PL
KPHI=0

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PSTAR/ (RSTAR**GAMMA)
IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5* (GAMMA-1.)*USTAR)
RINT=CSTAR+0.5% (GAMMA-1.)* (U-USTAR)
R=(RINT*RINT/ (A*GAMMA) ) **(1./(GAMMA-1.))
P=A*(R**GAMMA)

KPHI=0

GO TO 500

RIGHT OF DETONATION

U=USTAR
P=PSTAR
R=RSTAR
KPHI=0
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GO TO 500
222 U=UR
P=PR
R=RR
500 CONTINUE
RETURN
END

c FUNCTION PSI

FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.-X).GT.EPS) GO TO 100
PSI=SQRT (GAMMA)
RETURN

100 COEF1=0.5*% (GAMMA+1.)
COEF2=0.5*(GAMMA-1.)
COEF3=COEF2/GAMMA
IF(X.GE.1.) GO TO 200
PSI=COEF2*(1.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))
RETURN

200 PSI=SQRT(COEF1*X+COEF2)
RETURN
END

SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM

00

SUBROUTINE OUTPUT
COMMON/ /DT ,GAMMA ,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA
1,KIM
COMMON/OUT/TIME,N,DX,RHO(2001) ,PRE(2001) ,UX(2001)
1,PHI(2001)
INTEGER PHI
NPl=N+1
WRITE(6,10000) TIME
WRITE (6,10001)
DO 20 I=1,NP1
X=FLOAT (I-1)*DX
R=RHO(I)
U=UX(I)
P=PRE(I)
K=PHI(I)
WRITE(6,10002) X,R,U,P,K
20 CONTINUE
RETURN
10000 FORMAT(1H1,7H TIME = ,F11.7)
10001 FORMAT(lH ,3H X,6X,5HDENSE,8X,3HVEL,10X,4HPRES,10X,3HPHI)
10002 FORMAT(1HO,F6.3,3F13.5,12)
END
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APPENDIX C

THE COMPUTER PROGRAM SPHDET

The computer program SPHDET is very similar to CRTDET;
however, the subroutine INHOM has been added to make the correction
for the inhomogeneous terms in the equations of gas dynamics in
one dimensional spherical or cylindrical coordinate system. This
subroutine is called after the solution of the Riemann problem has
been advanced one time step in the time space. It uses the method

described in section 3.3.

Actually the one-dimensional cartesian, cylindrical and
spherical problems can be solved by SPHDET by taking ETA equal to 1,

2, and 3 respectively.
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c SPHDET

c

c ONE DIMENSIONAL PROGRAM(CYL. OR SPHE.) TO CALCULATE

c PRESSURE ,DENSITY AND VELOCITY HISTORY IN A REACTIVE

c MIXTURE

c
gcceeeececceceececceccceecceccecececceecceccecceececceceececcceceecceccecccecceccecceccceccecccecccceccc

COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,KPHI,DELTA ,KIM
COMMON/OUT/TIME,N,DX,RHO(111) ,PRE(111),UX(111),PHI(111)
COMMON/RAD/ETA
COMMON/LIN/LAM

REAL LAM

DOUBLE PRECISION BLIP
INTEGER TSTP,PHI
NPRINT=20

NSTOP=100

N=100

NP1=N+1

NM1=N-1
DX=1.0/FLOAT(N)
pDT=0.01
TIME=0.19/1787.85
VMAX=0.

NP=0

GAMMA=1.4
DELTA=1447711.2
BLIP=10.0DO

Kl=11

K2=7

NU=2

SIGMA=0.8

ETA=3.

SET INITIAL CONDITIONS

Qo0

RL=0.2102
PL=153419.
UL=777.
RR=0.11886
PR=10100.
UR=0.
DO 15 I=1,20
PHI(I)=0
RHO(I)=RL
PRE(I)=PL
UX(I)=UL

15 CONTINUE ‘
RHO(1)=0.0841




PRE(1)=42550.91
UX(1)=0.0
RHO(2)=0.0841
PRE(2)=42550.91
UX(2)=0.0
RHO(3)=0.0841
PRE(3)=42550.91
UX(3)=0.
RHO(4)=0.0841
PRE(4)=42550.91
UX(4)=0.
RHO(5)=0.0841
PRE(5)=42550.91
UX(5)=0.
RHO(6)=0.0841
PRE(6)=42550.91
UX(6)=0.0
RHO(7)=0.0841
PRE(7)=42550.91
UX(7)=0.0
RHO(8)=0.0841
PRE(8)=42550.91
UX(8)=0.0
RHO(9)=0.0841
PRE (9)=42550.91
UX(9)=0.0
RHO(10)=0.0841
PRE(10)=42550.91
UX(10)=0.0
RHO(11)=0.08565
PRE(11)=43264.16
UX(11)=23.29
RHO(12)=0.08933
PRE(12)=45642.15
UX(12)=62.06
RHO(13)=0.09354
PRE(13)=49477.62
UX(13)=100.98
RHO(14)=0.09984
PRE(14)=54463.75
UX(14)=139.82
RHO(15)=0.10720
PRE(15)=60216.95
UX(15)=191.87
RHO(16)=0.11661
PRE(16)=67504.36
UX(16)=252.45
RHO(17)=0.12822
PRE(17)=77476.59
UX(17)=322.36

-127-
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RHO(18)=0.14188
PRE(18)=88983.02
UX(18)=419.46
RHO(19)=0.16395
PRE(19)=105859.11
UX(19)=532.10

DO 16 I=21,NP1
PHI(I)=1
RHO(I)=RR
PRE(I)=PR
UX(I)=UR
CONTINUE

BEGIN TIME STEP

DO 100 TSTP=1,NSTOP

NP=NP+1

DO 8 I=2,N

VMAX 1=ABS(UX(I))+SQRT(GAMMA*PRE(I)/RHO(I))
IF (VMAX1.GT.VMAX) VMAX=VMAX1

CONTINUE

DTT=SIGMA*DX/ (2 .*VMAX)

IF(DTT.LT.DT) DT=DTT

TIME=TIME+2.*DT

LAM=0.5/VMAX

COMPUTE FIRST HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
BLIP=BLIP+1.DO
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)

XI LIES BETWEEN -DX/2 AND +DX/2

DO 40 I=2,NP1
XI1=SI*DX~-0.5*DX
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI(I)
IF(I1.EQ.2)GO TO 43
RL=RIM1

PL=P IM1

UL=UIM1

GO TO 44

BOUNDARY CONDITION AT AXIS R=0
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RL=RHO(1)
UL=UX(1)
PL=PRE(1)
KIM=PHI(1)
GO TO 44

COMPUTE FIRST HALF STEP OF GLIMM

CALL GLIMM(XIL)
RIM1=RHO(I)
RHO(I)=R
PIM1=PRE(I)
PRE(I)=P
UIMl=UX(I)
UX(I)=U
KIM=PHI(I)
PHI(L)=KPHI
CONTINUE

COMPUTE SECOND HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K2,K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)

XI LIES BETWEEN -DX/2 AND +4DX/2

KIM=PHI(1)

DO 60 I=1,NP1
XI2=SI*DX-0.5*DX
RL=RHO(I)

PL=PRE(I)

UL=UX(I)

IF(I.EQ.NP1) GO TO 63
KPHI=PHI(I+1)
RR=RHO(I+1)

PR=PRE (I+1)
UR=UX(I+1)

IF(I.EQ.1) GO TO 62
GO TO 64

BOUNDARY CONDITION AT R=1.
RR=RL

UR=-UL

PR=PL

KPHI=PHI(I)

XI2=0.0

GO TO 64
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COMPUTE SECOND HALF STEP OF GLIMM

XI2=ABS(XI2)

IF(XI1.LT.0.) XI2=XI1+0.5%*DX
RL=RR

UL=-UR

PL=PR

CALL GLIMM(XI2)

RHO(I)=R

PRE(I)=P

UX(I)=U

KIM=PHI(I+1)

PHI(I)=KPHI

CONTINUE

CALL INHOM

WRITE (15,20000) TIME
FORMAT(1H1,7H TIME = ,F11.7)
WRITE(15,20001) RHO(1),PRE(1)
WRITE(15,20001) RHO(NP1) ,PRE(NP1)
FORMAT (1HO,2F13.5)
IF(NP.LT.NPRINT) GO TO 100
NP=0

CALL OUTPUT

CONTINUE

STOP

END

SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

SUBROUTINE GLIMM(XI)

COMMON/ /DT ,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,KPHI ,DELTA,KIM
COMMON/RAD/ETA

COMMON/LIN/LAM

REAL MR,ML,MRP1,MLP1

REAL LAM,MUSQ

EPS=1.E-6

IT=0

ITSTOP=20

KPHIP=KPHI*KIM

IF KPHI=1 , MIGHT HAVE A DETONATION
IF(KPHI.EQ.1.AND.KPHIP.EQ.0) GO TO 111

CONSTRUCTION OF RIEMANN PROBLEM
ALFA IS THE CONVERGENCE FACTOR

ALFA=1.
ALFAM=1.-ALFA
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INITIAL ML AND MR

ML=100.
MR=100.
COEFL=SQRT(PL*RL)
COEFR=SQRT (PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV=0.5% (RL+RR)
PAV=0.5%(PL+PR)
A=PAV/(RAV**GAMMA)
R=RAV-LAM* (UR*RR~UL*RL)
PSTAR=A* (R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=1T+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL
TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

PSTAR=AMAX1(EPS,PSTAR)
COMPUTE MR AND ML AT STEP Q+l1

MLP1=COEFL*PSI(PSTAR/PL,GAMMA)
MRP1=COEFR*PSI(PSTAR/PR,GAMMA)
DIFML=ABS(MLP1~-ML)
DIFMR=ABS(MRP1-MR)

ML=MLP1

MR=MRP1

COMPUTE NEW PRESSURE PSTAR

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1./MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
IF(ABS(PSTAR-PSTARP).LT.EPS) GO TO 40
IF(DIFML*DIFMR.LT.EPS) GO TO 40
ALFA=ALFA/2.

ALFAM=1.-ALFA

IF(ALFAM.LT.EPS) GO TO 40

IT=0

IF(DIFML.GT.EPS) GO TO 10
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION
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USTAR=(PL-PR+MR*UR+ML*UL) / (ML+MR)
BEGIN GLIMM'S METHOD

IREGL=1 _
IF(PSTAR.LT.PL) IREGL=2
IREGR=1

IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE

IF(IREGL.EQ.2) GO TO 110
COMPUTE LEFT SHOCK SPEED
U=UL-ML/RL

X=U*DT

IF(XI.GE.X) GO TO 100
LEFT OF LEFT SHOCK

R=RL

U=UL

P=PL

GO TO 500

RIGHT OF LEFT SHOCK
R=ML/(USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE
CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT

IF(XI.GE.X) GO TO 120
LEFT OF LEFT FAN

R=RL

U=UL

P=PL

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
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A=PL/(RL**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT
IF(XI.GE.X) GO TO 130

IN LEFT FAN
U=(2./(GAMMA+1.))*(XI/DT+CL+0.5* (GAMMA-1.)*UL)
RINT=CL+0.5*(GAMMA-1.)*(UL-U)
R=(RINT*RINT/ (A*GAMMA) )**(1./(GAMMA-1.))
P=A* (R**GAMMA)

GO TO 500

RIGHT OF LEFT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

RIGHT SIDE

IF(IREGR.EQ.2) GO TO 220
COMPUTE RIGHT SHOCK SPEED
U=UR+MR/RR

X=U*DT

IF(XI.GE.X) GO TO 210

LEFT OF RIGHT SHOCK

R=-MR/ (USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

RIGHT OF RIGHT SHOCK

R=RR

U=UR
P=PR




aooamndMOOOn
[\
o

e NeNe]

NOOO

NOOO e NeN?]

=OOoOOOaO 0

-134-

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/ (RR**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)

COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR+CSTAR)*DT

IF(XI.GE.X) GO TO 230

LEFT OF RIGHT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE
CR=SQRT(GAMMA*PR/RR)

X=(UR+CR) *DT

IF(XI.GE.X) GO TO 240

IN RIGHT FAN
U=(2./(GAMMA+1.))*(XI/DT-CR+0.5% (GAMMA-1.) *UR)
RINT=CR+0.5% (GAMMA-1.)* (U-UR)
R=(RINT*RINT/ (A*GAMMA) )**(1./(GAMMA~1.))
P=A%* (R**GAMMA )

GO TO 500

RIGHT OF RIGHT FAN

R=RR

U=UR

P=PR

GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR-DELTA* (GAMMA-1.)*RR
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MUSQ=(GAMMA-1.)/(GAMMA+1.)
C=(PR*PR)+2.*MUSQ*PR*RR*DELTA
PSTAR=-B+SQRT((B*B)-C)

RSTAR= (PSTAR* (GAMMA+1.)-PR)*RR/ (GAMMA*PSTAR)
UCJ=SQRT (GAMMA*PSTAR*RSTAR) /RR+UR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
USTAR=UCJ~CSTAR

BEGIN GLIMM'S METHOD

X=UCJ*DT
IF(XI.GE.X) GO TO 222

LEFT OF DETONATION

U=USTAR
P=PSTAR
R=RSTAR
KPHI=0
GO TO 500
U=UR
P=PR
R=RR
CONTINUE
RETURN
END

FUNCTION PSI

FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.~-X).GT.EPS) GO TO 100
PSI=SQRT (GAMMA)

RETURN

COEF1=0.5% (GAMMA+1.)
COEF2=0.5% (GAMMA-1.)
COEF3=COEF2/GAMMA

IF(X.GE.1.) GO TO 200
PSI=COEF2*(1.-X)/(SQRT(GAMMA)*(1.~(X**COEF3)))
RETURN

PSI=SQRT(COEF1*X+COEF2)

RETURN

END

SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
DIFFERENTIAL EQUATION

SUBROUTINE INHOM _
COMMON/ /DT ,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR ,KPHI,DELTA,KIM
COMMON/OUT/TIME,N,DX,RHO(111) ,PRE(111) ,UX(111) ,PHI(111)
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COMMON/RAD/ETA

REAL MOM

INTEGER PHI

NP1=N+1

DO 100 I=2,NP1

X=FLOAT(I-1)*DX

R=RHO(I)

U=UX(I)

P=PRE(I)

KPHI=PHI(I)

KPHIP=PHI(I+1)

KIP=KPHI*KPHIP

IF(KPHIP.EQ.1l.AND.KIP.EQ.0) GO TO 10

E=P/(GAMMA~1.)+0.5*R*U*U+KPHI*DELTA*R

DEN=R-2.*DT#* (ETA-1.)*R*U/X

MOM=R*U-R*U*2,*DT*(ETA-1.)*U/X

E=E-2.%DT*(ETA-1.)*U* (E+P) /X

RHO(I)=DEN

UX(I1)=MOM/DEN

PRE(I)=(GAMMA-1.)*(E-KPHI*DELTA*DEN-0.5*MOM*MOM/DEN)
11 GO TO 100

10 RHO(I)=R
UX(I)=U
PRE(I)=P
100  CONTINUE
RETURN
END
C
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
C

SUBROUTINE OUTPUT
COMMON/ /DT ,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,KPHI,DELTA,KIM
COMMON/OUT/TIME,N,DX,RHO(111),PRE(111),UX(111),PHI(111)
INTEGER PHI
NP1=N+1
WRITE(6,10000) TIME
WRITE (6,10001)
DO 20 I=1,NP1
X=FLOAT(I-1)*DX
R=RHO(I)
U=UX(I)
P=PRE(I)
K=PHI(I)
WRITE(6,10002) X,R,0,P,K
20 CONTINUE
RETURN
10000 FORMAT(1H1,7H TIME = ,F11.7)
10001 FORMAT(1lH ,3H X,6X,5HDENSE,8X,3HVEL,10X,4HPRES,10X,3HPHI)
10002 FORMAT(1HO,F6.3,3F13.5,12) .
END
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APPENDIX D

THE COMPUTER PROGRAM TWODIM

D.1 Description of the Program

The major parts of the program are similar to the previous
two programs i.e., the main program, the subroutine GLIMM, the sub-
routine INHOM and the output section. However, two subroutines have
been added. Subroutine LABEL defines the boundaries for the probiem,
it simulates the curved walls of a containment by a stepwise line;
it also identifies the grid points which fall outside the boundaries.
Subroutine SPLINE is a third order polynomial approximation of the

Taylor curves in spherical coordinates.

The general flow chart of the main section of the program
can be found in Figure D.1. The data file cards are explained in

Table D.1.

D.2 Dictionary of Key Terms in TWODIM

The terms which have been defined in section B.2 are not

repeated here

AP(12), BP(12), Coefficient of the third order polynomial
approximating the Taylor curyes for the

cP(12), DP(12), pressure, density and velocity

AR(12), BR(12),

CR(12), DR(12),

Au(12), BU(12),

DETDIS Initial distance the detonation front had
reached:



-138-
START

ASSIGN INITIAL VALUES OF p, p, u AND v

REPEAT NSTOP TIMES

At

CALCULATE THE HALF TIME STEP 5

|

CALCULATE THE PROPERTIES AT MID DISTANCE
BETWEEN GRID POINTS FOR EACH J LINE
BY AN x SWEEP

CALCULATE PROPERTIES AT MID DISTANCE

BETWEEN GRID POINTS FOR EACH I + —— COLUMN

2
BY A y SWEEP

CALCULATE PROPERTIES AT EACH GRID PGINT

FOR EACH J + ]T LINE BY AN x SWEEP

CALCULATE PROPERTIES AT EACH GRID POINT
FOR EACH T COLUMN BY A y SWEEP

MAKE THE CORRECTION FOR THE INHOMOGENEOUS TERMS

PRINTED OUTPUT EVERY NPRINT TIME STEPS

U
END

FIGURE D.1: FLOW CHART FOR TWODIM




-139-
TABLE D.1:

NO. OF CARDS FORTRAN NAME[FORMAT]

DATA FILE

NPRINT [14]
NSTOP [14]

NX[13]
NY[13]

X(I)[10F7.3]

Y(I)[10F7.3]

1 SXDXY[F10.4]
1 DETDIS[F7.3]
1 JCYL[I3]

*
[X] = 1argest integer < X

COLUMN N°

1-4 last digit in column 4

5-8 last digit in column 8

1-3 last digit in column 3

4-6 last digit in column 6

X(1)
X(2)

- X(10)

X(11)

X (NX)
Y(1)

Y(2)

¢(10)
Y(11)

1-3 last

1-7
8-14

64-70
1-7

1-7
8-14

64-70

digit in column 3



IDUM(T,J)

JCYL

LABEL

NX
NY
SDXY

SPLINE

Sx(12)

Ux(1,d)
VY(I1,d)
X(I)
Y(I)
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Dummy variable which identifies whether the grid
point is an internal, external or boundary point.

Last grid point in the y-direction before the wall

~ of the containment starts to curve

Subroutine which defines the wall boundaries of the
containment

Number of grid points in the x-direction
Number of grid points in the y-direction
Smallest grid interval in the x and in the y directions

Subroutine which generates the coefficients of the
third order fit polynomial

Selected points on the absissa axis of the Taylor
curves

X-component of the velocity at grid point (I,J)
Y-component of the velocity at grid poing (I,J)
Grid distance from the origin in the x-direction

Grid distance from the origin in the y-direction

YP(12),YR(12),0rdinate corresponding to SX in the spherical Taylor

Yu(12)

curves for the pressure, density and velocity
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TWO DIMENSIONAL AXISYMMETRIC PROGRAM TO CALCULATE
PRESSURE,DENSITY AND VELOCITY HISTORY IN A REACTIVE MIXTURE

COMMON/ /DT, GAMMA, RL, UL, PL,R,U,V,P,E,RR, UR, PR, KPHI , DELTA, KIM,
& V1

COMMON/OUT /TIME, NX,NY,RHO(101,101),PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101, 101)
COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

COMMON/RAD /ETA

COMMON/LIN/LAM

COMMON/INI/RCHJ, PCHJ, UCHJ

DIMENSION SX(12),YP(12),AP(12),BP(12),CP(12),DP(12)
DIMENSION YR(12),AR(12),BR(12),CR(12),DR(12)

DIMENSION YU(12),AU(12),BU(12),CU(12),DU(12)

DATA SX/.501,.6,.7,.75,.8,.85,.9,.92,.94,.96,.98,1./

DATA YP/.2773,.3075,.3675,.405, .45, .515, .59, .62, .67, .725, .8,
& 1./

DATA YR/.4,.43,.485,.52,.565,.6175,.68,.715,.76,.815,.88,1./
DATA YU/.0,.1,.2,.265,.345,.43,.55,.61,.66,.73,.83,1./

CALL SPLINE(SX,YP,AP,BP,CP,DP)

CALL SPLINE(SX,YR,AR,BR,CR,DR)

CALL SPLINE(SX,YU,AU,BU,CU,DU)

REAL LAM

DOUBLE PRECISION BLIP

INTEGER TSTP,PHI

READ(5,9999) NPRINT, NSTOP

FORMAT (214)

READ (5,8888) C1

FORMAT (F12.5)

READ THE DIMENSION OF THE GRID IN THE X AND Y DIRECTIONS

READ (5, 10000 )NX, NY
FORMAT (213)
NXM1=NX-1
NYM1=NY-1

READ THE GRID LOCATION

READ(5,10001) (X(I),I=1,NX)
READ(5,10001) (Y(J),J=1,NY)
FORMAT ( 10F7. 3)
READ(5,10002) SDXY

FORMAT (F10. &)

DT1=0.00001

TIME=0.0

VMAX=0.

NP=0

GAMMA=1. 4

DELTA=1447711.2

BLIP=0.0DO
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K1=11

K2=7

NU=2

SIGMA=1.0

ETA IS A DUMMY CONTROL
ETA=3.

READ THE INITIAL INITIATION RADIUS

READ(5, 10003) DETDIS
FORMAT (F7.3)

SET INITIAL CONDITIONS

READ(5, 10004 ) RCHJ

READ (5, 10004)PCHJ

READ (5, 10004 )UCHJ

READ (5, 10004)RIN

READ (5, 10004)PIN

READ (5, 10004 )UIN

FORMAT (F13.5)

RL=RCHJ

PL=PCHJ

UL=UCHJ

VL=0.

RR=RIN

PR=PIN

UR=UIN

VR=0.

READ(5,10006) YO

FORMAT(E7.3)

READ (5, 10007) NYO

FORMAT (13)

DO 10 I=1,NX

DO 10 J=1,NY
DIST(I,J)=SQRT(X(I)**2.+(Y(J)-YO)*(Y(J)-YO))
IF(DIST(I,J).GT.DETDIS) GO TO 11

PHI(I,J)=0

DDET=DIST(I,J)/DETDIS

IF(DDET.GT.SX(1)) GO TO 1

PRE(I,J)=YP(1)*PL

RHO(I,J)=YR(1)*RL

UX(I,J)=YU(1)*UL

GO TO 29

DO 9 K=2,12

IF(DDET.GT.SX(K)) GO TO 9

XX=DDET-SX(K-1)
PRE(I,J)=AP(K-1)*XX*XX*XX+BP (K-1)*XX*XX+CP (K-1)*XX+DP(K-1)
PRE(I,J)=PRE(I,J)*PL
RHO(1I,J)=AR(K-1)*XX*XX*XX+BR(K-1)*XX*XX+CR(K-1)*XX+DR(K-1)
RHO(I,J)=RHO(I,J)*RL Ql'
UX(I,J)=AU(K-1)*XX*XX*XX+BU(K-1)*XX*XX+CU(K-1)*XX+DU(K-1)
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UX(I,J)=UX(I,J)*UL

GO TO 29

9 CONTINUE

29 IF(I.EQ.1.AND.J.EQ.NYO) GO TO 12
GO TO 13

12 VY (I,J)=UX(I,J)
GO TO 10

13 U=UX(I,J)

UX(I,J)=U*X(1)/DIST(I,J)
VY(I,J)=U*(Y(J)-YO)/DIST(I,J)
GO TO 10
11 RHO(I,J)=RR
PRE(I,J)=PR
UX(I,J)=UR
VY(I,J)=VR
PHI(I,J)=1
10 CONTINUE
READ(5,10005) JCYL
10005 FORMAT(I3)
CALL LABEL(NX,NY, JCYL)
DO 333 I=1,NXMl
DO 333 J=1,NYM1
IF(IDUM(I,J).EQ.4) GO TO 333
IF(PHI(I+1,J).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
IF(PHI(I,J+1).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
333  CONTINUE

Cc BEGIN TIME STEP

DO 100 TSTP=1,NSTOP
NP=NP+1

DO 30 I=1,NX

DO 30 J=1,NY

VMAX1=SQRT(UX(I,J)*UX(I,J)+VY(I,J)*VY(I,J))+SQRT(GAMMA*PRE(I,J)/
&RHO(1,J)) ' '
IF(VMAX1.GT.VMAX) VMAX=VMAX1
0 CONTINUE
SET INITIAL VALUE OF DT
DT=0.01
FIND THE HALF TIME STEP DT

QQ Qw

DTT=SIGMA*SDXY/ (2. *VMAX)
IF(DTT.LT.DT) DT=DTT
DT=AMAX1 (DT, DT1)
TIME=TIME+2. *DT
LAM=0.5/VMAX

COMPUTE FIRST QUARTER STEP. X-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD

aaaQQn
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NU=MOD (NU+K2,K1)
BLIP=BLIP+1.DO
SI=(GGUBES(BLIP)+FLOAT(NU))/FLOAT (K1)

DO 40 J=1,NY
DO 40 I=2,NX
DX=(X(I)-X(I-1))
XI1=SI*DX-0.5*DX
IF(IDUM(I,J).EQ.0) GO TO 40
RR=RHO(I,J)
UR=UX(I,J)
PR=PRE(I,J)
KPHI=PHI (I, J)
V1=VY(I,J)
IF(I.EQ.2) GO TO 43
RL=RIM1

PL=PIM1
UL=UIM1

=VIM1
GO TO 44
RL=RHO(1,J)
UL=UX(1,J)
PL=PRE(1,J)
KIM=PHI(1,J)
V=VY(1,J)
CALL GLIMM(XI1)
RIM1=RHO(I,J)
RHO(I,J)=R
PIM1=PRE(I,J)
PRE(I,J)=P
UIM1=UX(I,J)
UX(I,J)=U
VIM1=VY(I,J)
VY(I,J)=V
KIM=PHI(I,J)

PHI (1, J)=KPHI
CONTINUE

COMPUTE SECOND QUARTER STEP. Y-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD (NU+K2, K1)
SI=(GGUBFS (BLIP)+FLOAT(NU))/FLOAT (K1)

DO 50 I=2,NX

DO 50 J=2,NY
DY=(Y(J)-Y(J-1))
XI2=SI*DY-0.5%DY
IF(IDUM(I,J).EQ.0) GO TO 50
RR=RHO(I,J)
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UR=VY(I,J)
PR=PRE(I,J)
KPHI=PHI(I,J)
V1=UX(I,J)
IF(J.EQ.2) GO TO 53
RL=RIM1
PL=PIM1
UL=UIM1

V=VIM1

GO TO 54
RL=RHO(I,1)
UL=VY(I,1)

PL=PRE(I,1)
KIM=PHI(I,1)
V=UX(I,1)
CALL GLIMM(XI2)
RIM1=RHO(I,J)
RHO(I,J)=R
PIM1=PRE(I,J)
PRE(I,J)=P
UIM1=VY(I,J)
VY(I,J)=U
VIM1=UX(I,J)
UX(I,J)=V
KIM=PHI(I,J)
PHI(I,J)=KPHI
CONTINUE

COMPUTE THIRD QUARTER STEP. X-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD (NU+K2, K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)

DO 60 J=2,NY

DO 60 I=1,NX
IF(IDUM(I,J).EQ.0) GO TO 60
RL=RHO(1I,J)

PL=PRE(I,J)

UL=UX(I,J)

V=VY(I,J)

IF(I.EQ.NX) GO TO 63
IF(IDUM(I+1,J).EQ.0) GO TO 63
DXR=(X(I+1)~X(I))*0.5
IF(I.EQ.1) DXL=DXR

IF(I.NE.1) DXL=(X(I)-X(I-1))*0.5
XI3=(DXR+DXL)*SI~-DXL

KPHI=PHI (I+1,J)

RR=RHO(I+1,J)

PR=PRE(I+1,J)
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UR=UX(I+1,J)
V1=VY(I+1,J)
IF(I.EQ.1) GO TO 62
GO TO 64

BOUNDARY CONDITIONS AT WALL

RR=RL

UR=-UL

PR=PL
KPHI=PHI(I,J)
XI3=-ABS(XI3)
GO TO 64

BOUNDARY CONDITIONS AT CENTERLINE

XI3=ABS(XI3)
RL=RR
PL=PR
UL=-UR
KIM=PHI(2,J)
PHI(1,J)=PHI(2,J)
V=VY(I+1,J)
VY(I,J)=VY(I+1,J)
CALL GLIMM(XI3)
RHO(I,J)=R
PRE(I,J)=P
UX(I,J)=U
IF(I.NE.NX) KIM=PHI(I+1,J)
PHI(I,J)=KPHI
VY(I,J)=V
CONTINUE

COMPUTE FOURTH QUARTER STEP. Y-SWEEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD (NU+K2, K1)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT (K1)

DO 70 I=1,NX

DO 70 J=1,NY
IF(IDUM(I,J).EQ.0) GO TO 70
RL=RHO(I,J)

PL=PRE(I,J)

UL=VY(I,J)

V=UX(I,J)

IF(J.EQ.NY) GO TO 73
IF(IDUM(I,J+1).EQ.0) GO TO 73
DYR=(Y(J+1)-Y(J))*0.5
IF(J.EQ.1) DYL=DYR
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IF(J.NE.1) DYL=(Y(J)-Y(J-1))*0.5
XI4=(DYR+DYL)*SI-DYL
KPHI=PHI(I,J+1)

RR=RHO(I,J+1)

PR=PRE(I,J+1)

UR=VY(I,J+1)

V1=UX(I,J+1)

IF(J.EQ.1) GO TO 72

GO TO 74

BOUNDARY CONDITIONS AT THE UPPER WALL

oo Ne!

3 RR=RL
UR=-UL
PR=PL
KPHI=PHI(I,J)
XI14=-ABS(XI4)
GO TO 74

BOUNDARY CONDITIONS AT THE LOWER WALL

N

2 XI4=ABS(X14)
RL=RR
PL=PR
UL=-UR
KIM=PHI(I,2)
PHI(I,1)=PHI(I,2)
V=UX(I,J+1)
UX(I,J)=UX(I,J+1)
74 CALL GLIMM(XI4)
RHO(I,J)=R
PRE(I,J)=P
VY(I,J)=U
IF(J.NE.NY) KIM=PHI(I,J+1)
PHI(I,J)=KPHI
UX(I,J)=V
70 CONTINUE
CALL LABEL(NX,NY,JCYL)
DO 777 I=1,NXM1
DO 777 J=1,NYM1
IF(IDUM(I,J).EQ.4) GO TO 777
IF(PHI(I+1,J).EQ.1.AND.PHI(I,J).EQ.0) IDUM(I,J)=3
IF(PHI(I,J+1).EQ.1.AND.PHI(I,J).EQ.O) IDUM(I,J)=3
777  CONTINUE
CALL INHOM
WRITE(6,300) TIME,PRE(NX,1),PRE(NX,8),PRE(NX,16),PRE(NX,21),
*PRE(NX, 26) , PRE(NX, 30) , PRE(NX, 34) , PRE(NX, 38) , PRE(NX, 41),
*PRE (24, 46),PRE(20,50),PRE(15,55),PRE(10,60),PRE(S, 65),
*PRE(1,65),PRE(1,1),PRE(1,24),PRE(1,34),PRE(1,44),PRE(1,54)
300 FORMAT(1X,E9.3,1X,10(E9.3,1X),/,10X,10(E9.3,1X))
IF(NP.LT.NPRINT) GO TO 100

’ NP=0
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CONTINUE
STOP
END

SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM

SUBROUTINE GLIMM(XI)
COMMON/ /DT, GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR, PR,KPHI ,DELTA,KIM,

& Vi1

COMMON/RAD/ETA

COMMON /LIN/LAM

COMMON/ INI/RCHJ, PCHJ, UCHJ
REAL MR,ML,MRP1,MLP1

REAL LAM,MUSQ

EPS=1.E-6

EPS1=1.E-3

IT=0

ITSTOP=20

KPHIP=KPHI*KIM

IF KPHI=1 , MIGHT HAVE A DETONATION

IF(KPHI.EQ.1.AND.KPHIP.EQ.O0) GO TO 111
IF(KIM.EQ.1.AND.KPHIP.EQ.0) GO TO 111

CONSTRUCTION OF RIEMANN PROBLEM
ALFA IS THE CONVERGENCE FACTOR

ALFA=].
ALFAM=1.-ALFA

INITIAL ML AND MR

ML=100.
MR=100.
COEFL=SQRT (PL*RL)
COEFR=SQRT (PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV
RAV=0.5% (RL+RR)

PAV=0.5% (PL+PR)

A=PAV/ (RAV**GAMMA )

R=RAV-LAM* (UR*RR-UL*RL)

PSTAR=A* (R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=IT+1

IF PSTAR IS LESS THAN EPS1THEN PSTAR IS SET EQUAL
TO 1.0E-3 TO PREVENT PSTAR FROM BECOMING NEGATIVE
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PSTAR=AMAX1 (EPS1,PSTAR)

COMPUTE MR AND ML AT STEP Q+1

NOOQOQ Q

0 MLP1=COEFL*PSI (PSTAR/PL, GAMMA )
MRP1=COEFR*PSI (PSTAR/PR, GAMMA )
DIFML=ABS(1.-(MLP1/ML))
DIFMR=ABS(1.-(MRP1/MR))
ML=MLP1
MR=MRP 1

COMPUTE NEW PRESSURE PSTAR

QaQaQ

PSTARP=PSTAR
PSTAR=(UL-UR+PR/MR+PL/ML) /(1. /ML+1, /MR)
PSTAR=ALFA*PSTAR+ALFAM*PSTARP
IF(IT.LE.ITSTOP) GO TO 30
DIFPS=ABS(1.-(PSTARP/PSTAR))
IF(DIFPS.LT.EPS1) GO TO 40
IF(DIFML*DIFMR.LT.EPS1) GO TO 40
ALFA=ALFA/2.

ALFAM=1.-ALFA
IF(ALFAM.LT.EPS1) GO TO 40
IT=0

30 IF(DIFML.GT.EPS1) GO TO 10

IF(DIFMR.GT.EPS1) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION

PSTAR=AMAX1 (EPS1,PSTAR)
USTAR=(PL-PR+MR*UR+ML*UL) / (ML+MR)

BEGIN GLIMM'S METHOD

QQQ H»OOQAO
o

IREGL=1

IF(PSTAR.LT.PL) IREGL=2
IREGR=1 »
IF(PSTAR.LT.PR) IREGR=2
X=USTAR*DT

IF(XI.GE.X) GO TO 200

LEFT SIDE
IF(IREGL.EQ.2) GO TO 110

COMPUTE LEFT SHOCK SPEED

QO QO

U=UL-ML/RL
X=U*DT
IF(XI.GE.X) GO TO 100
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LEFT OF LEFT SHOCK

R=RL

U=UL

P=PL

GO TO 500

RIGHT OF LEFT SHOCK

R=ML/ (USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE
CL=SQRT (GAMMA *PL/RL)

X=(UL-CL) *DT

IF(XI.GE.X) GO TO 120

LEFT OF LEFT FAN

" R=RL

U=UL

P=PL

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PL/(RL**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR) *DT

IF(XI.GE.X) GO TO 130

IN LEFT FAN

U=(2./(GAMMA+1.))* (XI/DT+CL+0.5% (GAMMA~1.)*UL)
RINT=CL+0.5% (GAMMA-1. ) * (UL-U)
R=(RINT*RINT/(A*GAMMA) )**(1./(GAMMA-1.))
P=A* (R**GAMMA)

GO TO 500

RIGHT OF LEFT FAN

R=RSTAR
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U=USTAR

P=PSTAR

GO TO 500

RIGHT SIDE

IF(IREGR.EQ.2) GO TO 220
COMPUTE RIGHT SHOCK SPEED
U=UR+MR/RR

X=U#*DT

IF(XI.GE.X) GO TO 210

LEFT OF RIGHT SHOCK

R=-MR/ (USTAR-U)

U=USTAR

P=PSTAR

GO TO 500

RIGHT OF RIGHT SHOCK

R=RR

U=UR

P=PR

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/(RR**GAMMA)

COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(1./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT (GAMMA*PSTAR/RSTAR )
X=(USTAR+CSTAR) *DT
IF(XI.GE.X) GO TO 230

LEFT OF RIGHT FAN

R=RSTAR

U=USTAR

P=PSTAR

GO TO 500

COMPUTE SOUND SPEED IN RIGHT STATE

CR=SQRT (GAMMA*PR/RR)
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X=(UR+CR) *DT
IF(XI.GE.X) GO TO 240

IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CR+0.5% (GAMMA-1.)*UR)

RINT=CR+0.5%* (GAMMA-1. ) * (U-UR)

R=(RINT*RINT/(A*GAMMA) )**(1./(GAMMA-1.))

P=A* (R**GAMMA )
GO TO 500

RIGHT OF RIGHT FAN
R=RR

=UR

P=PR

GO TO 500

DETONATION CONDITIONS

CALCULATE CONDITIONS JUST BEHIND CJ DETONATION

B=-PR-DELTA* (GAMMA-1. ) *RR
MUSQ=(GAMMA-1.)/(GAMMA+1.)
C=(PR*PR)+2 . *MUSQ*PR*RR*DELTA
PSTAR=-B+SQRT( (B*B)-~C)

RSTAR=(PSTAR* (GAMMA+1. )-PR) *RR/(GAMMA*PSTAR)

UCJ=SQRT (GAMMA*PSTAR*RSTAR ) /RR+UR
CSTAR=SQRT (GAMMA *PSTAR/RSTAR)
USTAR=UCJ-CSTAR

PSTAR=PCHJ
USTAR=SQRT (ABS (UCHJ*UCHJ-V*V))
RSTAR=RCHJ

CSTAR=SQRT (GAMMA*PSTAR/RSTAR)
UCJ=(USTAR/UCHJ ) * (CSTAR+UCHJ)
IF(KIM.EQ.1) GO TO 555

BEGIN GLIMM'S METHOD
X=UCJ*DT

IF(XI.GE.X) GO TO 222
IF(ETA.LT.3.5) GO TO 333

COMPUTE SOUND SPEED IN LEET STATE
NEXT STATEMENTS TO0333 NOT USED

CL=SQRT (GAMMA*PL/RL)
X=(UL+CL) *DT
IF(XI.GE.X) GO TO 444

LEFT OF RAREFACTION FAN
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R=RL
U=UL

P=PL
KPHI=0O

GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PSTAR/(RSTAR**GAMMA)

IN RIGHT FAN

O()()g()()ﬂ
W

U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5% (GAMMA-1. ) *USTAR)
RINT=CSTAR+0.5*% (GAMMA-1. ) * (U-USTAR)
R=(RINT*RINT/(A*GAMMA) ) **(1./(GAMMA-1.))

P=A* (R**GAMMA)

KPHI=0

GO TO 500

RIGHT OF DETONATION

WO

33 U=USTAR
P=PCHJ
R=RCHJ
KPHI=O
GO TO 500

222 U=UR

P=PR

R=RR

V=0

GO TO 500

DETONATION FROM RIGHT TO LEET

unQQQQ

55  USTAR=SQRT (ABS(UCHJ*UCHJ-V1*V1))
UCJ=(USTAR/UCHJ ) * (CSTAR+UCHJ)
X=-UCJ*DT
IF(XI.LE.X) GO TO 556
IF(ETA.LT.3.5) GO TO 557
557  U=-USTAR
P=PCHJ
R=RCHJ
V=V1
KPHI=0
GO TO 500
556  U=UL
P=PL
R=RL
KPHI=1
V=0
500 CONTINUE
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RETURN
END

FUNCTION PsSI

FUNCTION PSI(X,GAMMA)
EPS=1.0E-6
IF(ABS(1.-X).GT.EPS) GO TO 100
PSI=SQRT (GAMMA)

RETURN

COEF1=0.5% (GAMMA+1. )
COEF2=0.5% (GAMMA-1. )
COEF3=COEF2/GAMMA

IF(X.GE.1.) GO TO 200
PSI=COEF2*(1.-X)/(SQORT(GAMMA)* (1.- (X**COEF3)))
RETURN

PSI=SQRT (COEF1*X+COEF2)

RETURN

END

SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS
DIFFERENTIAL EQUATION

SUBROUTINE INHOM
COMMON/ /DT, GAMMA, RL, UL, PL,R,U,V,P,E,RR,UR, PR, KPHI ,DELTA, KIM
COMMON/OUT/TIME, NX,NY, RHO(101,101),PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101,101)

COMMON/AWT /VY (101,101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)

REAL MOMX, MOMY

INTEGER PHI

EPS2=1.E-3

DO 100 J=1,NY

DO 100 I=2,NX

XX=X(1I)

R=RHO(I,J)

U=UX(I,J)

P=PRE(I,J)

V=VY(I,J)

KPHI=PHI(I,J)

KPHIP=PHI(I+1,J)

KPHIPY=PHI(I,J+1)

IF(J.NE.1) KPHIPP=PHI(I,J-1)

KIP=KPHI*KPHIP

KIPY=KPHI *KPHIPY

IF(J.NE.1) KIPP=KPHI*KPHIPP
IF(KPHIP.EQ.1.AND.KIP.EQ.0) GO TO 10
IF(KPHIPY.EQ.1.AND.KIPY.EQ.0) GO TO 10
IF(J.NE.1.AND.KPHIPP.EQ.1.AND.KIPP.EQ.0) GO TO 10
E=P/(GAMMA-1.)+0.5*R*U*U+KPHI*DELTA*R+0.5*R*V*V
DEN=R-2 . *DT*R*U/XX ’
MOMX=R*U-R*U*2 . *DT*U/XX
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MOMY=R*V-2 . *DT*R*U*V /XX

E=E-2.*DT*U* (E+P) /XX

RHO(I,J)=DEN

UX(I,J)=MOMX/DEN

VY(I,J)=MOMY/DEN

POP=(GAMMA-1. ) * (E-KPHI*DELTA*DEN-0. 5*MOMX *MOMX/DEN-0 . 5 *MOMY *M

&OMY /DEN)

PRE(I,J)=AMAX1(EPS2, POP)
GO TO 100

RHO(I,J)=R

UX(I,J)=U

VY(I,J)=V

PRE(I,J)=P

CONTINUE

RETURN

END

SUBROUTINE SMOOTH TO DAMP THE OSCILLATIONS

SUBROUTINE SMOOTH(C1)

COMMON/OUT/TIME, NX,NY,RHO(101,101),PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101, 101)
COMMON/AWT/VY(101,101),X(101),Y¥(101),DIST(101,101),

& IDUM(101,101)

DO 1 J=1,NY

RP=RHO(1,J)

UP=UX(1,J)

PP=PRE(1,J)

VP=VY(1,J)

NXM1=NX-1

DO 1 I=2,NXM1

IF(IDUM(I+1,J).EQ.0) GO TO 1

R=RHO(I,J)

U=UX(I,J)

V=VY(I,J)

P=PRE(I,J)

R1DEL=RHO(I,J)-RP

U1DEL=UX(I,J)-UP

P1DEL=PRE(I,J)-PP

V1DEL=VY(I,J)-VP

R2DEL=RHO(I+1,J)-R

U2DEL=UX(I+1,J)-U

P2DEL=PRE(I+1,J)-P

V2DEL=VY(I+1,J)-V

R=R+C1* (ABS(U2DEL) *R2DEL-ABS (U1DEL) *R1DEL)
U=U+C1* (ABS (U2DEL) *U2DEL-ABS ( U1DEL) *U1DEL)
P=P+C1* (ABS(U2DEL) *P2DEL-ABS (U1DEL) *P1DEL)
V=V+C1* (ABS(U2DEL) *V2DEL-ABS (U1DEL) *V1DEL)
RP=RHO(I,J)

RHO(I,J)=R

UP=UX(1,J)

UX(I,J)=U
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PP=PRE(1I,J)

PRE(I,J)=P

VP=VY(I,J)

VY(I,J)=V

CONTINUE

NYM1=NY-1

DO 2 I=1,NX

RP=RHO(I,1)

UP=UX(I,1)

PP=PRE(I,1)

VP=VY(I,1)

DO 2 J=2,NYM1

IF(IDUM(I,J+1).EQ.0) GO TO 2

R=RHO(I,J)

U=UX(I,J)

P=PRE(I,J)

V=VY(I,J)

R1DEL=RHO(I,J)-RP

U1DEL=UX(I,J)-UP

P1DEL=PRE(I,J)-PP

V1DEL=VY(I,J)-VP

R2DEL=RHO(I,J+1)-R

U2DEL=UX(I,J+1)-U

P2DEL=PRE(I,J+1)-P

V2DEL=VY(I,J+1)-V

R=R+C1* (ABS(V2DEL)*R2DEL-ABS (V1DEL) *R1DEL)
U=U+C1* (ABS(V2DEL) *U2DEL-ABS (V1DEL) *U1DEL)
P=P+C1l* (ABS(V2DEL) *P2DEL-ABS(V1DEL) *P1DEL)
V=V+C1* (ABS(V2DEL) *V2DEL-ABS(V1DEL) *V1DEL)
RP=RHO(I,J)

RHO(I,J)=R

UP=UX(I,J)

UX(I,J)=U

PP=PRE(I,J)

PRE(I,J)=P

VP=VY(I,J)

VY(I,J)=V

CONTINUE

RETURN

END

SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS

SUBROUTINE LABELF(NX,NY, JCYL)

COMMON/AWT/VY (101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

DO 1 J=1,NY

DO 1 I=1,NX

IDUM(I,J)=1

IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
IX1=30

IX2=24

IX3=20
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IX4=12

I1Y1=12

1Y2=20

IY3=24

1Y4=30

DO 2 I=IX2,NX

DO 2 J=IY1,IY2

IDUM(I,J)=0

IF(I.EQ.IX2) IDUM(I,J)=4
IF(J.EQ.IY1.AND.I.LE.IX1) IDUM(I,J)=4
DO 3 I=IX3,NX

DO 3 J=IY2,IY3

IDUM(I,J)=0

IF(I.EQ.IX3) IDUM(I,J)=4
IF(J.EQ.IY2.AND.I.LE.IX2) IDUM(I,J)=4
DO 4 I=IX4,NX

DO 4 J=1Y3,1Y4

IDUM(I,J)=0

IF(I.EQ.IX4) IDUM(I,J)=4
IF(J.EQ.IY3.AND.I.LE.IX3) IDUM(I,J)=4
RETURN

END

SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS

SUBROUTINE LABEL(NX,NY,JCYL)
COMMON/AWT,/VY(101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

DO 1 J=1,NY

DO 1 I=1,NX

IDUM(I,J)=1

IF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4
NXF=NX+1

JCYLF=JCYL-1

NYM1=NY-1

DO 2 I=1,NX

IM=NXF-I

JCYLF=JCYLF+1

IF(JCYLF.GT.NYM1) GO TO 11

DO 2 J=JCYLF,NYM1

IDUM(IM, J+1)=0

IDUM(IM-1,J)=4

IDUM(IM-1,J+1)=4

RETURN

END

SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM

SUBROUTINE OUTPUT

COMMON/ /DT, GAMMA, RL, UL, PL,R, U, V, P, E,RR, UR, PR, KPHI , DELTA, KIM
COMMON/OUT/TIME, NX, NY, RHO(101,101),PRE(101,101),UX(101,101)
COMMON/OWT /PHI (101,101)
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COMMON/AWT/VY (101,101),X(101),Y(101),DIST(101,101),
& IDUM(101,101)

INTEGER PHI

WRITE(6,20000) TIME

DO 20 J=1,NY,3

JM=NY+1-J

WRITE(6,20001) Y(JM), (RHO(I,JM),I=1,NX,3)
WRITE(6,20002) (UX(I,JM),I=1,NX,3)

WRITE(6,20002) (VY(I,JM),I=1,NX,3)

WRITE(6,20003) (PRE(I,JM),I=1,NX,3)

WRITE(6,20004) (PHI(I,JM),I=1,NX,3)

WRITE(6,20004) (IDUM(I,JM),I=1,NX,3)

CONTINUE

WRITE(6,20005) (X(I),I=1,NX,3)

WRITE(15,20000) TIME

WRITE(15,30000)

DO 30 J=1,NY

WRITE(15,30001) Y(J),RHO(NX,J),UX(NX,J),VY(NX,J),PRE(NX,J),
&PHI (NX, J)

CONTINUE

RETURN

FORMAT(1X,' TIME = ',F11.7/)

FORMAT (1X,F7.3,11(F9.5,2X))

FORMAT (8X,11(F9.4,2X))

FORMAT (8X, 11(F9.1,2X))

FORMAT (12X,11(I1,10X))

FORMAT (8X, 11(F9.3,2X))

FORMAT(1H ,3H X,6X,5HDENSE, 8X,3HVEL, 10X, 4HPRES, 10X, 3HPHI )
FORMAT (1HO, F6.3,4F13.5,12)

END

SUBROUTINE SPLINE:FINDS THE THIRD ORDER FIT COEFFICIENTS
FOR THE TAYLOR CURVES IN SPHERICAL COORDINATES

SUBROUTINE SPLINE(X,Y,A,B,C,D)

DIMENSION X(12),Y(12),H(11),RHS(10),W(10,10),A(12),B(12)
DIMENSION C(12),D(12),AS(10),BS(10),CS(10),G(12)
DO 2 I=1,11

J=I+1

H(I)=X(J)-X(I)

DO 3 I=1,10

J=1+1

K=I+2
RHS(I)=3.*(((Y(K)-Y(J))/H(JI))=-((Y(I)-Y(I))/H(I)))
DO 4 I=1,10

DO 4 J=1,10

W(I,J)=0.0

DO 5 I=1,10

J=I1+1

W(I,I)=2.*%(H(I)+H(J))

IF(J.EQ.11) GO TO 6

W(I,J)=H(J)
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W(J,I1)=W(I,J)

AS(1)=W(1,1)

BS(1)=W(1,2)

CS(1)=RHS(1)

BS(10)=0.0

DO 7 I=2,10

J=I+1

K=I-1
AS(I)=(W(I,K)*BS(K))-(AS(K)*W(I,I))
CS(I)=(W(I,K)*CS(K))-(RHS(I)*AS(K))
IF(I.EQ.10) GO TO 7
BS(I)=-AS(K)*W(I,J)

CONTINUE

B(10)=CS(10)/AS(10)

DO 8 I=2,10

J=11-1

K=J+1
B(J)=(CS(J)-(BS(J)*B(K)))/AS(J)
DO 9 I=1,10

J=I+1

G(J)=B(1I)

G(1)=0.0

G(12)=0.0

DO 12 I=1,12

B(I)=G(I)

DO 10 I=1,11

J=I+1

A(I)=(B(J)-B(I))/3./H(I)

C(I)=((Y(J)-Y(I))/H(I))-((H(I)*(B(J)+(2.*B(I))))/3.)

D(I)=Y(I)
RETURN
END
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APPENDIX E
PRESSURE TIME HISTORIES AT THE WALL OF THE
INDIAN POINT CONTAINMENT

Pressure time histories at selected points on the wall of
the Indian Point containment are presented in this Appendix. Wall
pressures are normalized with respect to the initial pressure in the
containment, Po’ and are shown as a function of dimensionless time
since initiation, tCo/r, where Co is the speed of sound at the initial
conditions and r is the radius of the cylinder and the dome. In the
Indian Point Containment r equals 20.7 m and at atmospheric initial
conditions r/C0 = 0.06 sec. Results are shown for two initiation

points and two dimensionless heat release rates, q/RT0 = 17 and 23.
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Fiq. E.1 - Wall Pressure History at the Junction of
the Rase and the Cylincer (q/RT = 17;
Initiation at Base Center)
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Fig. E.2 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RT0 = 17; Initiation at Base Center)
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Fig. E.3 - Wall Pressure History at Elevation 12.0 m of the
Cylinder (q/RT0 = 17; Initiation at Base Center)
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Fig. E.4 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RT = 17; Initiation at Base Center)
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E.5 - Wall Pressure History at Elevation 24.0 m of the
Cylinder (q/RT0 = 17; Initiation at Base Center)
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Fig. E.6 - Wall Pressure History at E]evétion 30.0 m of the

Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.7 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.8 - Wall Pressure History at Elevation 42.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.12 - Dome Pressure History at Elevation 61.0 and Radius
13.6 m (q/RT0 = 17; Initiation at Base Center)
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Fig. E.16 - Wall Pressure History at the Junction of the Base and
the Cylinder (q/RT0 = 17; Initiation 34.5 Above Base)
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Fig. E.18 - Wall Pressure History at Elevation 12.0 m of the
Cylinder (Q/RTo = 17; Initiation 34.5 Above Base)
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Fig. E.20 - Wall Pressure History at Elevation 24.0 m of the
Cylinder (a/RTo = 17; Initiation 34.5 m Above Base)



-182- ‘

70 80

60

P/P,

30
|

. Wy
b I
. 1.'s 2.2
tcolr

Fig. E.21 - Wall Pressure History at Elevation 30.0 m of the
Cylinder (q/RTo = 17; Initiation 34.5 m Above Base)
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F1g E.23 - Wall Pressure History at Elevation 42.0 m of the
Cylinder (q/RT_ = 17; Initiation 34.5 m Above Base)
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Fig. E.24 - Dome Pressure History at Elevation 47.0 m and
Radius 20.7 m (q/RT_ = 17; Initiation 34.5 m
Above Base) 0
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Fig. E.25 - Dome Pressure History at Elevation 51.0 m and-
Radius 19.4 m (q/RT_ = 17; Initiation 34.5 m
Above Base) 0
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Fig. E.26 - Dome Pressure History at Elevation 56.0 m and
Radius 17.1 m (q/RT = 17; Initiation 34.5 i
Above Base)
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F1g E.27 - Dome Pressure History at Elevation 61.0 m and
Radius 13.6 m (q/RT = 17; Initiation 34.5 m
Above Base)
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Fig. E.28 - Dome Pressure History at Elevation 64.0 m and
Radius 9.6 m" (q/RT = 17; Initiation 34.5 m
Above Base)
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Fig. E.31 - Wall Pressure History at the Junction of the Base
and theCy_Tinder(q/RT° = 23; Initiation 34.5 m
Above Base)
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Fig. E.32 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RT] = 23; Initiation 34.5 m Above Base)




-194-

88
J

71

73 s
uy

P/P
44

33
I

22

1
|
———
e

JERRI

T T T
1.5 2.2 - 2.9
r
tcol

E.33 - Wall Pressure History at Elevation 12.0m of the Cylinder
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E.34 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.35 - Wall Pressure History at Elevation 24.0 m of the Cylinder
(q/RT0 = 23; Initiation 34.5 m Above Base)
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Fig. E.36 - Wall Pressure History at Elevation 30.0 m of the Cylinder
(a/RT = 23; Initiation 34.5 m Above Base)




-198-

77

66

44

P/P0

11
.
J—

e

) 'g 3.6
tCO/r

rJ
N
n

Fig. E.37 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (Q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.38 - Wall Pressure History at Elevation 42.0 m of the Cylinder
(q/RTO = 23; Initiation 34.5 Above Base)
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