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ABSTRACT

Computer codes which simulate hydrogen detonators in planar, 
cylindrical, spherical and two-dimensional axisymmetric geometries 
have been developed. The computational method is based on the 
Random Choice Technique which can handle accurately sharp discontin­
uities. The detonation front is represented in the model as a dis­
continuity which changes the still unburnt gas to a completely burnt 
one, according to the Chapman-Jouguet conditions. Numerical results 
for one-dimensional geometries show good agreement with available 
analytical solutions. The one-dimensional code was modified to 
include coupling with an elastically deformable wall and the modified 
version was used to demonstrate that for typical concrete containment 
structures interaction of the waves with wall deformations has in­
significant effects on the wave properties, and can be neglected.
The two-dimensional axisymmetric code was used to calculate pressure 
time histories at the wall of a cylindrical containment capped with 
a semi-spherical dome. Dimensions were similar to the ones of the 
containment of the Indian Point Nuclear Power Plant. The detonations 
simulated had initiation at either the center of the base mat or at 
a point on the axis at approximately two-thirds the cylinder height, 
and were for two different intensities. Computed pressures included 
repeated reflections at the walls and died out within a few tenths 
of a second.
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CHAPTER I 

INTRODUCTION

1.1 Background Information

After the Three Mile Island accident of March 28, 1979, 

questions haye been raised concerning the safety of Nuclear Power 

Plants if a rapid hydrogen explosion occurs.

Internal explosions are a severe test for the integrity of 

the containment structure of Nuclear Power Plants. In Light-Water- 

Reactors (LWR) such events may result from hydrogen detonations 

(due to exothermic chemical reactions between hydrogen and oxygen) 

or steam explosions. Hydrogen is generated from the coolant water, 

both during normal operations and during accidents. Sources of 

hydrogen during normal operation include aqueous corrosion of 

core metals, electrolysis and radiolysis. During an accident that 

involves core heatup, hydrogen may be produced in the core by the 

high-temperature reaction of water with metals, namely with zirconium 

from the zircaloy fuel cladding and with iron from the molten steel. 

Large quantities of hydrogen gas may thus accumulate in the reactor 

pressure vessel, as was actually the case in the Three Mile Island 

accident. The sources of oxygen are primarily in-leakage of air, 

and again, water electrolysis and radiolysis.
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In the event of such internal explosions, the consequences 

could be catastrophic as they may cause the failure of several 

Engineering Safety Systems and hence, the containment structure is 

the last line of defense against early release of radioactive 

fission-products to the atmosphere.

1.2 Hydrogen Combustion

If the hydrogen is homogeneously distributed in a contain­

ment, deflagrations or detonations may occur if the composition of 

the hydrogen-air mixture falls within the corresponding range on 

the Shapiro and Moffette D-l] tripartite diagram. Flammability 

limits depend on the pressure, temperature and direction of the 

flame. Considerable uncertainty exists on the exact location of the 

detonability limits. Shapiro and Moffette assumed these limits to 

be 19% and 45% hydrogen for air-hydrogen mixtures and drew the limits 

conservatively, almost parallel to the flammability limits. Deton­

ation limits also depend on the pressure and were found to be equal 

to 20% and 65% in hydrogen-air mixtures at room pressure and temp­

erature [1.2].

Detonation is a shock wave driven and sustained by the 

chemical energy released from oxygen-hydrogen reaction. The shock 

wave and the chemical reaction propagate together at a supersonic 

speed relative to the burnt medium. The shock front is character­

ized by an abrupt increase in pressure, temperature and density of 

the gas and by a net forward movement of the gas particles.
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Detonation may start as a result of minor sparks, contact 

to metal surface, temperature above the spontaneous ignition temperature, 

minor shock propagating in the gas or by transition from deflagration. 

Although a detonation is very unlikely to happen in a LWR containment, 

the possibility should not be disregarded because of the high 

temperature and pressure, and the intense radiation in case of an 

accident.

1.3 Previous Work in the Area

The effect of the quasi-static increase of pressure 

(resulting from slow burning) on containments integrity has been 

studied by the U.S.N.R.C. [1.3] and Fardis [1.4]; however, little 

has been done on the effect of a detonation on the containment 

structure.

Morrison et al.> [1.5] have treated the hydrogen 

detonation and steam explosion in an over-simplified manner. They 

modeled these phenomena as TNT explosions occurring at the center of 

a containment (idealized as a sphere), through an equivalence be­

tween released energy and TNT mass. Then they computed the peak 

overpressure at a distance equal to the containment radius. They 

neglected the effect of the reflection at the wall pressure (the 

reflection can increase the overpressure by a factor of the order 

of 2 to 3).

In a better attempt, Carbiener et al. [1.6] tried to

solve the same problem; however, they neglected the fact that the



-4-

shock pressure takes a finite time to decay from its Chapman-Jouguet 

plane to the steady state pressure (the Chapman-Jouguet plane is the 

detonation front plane); thus, the impulse calculated on the basis of 

this assumption may be 300-400 times smaller. They also neglected 

the effect of repeated reflections.

After the Three Mile Island accident, the interest in this 

area rose again; Byers [1.7] studied the effect of the hydrogen 

detonation on the containment structure using a code based on 

"artificial viscosity". The code was originally used for continuum 

mechanics problems and it is difficult to adapt it to hydrogen 

detonations. Running such a program requires a large amount of CPU 

time.

1.4 Objective

Development of a numerical model able to predict correctly 

the behavior of the gas in an axisymmetric containment in case of 

an explosion is required in order to assess the capability of the 

structure to contain the explosion. Because of many uncertainties 

in the physical models, it is very difficult to develop a computer 

program to predict the initiation and development of a hydrogen 

detonation. It has been assumed in this work that a hydrogen 

detonation can be developed instantaneously after ignition. Such 

conditions present a higher challenge for the containment structure 

since pressure waves induced by detonation are expected to be 

larger than pressure waves induced by a slow combustion (deflagration)
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In this research, a reliable computer code is developed 

capable of solving the hydrogen detonation problem for axisymmetric 

geometries.

The gas dynamics equations for planar, cylindrical and 

axisymmetric geometries are derived in Chapter II; the following 

assumptions are made:

1) homogeneous mixing of the hydrogen with steam and 
air in the containment volume,

2) the energy due to radiation is negligible

3) heating of the containment wall by the gases is 
negligible.

The Random Choice Technique is used for solving numerically the 

equations of motion. Chapter III includes the principles, the 

advantages and the implementation of the method for planar, spherical 

and axisymmetric geometries. Validation of the method, pressure 

histories and interactions with the wall are included in Chapter IV. 

Chapter V presents the application of the two-dimensional code in 

computing the pressure histories generated by a hydrogen detonation 

in a realistic nuclear containment building. The conclusions are 

summarized in Chapter VI.
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CHAPTER II

COMPRESSIBLE FLOW EQUATIONS

In this chapter the basic gas dynamics equations which con­

stitute the starting point of the analysis are presented. The derivation 

can be found in any gas dynamics book (see for example Landau & Lifshitz 

[2.1]).

The equations describing the motion of a compressible inviscid

gas are:

-ff-+ P V • u = 0, (2.1a)

ay
at + u • v u (2.1b)

3e
at + V (e+p) u = pQ, (2.1c)

where p is the density, u is the velocity, p is the pressure, e is the 

total energy per unit volume, and t is time. The energy due to external 

sources or sinks, Q, is considered to be equal to zero. The total energy, 

e, is given by

e = pe + -y- p |u|2, (2.2)

where

e = ei + q. (2.3)
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and

e.i
J__ E_y-1 p (2.4)

In equations (2.2), (2.3) and (2.4) is the internal energy 

per unit mass, y is a gas constant equal to Cp/Cv, Y > 1 and q is the 

energy released by chemical reactions.

2.1 One-Dimensional Cartesian Coordinate System

The equations in one-dimensional cartesian coordinate system 

follow directly from equations (2.1). The gradient and divergence are

V<p d±_ .
8x 1 ’

and

V-u 3x

(2.1.1)

(2.1.2)

where i is the unit vector in the x direction , and u = uxi. After re­

arranging the gas dynamics equations, we get:

lf + -5r = °’ <2-’-3a>

!r++’’) = °> <2-1-3b>

!r+ = 0- (2-'-3c)
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where m = pu is the momentum flux. Observe that the equations in one­

dimensional cartesian system can be written in a conservation form without 

source or sink terms.

2.2 One-Dimensional Spherical and Cylndrical Coordinate Systems

v<j) H ,•
3r i * (2.2.1)

and

V • u 3r
+ (tH)

u
r
r (2.2.2)

where j is the unit vector in the r direction and n = 3 for spherical, 

n = 2 for cylindrical coordinates.

By inserting these relations in the gas dynamics equations (2.1),

we obtain

“3t + -(n' ^ ’ (2.2.3a)

3m 3
3t 3r -(n-l) (2.2.3b)

^f-+-^-(-^(e+p)) = -(n-D -^r(e+p), (2.2.3c)

where in this case, m = pur is the momentum flux and ur is the radial 

velocity. Observe that in cylindrical or spherical coordinates, the 

equations have sink terms.
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2.3 Axisymmetric (Two-Dimensional Cylindrical) Coordinate System

In a two-dimensional cylindrical coordinate system, the 

gradient and the divergence are

v<|) 8cf>
3r

j + 3<()
3z k , (2.3.1)

V • U (2.3.2)

where j and k are unit vectors in the r and z directions and

u = urj + uzk.

The gas dynamics equations for the axisymmetric problem become

3p
3t

3m 3m m

3r 3z
(2.3.3a)

3m

3t

m..

3r

m„

pr
(2.3.3b)

3m.

3t

3 mrmz 

3r v

m.

P

m m 
r z
pr *

(2.3.3c)

m„ m m.

3t 3r
(^-(e+p)) + ^-(^-(e+p))= - -(e+p).

pr

(2.3.3d)
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where m = pu,,, is the momentum flux in the radial direction and m =pu 
r r 2 2

is the momentum flux in the 2 direction.

Equations (2.3.3) can be written in the general vector form 

used by Sod (1980)

yt + F(U)r + G(U)Z = -W(U), (2.3.4)

where subscripts indicate differentiation. In equation (2.3.4)

■ p ■

mr

- mr -
mjl/p+P

r m 12
mrmz/p

u = m2
. e .

. F(U) = mrmz/p

_mr(e+p)/p

> 5(y) = rn^/p+p

_mz(e+p)/p_

’ w(y) =

m /r 
2r

mr/pr

mrmz/pr

It is worth noticing at this point that equations (2.1.3) for 

the one-dimensional cartesian problem can be recovered from equation

(2.3.4) by setting G(U) = W(U) = 0. Similarly, equations (2.2.3) can be 

obtained by taking G(U) = 0.

2.4 Chapman-Jouguet (C-J) Conditions

The one-dimensional cartesian equations (section 2.1) can be 

solved in a closed form (see Williams [2.2]) or Courant and Friedrich 

[2.3]).

In the following discussion the subscript u refers to the 

unburnt gas (i.e., gas which has not yet undergone chemical reaction) 

and the subscript b refers to the burnt gas. By defining

wk = u. - U and w,, = u - U, b b u u
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where U is the velocity of the reaction zone and u is the particle vel­

ocity in the Eulerian reference frame, we can express the continuity and 

momentum equation by

pbwb = puwb = -M> (2-4'1)

Vu + pu = pbwb + pb- (2-4'Z>

From these relations we can deduce

-M2 = (pb - Pu)/(Tb - tu), (2.4.3)

where x = 1/p. From the energy equation an expression for xb in func­

tion of and Pb can be derived

^ ■ y iuV"P|>~) + <2-4-4)

« pu + pb p pu+pb

where y2 = ^ 1 ; in deriving equation (2.4.4), it has been assumed

that Yb = Yu = Y-

A C-0 detonation moves with respect to the burnt gas with a 

velocity equal to the velocity of sound in the burnt gas, i-c-,

1/2
y * s - Hr-) (2.4.5)

Using equations (2.4.1), (2.4.2) and (2.4.5) we can find

an expression for pb>
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+ 2bpb + c = 0, (2.4.6)

where

b = -Pu - ^(Y-Ut (2.4.7a)

and

c = p^ + 2y£pupuq; (2.4.7b)

2
A trivial calculation shows that b - c^Oify^ll anc' P 1 0 

(exothermic reaction). Thus,

Pcj = Pb ' -b + (b2 1/2 
c) , (2.4.8)

where the + sign is mandatory since a detonation is compressive. There­

fore, given the properties of the unburnt gas and the energy per unit 

mass released by the combustion, we can find the pressure behind a C-J.

detonation; equation (2.4.4) is used to find the density p .. Fromc J
equation (2.4.1) we find the expression for the detonation speed.

and then.

u • = (p u,, + (yp ./p .)
cj Vhu u WKcj Mcj

1/2 >/pu. (2.4.9)

u . = U . - c . 
cj cj cj

(2.4.10)

If a C-J detonation occurs, it is followed by a rarefaction 

wave to adjust to the boundary conditions. For a still wall behind the 

detonation, the gas has to adjust itself to a zero velocity at the wall. 

A non-dimensional analysis has been performed by Taylor [2.5] to deter-

+Notice that in Chorin [2.4] the second term of this expression is 

multiplied by 2 which is incorrect.
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mine the behavior of the gas behind a detonation if bounded by a wall. 

The resulting curves are shown in Figures 2.4.1-3. The solution of this 

planar problem was obtained by taking into account the consistency 

of the Riemann invariants in the rarefaction region. The solution is 

hence dependent on the gas constant y. It is seen from the figures 

that the gas has constant properties until about a mid-distance be­

tween the wall and the detonation front; at this point a discontinu­

ity occurs and the velocity starts increasing linearly towards the 

C-J velocity; the equations describing the pressure and density curves 

are polynomials of order 5 and 7.

An analysis similar to Taylor's has been performed for 

radially symmetric detonations by Barenblatt et al.[2.6]. For 

y = 1.4 the results are shown in Figures 2.4.1-3. It can be seen that 

the gradients of the velocity, pressure and density near the detonation 

front are larger in the cylindrical coordinate system than in the planar 

one. They become even larger for a spherical detonation.

In the next chapter we will present the numerical techniques 

used for solving the equations of motion.
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planar

cylindrical

spherical

~i------.00
RADIUS tx/m

FIGURE 2.4.1: PRESSURE'DISTRIBUTION BEHIND PLANAR, 
CYLINDRICAL AND SPHERICAL DETONATION 
FRONTS WHEN y = 1.4
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planar.

cylindrical

spherical

RADIUS IX/R)
FIGURE 2.4.2: DENSITY DISTRIBUTION BEHIND PLANAR, 

CYLINDRICAL AND SPHERICAL DETONATION 
FRONTS WHEN y = 1 A
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FIGURE 2.4.3: VELOCITY DISTRIBUTION BEHIND PLANAR, 
CYLINDRICAL AND SPHERICAL DETONATION 
FRONTS WHEN y = 1.4
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CHAPTER III

NUMERICAL SOLUTION OF HYDROGEN DETONATION BY 

THE RANDOM CHOICE METHOD

The gas dynamics equation (see Chapter II) form a non-linear 

unsteady hyperbolic system. A general analytic solution of the gas 

dynamics equations is not possible for an arbitrary geometry including 

repeated reflections from walls. Various numerical methods have been 

developed to solve these equations (see e.g. Sod [3.1]):

1) Finite-difference methods;

2) The random choice method; and recently:

3) Spectral transformation and finite element methods.

The finite-difference methods have the disadvantage to broaden, a 

time increases, expected discontinuities (like shock waves) of the flow. 

Recently correction terms have been proposed to counteract the diffusion 

of the width of a discontinuity (see Boris and Book [3.2]). Spectral 

and finite element methods are promising because they may reduce con­

siderably the computation time; however, they are still in an experi­

mental stage.

A method that produces infinitely sharp shocks is the method 

of Glimm [3.3]. Alexander Chorin [2.4] developed and applied Glimm's 

method for the fluid dynamical part of a combusting gas flow; here an arti­

ficial amount of diffusion would grossly distort those phenomena, like 

flame propagation, which depend on the rage of energy production. For
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these reasons, we have decided to use in this program the random choice 

method to calculate the pressure histories generated by hydrogen 

detonations in a nuclear reactor containment.

The random choice method is described in the following sections, 

for one-dimensional plane, spherical and axisymmetric geometries.

3.1 One-Dimensional Plane Geometry

3.1a Gas dynamic flows without detonations

For one-dimensional plane geometry, the equations can be 

written in the following form:

“t + fWx = 0 (3.1.1)

where

U
P
m

e

and F(U)

m “
2

m /p + p 

(m/p) (e+p).

We discretize the time in intervals of length At and the space in inter­

vals Ax. The solution advances at each grid point in time from t to 

t + At by first calculating the values of the variables at mid grid points 

at time t + At/2 and then, advancing in a similar fashion the solution 

to time t + At. The solution at each half time step is found by solving 

a Riemann problem between adjacent grid points. The solution is 

evaluated at times nAt, where n is a positive integer, at the special 

grid points iAx, where i = 0, + 1, + 2, ...» and at times (n + )At 

at (i + -g—)Ax.
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Let u1? approximate U(iAx, nAt) and un+1^2 approximate U((i + -5—)Ax,
'l ~ n+1/2 1+1/2 ~

(n + -4—)At). To find u ' , consider the system (3.1.1) assuming
L i+1/2

piecewise constant initial data (time t = nAt)

U(x, nAt) = u,?+1 , x (i + )Ax,

= u9 , x < (i + )Ax.

This defines a sequence of Riemann problems. If At < Ax/2(|u|+c),

where c is the local sound speed and |u| is the absolute value of the 

particle velocity, the waves generated will not interact. Hence, the 

solution V(x,t) to the Riemann problem can be combined into a single 

exact solution (see Figure 3.1.1). The solution at the time step 

t + At/2 is found, following Glimm's method, by sampling the exact 

solution to the Riemann problem V(x,t) at time t + At/2. Let be a 

uniformly distributed random variable in the interval [- Define

un+1/2 = V((i + ^)AXj (n + 1 )At). (3J.3)
i+1/2 n c

(see Figure 3.1.2).

At each time step the solution is approximated by a piece­

wise constant function. The solution is then advanced in time exactly 

and the new values are sampled.

A method of choosing the random variable £n has been studied

by Chorin [2.4, 3.4]. He suggested choosing one random variable £



t=(n+l)At

t=nAt

: (i -^Ax (i + 4- )Ax (i
(i-l)Ax TAx (i+l)Ax

FIGURE 3.1.1: SEQUENCE OF RIEMANN PROBLEMS ON GRID
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t=nAt

(i+1)Ax

FIGURE 3.1.2: SAMPLING PROCEDURE FOR THE GLIMM'S METHOD
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per time level rather than one for each point and each time level.

In order that the variance of the solution be further reduced by 

making £ reach approximate equidistribution over [—^, -jjj—] at a faster 

rate, Chorin [2.4] suggested the following procedure. Let m^, m2, 

m.| < be two mutually prime integers. Consider the sequence of 

integrers

nQ given, % < m2, 

nj+l = ^nJ + mi^mod m2^’

then,

Sj = (nj + SjVm.,,

where is the random number and £. is the pseudorandom number which 
J J

is actually used for sampling; j indexes the time.

In each time step, the solution consists of three states:

S , Sr and a middle state S* with u = u*, p = p*, separated by waves

dxwhich may be either shock or rarefaction waves. A slip line --j£- = u* 

separates the gas initially at x < (i + -|-)Ax from the gas initially 

at x _> (i + -^-)Ax with possibly different values of p* but equal values 

of u* and p* (see Figure 3.1.3).

The first step is to calculate the pressure p* and the 

velocity u* in state S*. This is done by a method due to Godunov

[3.5]. The outline of this method can be found in Appendix A. Now

there are four cases to be considered:
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Slip line

Right wave

Left wave

X

FIGURE 3.1.3: SOLUTION OF THE RIEMANN PROBLEM
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Case 1 The sample point P lies to the right of the slip 

line (?'Ax _> u*-y-), and the right wave is a 

shock (p* > pr);

Case 2 P lies to the right of the slip line and the right 
wave is a rarefaction wave (£>'Ax _> u*-4£- and 

P* 1 Pr)i

Case 3 P lies to the left of the slip line and the left

wave is a shock U'Ax < u*-^- and p* > p^); and

Case 4 P lies to the left of the slip line and the left
wave is a rarefaction wave (£'Ax < u*-^— and

p,ipt).

For Case 1, the velocity, Ur of the right shock can be found by using 

equation (A.2). If P lies to the right of the shock line dx/dt = Ur, 

we have Pp = pr> up = ur, pp = pr- If P lies to the left of the shock, 

u = u*, p = p*; p = p* can be found from equation (A.2). In solving
r r '

Case 2 we let c = (yp/p)^ be the sound speed. If P lies to the right 

of the rarefaction, Pp = Pr> up = ur> Pp = Pri If P lies to the left 

of the rarefaction pp = p*, up = u*, pp = p*; p* is found from the con­

stancy of the Riemann invariant

Tr = 2c*(y-l)_1 - u* = 2cr(Y-l)'1 - ur.
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If P lies inside the rarefaction, p , u and p can be derived by
r r r

equating the slope of the characteristic dx/dt = u+c to the slope 

of the line defined by the origin (which in this case is the grid point) 

and P

u + 
P

2C Ax
At ’

then using the constancy of the Riemann invariant and the isentropic 

“Ylaw pp = constant.

Cases 3 and 4 are essentially identical to cases 1 and 2.

3.1.b A method to incorporate the detonation discontinuity 
in the random choice method

The objective of the present work was to predict pressure 

histories generated by hydrogen detonations in an enclosure. It is 

assumed that a hydrogen detonation will be initiated and developed if 

the hydrogen concentrations are within the detonability limits 

(Herzberg [3.6]. To avoid treating the chemical kinetics of com­

bustion, we decided to represent the detonation as a sharp discon­

tinuity which changes the still unburnt gas to a completely burnt 

gas according to the Chapman-Jouguet conditions (see section 2.4). 

This proposition is consistent with the observation that the chemical 

kinetic reaction rates are very large.

For each hydrogen concentration within the detonability 

limits, the Chapman-J^'ci’^t state behind the detonation can be calcu­

lated (see section 2.4). For the numerical solution, we associate 

a variable <j> = 1 if the gas is unburnt and <{> = 0 otherwise. The
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propagation of the detonation is calculated numerically by using the 

random choice method. Consider two adjacent grid points with their states 

represented at time t = nAt by

Sz (p^* » x < (i + 1
2 )Ax,

Sr = (Pr»ur, pr, *r)t x>(i+-^-)Ax. (3.1.4)

If <j> = <p , detonation does not occur between these points and Glimm's
A/ I

method (see section 3.1a) is used to advance the solution; if <(>^ = 0 

and (f>r = 1 a detonation wave will propagate from left to right (see 

Figure 3.1.4). Its speed will be (see section 2.4)

cj
u . + c •CJ CJ

(3.1.5)

where u • = u0 is the particle velocity and c . = c0 is the sound speed
CJ a/ CJ X/

corresponding to Chapman-Jouguet conditions corresponding to the state 

of the unburnt gas (pr, ur> pr).

The solution is advanced in a similar way as in the Riemann 

problem (see section 3.1a) by sampling the detonation discontinuity 

(see Figure 3.1.4) using the same random numbers as in the Riemann 

problem.

The computer program CRTDET for solving the one-dimensional 

plane gas dynamics equations including detonation is listed in Appen­

dix B.
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Detonation dx = 
Wave dt

<f> = 0

At/2 £

y

FIGURE 3.1.4: SOLUTION OF THE DETONATION PROBLEM
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3.2 Boundary Conditions

Particular attention should be given to the boundary con­

ditions especially as far as sampling is concerned. Assume the 

location of the boundary point is to the right of the region of flow 

at x = i0Ax and moving with a certain velocity V. To model the 

reflection at the wall we create a fake state to the right of x at 

(i + -£-)Ax such that

pi0 + 1/2 pio - 1/2 ’ 

ui0 + 1/2 = 2V " Ui0-V2 

Pi0 + 1/2 ’ Pi0 - V2

(see Chorin [3.4Qor Courant [2.3]). This will make a simple wave 

to propagate on both sides of the boundary point; the constant state 

in the middle of the Riemann solution is the wall state.

Special care should be taken in the sampling procedure.
I I

If £.| and ^ are the values of at two successive time steps, we

should make sure that the resulting physical point does not lie to

dxthe right of the wall line = V, so that no information is lostdt
at the wall. This condition can be satisfied in different ways de­

pending on each problem.

(3.2.1a)

(3.2.1b)

(3.2.1c)
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To satisfy the previous condition in the present case,

and can be chosen as follows: pick £' in the interval 
1 2 1 

Ax Ax[- T » ^ according to the usual procedure and choose
^ ^ 2 T

This method also ensures the physical point to lie within the boundary 

and avoids the problem of singular points.

3.3 One-Dimensional Spherical Geometry

The system of differential equations for the one-dimensional 

spherical problem is given by the set of differential equations (2.2.3). 

These equations can be written in the vector form

U. + F(U) = =2 W(U); (3.3.1)
~ "C ~ ~ r* ~ ~

U, F and W were defined in section 2.3.

To solve the equations (3.3.1), we use the method of operator 

splitting used by Sod [3.7]. In a first step we remove the inhomogeneous 

term - 2W(U) thus, we solve the homogeneous system

yt + F(y)r = (3.3.2)
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which represents the one-dimensional equations of gas dynamics in 

cartesian coordinates and whose solution was presented in detail in 

the previous two sections.

The second step consists of solving the system of ordinary 

differential equations

yt = -2W(U),

using the results of the solution of equation (3.3.2).
n4-lThis is done as follows: Once the solution uV of (3.3.2) is found, 

equation (3.3.3) is approximated by

or

u"+1 - U1+1
i i

At

= -2 Wfuf) , (3.3.4)

- 2At W(u?+1). (3.3.5)

This scheme is only first order accurate, however there is no reason 

to use a higher order method since the random choice method is also at 

the most first order accurate.

The boundary conditions at the wall was chosen to be similar 

to the cartesian case, i.e., ^ = ^ at the wall. The center of the 

detonation is treated similarly to the wall problem however, because of 

the singularity at the center, the appropriate sampling scheme dis­

cussed in section 3.2 should be used.
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SPHDET is the computer program which is used to solve the 

one-dimensional spherical detonation problem (see Appedix C).

3.4 Axisymmetric (Two-Dimensional Cylindrical) Geometry

The numerical technique of solving the equations of the 

axisymmetric problem (2.3.4) is an extension of the one-dimensional 

case. Chorin [2.4] and Sod [3.8, 3.9] have already used it for the 

shock problem.

The basic procedure consists of two major steps:

1. use the operator splitting technique in the spatial 
coordinates and solve the equation

Ut + F(U) + G(U) = 0, (3.4.1)

2. solve the equation

Ut = -W(U). (3.4.2)

Solving the ordinary differential equation (3.4.2) is exactly identical 

to solving equation (3.3.3). Equation (3.4.1) is solved using an
5

extended version of Glimm's method. At each time step, four quarter time 

steps of duration are performed; each quarter time step is a

sweep in either r or z direction. Again, the operator splitting 

technique in the spatial coordinates is used to reduce the system of 

two-dimensional equations into two sets: of one-dimensional ones.

Hence, the equations to be solved in the r sweeps are
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3t + 3r*pur* “ C1,

-&■ (',ur) + -W^l + P) = °"

^“z' +^(puruz) ' 0>

J|-p £«*P>»r> - 0.

Equation (3.4.3c) can be written in the form

9uz 9uz

(3.4.3a)

(3.4.3b)

(3.4.3c)

(3.4.3d)

(3.4.4)

i.e., the convective derivative of uz is equal to zero and hence, in 

the r sweeps uz is transported as a passive scalar. Similar equations 

hold in the z sweeps.

Now, given equations (3.4.3a, b, d) coupled with equation 

(3.4.4), the Glimm's method can be used. At each partial step, the 

solution vector is approximated by a piecewise constant vector.

In the r sweeps the resulting waves in the r direction are found and 

in the z sweeps the waves in the z direction are found. In order to 

account properly for the interaction of the r and z waves, the follow-
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ing scheme is used: at the beginning of the time step p, p, ur and 

uz are known at point (iAr, jAz). After an r sweep, the solution is 

found at ((i + -y-)Ar, jAz) (see Figure 3.4.1). ((i + -jp-)Ar, jAz)

and ((i + -y-jAr, (j + l)Az) can then be used to find the solution 

at ((1 + -|-)Ar, (j + -^-)Az) by a z sweep. An r sweep then leads to 

(iAr, (j + —^—)Az) and a z sweep back to (iAr, jAz). One pseudorandom 

variable is used per quarter step.

The detonation conditions are handled in a similar way as 

in the one-dimensional case, however, one should bear in mind that 

the C-J velocity represents the total velocity which should be splitted 

into its r and z components. For example, consider two points iAr and

(i+l)Ar (z the same) with <P=0 at iAr and <J>=1 at (i+l)Ar. In accordance 

with our approach, a detonation is expected between these points. The 

conditions behind the detonation are known as a function of hydrogen 

concentration. By using the operator splitting technique in space, 

the two components of particle velocity can be calculated. Then, the 

solution is advanced by using the random choice method.

The boundary conditions are handled in the same way as in 

the one-dimensional problem. A curved boundary is represented by a 

stepwise line parallel to the mesh.

The computer prgram TWODIM (see Appendix D) uses the method 

outlined to solve the axisymmetric problem.
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*
Ar

(iAr,(j+1)Az) ((i+1)^r,(j+1)Az)

D(iAr ,(j +

A(iAr,jAz) B((i +^-)Az,jAz) ((i+lAr,jAz)

FIGURE 3.4.1: DIRECTION OF THE COMPUTATION AT EACH 
TIME STEP FOR THE AXISYMMETRIC PROBLEM
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CHAPTER IV

COMPUTER CODE DEVELOPMENT AND RESULTS

4.1 One-Dimensional Planar Geometry

The main task of this section is to verify the validity 

of the numerical method described previously. To achieve this goal, 

the pressure, density and velocity histories of a hydrogen detonation 

in a one-dimensional cartesian coordinate system have been studied.

The numerical results were compared with existing analytical solu­

tions prior to reflections (see Figures 2.4.1, 2.4.2 and 2.4.3).

The first problem we investigated simulates a detonation 

initiated at the center of a shock tube, 2m long, bounded by a wall 

at both sides. As a result of the symmetry with respect to the 

initiation plane, the study was limited to half the length, the 

origin behaving as a wall. A mesh of one hundred and one grid points, 

equally spaced, was used. The time intervals were of variable length 

to meet the condition of non-interaction between the waves (see

Section 3.1.a). Initially the unburnt gas was considered to be at

? 3rest, with a pressure of 10100 N/m and a density of 0.1188 Kg/m .

The hydrogen concentration was considered to be stoichiometric. The

detonation was assumed to have reached the second grid point from the

origin. Those grid points were assigned the values corresponding to

the Taylor curves (Figures 2.4.1 to 2.4.3). The detonation front

propagates with constant gas properties (The Chapman-Jouguet condi­
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tions); the C-J pressure is approximately 15 times the pressure of 

the unburnt gas.

The computer program CRTDET (see Appendix B) was used to

solve this problem. After 0.47 ms, the detonation wave progressed

in the cylinder and was ready to contact the wall. Non-dimensional

plots for the pressure, density and velocity as a function of the

non-dimensional distance (defined as x/U .t), are shown in Figures
cj

4.1.1-4.1.3. These are close to the analytical Taylor curves; the 

gas reaches steady conditions with zero velocity at approximately 

half distance between the origin and the detonation front; however, 

as noted by Sod [3.8], because of the randomness of the sampling, 

the rarefaction waves occurring just behind the detonation front 

are not reproduced by a smooth curve. Figures 4.1.4 to 4.1.6 show 

the pressure, density and velocity distributions in the shock tube 

at five different times. After the wave is reflected by the wall, 

there is an increase of pressure; the pressure exerted on the wall 

becomes 2.3 times higher than the C-J pressure or 37 times the initial 

one. These results are in agreement with the analytical equation 

given by Landau and Lifshitz [2.1] to determine the reflected 

pressure. After the wave has reached the wall, all the gas in the 

shock tube has already been burnt and the reflected wave is a strong 

shock which decreases in strength as it goes back towards the origin. 

When it reflects at the center the shock increases in strength and 

travels again towards the wall. Eventually, the wave decays and the 

gas reaches steady state conditions.
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TIME (SEC.) =0,0004781
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FIGURE 4.1.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION
(planar geometry) FOR A 1m RADIUS;
2 INITIAL GRID POINTS, SIGMA=0.8,R=Ur.t

Ld
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4.1.2: NON-DIMENSIONAL DENSITY DISTRIBUTION 
(planar geometry) FOR A 1m RADIUS;
2 Initial Grid Points, SIGMA=0.8



-41-

TIME [SEC.) =0.00047810

i-.00 .50 .75
RADIUS CX/R3

1.00

FIGURE 4.1.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION 
(planar geometry) FOR A 1m RADIUS;
2 TWO GRID POINTS, SIGMA=0.8
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FIGURE 4.1.4: PRESSURE DISTRIBUTION (planar geometry) FOR A
1m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL
GRID POINTS, SIGMA=0.8
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FIGURE 4.1.5: DENSITY DISTRIBUTION (planar geometry) FOR
A 1m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL
GRID POINTS, SIGMA=0.8
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FIGURE 4.1.6: VELOCITY DISTRIBUTION (planar geometry) FOR A

1m RADIUS AT FIVE DIFFERENT TIMES; 2 INITIAL
GRID POINTS, SIGMA=0.8
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As previously noted, to ensure that waves do not inter­

act, At < Ax/(|u|+c) must hold true. The effect of choosing 

different time intervals was studied next. Figures 4.1.7 to 4.1.9 

show that a time step (SIGMA = 0.4; see Appendix B) equal to half 

the previous one (SIGMA = 0.8; see Appendix Bj has little effect on 

the solution (Figures 4.1.1-4.1.3). The only difference noted was in 

reproduction of the rarefaction wave; this is due to the randomness 

of the sampling. The time steps should not be very small because 

the explicit technique used can lead to numerical instabilities, 

causing the wave to move backward. Hence, to ensure the stability 

of the solution it was found that

°-3 < < 'L0-

Next we examined the effect on the numerical solution of the 

number of the initial grid points behind the detonation wave. In 

Figures 4.1.10 to 4.1.15, at the beginning of the computation, eight 

initial grid points were assigned in accordance with the Taylor solu­

tion. The pressure, density and velocity histories agree with those 

in Figures 4.1.1 - 4.1.6 where only two initial grid points were em­

ployed before the detonation wave started to expand.

The most important output of the numerical analysis was the 

evaluation of the variation of the pressure with time, close to the 

wall. For the problem described above, the pressure and density pro­

files at a still wall, 1m distant from the origin of the detonation, 

are shown in Figures 4.1.16 and 4.1.17. At a time 0.58 ms after the
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TIME (SEC.)=0.00047810
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FIGURE 4.1.7: NON-DIMENSIONAL PRESSURE DISTRIBUTION 
(planar geometry) FOR A 1m RADIUS;
2 INITIAL GRID POINTS, SIGMA=0.4
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FIGURE 4.1.8: NON-DIMENSIONAL DENSITY DISTRIBUTION (planar geometry)
FOR 1m RADIUS; 2 INITIAL GRID POINTS, SIGMA=0.4
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FIGURE 4.1.9: NON-DIMENSIONAL PRESSURE DISTRIBUTION (planar geometry)
FOR A 1m RADIUS; 2 INITIAL GRID POINTS, SIGMA=0.4
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FIGURE 4.1.10: PRESSURE DISTRIBUTION (planar geometry) FOR A 1m
RADIUS AT FIVE DIFFERENT TIMES; 8 INITIAL GRID
POINTS, SIGMA=0.8
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FIGURE 4.1.11: DENSITY DISTRIBUTION (planar geometry) FOR A 1m
RADIUS AT FIVE DIFFERENT TIMES; 8 INITIAL GRID
POINTS, SIGMA=0.8
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FIGURE 4.1.14: NON-DIMENSIONAL DENSITY DISTRIBUTION (planar geometry)
FOR A 1m RADIUS; 8 INITIAL GRID POINTS, SIGMA=0.8
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TIME (SEC.)=0.00051350
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FIGURE 4.1.15: NON-DIMENSIONAL VELOCITY DISTRIBUTION (planar geometry)
FOR A 1m RADIUS; 8 INITIAL GRID POINTS, SIGMA=0.8
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.0012 .0018 
TIME (SEC)

FIGURE 4.1.16: WALL PRESSURE HISTORY FOR A 1m RADIUS (planar 
geometry) 2 INITIAL GRID POINTS, SIGMA=0.8, 
Ax=0.01.
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3012 .0018
TIME (SEC)

FIGURE 4,1,17: WALL DENSITY HISTORY FOR A 1m RADIUS
(planar geometry) 2 INITIAL GRID POINTS,
SIGMA=0.8, Ax=0.01
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initiation of the detonation, the detonation front is reflected by 

the wall which results in an increase in pressure (approximately 

37 times the pressure of the unburnt gas). Then, the pressure 

starts to decrease until it reaches a constant value at t = 1.2 ms. 

This value of the pressure is close to the pressure of an expanding 

detonation close to the center where the velocity of the gas 

equals zero. At t = 1.3 ms, the wave gets reflected at the center 

(Figures 4.1.18 and 4.1.19). At the origin, the shock increases 

in strength and the pressure reaches a value 23 times greater than 

the initial pressure. Then the wave moves back towards the wall.

At t = 2.3 ms, a second reflection against the wall occurs; this 

reflection is much weaker than the first reflection; the pressure 

is 16 times the initial pressure of the unburnt gas.

Next, a detonation was investigated in a plane geometry 

of size comparable to a nuclear reactor containment. The gas was 

confined by walls at a distance of 20 m apart. The initial pressure 

and density of the gas in the containment was considered to be 

atmospheric. The mesh was composed of 201 grid points 0.1 meter 

apart. We let the programs run for 100 time steps (t = 45 ms); 

the computational time on an IBM - 370 was approximately 8 CPU 

minutes. The results for the pressure and density profiles at the 

wall and at the centerline are shown in Figures 4.1.20 to 4.1.23.

The shape of the curves are, as expected, similar to those shown in 

Figures 4.1.16 - 4.1.19. We should also note here, that the relative 

pressures are almost identical in both problems studied in this sec-
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3012 .0018
TIME (SEC)

0000

FIGURE 4.1.18: CENTERLINE PRESSURE HISTORY FOR A 1m RADIUS
(planar geometry) 2 INITIAL GRID POINTS,
SIGMA=0.8, Ax=0.01



-59-

o

h— w z to _
UJ .
O

.0024 .00303012 .0018
TIME (SEC)

.0006

FIGURE 4.1.19: CENTERLINE DENSITY HISTORY FOR A 1m RADIUS
(planar geometry) 2 INITIAL GRID POINTS,
SIGMA=0.8, Ax=0.01



-60-

018 .027
TIME (SEC)

.036.009

FIGURE 4.1.20: WALL PRESSURE HISTORY FOR A 20 in RADIUS^planar
geometry) Ax=0.1, pu=l atm, pu=1.19 Kg/ni
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FIGURE 4.1.21: WALL DENSITY HISTORY FOR A 20m RADIUS (planar
geometry) Ax=0.1, pu=l atm, pu=1.19 Kg/m3
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.018 .027
TIME (SEC)

FIGURE 4.1.22: CENTERLINE PRESSURE HISTORY FOR A 20 m RADIUS 3
(planar geometry) Ax=0.1, pu=l atm, pu=19 Kg/nr
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FIGURE 4.1.23: CENTERLINE DENSITY HISTORY FOR A 20 m RADIUS .
(planar geometry) Ax=0.1, pu=l atm, p^=1.19 Kg/m'5
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tion; this is a result of considering in both cases the same 

hydrogen concentration.

4.2 Deformable Wall

In the problems discussed in Section 4.1, we assumed the 

walls to be rigid; however, if the increase of pressure, due to the 

detonation and reflected waves, is very large, the wall may start to 

deform and vibrate because of the elasticity of the material. The 

velocity of the wall, if it becomes large enough, might have some 

effects on the properties of the flow. These effects are studied 

in this section.

The equations governing the motion of the wall can be

written as

Mw + K w = P, (4.2.1)

where M = tp, and for the elastic part of the stress-strain curve of

the wall material, K = (n-1) + AL); the symbols in equation
R

(4.2.1) are defined as follows:

w = wall displacement from its equilibrium position 

P = pressure exerted on the wall,

t = wall thickness,

p = wall density,

n = 2 for cylindrical wall, 3 for spherical wall,

E = Young's modulus of steel,

R = radius,

AR = area of hoop reinforcing bars,per unit wall height, 

A^ = liner thickness .



-65-

Equation (4.2.1) can be discretized in time, to become

(4.2.2)

where wn is the dsiplacement of the wall at time nAt. The velocity of 

the wall can be approximated by

(4.2.3)

Equation (4.2.2) can be easily incorporated in the algorithm described 

in Chapter III; equation (4.2.3) can be combined with equation (3.2.1b).

In the application, the values of K and M in Equation (4.2.2)

were, selected equal to those of an 1 m-high segment of the cylindrical 

wall of the Indian Point containment. The 1.37 m-thick reinforced 

concrete wall was considered cracked, and only the contribution of the 

horizontal steel bars and the liner plate were taken into account. These 

latter steel components were considered elastic. The distance between the 

initiation axis and thewallwas taken equal to the internal radius of the 

containment (20.7 m). Results are shown in Figures 4.2.1 - 4.2.3: When the 

detonation starts, the wall is at rest with zero displacement and zero velocity. 

It remains in this condition until t = 11 ms, when the detonation wave con­

tacts the wall. The increase in pressure is transmitted to the wall, which 

acquires a small velocity; this velocity increases until it reaches its maxi­

mum value of 4.5 m/s at t = 20 ms,before it starts decreasing. This 

sinusoidal behavior of the velocity seems to have negligible effects on 

the pressure and on the density of the gas (less than 1%). The corresponding 

graphs (Figures 4.2.2 and 4.2.3) are almost identical to those of the rigid 

wall problem (Figures 4.1.20 and 4.1.21); the reason for this similarity is 

mainly the fact that the velocity of the wall is negligible compared to the
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FIGURE 4.2.2: PRESSURE HISTORY AT THE DEFORMABLE WALL
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FIGURE 4.2.3: DENSITY HISTORY AT THE DEFORMABLE WALL
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wave velocity (1787 m/s). This lack of shock-wall interaction is expected 

to hold even when multiple reflections are considered, since the interarrival 

time of waves (^0.04 sec.) is much shorter than the period of the wall (MD.l 

sec.). Sensitivity studies have shown that increasing or decreasing the value 

of K by 2 orders of magnitude do not change the conclusions above.

4.3 One-Dimensional Spherical Geometry

An approach similar to the one followed in section 4.1 has 

been adopted here to test the one-dimensional spherical algorithm in 

the computer program SPHDET (see Appendix C).

The first problem studied is that of a detonation wave

initiated at the origin of a 1 m radius sphere bounded by a rigid

wall. A mesh of 101 grid points, 0.01 m apart was constructed. In-
2

itially the gas is at rest at a pressure pu = 10100 N/m and a
3

density pu = 0.1188 Kg/m . The chemical composition is stoichiometric.

It was necessary to assign the Taylor conditions to a 

minimum of 20 grid points. This is due to two reasons: Glimm's 

method is basically the solution of the one-dimensional planar 

problem; and the gradient of the pressure,density and velocity profiles 

just behind the detonation front are very large (see Figures 2.4.1,2.4.3 

and 2.4.3).

The non-dimensional graphs (Figures 4.3.1 - 4.3.3) at 

t = 0.55 ms show the good agreement of the solution with the Taylor 

curves; however, because of the randomness of the sampling, the 

curves are not reproduced smoothly. It is worth noting that the values
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FIGURE 4.3.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION;
SPHERICAL GEOMETRY, 1m RADIUS
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4.3.2: NON-DIMENSIONAL DENSITY DISTRIBUTION;
SPHERICAL GEOMETRY, 1 m RADIUS
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FIGURE 4.3.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION;
SPHERICAL GEOMETRY, 1m RADIUS
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near the center do not follow the prediction of the Taylor solution.

The pressure, density and velocity histories inside the 

sphere are shown in Figures 4.3.4 - 4.3.6, for five different times.

It can be seen how the detonation wave propagates inside the sphere 

(times (1) and (2)); then, the wave is reflected by the wall. The 

resulting shock wave travels back towards the center. First, the 

shock decreases in strength but as it approaches the center, the 

shock front properties increase steadily until the wave reaches 

the origin; there, the pressure behind the reflected wave becomes 43 times 

the pressure of the initial unburnt gas. This implosion phenomenon, 

for spherical and cylindrical converging waves has already been noticed 

experimentally by Perry and Kantrowitz [3.10] and analytically by 

Oswatitsh [3.11] and Sod [3.7],

The pressure and density profiles at the still wall (Figures

4.3.7 and 4.3.8) are similar to the cartesian problem. The wall re­

mains at the constant initial pressure (10100 N/m ) and density 

(0.1188 Kg/m ) until the combustion wave is reflected by the wall at 

t = 0.53 ms; then, the pressure rises to approximately 40 times the

initial pressure. It starts decreasing to reach a stable pressure of 
2

65000 N/m , for the remaining of the interval of time shown.

The computer analysis was extended to conditions expected 

in a nuclear containment of spherical geometry: the initial pressure
3

was set at 1 atm, the initial density was set at 1.19 Kg/m , the gas 

was bounded by a 20 m radius sphere. The results are shown in Figures
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FIGURE 4.3.7: PRESSURE PROFILE AT THE WALL OF A 1m RADIUS SPHERE
pu = 10100 N/m2, p -w 0.1188 Kg/m3
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4.3.9 and 4.3.10. The shape of the curves are similar to the previous 

case; the pressure rises to 40.5 atm at t = 11 ms, when the wave con­

tacts the wall, and decreases to 6.5 atm at t = 23 ms.

For an interval of time longer than that shown, it is expected that 

another reflection takes place at the wall; another spike, with smaller 

magnitude than the first one would be recorded. For 1500 time steps 

(.t=40 ms) the computation time was 22 CPU minutes.

4.4 Axisymmetric Geometry

In this section we consider the axisymmetric program TWODIM 

(see Appendix D). For this purpose we evaluated the capability of 

this program to reproduce a one-dimensional spherical detonation 

(whose solution can be obtained using SPHDET).

The non-dimensional pressure, density and velocity profiles

2of a spherical detonation in a 1 m radius sphere (pu - 10100 N/m ,
o

Pu = 0.1188 Kg/m ) can be seen in Figures 4.4.1 - 4.4.3.

To solve the equivalent problem in an axisymmetric coor­

dinate system we took 101 grid points in the x and y directions,

0.01 m apart. We assigned the initial conditions to all the grid 

points within a 0.2 m radius according to the Taylor [2.5] solution; the 

program was run for 80 time steps (t = 0.4 ms). The properties were 

recorded at the grid points lying on the 45° diagonal line. The non- 

dimensional plots of these properties are shown in Figures 4,4.4 - 4.4.6. 

These graphs compare well enough with the graphs obtained from the
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FIGURE 4.3.9: PRESSURE PROFILE AT THE WALL OF A 20 m RADIUS SPHERE
p =1 atm, p =1.19 Kg/m3
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pu = 1 atm, pu = 1.19 Kg/m3
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FIGURE 4.4.1: NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET
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TIME (SEC.) =0.00028

RfiGIUS (X/R)

FIGURE 4.4.2: NON-DIMENSIONAL DENSITY DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET
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TIME (SECJ =0.00028520
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FIGURE 4.4.3: NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING SPHDET
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FIGURE 4.4.4: NON-DIMENSIONAL PRESSURE DISTRIBUTION FOR THE

ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE
AXISYMMETRIC ALGORITHM
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FIGURE 4.4.6: NON-DIMENSIONAL VELOCITY DISTRIBUTION FOR THE
ONE-DIMENSIONAL SPHERICAL PROBLEM USING THE
AXISYMMETRIC ALGORITHM
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spherical code. However, more oscillations are observed in the results 

for the two-dimensional axisymmetric code. This behavior may be ex­

plained by the randomness of the technique; while in the one-dimen­

sional case two half time steps are needed (i.e. two different 

pseudorandom numbers), for a two-dimensional geometry four quarter 

time steps are used (i.e. four different pseudorandom numbers).

More computer runs are required to validate the two-dimensional program.

The computation time taken to solve this problem (101x101 

grid points and 80 time steps) on an IBM-370 was approximately 40 CPU 

minutes.

4.5 Summary

The summary of the work done is presented in Table 4.5.1; 

different geometries have been studied (planar, spherical and axis- 

ymmetric). We validated the one-dimensional codes by comparing the 

results to the Taylor solutions. The axisymmetric code was validated 

by using it to solve the spherical geometry problem. The results 

for the pressure at the wall were obtained for the one-dimensional 

geometries and the interaction with the wall has been studied for 

the planar geometry.

The computer time depends on the code used. More iterations 

are needed in SPHDET than in CRTDET to correct for the inhomogeneous 

terms; hence, the CPU time per time step per grid point is larger in 

SPHDET (by a factor of 2). The efficiency of the TWODIM code has been 

improved by bypassing the calculations for those grid points ahead of 

the detonation front; this reduces the CPU time per time step and grid 

point by approximately 25%.



TABLE 4.5.1: DETONATION CONDITIONS AND RESULTS

GEOMETRY h2 CONCENTRATION UNBURNT GAS+ 

CONDITIONS
VALIDATION OF 
THE PROGRAMS

PRESSURE OF 
THE WALL

INTERACTION 
WITH THE WALL

Planar Stoichiometric (1)and(2)
*

yes yes yes

Spherical Stoichiometric (l)and(2)
*

yes yes no

Axisymmetric Stoichiometric (1)
**

yes yes no

* iBy comparison with the Taylor solution.

By comparison with the spherical solution.

+ ? T
(1) pu=10100N/nf ,pu=0.n88 kg/nT

(2) pu=l atm,pu=l.19kg/m
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CHAPTER V

PRESSURE CALCULATIONS FOR THE INDIAN POINT CONTAINMENT

The two-dimensional axisymmetric program described in sections

3.4 and 4.4 was used to calculate pressure time histories inside the 

containment building of the Ihdian Point Nuclear Power Plant. The 

geometry of the containment is shown in Fig. 5.1. No obstacles inside 

the containment building were considered.

The program allows for detonation initiation at any point 

on the axis of the containment structure. No attempt was made to 

model the initial growth of the detonation. Instead it was assumed 

that the detonation progresses spherically to an arbitrary radius 

from the initiation point. This arbitrary radius was always selected 

less than the closest distance of the initiation point from the con­

tainment wall. The initial conditions behind the initial spherical 

detonation were taken as the conditions given by the Taylor [2.5] solu­

tion for the selected detonation radius [see section 2.4].

A uniform concentration of hydrogen was assumed inside the 

containment, so that the strength of the detonation is the same everywhere. 

For a uniformly dispersed detonable mixture and for a given initiation 

point, the pressure P at a point x^ inside the containment and at time t, 

is proportional to the initial uniform containment pressure P , and 

is a function of 1) the gas constant, y = Cp/Cv; and 2) the ratio of 

the heat generated by the detonation, q (which is proportional to hydrogen 

concentration), to the product of the initial absolute containment
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20.72 m

41.44 m

45.11 m

Fig. 5.1 - Geometry of the Containment of the Indian Point 
Nuclear Power Plant
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temperature, T , and the universal gas constant R [2.1, 3.11]. 

Symbolically, and in terms of dimensionless quantities.

P(t,x)
= f (y g

RTo’ L ’ L (5.1)

where C0 is the speed of sound at the initial conditions and L 

is a characteristic linear scale of the containment. Eq. 5.1 is 

valid for geometrically similar containments.

In the pressure calculations performed, any variations in 

the gas constant, y, were neglected and its value was taken equal to 

1.4. For hydrogen concentrations less than or equal to stoichiometric, 

the dimensionless heat release rate q/RT0 is equal to:

q _ r 288.5RT- - CH, "TT 
0 2 0

(5.2)

where Cm is the volume concentration of hydrogen, in percent, and 
2

the initial containment temperature, I , is in degrees Kelvin [1.1, 

3.6]. The ranges of hydrogen concentration and initial temperatures 

that can realistically be expected in a containment following an 

accident, are shown in Fig. 5.2. Computer calculations were performed 

here for two values of the dimensionless heat release rate, equal 

to 17 and 23. Fig. 5.2 shows that these two values of q/RTQ 

cover an important portion of the range of possible hydrogen concen­

trations and initial temperatures.

The spatial discretization in the r-z plane had a variable 

grid size and consisted of 28 points in the radial (r) and 59 in the
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q/RT =23

28% (Stoichiometric

for air-H„)
q/RT =17

Range of Initial 
_ Conditions 

of Interest17% (Lower Detonation 
Limit) y

Fig. 5.2 - Range of Interest of Hydrogen Concentration and 
Initial Temperature in the Containment
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vertical direction. Figure 5.3 presents the calculation grid for 

the Indian Point containment. The dome was approximated by a stepwise 

line, consisting of segments parallel to the r and z directions.

Although a variable grip size can be used in the program for calculation 

efficiency, very large differences in the grip should be avoided, 

because they may induce fluctuations due to large differences in the
A \/

characteristic Courant number (compare also with the discussion 

in section 4.1).

Preliminary computer runs were made to check the stability 

of the code and its ability to reproduce exactly the times of first 

arrival of the detonation front to the walls,which can be calculated 

easily.

Results were obtained for two initiation points, one at the 

center of the base mat and another at a point on the axis 34.5 m above 

the base, and for two values of the dimensionless heat release rate,

17 and 23. Calculated pressure time histories at several points on 

the wall are presented in Appendix E. All pressure values are normal­

ized with respect to the initial containment pressure, P , and are 

given as a function of the dimensionless time tCo/r, where r is the 

inside radius of the cylinder and the dome. In the present case, the 

non-dimensionalizing constant, r/C0, equals 0.06 sec. Results typically 

show a series of decaying pressure peaks. The first peak is due to 

the first arrival of the detonation front. Subsequent peaks represent 

reflections of shocks which have been reflected before at the containment 

axis. Pressure peaks at nearby points occur at approximately the same
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times. After a few reflections (3 or 4, at most), pressures decay 

to an almost constant value. Decay is faster for initiation at a 

point 34.5 m above the base than for initiation at the center of the 

base mat, because the stronger three-dimensionality of the shocks in 

the former case produces more scattering of the waves. For given 

initiation point, decay is faster for the larger of the two heat 

release rates, but peak pressures are slightly higher.

The pressure time histories obtained show considerable high 

frequency oscillations. These oscillations are believed to be numerical 

and can be attributed to: 1) the randomness built in the code by using 

the random choice technique; 2) the variable gricl size; 3) the stepwise 

approximation of the dome geometry. (Notice that at the points of 

the dome there are, in general, more oscillations). Performing the 

computations with different time steps has shown that the high 

frequency oscillations do not affect the lower frequency trends in 

the pressure time histories, which are real and not numerical,and are 

important for the dynamic response of the structure.

The results reported herein agree qualitatively with those 

reported in Ref. [1.7]. The results in the latter reference were 

obtained by a Finite Difference code which introduces artificial damping 

and smooths sharp discontinuities. On the contrary the method used 

in this work preserves exactly the sharpness of the shock front, but 

introduces some artificial high frequency components. This fundamental 

difference between the two methods is the reason for the fact that 

significantly higher peak pressures are calculated by the present 

method.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Computer codes for solving the hydrogen detonation problem 

in the containment of a nuclear reactor were developed and used. The 

compressible flow equations including detonation were solved using a 

new numerical technique due to Glimm.

The computer codes CRTDET, SPHDET and TWODIM have been 

developed and tested; they reproduce satisfactorily existing analytical 

results. CRTDET solves the one-dimensional planar problem.

The one-dimensional spherical or cylindrical geometries are handled 

by SPHDET, which is very similar to CRTDET; it solves for the in­

homogeneous terms in the equations of motion by using the operator 

splitting method. The computer program TWODIM is a natural extension of 

CRTDET and SPHDET, since it uses the same techniques used in these two 

codes; however, to account properly for the wave in the r and z directions,

we used a splitting technique with a four-sweeps cycle; the duration for

. • Ateach sweep is -y.

Pressure histories on the wall for a plane and spherical 

geometry have been calculated. Interactions with an elastic wall have 

been evaluated numerically only in a plane geometry. The results indi­

cate that the effect of the motion of the wall on the pressure histories 

is negligible.

The two-dimensional axisymmetric program was validated by 

using it to predict pressure histories in a spherical geometry. Pressure



-100-

histories have been calculated for an actual nuclear containment building, 

that of the Indian Point Nuclear Power Plant. Hydrogen concentration 

in the containment volume was assumed uniform, any obstacles inside the 

containment were neglected, and a hydrogen detonation was postulated.

The probability of such a detonation and the question of the initial 

detonation growth were considered out of the scope of the present work.

The numerical results for wall pressures are presented in dimensionless 

form, which allows their use for different combinations of hydrogen 

concentrations and initial conditions. Three cases were considered in 

the calculations,which include two sets of dimensionless heat release 

rate and two initial points of the detonation: one at the center of the 

base mat and another 34.5 on the containment axis above the base. The 

results are in qualitative agreement with previous ones obtained by 

using the Finite Difference code CSQ. However, higher pressures (sometimes 

by a factor of two) are predicted in general by the present method.

This can be attributed to the absence of artificial viscosity which 

allows a more accurate description of pressure discontinuities.

Due to multiple reflections, peak pressures at some points 

are very high (e.g.,fifty times the initial containment pressure), but 

they last for very short times, and the dynamic pressures decay to almost 

constant values within approximately 0.1 sec. for initiation 34.5 m 

above the base, or within approximately 0.2 sec for initiation at the 

center of the base. Decay was faster for the highest of the two non­

dimensionless heat release rate values, but peak pressures were, in 

general, slightly higher. Due to multiple reflections, most pressure



histories exhibit three or four peaks. These peaks are not expected 

to cause resonance of the structure, because their interarrival times 

are too short in comparison to the top few natural periods of the 

containment.
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NOMENCLATURE

Latin Alphabet

c

e

K

M

m

P

P

Pb

CO

P u

Q

q

t

u

u

sound speed

sound speed in the burnt gas 

Chapman-Jouguet sound speed 

sound speed in the unburnt gas 

energy per unit volume 

wall stiffness 

mass of the wall 

momentum flux

pressure exerted at the wall 

gas pressure

pressure of the burnt gas

Chapman-Jouguet pressure

pressure of the unburnt gas

energy due to external sources or sinks

energy released by chemical reactions

time

wave velocity

particle velocity

particle velocity of the burnt gas

particle velocity given the Chapman-Jouguet conditions

particle velocity of the unburnt gas
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burnt gas velocity in the Eulerian frame 

unburnt gas velocity in the Eulerian frame 

w displacement of the wall

w velocity of the wall

w acceleration of the wall

Greek Alphabet

e.j internal energy per unit mass

n integer equal 2 for cylindrical coordinates, 3 for spherical

<p labeling integer equal 1 for unburnt gas and 0 otherwise

r Riemann invariant

Y gas constant equal to C /C
r *

ip defined by equations (A.7)

^ random number

pseudorandom number 

p gas density

PCJ Chapman-Jouguet gas density

p^ density of the burnt gas

Pu density of the unburnt gas

Other symbols are defined in the text.
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APPENDIX A 

THE GODUNOV METHOD

This method of calculation of the conditions behind the detonation 

front was first implemented by Godunov [3.5] and then modified by Chorin [2.4] 

and Sod [3.1], The method is used by the computer codes developed herein, and 

is described in this Appendix for completeness.

Given the equation (3.1.4), we would like to find the proper­

ties p*, u*, p* in state S*. Let us define

Mr = (Pr - P*)/(ur - Li*), 

and

mji = “(p£ ■ p*>/K -u*)-

It can be easily shown that if the right wave is a shock,

Mr = -Pr(ur - Ur) = -P*(u* - Ur), (A.3)

where p* is the density in the region adjacent to the right shock 

and Ur is the velocity of the right shock.

Similarly, if the left wave is a shock,

~ P£^U£ ~ ^£^ - - ’ (A.4)

where p* is the density in the portion of S* adjacent to the left 

shock and U^ is the velocity of the left shock. Mf and can be 

can be written in the form

(A. 1)

(A.2)
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Mp = (prPr)1^2 ^(P*/Pr)»

^ 4,(P*/P£)»

(A.5) 

(A.6)

where

1/2
(w) = w + » for w ^ 1

Y-l 1 - w

(A.7)

2y1/2 1_W(Y-D/2Y
for w < 1.

Upon elimination of u* from (A.l) and (A.2), we obtain

P* =
u£ - ur + P*/M£ + Pr/Mr

1/M£ + 1/Mr
(A.8)

Equations (A.5), (A.6) and (A.8) are three equations in three unknowns 

for which there exists a real solution. The solution can be found 

iteratively by choosing a starting value p*(or M° or M°), and then 

compute pj+1, M^+1, M<]+1, q > 0 using

pq - (W-p/mJ + Pj,/Mj)/(1/Mq + 1/Mj)

Q +1 / vj \
Pi = max(e1, p^)s

mJ+1 = (prPr)1/2 ’Hp2+1/Pr).

m5+1 = (p£p£) ^(p2+1/pp).

(A.9b)

(A.9b) 

(A.9c) 

(A.9d)
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Equation (A.9b), where e-| is a very small number (~10-6), is used to 

prevent the pressure of becoming negative.

Once p*, and are found, we may obtain u* by eliminating 

p* from (A.l) and (A.2),

u* = " pr + Mrur + Vil)/(Mr + (/U0)
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APPENDIX B

THE COMPUTER PROGRAM CRTDET

B.1 General Description

The program consists of the main program, the subroutine 

GLIMM and the output section. The overall idea behind the main 

program can be found in the flow chart of Figure B.l. The major 

steps to follow in order to run this program are

1. Select the grid spacing for each specific problem 
and adjust accordingly the values of N and DX;

2. Decide about the number of time steps necessary 
(NSTOP) and the time intervals for which a printed 
output of the properties is required (NPRINT);

3. Assign the parameters defining the initial con- 
ditons of the gas and the properties of the combustion. 
GAMMA and DELTA are respectively, the gas constant
and the energy released by the combustion. PR, RR 
and UR are the initial conditions of the unburnt gas 
and PL, RL and UL are the C-J conditions of the 
burnt gas. On the other hand, the grid points behind 
the detonation front should be given their appropriate 
values obtained from the Taylor curves (Figures 2.4.1­
2.4.3).

The subroutine GLIMM sol ves the Riemann problem for each 

grid point. The major part of this subroutine has been described by 

Sod (1978). However, the last section of the subroutine has been 

added to solve the detonation problem.
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START

REPEAT NSTOP TIMES

PRINTED OUTPUT EVERY NPRINT 

TIME STEPS

CALCULATE HALF THE 
TIME STEP -4r-

ASSIGN INITIAL VALUES FOR

GRID POINT

SOLVE THE RIEMANN PROBLEM 

AT EACH GRID POINT 

AFTER ANOTHER HALF 

TIME STEP

SOLVE THE RIEMANN PROBLEM 

AT MID DISTANCE BETWEEN 

ADJACENT GRID POINTS 

AFTER HALF TIME STEP

END

FIGURE B.l: FLOW CHART FOR CRTDET
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B.2 Di

B

C

CL

CR

CSTAR

DELTA

GAMMA

GGUBFS

ML

MR

MUSQ

N

NPRINT

NSTOP 

PHI(I)

PRE(I)

PS I

PSTAR

RHO(I)

RSTAR

SI

SIGMA

bionary of the Key Terms in the Program

Defined in equation (2.4.7a)

Defined in equation (2.4.7b)

Sound speed in the left state of the solution of the Riemann 
problem

Sound speed in the right state of the solution of the 
Riemann problem

Sound speed in state S* or C-J sound speed

Chemical energy released by the combustion process

Gas constant = C /C p v

Random number generator; IMSL function subroutine 

Defined in equation (A.2)

Defined in equation (A.l)

Defined in equation (2.4.4)

Number of intervals generated by the grid points

Controls the output section; the properties at each 
grid point will be printed every NPRINT time steps

Number of time steps

Variable indicating whether the gas is burnt or not at 
grid point I

2
Pressure of the gas in N/m at grid point I 

Function subroutine defined by equation (A.7)

Pressure in state S* or C-J pressure
3

Density of the gas in kg/m at grid point I

Density in state S* or C-J density

Pseudorandom number in the interval [0,1J

Coefficient in ]0,1] to control the length of each time 
step
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TIME

UCJ

USTAR

UX(I)

XI

Total time in seconds elapsed since the origin 
of the detonation

Detonation front velocity given C-J conditions 

Particle velocity in state S* or particle C-J velocity 

Particle velocity in m/s at grid point I
Ax Ax

Pseudorandom number in the interval [—2—» 2~3
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C c 
C CRTDET c 
C c
C ONE DIMENSIONAL PROGRAM(CARTES IAN) TO CALCULATE C 
C PRESSURE.DENSITY AND VELOCITY HISTORY IN A REACTIVE C 
C MIXTURE C 
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c

COMMONZ/DT.GAMMA.RL.UL.PL,R,U,P,E.RR.UR.PR.XI.KPHI.DELTA 
1 ,KIM
COMMON/OUT/TIME,N,DX,RHO(2001),PRE(2001),UX(2001)

1 ,PHI(2001)
COMMON/RAD/ETA 
COMMON/LIN/LAM 
REAL LAM
DOUBLE PRECISION BLIP 
INTEGER TSTP.PHI 
NPRINT = 2 5 
NST0P=1000 
N=200 
NP1=N+1 
NM1-N-1
DX=20.0/FLOAT(N)
DT=0.01
TIME=0.1/1787.7 
VMAX=0.
NP=0
GAMMA=1.4 
DELTA=1447716.8 
BLIP=0.ODO 
Kl = ll 
K2 = 7 
NU=2
SIGMA=0.8 
ETA=1.

SET INITIAL CONDITIONS

RL=2.10939 
PL=1539126.7 
UL=777.0 
RR”!.19242 
PR”101325.
UR=0 .
DO 15 1-1,2 
PHI(I)=0 
RHO(I)-RL
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PRE(I)=PL 
UX( I) =UL

15 CONTINUE 
RH0(1)=0.91546 
PRE(1)=478350.0 
UX(1)=*0.0

14 DO 16 1=3,NP1
PHI(I)=1 
RHO(I)=RR 
PRE (I ) =P R 
UX(I)=UR

16 CONTINUE

BEGIN TIME STEP

DO 100 TSTP=1,NSTOP 
NP=NP+1 
DO 8 1=2,N
VMAX1=ABS(UX(I))+SQRT(GAMMA*PRE(I)/RHO(I)) 
IF(VMAX1.GT.VMAX) VMAX=VMAX1 
CONTINUE
DTT=S IGMA*DX/ (2 . *VMAX)
IF(DTT.LT.DT) DT=DTT 
TIME=TIME+2.*DT 
LAM=0.5/VMAX

COMPUTE FIRST HALF STEP

GENERATE RANDOM SI USING CHORIN'S METHOD

NU=MOD(NU+K 2,K1)
BLIP=BLIP+2.DO
S1=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(Kl)

XI LIES BETWEEN -DX/2 AND +DX/2

DO 40 1=2,NP1 
XI=SI*DX-0.5*DX 
RR=RHO(I)
UR=UX(I)
PR=PRE(I)
KPHI=PHI(I)
IF(I.EQ.2)G0 TO 43
RL=RIM1
PL=PIM1
UL=UIM1
GO TO 44

BOUNDARY CONDITION AT AXIS R=0
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c
43 RL=RHO(1)

UL=UX(1)
PL=PRE(1)
KIM“PHI(1)
GO TO 44

C
C COMPUTE FIRST HALF STEP OF GLIMM
C
44 CALL GLIMM 

RIMl=«RHO(I)
RHO(I)=R 
PIMl-PRE(I)
PRE (I ) =*P
UIMl-UX(I)
UX(I)=U
KIM-PHI(I)
PHI(I)-KPHI

40 CONTINUE
C
C COMPUTE SECOND HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN’S METHOD
C

NU=M0D(NU+K2,K1)
S1 = (GGUBFS(BLIP)+FLOAT(NU))/FLOAT(Kl )

C
C XI LIES BETWEEN -DX/2 AND +DX/2
C

KIM =PHI (1 )
DO 60 I-1,NP1 
XI“SI*DX-0.5*DX 
RL“RHO(I)
PL“PRE(I)
UL“UX(I)
IF(I.EQ.NPl) GO TO 63 
KPHI“PHI(1+1)
RR=RHO(1+1)
PR“PRE(1+1)
UR“UX(1+1)
IF(I.EQ.l) GO TO 62 
GO TO 64

C BOUNDARY CONDITION AT R-l.
63 RR“RL

UR=-UL 
PR“PL
KPHI-PHI(I)
XI“0.0 
GO TO 64
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C
C COMPUTE SECOND HALF STEP OF GLIMM
C
62 XI-0.0

RL = RR 
UL=-UR 
PL=PR

64 CALL GLIMM
RHO(I)=R 
PRE ( I ) =P 
UX(I)=U 
KIM=P HI(1+1)
PHI(I)=KPHI 

60 CONTINUE
WRITE(15,20000) TIME

20000 FORMAT(IHl,7H TIME - ,F11.7)
WRITE(15,20001) RHO(1),PRE(1)
WRITE(15,20001) RHO(NPl),PRE(NPl)

20001 FORMAT(1H0,2F13.5)
IF(NP.LT.NPRINT) GO TO 100 
NP“0

100 CONTINUE
STOP 
END

C '
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C

SUBROUTINE GLIMM
COMMON//DT,GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA 

1 ,KIM
COMMON/RAD/ETA 
COMMON/LIN/LAM 
REAL MR,ML,MRP 1,MLPI 
REAL LAM,MUSQ 
EPS=1.E-6 
IT = 0
ITST0P=2 0 
KPHIP=KPHI*KIM 

C
C IF KPHI=1 , MIGHT HAVE A DETONATION
C

IF(KPHI.EQ.1.AND.KPHIP.EQ.O) GO TO 111 
C
C CONSTRUCTION OF RIEMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C

ALFA-1.
ALFAM-1.-ALFA 

C
C INITIAL ML AND MR
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ML-100.
MR-100.
COEPL-SQRT(PL*RL)
COEFR-SQRT(PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV-O.5*(RL+RR)
PAV-0.5*(PL+PR)
A-P AV/(RAV * *GAMMA)
R-RAV-LAM*(UR*RR-UL*RL)
P S TAR-A*(R* *GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD 

IT-IT+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL 
TO 1.0E-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

P STAR-AMAX1(EPS.PSTAR)

COMPUTE MR AND ML AT STEP Q+l

MLPl-COEFL*PSI(PSTAR/PL,GAMMA)
MRPl-COEFR*PSI(PSTAR/PR,GAMMA)
DIFML-AB S(MLP1-ML)
DIFMR-ABS(MRP1-MR)
ML-MLP1
MR-MRP1

COMPUTE NEW PRESSURE PSTAR 

PSTARP-PSTAR
PSTAR-(UL-UR+PR/MR+P L/ML)/(1./ML+1./MR) 
PSTAR-ALFA*PSTAR+ALFAM*PSTARP 
IF(IT.LE.ITSTOP) GO TO 30 
IF(ABS(PSTAR-PSTARP).LT.EPS) GO TO 40 
IF(DIFML*DIFMR.LT.EPS) GO TO 40 
ALFA-ALFA/2.
ALFAM-1.-ALFA
IF(ALFAM.LT.EPS) GO TO 40
IT-0
IF(DIFML.GT.EPS) GO TO 10 
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION 

USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)
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C
BEGIN GLIMM'S METHOD 

IREGL=1
IF(PSTAR.LT.PL) IREGL= 2 
IREGR=1
IF(PSTAR.LT.PR) IREGR=2 
X=USTAR*DT
IF(XI.GE.X) GO TO 200 

LEFT SIDE

IF(IREGL.EQ.2) GO TO 110

COMPUTE LEFT SHOCK SPEED

U=U L-ML/RL 
X=U *DT
IF(XI.GE.X) GO TO 100

LEFT OF LEFT SHOCK

R=RL 
U=UL 
P=P L
GO TO 500

RIGHT OF LEFT SHOCK

0 R=ML/(U STAR-U)
U=USTAR 
P=P STAR 
GO TO 500

COMPUTE SOUND SPEED IN LEFT STATE

0 CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT 
IF(XI.GE.X) GO TO 120

LEFT OF LEFT FAN

R=RL 
U=UL 
P-PL
GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A 

120 A=PL/(RL**GAMMA)
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C
C COMPUTE DENSITY IN STATE STAR
C

RSTAR*(PSTAR/A)**(1./GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
X=(USTAR-CSTAR)*DT 
IF(XI.GE.X) GO TO 130 

C
C IN LEFT FAN
C

U=(2./(GAMMA+1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL) 
RINT»CL+0.5*(GAMMA-1.)*(UL“U) 
R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))
P=»A* (R**GAMMA)
GO TO 500 

C
C RIGHT OF LEFT FAN
C
130 R=RSTAR

U=USTAR 
P=P STAR 
GO TO 500 

C
C RIGHT SIDE
C
200 IF(IREGR.EQ.2) GO TO 220
C
C COMPUTE RIGHT SHOCK SPEED
C

u=ur+mr/rr

X=U*DT
IF(XI.GE.X) GO TO 210 

C
C LEFT OF RIGHT SHOCK
C

R=-MR/(USTAR-U)
U-USTAR 
P=P STAR 
GO TO 500 

C
C RIGHT OF RIGHT SHOCK
C
210 R=RR 

U*U R 
P=P R
GO TO 500 

C
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C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
220 A-PR/(RR**GAMMA)
C
C COMPUTE DENSITY IN STATE STAR
C

RSTAR=(PSTAR/A)**(1./GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

CSTAR=SQRT(GAMMA*PSTAR/RSTAR) 
X-(USTAR+CSTAR)*DT 
IF(XI.GE.X) GO TO 230 

C
C LEFT OF RIGHT FAN
C

R-RSTAR 
U-USTAR 
P-PSTAR 
GO TO 500 

C
C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR-SQRT(GAMMA*PR/RR)

X“(UR+CR)*DT 
IF(XI.GE.X) GO TO 240 

C
C IN RIGHT FAN
C

U-(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR) 
RINT=CR+0.5*(GAMMA-1.)*(U-UR)
R=(RINT*RINT/(A*GAMMA))**(!./(GAMMA-1.)) 
P=A*(R**GAMMA)
GO TO 500 

C
C RIGHT OF RIGHT FAN
C
240 R=*RR

U-UR 
P=PR
GO TO 500 

C
C DETONATION CONDITIONS
C
C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111 B--PR-DELTA*(GAMMA-1.)*RR

MUSQ*»(GAMMA-1. ) /(GAMMA+1. ) 
C-(PR*PR)+2.*MUSQ*PR*RR*DELTA
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PSTAR=-B+SQRT((B*B)-C)
RSTAR=(PSTAR*(GAMMA+1.)-PR)*RR/(GAMMA*PSTAR) 
UCJ=SQRT(GAMMA*PSTAR*RSTAR)/RR+UR 
C STAR=SQRT(GAMMA*PS TAR/RSTAR)
USTAR=UCJ-CSTAR 
U STAR= 7 7 7.0 
PSTAR=1539126.7 
RSTAR=2.10939
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)
UCJ=U STAR+C STAR

BEGIN GLIMM'S METHOD

X=U CJ *DT
IF(XI.GE.X) GO TO 222 
IF(ETA.LT.3.5) GO TO 333

COMPUTE SOUND SPEED IN LEFT STATE

CL=SQRT(GAMMA*PL/RL)
X=(UL-CL)*DT 
IF(XI.GE.X) GO TO 444

LEFT OF RAREFACTION FAN

R=RL 
U =UL 
P=P L 
KPHI=0 
GO TO 500

COMPUTE CONSTANT OF ISENTROPIC LAW-A 

A=P S TAR/(RSTAR* *GAMMA)

IN RIGHT FAN

U=(2./(GAMMA+1.))*(XI/DT-CSTAR+0.5*(GAMMA-1.)*USTAR) 
RINT=CSTAR+0.5*(GAMMA-1.)*(U-USTAR)
R=(RINT*RINT/(A*GAMMA))**(!./(GAMMA-1.))
P=A*(R**GAMMA)
KPHI=0 
GO TO 500

RIGHT OF DETONATION

U=U STAR 
P=PSTAR 
R=RSTAR 
KPHI=0
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GO TO 500 
222 U=*UR 

P=PR 
R = RR

500 CONTINUE 
RETURN 
END 

C
C FUNCTION PSI
C

FUNCTION PSI(X,GAMMA)
EPS-1.OE-6
IF(ABS(1.-X).GT.EPS) GO TO 100 
PSI-SQRT(GAMMA)
RETURN

100 COEF1-0.5*(GAMMA+1.)
C0EF2-0.5*(GAMMA-1.)
COEF3-COEF2/GAMMA 
IF(X.GE•1•) GO TO 200
PSI-COEF2*(l.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))
RETURN

200 PSI-SQRT(COEFI*X+C OEF2)
RETURN
END

C
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
C

SUBROUTINE OUTPUT
C OMMON//dt,gamma,rl,UL,PL,R,U,P,E,RR,UR,PR,XI,KPHI,DELTA 

1 ,KIM
COMMON/OUT/TIME,N,DX,RH0(2001),PRE(2001),UX(2001)

1 ,PHI(2001)
INTEGER PHI 
NP1-N+1
WRITE(6,10000) TIME 
WRITE(6,10001)
DO 20 1=1,NP1 
X-FLOAT(I-1)*DX 
R=RHO(I)
U=UX(I)
P=PRE(I)
K=PHI (I )
WRITE(6,10002) X,R,U,P,K 

20 CONTINUE 
RETURN

10000 F0RMAT(1H1,7H TIME = ,F11.7)
10001 FORMAT(1H ,3H X,6X,5HDENSE,8X,3HVEL,1OX,4HPRES,1 OX,3HPHI)
10002 F0RMAT(1H0,F6.3,3F13.5,12)

END
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APPENDIX C

THE COMPUTER PROGRAM SPHDET

The computer program SPHDET is very similar to CRTDET; 

however, the subroutine INHOM has been added to make the correction 

for the inhomogeneous terms in the equations of gas dynamics in 

one dimensional spherical or cylindrical coordinate system. This 

subroutine is called after the solution of the Riemann problem has 

been advanced one time step in the time space. It uses the method 

described in section 3.3.

Actually the one-dimensional cartesian, cylindrical and 

spherical problems can be solved by SPHDET by taking ETA equal to 1, 

2, and 3 respectively.
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
C SPHDET C
c c
C ONE DIMENSIONAL PROGRAM(CYL. OR SPHE.) TO CALCULATE C
C PRESSURE .DENSITY AND VELOCITY HISTORY IN A REACTIVE C
C MIXTURE C
C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

COMMON//DT .GAMMA,RL,UL,PL,R,U,P,E,RR,UR,PR,KPHI.DELTA,KIM
COMMON/OUT/TIME ,N,DX,RHO(l 11) , PRE (111) ,UX(111),PHI(111)
COMMON/RAD/ETA
COMMON/LIN/LAM
REAL LAM
DOUBLE PRECISION BLIP
INTEGER TSTP.PHI
NPRINT=2 0
NSTOP-lOO
N-l 00
NP1=N+1
NM1=N-1
DX®!.0/FLOAT(N )
D T= 0.0 1
TIME=0.19/1787.85 
VMAX = 0.
NP = 0
GAMMA®1.4 
DELTA=1447711.2 
BLIP“10.ODO 
Kl =11 
K2= 7 
NU®2
SIGM A® 0.8 
ETA=3.

C
C
C

15

SET INITIAL CONDITIONS

RL-0.2102
PL-153419.
UL® 7 7 7.
RR-0.11886 
PR=10100.
UR=0 .
DO 15 I®1,20 
PHI(I)=0 
RHO(I)=RL 
PRE ( I) =PL 
UX( I) ®UL 
CONTINUE 
RHO(1)=0.0841



PRE (1)='42550.91 
UX(1)=0.0 
RHO(2)=0.0841 
PRE(2)=42550. 91 
UX(2)=0.0 
RH0(3)=0.0841 
PRE(3)-42550.91 
UX( 3 ) =0.
RHO(4)=0.0841 
PRE(4)=42550. 91 
UX(4)=0. 
RH0(5)=0.0841 
PRE(5)=42550.91 
UX( 5 ) =0.
RHO(6)=0.0841 
PRE(6)=4 2 5 50. 91 
UX(6)=0.0 
RHO(7)=0.0841 
PRE(7)=42550.91 
UX( 7 ) =0.0 
RHO(8)=0.0841 
PRE(8)=42550.91 
UX(8)=0.0 
RHO(9)=0.0841 
PRE(9)=42550.91 
UX( 9 ) =0.0 
RHO(10)=0.0841 
PRE(10)=42550.91 
UX(10)=0.0 
RHO(11)=0.08565 
PRE(11)=43264.16 
UX(11)=23.29 
RHO(12)=0.08933 
PRE(12)=45642.15 
UX(12)=62.06 
RH0(13)=0.09354 
PRE(13)=49477.62 
UX(13)=100. 98 
RH0(14)-0.09984 
PRE(14)=54463.75 
UX(14)=139.82 
RH0(15)=0.10720 
PRE(15)=60216.95 
UX(15)=191.87 
RHO(16)=0.11661 
PRE(16)=67504.36 
UX(16)“252.45 
RH0(17)=0.12822 
PRE(17)=77476.59 
UX( 1 7) =322. 36
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RHO(18)=0.14188 
PRE(18)=88983.02 
UX(18)=419.46 
RH0(19)=0. 16395 
PRE(19)=105859.11 
UX(19) = 532.10 

14 DO 16 1=21,NP1
PHI(I)=1 
RHO(I)=RR 
PRE (I ) =PR 
UX(I)=UR 

16 CONTINUE
C
C BEGIN TIME STEP
C

DO 100 TSTP-1,NSTOP
NP=NP+1
DO 8 1=2,N
VMAX1=ABS(U X(I))+SQRT(GAMMA*PRE(I)/RHO(I)) 
IF(VMAX1.GT.VMAX) VMAX=VMAXl 

8 CONTINUE
DTT=S IGMA*DX/ (2 .*VMAX)
IF(DTT.LT.DT) DT=DTT 
TIME-TIME+2.*DT 
LAM=0.5/VMAX 

C
C COMPUTE FIRST HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN'S METHOD
C

NU=M0D(NU+K2,K1)
BLIP=BLIP+1.DO
SI= (GGUBFS(BLIP)H-FLOAT(NU) ) /FLOAT(Kl)

C
C XI LIES BETWEEN -DX/2 AND +DX/2
C

DO 40 1=2,NP1 
XIl=SI*DX-0.5*DX 
RR=RHO(I)
UR=UX( I)
PR=PRE(I)
KPHI=PHI(I)
IF( I. EQ.2)G0 TO 43 
RL-RIM1 
PL=PIM1 
UL-UIM1 
GO TO 44 

C
C BOUNDARY CONDITION AT AXIS R»0
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C
43 RL=RHO(1)

UL»UX(1)
PL*PRE(1)
KIM-PHI(l)
GO TO 44

C
C COMPUTE FIRST HALF STEP OF GLIMM
C
44 CALL GLIMM(XIl)

RIMl-RHO(I)
RHO(I)«R
PIM1=PRE(I)
PRE( I) =P 
UIMl-UX(I)
UX(I)-U 
KIM=PHI(I)
PHI( I) **KPHI 

40 CONTINUE
C
C COMPUTE SECOND HALF STEP
C
C
C GENERATE RANDOM SI USING CHORIN’S METHOD
C

NU=MOD(NU+K 2,Kl)
SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(Kl)

C
C XI LIES BETWEEN -DX/2 AND +DX/2
C

KIM=PHI( 1 )
DO 60 1=1,NP1 
XI2=SI*DX-0.5*DX 
RL=RHO(I)
PL=P RE(I)
UL=UX (I)
IF(I.EQ.NPl) GO TO 63 
KPHI=PHI(1+1)
RR=RHO(1+1)
PR=PRE(1+1)
UR=UX( 1+1)
IF(I.EQ.l) GO TO 62 
GO TO 64

C BOUNDARY CONDITION AT R-l.
63 RR-RL

UR=-UL 
PR-PL
KPHI-P HI(I)
XI2-0.0 
GO TO 64
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C
C COMPUTE SECOND HALF STEP OF GLIMM
C
62 XI2=ABS(XI2)

IF(XI1.LT.0.) XI2=XIl+0.5*DX
RL=RR
UL=-UR
PL=PR

64 CALL GLIMM(XI2)
RHO(I)=R 
PRE(I)=P 
UX(I)=U 
KIM=»PHI (1+1)
PHI(I)=KPHI

60 CONTINUE
CALL INHOM
WRITE(15,20000) TIME

20000 F0RMAT(IHl,7H TIME = ,F11.7)
WRITE(15,20001) RHO(1) ,PRE(1)
WRITE(15,20001) RHO(NPl),PRE(NP1)

20001 FORMAT(1H0,2F13.5)
IF(NP.LT.NPRINT) GO TO 100 
NP = 0
CALL OUTPUT 

100 CONTINUE
STOP 
END 

C
C SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM
C

SUBROUTINE GLIMM(XI)
C OMMON//DT, GAMMA, RL,UL, P L, R,U ,P ,E , RR ,U R ,PR ,KPHI, D ELTA ,K IM
COMMON/RAD/ETA
COMMON/LIN/LAM
REAL MR,ML,MRP 1,MLP1
REAL LAM,MUSQ
EPS-1.E-6
IT=0
ITSTOP-2 0 
KPHIP=KPHI*KIM 

C
C IF KPHI-1 , MIGHT HAVE A DETONATION
C

IF(KPHI.EQ.1.AND.KPHIP.EQ.O) GO TO 111 
C
C CONSTRUCTION OF RIEMANN PROBLEM
C ALFA IS THE CONVERGENCE FACTOR
C

ALFA=1.
ALFAM-1.-ALFA
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INITIAL ML AND MR

ML=100.
MR-100.
COEFL=SQRT(PL*RL)
COEFR-SQRT(PR*RR)

COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV

RAV-0.5*(RL+RR)
PAV-0.5*(PL+PR)
A-PAV/(RAV* *GAMMA)
R-RAV-LAM*(UR*RR-UL*RL)
PSTAR-A*(R**GAMMA)

SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD 

IT-IT+1

IF PSTAR IS LESS THAN EPS THEN PSTAR IS SET EQUAL 
TO 1.OE-6 TO PREVENT PSTAR FROM BECOMING NEGATIVE

PSTAR-AMAX 1(EPS .PSTAR)

COMPUTE MR AND ML AT STEP Q+l

MLP1=C0EFL*PSI(PSTAR/PL,GAMMA)
MRP 1-C0EFR*PSI(PSTAR/PR.GAMMA)
DIFML-ABS(MLP1-ML)
DIFMR-ABS(MRP1-MR)
ML-MLP1
MR-MRP1

COMPUTE NEW PRESSURE PSTAR 

PSTARP-PSTAR
PSTAR-(UL-UR+PR/MR+PL/ML)/(l./ML+1./MR) 
PSTAR-ALFA*PSTAR+ALFAM*PSTARP 
IF(IT.LE.ITSTOP) GO TO 30 
IF(A»BS (PSTAR-PSTARP) .LT.EPS) GO TO 40 
IF(DIFML*DIFMR.LT.EPS) GO TO 40 
ALFA-ALFA/2.
ALFAM-1.-ALFA
IF(ALFAM.LT.EPS) GO TO 40
IT-0
IF(DIFML.GT.EPS) GO TO 10 
IF(DIFMR.GT.EPS) GO TO 10

COMPUTE USTAR AT END OF GODUNOV ITERATION
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40 USTAR= (PL-PR+MR*UR+ML*UL) / (ML+MR)
C
C BEGIN GLIMM'S METHOD
C

IREGL=1
IF(PSTAR.LT.PL) IREGL=2 
IREGR=1
IF(PSTAR.LT.PR) IREGR=2 
X=*USTAR*DT
IF(XI.GE.X) GO TO 200 

C
C LEFT SIDE
C

IF(IREGL.EQ.2) GO TO 110 
C
C COMPUTE LEFT SHOCK SPEED
C

U=U L-ML/RL 
X=U*DT
IF(XI.GE.X) GO TO 100 

C
C LEFT OF LEFT SHOCK
C

R=RL
U=UL
P=PL
GO TO 500 

C
C RIGHT OF LEFT SHOCK
C
100 R=ML/(USTAR-U)

U=USTAR 
P=P S TAR 
GO TO 500 

C
C COMPUTE SOUND SPEED IN LEFT STATE
C
110 CL=SQRT(GAMMA*PL/RL)

X“(UL-CL)*DT 
IF(XI.GE.X) GO TO 120 

C
C LEFT OF LEFT FAN
C

R=RL 
U=UL 
P=P L
GO TO 500 

C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
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20 A=PL/(RL**GAMMA)

COMPUTE DENSITY IN STATE STAR

RSTAR»(PSTAR/A)**(1./GAMMA)

COMPUTE SOUND SPEED IN STATE STAR

CSTAR*SQRT(GAMMA*P STAR/RSTAR)
X*(USTAR-CSTAR)*DT 
IF(XI.GE.X) GO TO 130

IN LEFT FAN

U=(2./(GAMMA+1.))*(Xl/DT+CL+0.5*(GAMMA-1.)*UL) 
RINT*CL+0.5*(GAMMA-1.)*(UL-U)
R*(RINT*RINT/(A*GAMMA))**(!./(GAMMA-1.))
P=A*(R* *GAMMA)
GO TO 500

RIGHT OF LEFT FAN

30 R*RSTAR 
U =U S T A R 
P=P S TAR 
GO TO 500

RIGHT SIDE

00 IF(IREGR.EQ.2) GO TO 220

COMPUTE RIGHT SHOCK SPEED

U-UR+MR/RR
X=U*DT
IF(XI.GE.X) GO TO 210

LEFT OF RIGHT SHOCK

R*-MR/ (USTAR-U)
U=USTAR 
P=P STAR 
GO TO 500

RIGHT OF RIGHT SHOCK

10 R=RR 
U-UR 
P=PR
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GO TO 500 
C
C COMPUTE CONSTANT OF ISENTROPIC LAW-A
C
220 A=PR/(RR**GAMMA)
C
C COMPUTE DENSITY IN STATE STAR
C

RSTAR“(PSTAR/A)**(l./GAMMA)
C
C COMPUTE SOUND SPEED IN STATE STAR
C

CSTARTSQRT(GAMMA*P STAR/RSTAR)
X^CUSTAR+CSTAR)*DT 
IF(XI.GE.X) GO TO 230 

C
C LEFT OF RIGHT FAN
C

R=RSTAR 
U-USTAR 
P=*P STAR 
GO TO 500 

C
C COMPUTE SOUND SPEED IN RIGHT STATE
C
230 CR=SQRT(GAMMA*PR/RR)

X™(UR+CR)*DT 
IF(XI.GE.X) GO TO 240 

C
C IN RIGHT FAN
C

U= (2 ./(GAMMA+1. )) *(XI/DT-CR+O. 5* (GAMMA-1. )*UR) 
RINT-CR+O.5*(GAMMA-1.)*(U-UR)
R=(RINT*RINT/(A*GAMMA))**(!./(GAMMA-1.)) 
P=A*(R**GAMMA)
GO TO 500 

C
C RIGHT OF RIGHT FAN
C
240 R=RR

U-UR 
P=P R
GO TO 500 

C
C DETONATION CONDITIONS
C
C
C CALCULATE CONDITIONS JUST BEHIND CJ DETONATION
C
111 B--PR-DELTA*(GAMMA-1. )*RR
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MU SQ-( GAMMA-l.)/(GAMMA+l. )
0(PR*PR) + 2. *MUSQ*PR*RR*DELTA 
PSTAR=-B+SQRT((B*B)-C)
RSTAR*(P S TAR*(GAMMA+1.)-PR)*RR/(GAMMA*PSTAR)
UCJ*»SQRT (GAMMA*PSTAR*RSTAR) /RR+UR 
C STARTSQRT(GAMMA*P STAR/RSTAR)
USTAR-UCJ-CSTAR

C
C BEGIN GLIMM’S METHOD
C

X=UCJ*DT
IF(XI.GE.X) GO TO 222 

C
C LEFT OF DETONATION
C
333 U=U STAR 

P-PSTAR 
R-RSTAR 
KPHI-0 
GO TO 500 

222 U-UR 
P=PR 
R=RR

500 CONTINUE 
RETURN 
END 

C
C FUNCTION PSI
C

FUNCTION PSI(X,GAMMA)
EPS-1.OE-6
IF(ABS(1.-X).GT.EPS) GO TO 100 
PSI-SQRT(GAMMA)
RETURN

100 C0EF1-0.5*(GAMMA+1. )
COEF2-0.5*(GAMMA-1.)
COEF3-COEF2/GAMMA 
IF(X.GE•1•) GO TO 200
PSI-C0EF2*(1.-X)/(SQRT(GAMMA)*(1.-(X**C0EF3)))
RETURN

200 PSI-SQRT(C0EF1*X+C0EF2)
RETURN
END

C
C SUBROUTINE INHOM.TO CALCULATE THE NON-HOMOGENEOUS
C DIFFERENTIAL EQUATION
C

SUBROUTINE INHOM
C OMMON/ /DT , GAMMA , RL ,U L ,PL,R,U,P,E,RR,UR,PR,KPHI, DELTA ,KIM 
COMMON/OUT/TIME,N,DX,RH0(111) ,PRE(111) ,UX(111) ,PHI(111)
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COMMON/RAD/ETA 
REAL MOM 
INTEGER PHI 
NP1=N+1
DO 100 1=2,NP1 
X=FL0AT(I-1)*DX 
R=RH0(I)
U=UX(I)
P =P RE (I )
KP HI=PHI(I)
KPHIP=PHI(I+1)
KIP=KPHI*KPHIP
IF(KPHIP.EQ.l.AND.KIP.EQ.0) GO TO 10 
E=P/(GAMMA-1.)+0.5*R*U*U+KPHI*DELTA*R 
DEN=R-2.*DT*(ETA-1.)*R*U/X 
MOM=R*U-R*U *2.*DT*(ETA-1.)*U/X 
E=E-2.*DT*(ETA-1. )*U*(E+P) /X 
RHO(I)=DEN 
UX(I)=MOM/DEN
P RE(I) = (GAMMA-1.)*(E-KPHI*DELTA*DEN-0.5*M0M*M0M/DEN)

11 GO TO 100
10 RHO(I)=R

UX(I)=U 
P R E ( I ) =P 

100 CONTINUE
RETURN 
END 

C
C SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
C

SUBROUTINE OUTPUT
COMMON//DT,GAMMA,RL,UL,PL, R,U ,P ,E ,RR,UR,PR,KPHI,DELTA,K1M 
COMMON/OUT/TIME,N,DX,RHO(111) ,PRE(111) ,UX(111),PHI(111) 
INTEGER PHI 
NP1=N+1
WRITE(6,10000) TIME 
WRITE(6,10001)
DO 20 1=1,NP1 
X=FLOAT(I-1)*DX 
R=RHO(I)
U=UX(I )
P=P RE(I)
K=PHI(I)
WRITE(6,10002) X,R,U,P,K 

20 CONTINUE 
RETURN

10000 F0RMAT(1H1,7H TIME = ,F11.7)
10001 FORMAT(1H ,3H X,6X,5HDENSE,8X,3HVEL,1 OX,4HPRES,1OX,3HPHI)
10002 FORMAT(1H0,F6.3,3F13. 5,12) M

END ™
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APPENDIX D

THE COMPUTER PROGRAM TWODIM

D.l Description of the Program

The major parts of the program are similar to the previous 

two programs i.e., the main program, the subroutine GLIMM, the sub­

routine INHOM and the output section. However, two subroutines have 

been added. Subroutine LABEL defines the boundaries for the problem 

it simulates the curved walls of a containment by a stepwise line; 

it also identifies the grid points which fall outside the boundaries 

Subroutine SPLINE is a third order polynomial approximation of the 

Taylor curves in spherical coordinates.

The general flow chart of the main section of the program 

can be found in Figure D.l. The data file cards are explained in 

Table D.l.

D.2 Dictionary of Key Terms in TWODIM

The terms which have been defined in section B.2 are not

repeated here

AP(12), BP(12),

CP(12), DP(12),

AR(12), BR(12),

CR(12), DR(12),

AU(12), BU(12),

DETDIS

Coefficient of the third order polynomial 
approximating the Taylor curves for the 
pressure, density and velocity

Initial distance the detonation front had 
reached:
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START

REPEAT NSTOP TIMES

ASSIGN INITIAL VALUES OF p, p, u AND v

PRINTED OUTPUT EVERY NPRINT TIME STEPS

MAKE THE CORRECTION FOR THE INHOMOGENEOUS TERMS

CALCULATE THE HALF TIME STEP

CALCULATE PROPERTIES AT EACH GRID POINT 
FOR EACH J + 4- LINE BY AN x SWEEP

CALCULATE PROPERTIES AT EACH GRID POINT 

FOR EACH I COLUMN BY A y SWEEP

CALCULATE THE PROPERTIES AT MID DISTANCE 

BETWEEN GRID POINTS FOR EACH J LINE 

BY AN x SWEEP

CALCULATE PROPERTIES AT MID DISTANCE 

BETWEEN GRID POINTS FOR EACH I + COLUMN 

BY A y SWEEP

END

FIGURE D.l: FLOW CHART FOR TWODIM
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NO. OF

1

1

r ny
110

[X] ,
•if

CARDS

*

+ 1

*

+ 1

1

1

1

TABLE D.l: DATA FILE 

FORTRAN NAME[FORMATl COLUMN N°

NPRINT [14] 1-4 last digit in column 4

NSTOP [14] 5-8 last digit in column 8

NX[I3] 1-3 last digit in column 3

NY[I3] 4-6 last digit in column 6

X(I)[10F7.3] X(l) 1-7

X(2) 8-14

X(10) 64-70
X(ll) 1-7

x'(NX)

Y(I)[10F7.3] Y(D 1-7

Y(2) 8-14

Y (10) 64-70

Y(n) 1-7

Y(NY)

SXDXY[F10.4] 1-10

DETDIS[F7.3] 1-7

JCYL[I3] 1-3 last digit in column 3

largest integer < X
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IDUM(I.J) Dummy variable which identifies whether the grid 
point is an internal, external or boundary point.

JCYL Last grid point in the y-direction before the wall 
of the containment starts to curve

LABEL Subroutine which defines the wall boundaries of the 
containment

NX Number of grid points in the x-direction

NY Number of grid points in the y-direction

SDXY Smallest grid interval in the x and in the y directions

SPLINE Subroutine which generates the coefficients of the 

third order fit polynomial

SX(12) Selected points on the absissa axis of the Taylor 
curves

UX(I,J) X-component of the velocity at grid point (I,J)

VY(I,J) Y-component of the velocity at grid poing (I,J)

X(D Grid distance from the origin in the x-directi on

Y( I) Grid distance from the origin in the y-direction

YP(12),YR(12)jOrdinate corresponding to SX in the spherical Taylor 
YU(12) curves for the pressure, density and velocity
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C TWO DIMENSIONAL AXISYMMETRIC PROGRAM TO CALCULATEC PRESSURE,DENSITY AND VELOCITY HISTORY IN A REACTIVE MIXTUREC COMMON//DT,GAMMA,RL,UL,P L,R,U,V,P,E,RR,UR,PR,KPHI,DELTA,KIM, 
& VICOMMON/OUT/TIME,NX,NY,RHO(101,101),PRE(101,101),UX(101,101) COMMON/OWT/PHI(101,101)COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),& IDUM(101,101)COMMON/RAD/ETA COMMON/LIN/LAM COMMON/INI/RCHJ,PCHJ,UCHJDIMENSION SX(12),YP(12),AP(12),BP(12),CP(12),DP(12)DIMENSION YR(12),AR(12),BR(12),CR(12),DR(12)DIMENSION YU(12),AU(12),BU(12),CU(12),DU(12)DATA SX/.501, .6, .7, .75, .8, .85, .9, .92, .94, .96, .98,1./DATA YP/.2773,.3075,.3675,.405,.45,.515,.59,.62,.67,.725,.8, 
& 1./DATA YR/.4,.43,.485,.52,.565,.6175,.68,.715,.76,.815,.88,1./ DATA YU/.O, .1, .2, .265, .345, .43, .55, .61, .66, .73 , .83,1./CALL SPLINE(SX,YP,AP,BP,CP,DP)CALL SPLINE(SX,YR,AR,BR,CR,DR)CALL SPLINE(SX,YU,AU,BU,CU,DU)REAL LAMDOUBLE PRECISION BLIPINTEGER TSTP,PHIREAD(5,9999) NPRINT,NSTOP9999 FORMAT(214)READ (5,8888) Cl8888 FORMAT(F12.5)CC READ THE DIMENSION OF THE GRID IN THE X AND Y DIRECTIONSC READ(5,10000)NX,NY10000 FORMAT(213)NXM1=NX-1 NYM1=NY-1CC READ THE GRID LOCATIONC READ(5,10001) (X(I),1=1,NX)READ(5,10001) (Y(J),J=1,NY)10001 FORMAT(10F7.3)READ(5,10002) SDXY10002 FORMAT(F10.4)DT1=0.00001 TIME=0.0 VMAX=0.NP=0GAMMA=1.4 DELTA=1447711.2 BLIP=0.0D0
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Kl=llK2=7NU=2SIGMA=1.0C ETA IS A DUMMY CONTROLETA=3.CC READ THE INITIAL INITIATION RADIUS
C READ(5,10003) DETDIS10003 FORMAT(F7.3)CC SET INITIAL CONDITIONS
C READ(5,10004)RCHJ READ(5,10004)PCHJ READ(5,10004)UCHJ READ(5,10004)RIN READ(5,10004)PIN READ(5,10004)UIN10004 FORMAT(F13.5)RL=RCHJPL=PCHJUL=UCHJVL=0.RR=RINPR=PINUR=UINVR=0.READ(5/10006) YO10006 FORMAT(F7.3)READ(5,10007) NYO10007 FORMAT(13)DO 10 1=1,NX DO 10 0=1,NYDIST(I,J)=SQRT(X(I)**2.+(Y(J)-YO)*(Y(J)-YO))IF(DIST(I,J).GT.DETDIS) GO TO 11 

PHI(I,J)=0DDET=DIST(I,J)/DETDISIF(DDET.GT.SX(1)) GO TO 1PRE(I,J)=YP(1)*PLRHO(I,J)=YR(1)*RLUX(I,J)=YU(1)*ULGO TO 291 DO 9 K=2,12IF(DDET.GT.SX(K)) GO TO 9 XX=DDET-SX(K-1)PRE(I,J)=AP(K-1)*XX*XX*XX+BP(K-1)*XX*XX+CP(K-1)*XX+DP(K-1) 
PRE(I,J)=PRE(I,J)*PLRHO(I,J)=AR(K-1)*XX*XX*XX+BR(K-1)*XX*XX+CR(K-1)*XX+DR(K-1) 
RHO(I,J)=RHO(I,J)*RLUX(I,J)=AU(K-1)*XX*XX*XX+BU(K-1)*XX*XX+CU(K-1)*XX+DU(K-1)
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UX(I, J^UXfl, J)*UL GO TO 299 CONTINUE29 IF(I.EQ.1.AND.J.EQ.NYO) GO TO 12 GO TO 1312 VY(I,J)=UX(I,J)GO TO 1013 U=UX(I/J)UX(I,J)=U*X(I)/DIST(I,J)VY(I,J)=U*(Y(J)-YO)/DIST(I,J)GO TO 1011 RHO(I,J)=RRPRE(I,J)=PR UX(I,J)=UR VY(I7J)=VR PHI(I,J)=110 CONTINUEREAD(5,10005) JCYL 10005 FORMAT(13)CALL LABEL(NX,NY,JCYL)DO 333 1=1,NXM1 DO 333 J=1,NYM1 IF(IDUM(I,J).EQ.4) GO TO 333IF(PHI(1+1,J).EQ.1.AND.PHI(I,J).EQ.O) IDUM(I,J)=3 IF(PHI(I,J+l).EQ.l.AND.PHI(I,J).EQ.O) IDUM(I,J)=3 333 CONTINUECC BEGIN TIME STEPC DO 100 TSTP=1,NSTOP NP=NP+1 DO 30 1=1,NX DO 30 J=1,NY
VMAX1=SQRT(UX(I,J)*UX(I,J)+VY(I,J)*VY(I,J))+SQRT(GAMMA*PRE(I,J)/ &RHO(I,J))IF(VMAX1.GT.VMAX) VMAX=VMAX130 CONTINUEC SET INITIAL VALUE OF DTDT=0.01C FIND THE HALF TIME STEP DTC DTT=SIGMA* SDXY/(2.*VMAX)IF(DTT.LT.DT) DT=DTT DT=AMAX1(DT,DTI)TIME=TIME+2.*DT LAM=0.5/VMAX C

C COMPUTE FIRST QUARTER STEP. X-SWEEPC C C C GENERATE RANDOM SI USING CHORIN'S METHOD
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NU=MOD(NU+K2,K1)BLIP=BLIP+1.DOS1=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)
C DO 40 J=1,NY DO 40 1=2,NX DX=(X(I)-X(I-l))XI1=SI*DX-0.5*DX IF(IDUM(I,J).EQ.O) GO TO 40 

RR=RHO(I,J)UR=UX(I,J)PR=PRE(I,J)KPHI=PHI(I,J)V1=VY(I,J)IF(I.EQ.2) GO TO 43RL=RIM1PL=PIM1UL=UIM1V=VIM1GO TO 4443 RL=RHO(1,J)UL=UX(1,J)PL=PRE(1,J)KIM=PHI(1,J)V=VY(1,J)44 CALL GLIMM(XIl)RIM1=RH0(I,J)RHO(I,J)=R PIM1=PRE(I,J)PRE(I,J)=P UIM1=UX(I,J)UX(I,J)=U VIM1=VY(I,J)VY(I,J)=V KIM=PHI(I,J)PHI(I,J)=KPHI40 CONTINUECC COMPUTE SECOND QUARTER STEP. Y-SWEEP
CCC GENERATE RANDOM SI USING CHORIN'S METHOD
C NU=MOD(NU+K2,K1)SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(Kl)
C DO 50 1=2,NX DO 50 J=2,NY DY=(Y(J)-Y(J-l))XI2=SI*DY-0.5*DY IF(IDUM(I,J).EQ.O) GO TO 50 

RR=RHO(I,J)
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UR=VY(I,J)PR=PRE(I,J)KPHI=PHI(I,J)V1=UX(I,J)IF(J.EQ.2) GO TO 53RL=RIM1PL=PIM1UL=UIM1V=VIM1GO TO 5453 RL=RHO(1,1)UL=VY(I,1)PL=PRE(1,1)KIM=PHI(1,1)V=UX(I,1)54 CALL GLIMM(XI2)RIMl=RHO(I,J)RHO(I,J)=R PIM1=PRE(I,J)PRE(I,J)=P UIM1=VY(I,J)VY(I,J)=U VIM1=UX(I,J)UX(I,J)=V KIM=PHI(I,J)PHI(I,J)=KPHI 50 CONTINUECC COMPUTE THIRD QUARTER STEP. X-SWEEPCC
C GENERATE RANDOM SI USING CHORIN'S METHODC NU=MOD(NU+K2,K1)SI = (GGUBFS(BLIP)+ FLOAT(NU))/FLOAT(K1)C DO 60 J=2,NY DO 60 1=1,NXIF(IDUM(I,J).EQ.O) GO TO 60 RL=RHO(I,J)PL=PRE(I,J)UL=UX(I,J)V=VY(I,J)IF(I.EQ.NX) GO TO 63 IF(IDUM(I+1,J).EQ.O) GO TO 63 DXR=(X(I+1)-X(I))*0.5 IF(I.EQ.l) DXL=DXR IF(I.NE.l) DXL=(X(I)-X(I-l))*0.5 XI3=(DXR+DXL)*SI-DXL KPHI=PHI(1+1,J)RR=RHO(I+1,J)PR=PRE(1+1,J)
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UR=UX(I+1,J)V1=VY(1+1,J)IF(I.EQ.l) GO TO 62 GO TO 64 CC BOUNDARY CONDITIONS AT WALL
C63 RR=RL UR=-UL PR=PLKPHI=PHI(I,J)XI3=-ABS(XI3)GO TO 64 CC BOUNDARY CONDITIONS AT CENTERLINE
C62 XI3=ABS(XI3)RL=RR PL=PR UL=-UR KIM=PHI(2,J)PHI(1,J)=PHI(2,J)V=VY(1+1,3)VY(I,J)=VY(I+1/J)64 CALL GLIMM(XI3)RHO(I,J)=RPRE(I,J)=P UX(I,J)=UIF(I.NE.NX) KIM=PHI(1+1,J)PHI(I,J)=KPHI VYtl,J)=V 60 CONTINUECC COMPUTE FOURTH QUARTER STEP. Y-SWEEP
CCC GENERATE RANDOM SI USING CHORIN'S METHOD
C NU=MOD(NU+K2,K1)SI=(GGUBFS(BLIP)+FLOAT(NU))/FLOAT(K1)
C DO 70 1=1,NX DO 70 3=1,NYIF(IDUM(I,J).EQ.O) GO TO 70 RL=RHO(I,J)PL=PRE(I,J)UL=VY(I,J)V=UX(I,J)IF(J.EQ.NY) GO TO 73 IF(IDUM(I,J+l).EQ.O) GO TO 73 DYR=(Y(J+l)-Y(J))*0.5 IF(J.EQ.l) DYL=DYR
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IF(J.NE.l) DYL=(Y(J)-Y(J-l))*0.5 XI4=(DYR+DYL)* SI-DYL KPHI=PHI(I/J+l)RR=RHO(I,J+l)PR=PRE(I,J+l)UR=VY(I,J+l)V1=UX(I,J+l)IF(J.EQ.1) GO TO 72 GO TO 74 C

C BOUNDARY CONDITIONS AT THE UPPER WALLC73 RR=RL UR=-UL PR=PLKPHI=PHI(I,J)XI4=-ABS(XI4)GO TO 74 C
C BOUNDARY CONDITIONS AT THE LOWER WALLC72 XI4=ABS(XI4)RL=RR PL=PR UL=-UR KIM=PHI(1,2)PHI(1,1)=PHI(1,2)V=UX(I,J+l)UX(I/J)=UX(I,J+l)74 CALL GLIMM(XI4)RHO(I,J)=RPRE(I,J)=P VY(I,J)=U

IF(J.NE.NY) KIM=PHI(I,J+l)PHI(I,J)=KPHI UX(I,J)=V 70 CONTINUECALL LABEL(NX,NY,JCYL)DO 777 1=1,NXM1 DO 777 J=1,NYM1 
IF(IDUM(I,J).EQ.4) GO TO 111IF(PHI(1+1,J).EQ.1.AND.PHI(I,J).EQ.O) IDUM(I,J)=3 IF(PHI(I,J+l).EQ.1.AND.PHI(I,J).EQ.O) IDUM(I,J)=3 

111 CONTINUECALL INHOM
WRITE(6,300) TIME,PRE(NX,1),PRE(NX,8),PRE(NX,16),PRE(NX,21), *PRE(NX,26),PRE(NX,30),PRE(NX,34),PRE(NX,38),PRE(NX,41),*PRE(24,46),PRE(20,50),PRE(15,55),PRE(10,60),PRE(5,65), 
*PRE(1,65),PRE(1,1),PRE(1,24),PRE(1,34),PRE(1,44),PRE(1,54) 300 FORMAT(IX,E9.3,IX,10(E9.3,IX),/,10X,10(E9.3,IX))IF(NP.LT.NPRINT) GO TO 100 NP=0
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CONTINUESTOPEND
SUBROUTINE GLIMM:TO SOLVE RIEMANN PROBLEM 
SUBROUTINE GLIMM(XI)COMMON//DT,GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI,DELTA,KIM, 

& VICOMMON/RAD/ETA COMMON/LIN/LAM COMMON/INI/RCHJ,PCHJ,UCHJ REAL MR,ML,MRP1,MLP1 REAL LAM,MUSQ EPS=1.E-6 EPS1=1.E-3 IT=0ITSTOP=20 KPHIP=KPHI*KIM
IF KPHI=1 , MIGHT HAVE A DETONATION
IF(KPHI.EQ.1.AND.KPHIP.EQ.O) GO TO 111 IF(KIM.EQ.1.AND.KPHIP.EQ.O) GO TO 111
CONSTRUCTION OF RIEMANN PROBLEM ALFA IS THE CONVERGENCE FACTOR
ALFA=1.ALFAM=1.-ALFA
INITIAL ML AND MR
ML=100.MR=100.COEFL=SQRT(PL*RL)COEFR=SQRT(PR*RR)
COMPUTE INITIAL PSTAR USING LINEARIZED GODUNOV
RAV=0.5 *(RL+RR)PAV=0.5 *(PL+PR)A=P AV/ (RAV* * GAMMA)R=RAV-LAM*(UR*RR-UL*RL)PSTAR=A*(R**GAMMA)
SOLVE RIEMANN PROBLEM USING GODUNOV'S ITERARIVE METHOD
IT=IT+1
IF PSTAR IS LESS THAN EPS1THEN PSTAR IS SET EQUAL TO 1.0E-3 TO PREVENT PSTAR FROM BECOMING NEGATIVE
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C
CCC
20

CCC

30
CC
C40
CCC

C
CC
C
C
c

PSTAR=AMAX1(EPS1,PSTAR)
COMPUTE MR AND ML AT STEP Q+l
MLP1=C0EFL*PSI(PSTAR/PL,GAMMA) MRP1=COEFR* PSI(PSTAR/PR,GAMMA) DIFML=ABS(1.-(MLP1/ML))DIFMR=ABS(1.-(MRP1/MR))ML=MLP1MR=MRP1
COMPUTE NEW PRESSURE PSTAR
P STARP=P STARPSTAR=(UL-UR+PR/MR+PL/ML)/(1./ML+1,/MR) P STAR=ALFA * P STAR+ALFAM * P STARP IF(IT.LE.ITSTOP) GO TO 30 DIFPS=ABS(1.-(PSTARP/PSTAR))IF(DIFPS.LT.EPS1) GO TO 40 IF(DIFML*DIFMR.LT.EPS1) GO TO 40 AL F A=AL FA/2.ALFAM=1.-ALFAIF(ALFAM.LT.EPS1) GO TO 40
IT=0IF(DIFML.GT.EPSl) GO TO 10 IF(DIFMR.GT.EPS1) GO TO 10
COMPUTE USTAR AT END OF GODUNOV ITERATION
P STAR=AMAX1(EP S1,P STAR)USTAR=(PL-PR+MR*UR+ML*UL)/(ML+MR)
BEGIN GLIMM'S METHOD
IREGL=1IF(PSTAR.LT.PL) IREGL=2 IREGR=1IF(PSTAR.LT.PR) IREGR=2 X=USTAR*DTIF(XI.GE.X) GO TO 200 
LEFT SIDE
IF(IREGL.EQ.2) GO TO 110
COMPUTE LEFT SHOCK SPEED
U=UL-ML/RLX=U*DTIF(XI.GE.X) GO TO 100C
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C LEFT OF LEFT SHOCKC R=RLU=ULP=PLGO TO 500 CC RIGHT OF LEFT SHOCKC100 R=ML/(USTAR-U)U=USTAR P=PSTAR GO TO 500 CC COMPUTE SOUND SPEED IN LEFT STATEC110 C L=S QRT(GAMMA * PL/RL)X=(UL-CL)*DT IF(XI.GE.X) GO TO 120 CC LEFT OF LEFT FANC R=RLU=ULP=PLGO TO 500 CC COMPUTE CONSTANT OF ISENTROPIC LAW-AC120 A=PL/(RL**GAMMA)CC COMPUTE DENSITY IN STATE STARC .RSTAR=(PSTAR/A)**(!./GAMMA)CC COMPUTE SOUND SPEED IN STATE STARC CSTAR=SQRT(GAMMA*PSTAR/RSTAR)X=(USTAR-CSTAR)*DT IF(XI.GE.X) GO TO 130 CC IN LEFT FANC U=(2./(GAMMA+1.))*(XI/DT+CL+0.5*(GAMMA-1.)*UL) RINT=CL+0.5*(GAMMA-1.)*(UL-U)R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.)) P=A*(R**GAMMA)GO TO 500 CC RIGHT OF LEFT FANC130 R=RSTAR
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CCC
200CCC

CCC

c
c
c
210

CCC
220CCC
CCC

CCC

U=USTAR P=PSTAR GO TO 500
RIGHT SIDE
IF(IREGR.EQ.2) GO TO 220
COMPUTE RIGHT SHOCK SPEED
U=UR+MR/RRX=U*DTIF(XI.GE.X) GO TO 210
LEFT OF RIGHT SHOCK
R=-MR/(USTAR-U)U=USTAR P=PSTAR GO TO 500
RIGHT OF RIGHT SHOCK
R=RRU=URP=PRGO TO 500
COMPUTE CONSTANT OF ISENTROPIC LAW-A
A=PR/(RR* *GAMMA)
COMPUTE DENSITY IN STATE STAR
RSTAR=(PSTAR/A)**(!./GAMMA)
COMPUTE SOUND SPEED IN STATE STAR
CSTAR=SQRT(GAMMA*PSTAR/RSTAR)X=(USTAR+CSTAR)*DT IF(XI.GE.X) GO TO 230
LEFT OF RIGHT FAN
R=RSTAR U=USTAR P=PSTAR GO TO 500
COMPUTE SOUND SPEED IN RIGHT STATE 
CR=SQRT(GAMMA*PR/RR)
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X=(UR+CR)*DT IF(XI.GE.X) GO TO 240 ‘ CC IN RIGHT FANC U=(2./(GAMMA+1.))*(XI/DT-CR+0.5*(GAMMA-1.)*UR) 
RINT=CR+0.5*(GAMMA-1.)*(U-UR)R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))P=A*(R**GAMMA)GO TO 500 CC RIGHT OF RIGHT FANC240 R=RRU=UR P=PRGO TO 500 CC DETONATION CONDITIONSCCC CALCULATE CONDITIONS JUST BEHIND CJ DETONATIONC

111 B=-PR-DELTA*(GAMMA-1.)*RRMUSQ=(GAMMA-1.)/(GAMMA+1.)C=(PR*PR)+2.*MUSQ*PR*RR*DELTA PSTAR=-B+SQRT((B*B)-C)RSTAR=(PSTAR*(GAMMA+1.)-PR)*RR/(GAMMA*PSTAR)UCJ=SQRT(GAMMA* P STAR * RSTAR)/RR+UR CSTAR=SQRT(GAMMA*PSTAR/RSTAR)USTAR=UCJ-CSTARPSTAR=PCHJUSTAR=SQRT(ABS(UCHJ*UCHJ-V*V))RSTAR=RCHJCSTAR=SQRT(GAMMA*PSTAR/RSTAR)UCJ=(USTAR/UCHJ)*(CSTAR+UCHJ)IF(KIM.EQ.1) GO TO 555 CC BEGIN GLIMM'S METHODC X=UCJ*DTIF(XI.GE.X) GO TO 222 IF(ETA.LT.3.5) GO TO 333 CC COMPUTE SOUND SPEED IN LEFT STATEC NEXT STATEMENTS T0333 NOT USEDC CL=SQRT(GAMMA*PL/RL)X=(UL+CL)*DT IF(XI.GE.X) GO TO 444 CC LEFT OF RAREFACTION FAN
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C R=RL U=UL P=PL KPH1=0 GO TO 500 CC COMPUTE CONSTANT OF ISENTROPIC LAW-AC444 A=PSTAR/(RSTAR**GAMMA)CC IN RIGHT FANC U=(2./(GAMMA+1.))*(XI/DT-CSTAR+O.5*(GAMMA-1.)*USTAR) RINT=CSTAR+0.5 *(GAMMA-1.)*(U-USTAR) R=(RINT*RINT/(A*GAMMA))**(1./(GAMMA-1.))P=A*(R**GAMMA)KPHI=0 GO TO 500 CC RIGHT OF DETONATIONC333 U=USTAR P=PCHJ R=RCHJ KPH1=0 GO TO 500 222 U=UR P=PR R=RR V=0GO TO 500 CC DETONATION FROM RIGHT TO LEFTC555 USTAR=SQRT(ABS(UCHJ*UCHJ-V1*V1))UCJ=(USTAR/UCHJ)*(CSTAR+UCHJ)X=-UCJ*DTIF(XI.LE.X) GO TO 556 IF(ETA.LT.3.5) GO TO 557 557 U=-USTARP=PCHJ R=RCHJ V=V1 KPH1=0 GO TO 500556 U=UL P=PL R=RL KPHI=1 V=0500 CONTINUE
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RETURNEND
FUNCTION PSI
FUNCTION PSI(X,GAMMA)EPS=1.OE-6IF(ABS(1.-X).GT.EPS) GO TO 100 PSI=SQRT(GAMMA)RETURNCOEF1=0.5*(GAMMA+1.)COEF2=0.5 *(GAMMA-1.)COEF3=COEF2/GAMMA IF(X.GE.1.) GO TO 200PSI=COEF2*(1.-X)/(SQRT(GAMMA)*(1.-(X**COEF3)))RETURNPSI=SQRT(C0EF1*X+C0EF2)RETURNEND
SUBROUTINE INHOM,TO CALCULATE THE NON-HOMOGENEOUS DIFFERENTIAL EQUATION
SUBROUTINE INHOMCOMMON//DT,GAMMA,RL,UL,PL,R,U,V,P,E,RR,UR,PR,KPHI,DELTA,KIM COMMON/OUT/TIME,NX,NY,RHO(101,101),PRE(101,101),UX(101,101) COMMON/OWT/PHI(101,101)COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)REAL MOMX,MOMY INTEGER PHI EPS2=1.E-3 DO 100 J=1,NY DO 100 I=2,NX XX=X(I)R=RHO(I,J)U=UX(I,J)P=PRE(I,J)V=VY(I,J)KPHI=PHI(I,J)KPHIP=PHI(1+1,J)KPHIPY=PHI(I,J+l)IF(J.NE.l) KPHIPP=PHI(I,J-l)KIP=KPHI*KPHIPKIPY=KPHI*KPHIPYIF(J.NE.l) KIPP=KPHI*KPHIPPIF(KPHIP.EQ.1.AND.KIP.EQ.O) GO TO 10IF(KPHIPY.EQ.1.AND.KIPY.EQ.O) GO TO 10IF(J.NE.l.AND.KPHIPP.EQ.l.AND.KIPP.EQ.O) GO TO 10E=P/(GAMMA-1.)+0.5*R*U*U+KPHI*DELTA*R+0.5*R*V*VDEN=R-2.*DT*R*U/XX MMOMX=R*U-R*U*2.*DT*U/XX ^1
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M0MY=R*V-2.*DT*R*U*V/XX E=E-2.*DT*U*(E+P)/XX RHO(I,J)=DEN UX(I,J)=MOMX/DEN VY(I,J)=MOMY/DENPOP=(GAMMA-1.)*(E-KPHI*DELTA*DEN-0.5*MOMX*MOMX/DEN-0.5*MOMY*M &OMY/DEN)PRE(I,J)=AMAX1(EPS2,POP)11 GO TO 10010 RHO(I/J)=RUX(I,J)=U 
VY(I,J)=V PRE(I,J)=P 100 CONTINUE RETURN END
SUBROUTINE SMOOTH TO DAMP THE OSCILLATIONS 
SUBROUTINE SMOOTH(Cl)COMMON/OUT/TIME7NX/NY,RHO(101/101),PRE(101/101)/UX(101/101) COMMON/OWT/PHI(101,101)COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101),

& IDUM(101,101)DO 1 J=1,NY RP=RHO(1,J)UP=UX(1,J)PP=PRE(1,J)VP=VY(1,J)NXM1=NX-1 DO 1 1=2,NXM1IF(IDUM(I+1,J).EQ.O) GO TO 1 R=RHO(I,J)U=UX(I,J)V=VY(I,J)P=PRE(I,J)R1DEL=RH0(I,J)-RP U1DEL=UX(I,J)-UP P1DEL=PRE(I,J)-PP V1DEL=VY(I,J)-VP R2DEL=RHO(I+1,J)-R U2DEL=UX(I+1,J)-U P2DEL=PRE(1+1,J)-P V2DEL=VY(I+1,J)-VR=R+C1*(ABS(U2DEL)*R2DEL-ABS(U1DEL)*R1DEL)U=U+C1*(ABS(U2DEL)*U2DEL-ABS(U1DEL)*U1DEL)P=P+C1*(ABS(U2DEL)*P2DEL-ABS(U1DEL)*P1DEL)V=V+C1*(ABS(U2DEL)*V2DEL-ABS(U1DEL)*V1DEL)RP=RHO(I,J)RHO(I,J)=R UP=UX(I,J)UX(I,J)=U
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PP=PRE(I,J)PRE(I,J)=P 
VP=VY(I,J)VY(I,J)=V1 CONTINUE NYM1=NY-1 DO 2 1=1,NX RP=RHO(1,1)UP=UX(I,1)PP=PRE(1,1)VP=VY(1,1)DO 2 J=2,NYM1IF(IDUM(I,J+l).EQ.O) GO TO 2 R=RHO(I,J)U=UX(I,J)P=PRE(I,J)V=VY(I,J)R1DEL=RH0(I,J)-RP U1DEL=UX(I,J)-UP P1DEL=PRE(I,J)-PP V1DEL=VY(I,J)-VP R2DEL=RHO(I,J+l)-R U2DEL=UX(I,J+l)-U P2DEL=PRE(I,J+l)-P V2DEL=VY(I,J+l)-VR=R+C1*(ABS(V2DEL)*R2DEL-ABS(V1DEL)*R1DEL)U=U+C1*(ABS(V2DEL)*U2DEL-ABS(V1DEL)*U1DEL)P=P+C1*(ABS(V2DEL)+P2DEL-ABS(V1DEL)*P1DEL)V=V+C1*(ABS(V2DEL)*V2DEL-ABS(V1DEL)*V1DEL)RP=RHO(I,J)RHO(I,J)=R UP=UX(I,J)UX(I,J)=U PP=PRE(I,J)PRE(I,J)=P VP=VY(I,J)VY (I, J) =V2 CONTINUE RETURN ENDC SUBROUTINE LABEL TO IDENTIFY THE GRID POINTSC SUBROUTINE LABELF(NX,NY,JCYL)COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101), & IDUM(101,101)DO 1 J=1,NY DO 1 1=1,NX IDUM(I,J)=lIF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4 1X1=30 1X2=24 1X3=20

1
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1X4=12
IY1=12IY2=20IY3=24IY4=30DO 2 1=1X2,NX DO 2 J=IY1,IY2 IDUM(I,J)=0IF(I.EQ.1X2) IDUM(I/J)=42 IF(J.EQ.IY1.AND.I.LE.1X1) IDUM(I,J)=4 DO 3 1=1X3,NXDO 3 J=IY2,IY3 IDUM(I,J)=0IF(I.EQ.1X3) IDUM(I,J)=43 IF(J.EQ.IY2.AND.I.LE.1X2) IDUM(I,J)=4DO 4 1=1X4,NX ‘DO 4 J=IY3,IY4 IDUM(I,J)=0IF(I.EQ.1X4) IDUM(I,J)=4 IF(J.EQ.IY3.AND.I.LE.1X3) IDUM(I,J)=4 RETURN END
SUBROUTINE LABEL TO IDENTIFY THE GRID POINTS 
SUBROUTINE LABEL(NX,NY,JCYL)COMMON/AWT/VY(101,101),X(101),Y(101),DIST(101,101), 

& IDUM(101,101)DO 1 J=1,NY DO 1 1=1,NX IDUM(I,J)=lIF(I.EQ.NX.OR.J.EQ.NY) IDUM(I,J)=4NXF=NX+1JCYLF=JCYL-1NYM1=NY-1DO 2 1=1,NXIM=NXF-IJCYLF=JCYLF +1IF(JCYLF.GT.NYM1) GO TO 11DO 2 J=JCYLF,NYM1IDUM(IM,J+l)=0IDUM(IM-1,J)=4IDUM(IM-1,J+l)=4RETURNEND
SUBROUTINE OUTPUT:OUTPUT SECTION OF THE PROGRAM
SUBROUTINE OUTPUTCOMMON//DT,GAMMA,RL,UL,P L,R,U,V,P,E,RR,UR,PR,KPHI,DELTA,KIM COMMON/OUT/TIME,NX,NY,RHO(101,101),PRE(101,101),UX(101,101) COMMON/OWT/PHI(101,101)
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COMMON/AWT/VY(101,101),X(101),Y(101J/DIST(101,101),
& IDUM(101/101)INTEGER PHI WRITE(6,20000) TIME DO 20 J=1,NY,3 JM=NY +1-JWRITE(6,20001) Y(JM),(RH0(I7JM),1=1,NX,3)WRITE(6,20002) (UX(I,JM),1=1,NX,3)WRITE(6,20002) (VY(I,JM),1=1,NX,3)WRITE(6,20003) (PRE(I,JM),1=1,NX,3)WRITE(6,20004) (PHI(I,JM),1=1,NX,3)WRITE(6,20004) (IDUM(I,JM),1=1,NX,3)20 CONTINUEWRITE(6,20005) (X(I),1=1,NX,3)WRITE(15,20000) TIME WRITE(15,30000)DO 30 J=1,NYWRITE(15,30001) Y(J),RHO(NX,J),UX(NX,J),VY(NX,J),PRE(NX,J), &PHI(NX,J)30 CONTINUERETURN20000 FORMAT(IX,' TIME = ',F11.7/)20001 FORMAT(IX,F7.3,11(F9.5,2X))20002 FORMAT(8X,11(F9.4,2X))20003 FORMAT(8X,11(F9.1,2X))20004 FORMAT(12X,11(11,10X))20005 FORMAT(8X,11(F9.3,2X))30000 FORMAT(1H ,3H X,6X,5HDENSE,8X,3HVEL,10X,4HPRES,10X,3HPHI)30001 FORMAT(1H0,F6.3,4F13.5,12)ENDCC SUBROUTINE SPLINE:FINDS THE THIRD ORDER FIT COEFFICIENTSC FOR THE TAYLOR CURVES IN SPHERICAL COORDINATESC SUBROUTINE SPLINE(X,Y,A,B,C,D)DIMENSION X(12),Y(12),H(11),RHS(10),W(10,10),A(12),B(12) DIMENSION C(12),D(12),AS(10),BS(10),CS(10),G(12)DO 2 1=1,11 J=I + 12 H(I)=X(J)-X(I)DO 3 1=1,10 J=I + 1K=I +23 RHS(I)=3.*(((Y(K)-Y(J))/H(J))-((Y(J)-Y(I))/H(I)))DO 4 1=1,10 DO 4 J=l,10 W(I,J)=0.0 DO 5 1=1,10 J=I + 1W(I,I)=2.*(H(I)+H(J))IF(J.EQ.ll) GO TO 6 W(I,J)=H(J)

4
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W(J,I)=W(I/J)AS(1)=W(1,1)BS(1)=W(1,2)CS(1)=RHS(1)BS(10)=0.0 DO 7 1=2,10 J=I + 1 K=I-1AS(I)=(W(I,K)*BS(K))-(AS(K)*W(I,I))CS(I)=(W(I,K)*CS(K))-(RHS(I)*AS(K))IF(I.EQ.10) GO TO 7 BS(I)=-AS(K)*W(I,J)CONTINUEB(10)=CS(10)/AS(10)DO 8 1=2,10J=ll-IK=J+1B(J)=(CS(J)-(BS(J)*B(K)))/AS(J)DO 9 1=1,10 J=I + 1 G(J)=B(I)G(1)=0.0 G(12)=0.0 DO 12 1=1,12 B(I)=G(I)DO 10 1=1,11 J=I + 1A(I)=(B(J)-B(I))/3./H(I)C(I)=((Y(J)-Y(I))/H(I))-((H(I)*(B(J)+(2.*B(I))))/3.)
D(I)=Y(I)RETURN
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APPENDIX E

PRESSURE TIME HISTORIES AT THE WALL OF THE 

INDIAN POINT CONTAINMENT

Pressure time histories at selected points on the wall of 

the Indian Point containment are presented in this Appendix. Wall 

pressures are normalized with respect to the initial pressure in the 

containment, P , and are shown as a function of dimensionless time 

since initiation, tCQ/r, where C0 is the speed of sound at the initial 

conditions and r is the radius of the cylinder and the dome. In the 

Indian Point Containment r equals 20.7 m and at atmospheric initial 

conditions r/C0 = 0.06 sec. Results are shown for two initiation 

points and two dimensionless heat release rates, q/RTQ = 17 and 23.
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Fiq. E.l - Wall Pressure History at the Junction of
the P.ase and the Cylinder (q/RT0 = 17;
Initiation at Base Center)
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Fig. E.2 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RT0 =17; Initiation at Base Center)
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Fig. E.3 - Wall Pressure History at Elevation 12.0 m of the
Cylinder (q/RTQ = 17; Initiation at Base Center)
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Fig. E.4 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RTQ = 17; Initiation at Base Center)
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Fig. E.5 - Wall Pressure History at Elevation 24.0 m of the
Cylinder (q/RT0 =17; Initiation at Base Center)
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Fig. E.6 - Wall Pressure History at Elevation 30.0 m of the
Cylinder (q/RTo = 17; Initiation at Base Center)
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Fig. E.7 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (q/RTQ =17; Initiation at Base Center)
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Fig. E.8 - Wall Pressure History at Elevation 42.0 m of the
Cylinder (q/RTQ = 17; Initiation at Base Center)
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Fig. E.9 - Dome Pressure History at Elevation 47.0 m and Radius 20.7 m
(q/RTQ = 17; Initiation at Base Center)
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Fig. E.10 - Dome Pressure History at Elevation 51.0 and Radius
19.4 m (q/RT0 = 17; Initation at Base Center)
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Fig. E.ll - Dome Pressure History at Elevation 56.0 and Radius
17.6 m (q/RT0 =17; Initiation at Base Center)
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Fig. E.l2 - Dome Pressure History at Elevation 61.0 and Radius
13.6 m (q/RT0 =17; Initiation at Base Center)
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Fig. E.13 - Dome Pressure History at Elevation 64.0 m and 
Radius 9.6 m (q/RT = 17; Initiation at Base 
Center) 0
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Fig. E.l4 - Dome Pressure History at Elevation 66.0 m and
Radius 9.6 m (n/RT0 = 17; Initiation at Base Center)
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Fig. E.15 - Pressure History at the Apex of the Dome
(q/RTQ * 17; Initiation at Base Center)
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Fig. E.16 - Wall Pressure History at the Junction of the Base and
the Cylinder (^/^Tq = 17; Initiation 34.5 Above Base)
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E.17 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RTQ = 17; Initiation 34.5 m Above Base)
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Fig. E.18 - Wall Pressure History at Elevation 12.0 m of the
Cylinder (Q/RT0 = 17; Initiation 34.5 Above Base)
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Fig. E.19 - Wall Pressure History at Elevation 18.0 m of the
Cylinder (q/RTQ = 17; Initiation 34.5 m Above Base)
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Fig. E.20 - Wall Pressure History at Elevation 24.0 m of the
Cylinder (a/RT0 =17; Initiation 34.5 m Above Base)
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Fig. E.21 - Wall Pressure History at Elevation 30.0 m of the
Cylinder (<l/RTo = 17; Initiation 34.5 m Above Base)
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Fig. E.22 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (q/RT^ =17; Initiation 34.5 m Above Base)



-184-

O _ 
CD

O - 
r-

O — <D

O
L''

O —
o

Q.-- !
Q- I

o - 
cn

a -
CM

o _

a -t-

A
1. 5
tCjr
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Fig. E.23 - Wall Pressure History at Elevation 42.( 
Cylinder (q/RTo = 17; Initiation 34.5 n

3.6

m of the 
Above Base)
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tC0/r

Fig. E.24 - Dome Pressure History at Elevation 47.0 m and
Radius 20.7 m (q/RT = 17; Initiation 34.5 m
Above Base) 0
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2. 2

Fig. E.25 - Dome Pressure History at Elevation 51.0 m and
Radius 19.4 m (q/RT = 17; Initiation 34.5 m
Above Base) 0
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Fig. E.26 - Dome Pressure History at Elevation 56.0 m and
Radius 17.1 m (q/RT = 17; Initiation 34.5 m
Above Base) 0
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Fig. E.27 - Dome Pressure History at Elevation 61.0 m and
Radius 13.6 m (q/RT = 17; Initiation 34.5 m
Above Base)
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2.2

Fig. E.28 - Dome Pressure History at Elevation 64.0 m and
Radius 9.6 m (q/RTn = 17; Initiation 34.5 m
Above Base) 0



-190-

CO

I

CJ —

O — 
tr*

!

o _

I

Fig. E.29 - Dome Pressure History at Elevation 66.0 and
Radius 5.6 m (q/RT = 17; Initiation 34.5 m
Above Base Center)0
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3. 3

Fig. E.30 - Pressure History at the Apex of the Dome
(q/RT0 =17; Initation 34.5 m Above Base)
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. E.31 - Wall Pressure History at the Junction of the Base
and theCyj'inder (q/RT * 23; Initiation 34.5 m
Above Base)
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. E.32 - Wall Pressure History at Elevation 6.0 m of the
Cylinder (q/RT-j = 23; Initiation 34.5 m Above Base)
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E.33 - Wall Pressure History at Elevation 12.0m of the Cylinder
(q/RT = 23; Initiation 34.5 m Above Base) 

o
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E.34 - Wall Pressure History at Elevation 18,0 m of the
Cylinder (p/RT0 = 23; Initiation 34.5 m Above Base)
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Fig. E.35 - Wall Pressure History at Elevation 24.0 m of the Cylinder
(q/RTo = 23; Initiation 34.5 m Above Base)
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E.36 - Mall Pressure History at Elevation 30.0 m of the Cylinder
(q/RT0 = 23; Initiation 34*5 m Above Base)
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Fig. E.37 - Wall Pressure History at Elevation 36.0 m of the
Cylinder (q/RTo = 23; Initiation 34.5 m Above Base)
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Fig. E.38 - Wall Pressure History at Elevation 42.0 m of the Cylinder
(q/RTo = 23; Initiation 34.5 Above Base)
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Fig. E.39 - Dome Pressure History at Elevation 47.0 m and Radius
20.7 m (q/RT0 = 23; Initiation 34.5 m Above Base)
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Fig. E.40 - Dome Pressure History at Elevation 51.0 m and
Radius 19.4 m (a/RT = 23; Initiation 34.5 m
Above Base) 0
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Fig. E.4'1 - Dome Pressure History at Elevation 56.0 m and Radius
17.6 m (q/RTo = 23; Initiation 34.5 m Above Base)



-203-

CO _ CO

N- _

CO - 
CO

LT> _ 
IT*

O
D.

Fig. E.42 - Dome Pressure History at Elevation 61.0 m and
Radius 13.6 m (q/RT = 23; Initiation 34.5 m
Above Base) 0
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Fig. E.43 - Dome Pressure History at Elevation 64.0 m and
Radius 9.6 m (q/RT = 23; Initiation 34.5 m
Above Base) 0
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l

- Dome Pressure History at Elevation 66.0 m and
Radius 5.6 m (q/RT = 23; Initiation 34.5 m
Above Base) 0
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Fig. E.45 - Pressure History at the Apex of the Dome
(q/RTo = 23; Initiation 34.5 m Above Base)
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