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MULTIVARIABLE OPTIMIZATION OF FUSION REACTOR BLANKETS

Wayne R. Meier

ABSTRACT

The neutron blanket that surrounds the plasma 1in a deuterium-
tritium fusion reactor is an essential component of the system. A
method for optimizing the design of a fusion reactor blanket as a
function of several design variables is described. The method is
applied to two inertial confinement fusion reactor concepts for
electiic power production.

The optimization problem consists of four key elements: a figure
of merit for the reactor, a technique for estimating the neutronic
performance of the blanket as a function of the design variables,
constraints on the design variables and neutronic performance, and a
method for optimizing the figure of merit subject to the constraints.

The figure of merit and constraints depend on the application and

design objectives of the particular reactor concept. In general, they
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may be functions of the design variables and of the neutronic
performance. A variational 1interpolation method 1is used to write
analytical expressions for the neutronic performance based on a
1imited number of reference point, neutron transport calculations.
This allows the figure of merit and constraints to be evaluated as a
function of the design variables. A direct search, nonlinear simplex
method 1s used to optimize the figure of merit subject to the
constraints.

The first reactor concept investigated uses a 1iquid 11thium
blanket for breeding tritium and a steel blanket to 1ncrease the
fusion energy multiplication factor. The capital cost per unit of net
electric power produced is minimized subject to constraints on the
tritium breeding ratio and radiation damage rate. The optimal design
has a 91-cm-thick 1ithium blanket denatured to 0.1% 6L1.

_The second reactor concept investigated uses a Be0 neutron
multiplier and a L1A9.02 breeding blanket. The total blanket
thickness 1s minimized subject to constraints on the tritium breeding
ratio, the total neutron leakage, and the heat generation rate in
aluminum support tendons. fhe optimal design consists of a
4.,2-cm-thick Be0 multiplier and 42-cm-thick L1A!02 breeding

blanket enriched to 34% 6L1.
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1. INTRODUCTION
1.1 THE TIH¥PORTANCE OF OPTIMAL BLANKET DESIGN

Controlled thermonuclear fusion holds the promise of one day
providing an environmentally aéceptab]e, safe, and abundant source of
energy. As national and international fusion programs progress toward
the demonstration of energy breakeven, 1ncreasﬁng attention is being
given to the future applications of fusion. Conceptual design studies
have been carried out for electric power p]ants,]'2 fusion-fission
hybrids which produce fissile fuel for fission reactors.g synthetic
fuel producers,4'5 and other appl‘icat‘ions6 of both magnetic and
inertial confinement fusion.

The majority of current fusion research 1s focused on
demonstrating the feasibility of fusing two heavy isotopes of
hydrogen, namely, deuterium (2H or D) and tritium (BH or T). The
BT fusion reaction 1s !

D+ T %e+n. (1.1)
This reaction reledses 17.6 MeV; the alpha particles carries off
3.5 MeV and the neutron kinetic energy is 14.1 HeV.7

Deuterium %s a naturally occurring isotope of hydrogen with an
abundance of 1 part in ~6500. Tritium, on the other hand, is
radioactive and B~ decays with a half-l1ife of 12.3 years.

Therefore, tritium occurs only in trace quantities in nature.

The neutron from the DT fusion reaction, however, can be used to

produce tritium via reactions with*®1lithium. The process of producing

tritium in a fusion reactor is referred to as tritium breeding.
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Natural 1ithium has two isotopes, 92.58% 7L1 and 7.42% 6L1, and
both isotopes undergo tritium breeding reactions. These reactions
ared

n+ %1 T+ YHe + 4.8 Mev, (1.2)
and

n+ 71T+ e +nt - 2.5 Mev. (1.3)
As indicated, the breeding reaction with 6L1 releases 4.6 MeV, while
the breeding reaction with 7L1 consumes 2.5 Mev.

The cross sections for these reactions are shown in Fig. 1
(Ref. 9). The 7l.1(n,n'T)a reaction only occurs with high-energy
neutrons, while the cross section for the 6L‘I(n.T)u. reaction
increases with decreasing neutron energy reaching ~1000 b for
thermal neutrons. The 7Li reaction is very tmportant since it
produces a tritium atom and a lower energy neutron that can breed more
tritium with 6L1. As a result, the fusion reactor can achieve a
tritium breeding ratio, defined as tritons bred per triton burned,
greater than one. A tritium breeding ratio greater than one is
necessary because of the luss of iritium by radioactive decay, and
because of losses in the recovery and recycling operations.

Surrounding the fusion plasma is a region u1th1n_uh1ch the neutron
kinetic energy is converted to thermal energy and tritium is bred in
1ithium. This region is referred to as the fusion reactor blanket,
neutron blanket or, simply, che blanket. The thermal energy of the
blanket 1s remeved by a primary coolant and used to generate
electricity. [In fusion-fission hybrid applications, fertile materials

(238

neutrons to breed fissile fuel.

U or 2321h) are Tocated in the blanket where they absorb
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Fig. 1. Cross sections for tritium producing reactions in 1ithium.
7L‘l breeds tritium only with high energy neutrons,
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increases with decreasing neutron energy.
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Since 80X of the energy released in DT fusion 1s carried by the
fusion neutron and since efficient tritium breeding is necessary for a
self-sufficient fuel cycle, optimal blanket design is a key element in

effective fusion reactor design.
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1.2 ESSENTIAL ELEMENTS OF THE BLANKET OPTIMIZATION PROBLEM

In the early stages of fusion reactor design, considerable
latitude exists in the composition and configuration of the blanket.
This is evident in reviewing the variety of designs presented in
Refs. 7 and 2. The problem facing the design engineer is how to
select the "best" set of blanket design parameters, i.e., tke
materials, isotopic fractions and geometric factors which define the
Rlanket. '

The state of the art in blanket engineering i1s to develop a point
design that meets the system constraints (e.g., tritium breeding ratio
greater than one) and then to 1terate around that point in an effort
to come up with a more attractive design (i.e., improve some figure of
merit for the system). These modifications are often directed by
intuition and experience, and the final design 1s not necessarily the
most attractive. The optimization problem is complicated by the
nonlinear interdependence of design and performance parameters and by
the fact that modifications often produce conflicting effects,
improving one system parameter while degrading another.

In this research, a methodology has been developed for
systematically determining the design parameters that optimize a
figure of merit for the reactor. The blanket optimization problem
consists of four essenticl elements:

1. The figure of merit for the particular reactor design,
2. A technique for estimating the neutronic performance as a function
of selected design parameters (the independent variables),

3. Constraints on both the design parameters and the neutronic
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performance, and
4. A method for optimizing the figure of merit subject to the
constraints.

1.2.1 The Fiqure of Merit.

The figure of merit will depend on the application and design
objectives of the particular reactor concept. In fact several
different figures of merit may be appropriate for a single concept
depending on one's perspective. Consider a fusion electric power
plant for example. Minimizing the cost of electricity, minimizing the
induced activation and minimizing the plant tritium inventory are each
desirable design goals. Ffusion-fission hybrids can also have
different figures of merit. Some hybrid designs seek to maximize the
energy multiplication from fast fission of the fertile material,
whereas other concepts seek to suppress fission and maximize the
fissile fuel produced per unit of thermal powef.3 In general, the
figure of merit can be a function of the design variables themselves
{composition and configuration) and the‘Peutron1c performance of the
reactor which depends on these design variables.

1.2.2 A _Technique for Estimating Neutronic Performance.

An important element in the optimization problem is the technique
for estimating the neutronic performance of the blanket as a function
of the design variables. Neutron‘c performance refers to the response
of the fusion reactor blanket to incident fusion neutrons. In
particular, the performance may be characterized by such things as the
tritium breeding ratio, the amount of energy deposited as the result
of neutron interactions, the neutron damage rate in structural

materials and/or the amount of neutron activation.
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The objective of a neutronics calculation is to determine the
neutronic performance of a reactor blanket with a specific composition
and configuration, 1.e., a specific set of design parameters.
Neutronics calculatiens for conceptual fusion reactor blankets are
carried out with either discrete-ordinate or Monte Carlo neutron
transport codes.]0

In general, optimization algerithms require the evaluation and
comparison of the figure of merit at many different points in the
search for the most attractive point. In the case of a fuston reactor
blanket, an evaluation of the neutronic performance 1s required each
time a new point (%.e., a new set of design parameters) i1s chosen for
comparison. One approach wou]d be to perform a new neutronics
calculation for each point requested by the opt1m11at1on algorithm.
While this gives a very accurate evaluation of the neutronic
performance and, hence, the figure of merit at the point, the
computing time required to perform the neutron transport calculations
quickly becomes prohibitive. (For example, a single typical Monte
Carlo caiculation takes 1-3 minutes of CRAY time. This 1s ~10 % of
daily time allocation (per machine) for the entire Inertial
Confinement Fuston Program at Livermore.)

In this research, a variational interpolation method is used to

evaluate the neutronic performance.ll'lz With this approach,

analytical expressions can be written for the neutronics performance
as a function of the design variables based on only a limited number
of reference-point, neutron transport calculations. Hence, the figure
of merit can be evaluated at any intermediate point without the need

for additionatl transport calculations.



This technique for estimating the neutronics performance as a
function of the selected design variables is discussed in Chapter 2.

1.2.3 Constraints on the Desiqn.

Constraints 1imit the acceptable range from which blanket design
variabies can be chosen in the attempt to optimize the figure of
merit. Constraints can be imposed on design variables, neutronic
performance, and factors which depend on the design variables and/or
the neutronic performance. An example of the first type of constraint
might be a 1imit on the blanket thickness. Requiring a tritium
breeding ratio greater than 1.05 is an example of the second type. A
Timit on the altowable capital cost of the fusion reactor is an
Allustration of the third type of constraint.

Clearly the constraints 1mpﬁsed in any optimization p-oblem will
be specific to the system being considered. Just as there may be
several interesting and appropriate figures of merit, so there may be
several different constraints for the same system. That 1s, 1t may be
desirable to optimize the blanket under the imposition of different
constraints and compare the results.

The manner in which constraints are handled in the optimization
problem is discussed in Chapter 3.

1.2.4 An Optimization Method.

There 15 a wide variety of potential methods of optimizing a

13 One of the primary considerations in selecting

figure of merit.
an appropriate method for the blanket optimization problem 15 the
nonlinearity of the system. The neutronics performance, constraints
and figure of merit can all be nonlinear functions of the design

variables. Another important consideration is that the form of the
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figure of merit may vary from one problem to another. for this reason
a general purpose method is desirable, that is, one which is not
dependent on the mathematical characteristics of the figure of merit.

The nonlinear simplex method of Nelder and Mead]4 was chosen for the

blanket optimization problem. According to Halsh,]3 this 1s one of
the most efficlent direct search methods available and works
particularly well for up to five or six variables. 7he nonlinear

simplex method 1s described in Chapter 3.
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1.3 PREVIOUS FUSION REACTOR OPTIMIZATION STUDIES

Two basic types of fuslon reactor optimization studies nave been
carried out in the past. In the first type, a react.r figure of merit
is optimized as a functicn of the plasma performance, size of the
fusion chamber, and/or other plant parameters assuming that the
blanket neutronic performance is fixed. In the second type, a
neutronic parameter or a reactor figure of merit is optimized as a
function of one or more blanket design variables assuming that the
plasma performance 1is fixed; Clearly the subject of this research is
of the seccad type in_that variations in neutronic performance as a
function of the blanket design are included in evaluating the figure
of merit.

References 15-20 are examples of the first type of optimization
study. In each.case the blanket neutronic perfermance was fixed or
had simple scaling relationships with the parameters being
investigated (1.e., in Ref. 18 the fissile-fuel production rate is
proportional to the fusion power). In some cases a 1imited number of
different blanket designs are compared, but the neutronic performance
of each design is fixed.

In most of the optimization studies of the second type, a new
neutron transport calculation is carried out each time the blanket
composition and/or configuration is changed in attempting to optimize
the chosen figure of merit. Gerstl's blanket and shield optimizztion
was accomplished by this procedure.21 Abdou investigated options
and trade-offs in the nuclear design of the blanket/shield of a

Tokamak Experimental Power reactor by comparing the neutronic results
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of many di‘ferent cases.22 His objective was to minimize the
blanket/shield thickness subject to constraints on radiation damage
and heating rates in the magnets. The authors of Ref. 23 sought to
minimize the peak-to-average fissile fuel production rate across a
fuel assembly in the blanket of a fusion-fission hybrid reactor. They
did so by comparing this figure of merit for 13 soparate cases. In
Ref. 24, the cost of electricity from an EBT power plant was evaluated
as a function of several blanket design variables. Separate
neutronics calculations were carried out for each modification from
the baseline case. As ore design variable was changed all others were
held fixed. Thus, the results show the dependence of the cost of
electricity on each variable independently and not as a function of »
several variables simultaneously. Gohar and Abdou carried out an
extensive series of neutronics calculations to define and optimize the
neutronic performance of the different solid breeder options for the
STARFIRE blanket des‘lgn.25 The authors included contour plots of
the tritium breeding ratio and heating rates as a functlon of two
variables but did not specify their method. Perkins and Kulcinski
reported on the economic optimization of the blanket for the Mirror
Advanced Reactor.26 Their procedure required a neutronics
calculation for each iteration in the blanket design.

Some attempts hiave been made to reduce the number of neutronics
calculations required or io automate the iterative process. In their
optimization of a magnet shield, Abdou and Maynard used attenuation
coeffictents to estimate the heating and neutron damage rates in the
magnets for various shield des'i,gns.27 The authors of Ref. 2B

studied the optimization of a Tokamak reactor. They estimated nuclear
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reaction rates and hé3t1ng rates by an analytical expression involving
a leading coefficient plus a sum of equnent1al terms related to the
thickness of various blanket zones. According to their report, only a
Timited number of neutron transpoft calculations were required to
determine the coefficients of their expression. Engle and Mynatt
automated their shield optimization problem by incorporating the
transport calculations in the optimization process.29 Each boundary
is varied tQ1ce, and a separate neutronics calculation carried out at
each pbs1(10n. from these results, the dose-weight derivatives are
determined and used to modify the shield configuration in an effort to
optimize the design.

Schwartz proposed a method to optimize an economic figure of merit

3 Starting from a reference point,

for a fusion-fisslon hybrid.
each design variable was changed while holding the others fixed.
Neutronics calculations were carried out at each point and the partial
derivatives approximated by the finite differences. The economic
figure of merit was then expressed in terms of the first order Taylor
series expansions. A gradient projection algorithm was used to
optimize the design.

Greenspan has developed a method for optimizing a neutronic
characteristic of the blanket by varying the distribution of materials

3,32 It can also be used to minimize a blanket

within the blanket.
characteristic such as total cost, weight or volume. His method is
based on a variational technique which uses both forward and ad}oint
flux calculations. Each iteration requires two transport
calculations, one forward and one adjoint, and determines a new

material distribution which improves the neutronic characteristic of
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interest. The method can optimize a single characteristic subject to
a single constraint. It is not applicable to problems involving the
optimization of broader system parameters such as the cost of
electricity.

In this research, a variational interpolation method s used to
estimate the neutronic perforimance as a function of more than one
variable simultaneously. The method provides analytical expressions
fqr the neutronic characteristics as a function of the blanket design
variables based on a limited number of neutron transport

calculatioﬁs. This 1s the subject of Chapter 2.
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1.4 ORGANIZATION OF THE THESIS

The remainder of this thesis is divided into five chapters. The
variational interpolation method, and how it is used to make
muttivariable estimates of the neutronic performance, is described in
Chepter 2. The nonlinear simplex optimization method which 1s used te
locate the optimal design point 1s discussed in Chapter 3. The
techniques developed in Chapters 2 and 3 ave applied in Chapters 4
and 5. In Chapter 4, the design of an Inertial Confinement Fusion
(ICF) reactor with a Tiquid Tithium breeding blanket is optimized.
The second optimization problem, discussed in Chapter 5, 15 also for
an ICF reactor. In this case, however, the blanket contains a solid
1ithium compound for tritium breeding. Conclusions and suggestions

for future work are given in Chapter 6.
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2. ESTIMATING NEUTRONIC PERFORMANCE

In this chapter the technique used to estimate the neutronic
performance as a function of the design variables is described. The
heart of the technique is the variational interpolation method
described by Cheng and Conn.”’12 Variational interpolation is a
particular application of a broader category of variational methods.
Background information and related applications are discussed in

Refs. 33-38 and references cited In these papers.
2.1 VARIATIONAL ESTIMATES OF LINEAR FUNCTIONALS

In the study of the neutronics of fusion reactor blankets, one is
primarily interested in integral properties which can be written as
linear functionals of the neutron flux. Examples tnclude tritium
production, nuclear heating, displacement damage, He and H production,
and neutron activation rates. Conslder for example a reactien
rate, R. The reaction rate can be expressed as the inner product of
the macroscopic reaction cross section and the neutron flux

d1str1but10n.37

R = <I,¢>. (2.1)

The inner product notation < > indicates a sum over all discrete
Independent variables (e.g., various regions of the blanket) and an

integral over all continuous independent variables (e.g., space,
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energy, and direction).
The neutron flux, ¢, is the solution to the time independent

Bottzmann transport equat‘lon,39

te = S, (2.2)
where
L = Transport operator such that

L = Q-9 + 2T¢ -ff):rf.t dR*dE"’,

Q' £

¢ = ¢(r,4,E) the angular flux distribution at position r,

direction 2 and energy E,

ZT = ZT(L,E) the total macroscopic cross section,

f = f(r,2' »Q,E" »E) s the transfer probability function
such that IT(L.E')f is the transfer kernal for neutron
transfer from ', E' to Q, E, and

S = S(r,Q,E) ts the external or independent neutron source.

Ltet x be a variable that characterizes the blanket. The reaction
rate, R(x), can be estimated using the flux, ¢a' calculated for some

reference system, x = L in several ways. If we define

8, =9 -9, (2.3)
then
R(x) = <E,¢> = <t'¢a> * <E-5¢a>'- (2.4)
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The estimate,
R(x) = <L,4.>, (2.5)

is therefore in error to first order in 6¢a.

A variational estimate of R yleids a result accurate to second

37 *
order in 6¢a and 6¢a, where

S, =0 -0, {2.6)

The adjcint flux, ¢*. s the solutlon to

Le¢ =S, (2.7)
where the adjotint operator, L*, 1s defined by39
* * K
< ,Le> = <t ¢ ,0>. (2.8)

Consider for examptle the Roussopoulos functional defined by:7’]0

* * *
RR(¢a'¢a;x) = <§ (x)r¢a> + <¢ats(x)"l-(x)¢a>~ (2-9)

In order to give this physical significance, let S* = ¥ so that

the adjoint flux can be related tc the reaction rate by

* * *
<L ¢ ,0> = <S ,¢> = <I,¢> = R. {2.10)



Using Eqs. 2.3, 2.6, and 2.10 in Eq. 2.9 gives

* *
RR = <2,¢-5¢a> + <¢ -6¢a, S—L(¢-6¢a)>. (2.1}

Expanding gives
* *
RR = <L, ¢> - <z,s¢a> + <¢ -6¢a. S-L¢+L6¢a>. (2.12)

Noting ‘rom Eq. 2.2 that S-L¢ = 0, Eq. 2.12 becomes

& *
Ry = <L¢> - <L,80,> + <b ,L8¢,> - <do,.Lée,>. (2.13)

Note that using Eqs. 2.8 and 2.7 along with the fact that S* = £,

the third term can be written as
* *x Kk
<¢ .L6¢a> = <L ¢ ,6¢a> = <£.6¢a>. (2.14)

Hence the second and third terms of Eq. 2.13 cancel, and we are left
with
R <L, ¢> - < *
R = 9> - 6¢a"—6¢a>~ (2.15)
This demonstrates that the variational estimate, Eq. 2.9, provides a
*
result accurate to second order in 6¢a and s¢a as previously stated.

The variational interpolation method of estimating R s derived

from the Schwinger (fractional) funct‘lona'!,2
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Rg(0,0,3%) = <byaSOXI><E(x),0,/<0;,L{X)b,>. (2.16)

The Schwinger functional is derived from the Roussopoulos functional

*
as follows. First, two scale factors are defined for by and by

respect1ve1y,37
LI *
c = <£.¢a>/<¢a.L¢a>. (2.17)
and '
_ *
C= <¢a.S>/<¢a,L¢a>. (2.18)

The Roussopoulos functional, Eq. 2.9, for C*¢; and C¢a becomes

* * ok N ok C>
RR(C 0,.Co,5%) = <E(x),Co,> +.<C ¢,,8(x)> - <C ¢,,L(x)Co,>.  (2.19)
Substituting Egs. 2.17 and 2.18 gives

* Ll * *
Rp = <I,0,><0,,5>/<p.,L0,> + <b,,5><E,8,>/<0,,L6,>

- <0, 0L0,><E,8,><0,,5/<0, Lo, ><0, Lo, >. (2.20)

Cancelling a <¢;.L¢a> term in the numerator and denominator of the
third term of Eq. 2.20 reveals thai the third term is just the

negative of the first term. Hence Eq. 2.20 reduces to

k] k]
RR = <¢a,s><£.¢a>/<¢a,L¢a>, (2.21)
which is Eq. 2.16. That is,
L] *
Ro(d .9 3x) = Ro(C &, .0,:0x). (2.22)



2.2 TWO POINT VARIATUONAL INTERPOLATION FOR FUSION REACTORS

2.2.1 Two Point Variational Interpolation In Terms of forward fluxes.

In this section, the two point vartational interpolation formula
is discussed, and an expression in terms of the forward fluxes at
X = X, and x = Xy is derived. The advantages of this formulation
have been pointed cut by Cheng.]] In particular since only forward
fluxes are involved (¢a and ¢b) no adjoint calculations are
required. Calculating ¢a and °b allows one to interpolate in
x on the functional <I(x),¢> for any I{x). That 1s, estimates
of several different reaction rates, damage rates, etc., can be made
based on the results of two tramsport calculations. This is in
contrast to £q. 2.23 (below) where an adjoint calculation is required
for each I(x) (1.e., S*) of interest as indicated by Eq. 2.7.

The interpolation form of Eq. 2.16 uses the forward flux
calculated at x = x_ and the adjoint flux calculated at a different

a
reference peint, x = x;. It is given by,]] -

* * *
Rgp (0 bgix) = <8y, S(X)><E(X),4,>/<dy, L(X)by>- (2.23)

for a fusion reactor blanket the external neutron source is fixed
In most cases of interest (1.e., a fixed fusion power level).

Therefore,

Lix )¢, = L(x,)¢, = § = constant. (2.28)
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If the perturbation is linear in x, then L(x) can be written as

L(x) = L(xa) + 8L(x),
where °

SL{x) = [(x-xa)/(xb-xa)][L(xb) - L(xa)].

(2.25)

By substituting £q. 2.25 into £q 2.23 and using Eqs. 2.8 and 2.24, the

variational interpolation formula can be written in terms of forward

fluxes only. Consider the first term in the numerator of Eq.

Using Eq. 2.24 1t can be written as
* *
<¢b,S(x)> = <¢b,L(xb)¢b>.
Then using £q. 2.8,
* * *
<°b»S(x)> = <L (xb)¢b'¢b>'
* k *
Using the fact that L ¢ =S = I, gives

*
<0y S(X)> = <E(x,), 8>

2.23.

(2.26)

(2.27)

(2.28)

Next consider the denominator of Eq. 2.23. first substitute

£q. 2.25,

<opi(x)6,> = <bp,[Ly + [(xxy)/(xp-xy) 1(Ly-L ) To >

(2.29)
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1

where the notation La = L(xa) and Lh L(xb) has been used.

Expanding the right hand side of £q. 2.29 gives

* * *
<¢blLa¢a> + [(x'xa)/(xb'xa)][<¢D'Lb¢a> - <¢b'La¢a>]- (2.30)

Using €qs. 2.24 and 2.8 this becomes

* K . * X L
<Lb¢b9¢b> + [(x'xa)/(xb'xa’][<Lb°b'¢a> = <Lb¢b'¢b>]' (2'31)
or

<D(xy),bp> ¢ [{x-x )/ (% -% PI<E(xp),8,> - <E{x),0p>]. {2.32)

Substituting Eqs. 2.28 and 2.32 into Eq. 2.23 gives an interpolation

formula in terms of the forward fluxes oa and ob,

RSI(¢b'¢a;x) = <E(x)t?a><zb'¢b>/0v {2.33)
where

D = <Ep,¢p> ¢ [{x-%)/(xp-x ) I[<T 0> - <B4 >].

Here the notation Z(xa) = Ea and E(xb) = Zb has been used.

Note that at x = L RSI = <Za,¢a>, and at x = L

RS[ = <£b,¢b>. Hence, Eq. 2.33 provides the exact

solution at the two reference points and an estimate for other values
of x. (fxact means the same result as from the transport
calculation.) It has been shown that for Xa <x < Xy variational
interpolation relies on cancellation of error.]] That 1s, as x

approaches L from Xa 6¢a is growing while 6¢b is tending
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to zero. For values of x that do not 1ie between L and x both
6¢a and &¢b increase as the distance from the reference point
increases. Therefore, great accuracy is not expected in using
Eq. 2.33 to extrapolate.

The magnitude of the error will depend both on the proximity of
the reference points and on the sensitivity of the reaction rate to
the design variable. In general, the farther apart X5 and X, are,
the greater the error in the estimated value of R at intermediate
values of x will be. Also, If R is very sensitive to x, the error
will be larger than if R 1s a weak function of x. To determine what
the error actually is requires a transport calculation at the
intermediate point of interest.

2.2.2 Vvariational Interpolation for Variations in Blanket Composition.

0f particular interest in the study of fusion reactor blankets, fis
how reaction rates change as the isotopic composition of the blanket
(or a region cof the blanket) 1s changed. For reactlons with

isotope-j, the macroscopic cross-section is

Iy = Nyoy = fypNgoy/H, (2.34)
where
fj = atom fraction of isotope-} in the blanket material,
NJ = number density of isotope-},
aJ = microscopic reaction cress section with isotope-),
p = material density,
N0 = Avagadro's number, and

effective atomic weight of the materlal,

=
L]
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To investigate the effects of varying the fraction of isotope-j in
the blanket, x 1s set equal to f; hence, the macroscopic
cross-sectlons for reactions with isotope-j are proportional to x. As

a result, varying x gives a linear perturbation in L and Eq. 2.33 can

thus be applied.
In this case, Eq. 2.33 can be simplified by noting that

I(x) = xia/xa. (2.35)
Substituting gives

RSI(¢b'¢a;x) = (x/xa)<xa'l¢a><’xbt¢b>/nn (2.36)
where

D = <E,4p> ¢ [(x-x)/(x -x NI[{x /% )<L .4 > - <, >].
In terms of the reactlon rates obtained from the transport

calculations at the two reference points, i.e.,

R, = <xa'¢a>r .
and (2.37)

Rb = <zb)¢b>)
Eq. 2.36 becomes
RSI(Ra,Rb;x) = (x/xa)RaRb/D, (2.38)

where

0= Rb + [(x-xa)/(xb-xa)][(xb/xa)Ra - Rb].
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Equation 2.38 is exact at x = X, and x = x, and gives a nonlinear
interpolation for intermediate values of x. That is, RSI = Ra at
X = Xq and RSI = Rb at x = L Also note that since EZ(x) 1s
proportional to x, R = 0 at x = 0, and in this case Eq. 2.38 1s also

exact at x ='0.

To 11lustrate the nature of Eq. 2.38, two cases are shown in

Fig. 2.1; the lower curve has reference values R(0.2) = 0.5 and

t

R(0.6) = 3.0 while the upper curve is for R(0.2) = 2.0 and

R(0.6) = 3.0. The units are arbitrary.

2.2.3 Singularities of the Two Point Interpolation Formula.

Equation 2.38 has a singuiarity when D = 0. Setting D = 0 and

sclving for the location of the singularity, e gives

Xg = X3 - (xb-xa)Rb/[(xb/xa)Ra - Rb]. (2.39)
This is of concern only if X, 2 0 (since negative atom fractions are
meaningless} which occurs 1f Ra > Rb' assuming a < b. For Ra < Rb’

Eq. 2.38 is well behaved and gives a nonlinear estimate of R{x) which is
monotonically increasing with x. If the reference point calculations give

Ra > Rb. then Eq, 2,38 is inadeguate. In this case a 3-point variational

interpolation formulation may be useful. The 3-point interpoiation formula is
developed later in this chapter.

In the case where the biziket is composed of oniy two isotopes the atom

fraction of each is related to x by
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3.0

25}
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0 0.1 02 0.3 0.4 0.% 0.6

Fig. 2.1 Illustrative examples of two point variational interpolation
when I(x} is proportional to x {£g. 2.38}. The reference
points for the lower curve are R{0.2) = 0.5 and
R{0.6) = 3.0. The upper curve has reference points

R{0.2) = 2.0 and R{0.6) = 3.0.

n
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X,
and (2.40)

—
n

1 - x.

[\
1l

Then for isotope-2, Eq. 2.35 becomes
£(x) = (1-x)£a/(l-xa), (2.41)
and Eq. 2.38 hecomes

Ropa{Ry Ryix) = (1—x)RaRb/[(1-xa)D], (2.42)
where

D= Rb + [(x-xa)/(xb-xa)][(l-xb)Ra/(l-xa).; Rb].
Note that Ra and Rb are the reactton rates with isotope-2 derived
from the reference point calculations at x = X and x = L
respectively. For isotope-2, Eq. 2.42 is exact at x = Xas X = X and
also at x = 1. It is not exact at x = 0.

To summarize, in the case of blanket composed of only two isotopes
where the design variable of interest is the atom fraction of the
first isotope, the twe point variational interpolation formula gives
exact values for reaction rates with isotope-1 at x = 0, Xy and Xps
X

and gives exact values for reactlon rates with isotope-2 at x = x b

a!
and 1.

If the atom fraction of an 1sotope 1s unaffected by the variation

of x, then o -

I(x) = Ea = Eb = c0ﬁstant. (2.43)
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In this case Eq. 2.33 becomes

RSIC(Ra.Rb;x) = RaRb/D' (2.44)
where

b= Rb + [(x-xa)/(xb-xa)][Ra - Rb].

One example where this holds is in a blanket containing 3 or more
isotopes with one or more specified as constant. In particular,

3 isotopes could be specified as f] = X, f2 =1-C-x, énd

f3 = C = constant. Another example where Ed. 2.44 holds is in
regions of the blankzt other than the regioen where x 1is yér1ed. In

these cases, the variational estimate reflects the chgﬁbe in the flux

due to a change in x.

Generalizing Eqs. 2.38, 2.42, and 2.44, the two point variational

interpolation formula becomes
RSI(Ra,Rb;x) = (z(x)/za)RaRb/D,' (2.45)
where

D =Ry + [(x-xa)/(xu-xa)][(Zb/Ia)Ra - Ryl.

2.2.4 Multivariable Estimates Using Two Point Variational Interpolation.

The previous section shows how variational interpslation can be
used to estimate neutronic characteristics as a function of a single
design variable. In practice 1t is desirable to evaluate tne effects
of variations in several design variables simultaneously. By
successive application of the variatioﬁa] interpolation procedure

discussed In the previous section, one can estimate the neutronic
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characteristics of interest at any point in an n-dimensional space,
based on a 1imited number of reference point transport calculations.
Consider the problem of estimating reaction rates as a function of

two design variables x, -and x,. To do this using the variational

interpolation scheme requires four reference point tramsport
calculations. These four points are most conveniently chosen to
define a rectangle in Cartesian coordinates as shown in Fig. 2.2. The
reference points are denoted (xla’x2a)' (xlb’XZa)' (x]a,xzb) and

(x The corresponding reaction rates at these four points are

1br%2p!
denoted Raa' Rba' Rab and Rbb' respeciively.
The procedure used to estimate the reaction rate at some point

{x Zd, ¥s ¥llustrated Yn Fig. 2.3. First, the result Rda is found

0%
by interpolating on X with Xy = Xou- Next, the result Rdb is found

by interpolating on X4 with Xp = Xoyo The two results are then used

to interpolate on Xy with Xp = Xge to find the result Rdd' As such,
3 interpolations are required to estimate the reaction rate.

In terms of the previous expressions for Schwinger Interpolation,

the successive interpolation approach can be written as

Rss1{Raa RbarRan’ Roni*1%2)

" RorRsp(Rag Rpgixy)e Rop(RapeRppi®y1ixy) (2.48)

{Clearly one could just as eastiy interpolate on x2 first and then
on x]).
To extend the approach to a third variable, Xq. requires four

additional reference point transport calculations. Assumy;g the first
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Xan a. ° bb

X2

aa a

a X1b
Xq

Fig. 2.2 Llocation of four reference points for two point
interpolation on two va;\ables. Neutron transport
calculations are carried out at these four points. The
resulting reaction rates are denoted by R with two
subscripts corresponding to the X and Xy coordinates,

respectively.
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R
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_ Rab Rpp
b t— . VI - —e
¥
Xag — ® Ry
X2
Xza — *— 2 -
Raa Rda Rha
| ] |
*1a X1d X1p
Xq

Fig. 2.3 Successive two point variational interpolation. To find the
reaction rate at the point (xld’XZd) requires three
interpolations; one to find Rda' a second to find Rdb' and a

third to find Rdd'
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four are in the plane Xg = Xg.» the four additional points would be 1n

the plane Xy = Xgp. Applying Eg. 2.46 in the plane Xy = Xg, gives the

result Rdda‘ A second application of Eg. 2.46 with x3 = Xqy qives
Rddb' These are then used to interpolate on Xq to give the desired
result Rddd' In this case a total of 7 interpolations are required.

Generalizing, in order to span n-space with this technique requires

on reference point transport calculations and (2"-1) successive

interpolations for each reactton of interest at each point of interest.
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2.3 THREE POINT VARIATIONAL INTERPOLATION FOR FUSION REACTORS

The three point variational interpolation formula based on the Schwinger

functional s given by.]]

*
RS[3(¢3'¢D'¢C;X) = <z(x)v¢a> ,
*
b <o SIX)-LX00><E(X) b0/ <bnsL(X) (B -0,)>  (2.47)

where S"(x) has been set equal to I(x). The subscripts a, b and ¢

refer to conditions at x = xa, X = xb and x = xc, respectively,

wher < < .
ere Xy <X X,

b
2.3.1 Three Point Variational Interpolation In Terms of Forward Fluxes.

for a fixed external source and 1inear perturbations, a formula in

terms of forward fluxes only can he derived. For a fixed external

source,

Lo

a®s = Lb°b = Lc¢c = § = constant. (2.48)

If the perturbaiion is linear in x, then L{x) can be written as

Lix) =L+ d (L-L.}, (2.49)
where

kca = (x-xa)/(xc-xa),
or as,

L) = Ly o A (L -L), ' (2.50)
where

kcb = (x-xb)/(xc-xb).
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Consider the term,
Y s(x)-L{x)e.> 2.51
<4, S(x)-L{x)e, (2.51)

in the numerator of the second term in Eq. 2.47. Substituting

Eqs. 2.48 and 2.49 and expanding gives
* * * > 252
Bl ®> - <balyd> - A<l (L oL )e,>. (2.52)
Noting that the first two terms of (2.52) cancel, we are left with,
* *
- Aeal<Ogil 9y> - <0p,L,0.]. (2.53)
Using Eqs. 2.8 and 2.48 this can be rewritten as,
.i* *
- Aeal<lebo > - <oo,L 621 (2.54)
Using Eq. 2.8 again gives,
- - &
Kca[<zc'¢a> <Ec.¢c>]. (2.55)

*
Hence, ¥ has been eliminated from this term.

Next, consider the denominator of the second term in Eq. 2.47,

*
<peab{xHdy-4,)>. (2.56)
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Expanding gives,
* *
<o Lx)h> - <o ,L(x)o,>. (2.57)
Using Eq. 2.50, the first term of (2.57) becomes,
* *
<o olpdp> ¢ Ap<bes (Lo-Lp ). (2.58)
Using Egs. 2.8 and 2.48 gives,
L] * % *
<¢C'LC¢C> + kcb[<LC¢C'¢b> = <¢C‘LC¢C>]' (2~59)
and then
<Ead> # A p[<E o> - <02 {2.60)
Similarly the second term of (2.57) reduces to

-<E 4> - Ao a[<Ecr0y> - <L .b.>]. (2.61)

Using Egs. 2.49, 2.50, 2.55, 2.60, and 2.61, Eq. 2.47 can be

written as

R513(¢a-¢br¢c;x’ = <£(x)-¢a> (2.62)
- Lex /% =XV II<E 0> - <L, >1<E(X),0,-0,>/D,
where
0= [(x-xp )/ (x X JI[<E &> - <E .6 >]

- [(x'xa)/(xc'xa)][<zco¢a> = <EC'¢C>]'
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In terms of the reaction rates at the reference points

R, = <£a'¢a>'

R, = <£b,¢b>, and {2.63)

-]
[

<£c '¢c> t ]
£q. 2.62 becomes,

Ropg(Ry Ry REX) = (E(N/ZE IR, {2.64)

- [(x-xa)/(xc-xa)][(Ec/Ea)Ra-RC][(E(x)/Eb)Rb - (E(x)/ia)Ra]/D,
where o
D= [(x-xb)/(xc-xb)][(XC/XD)RD-RCJ
- [(x-xa)/(xc-xa)][(Ec/EajRa-Rc].

Note that Eq. 2.64 1s exact at x = Xgr Xp and X, gtving the results Ra’

Rb and Rc' respectively.

2.3.2 Singularities of the Three Point Interpolation Formula.

This three point interpolation formula has singularities when the

denominator of Eq. 2.64 equals zero. This occurs when

(2.65)
[(x—xb)/(xc-xb)][(Iclib)Rb—Rc] = [(x—xa)/(xc—xa)][(EC/Za)Ra~R£].

The value of x at which Eq. 2.65 holds is,

X = {xb[(EC/Ib)Rb-Rc]/(xc--xb) - xa[(Zc/Ea)Ra-Rc]/(xc—xa))/D. (2.66)

where
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D = [(E/Tp IR, -R.1/(x-xp) = [{E./E,)R -R.1/(x ~X,).

For the case where I{x) %s proportioral to x, i.e., zc/za = xc/xa and

Zc/Zb = xb/xa, Eq. 2.66 reduces to

', = {(xcRb—xbRc)/(xc-xb) - (xcRa-xaRc)/(xc—xa)]/D, (2.67)
where

0= (xcRb-xbRc)/[(xc-xb)xb] - (xcRa'xaRc)/[(xc'xa)xa]:

In using the three point interpolation one must check to see if the

singularity 1les .n the range of interest. Consider a specific

exampie where

0.2,

R. = 2.0 at X
and

R = 3.0 at L 0.6.

Figure 2.4 shows the location of the singularity, Xg» 35 2 function
of the reactlion rate, Rb, at Xy = 0.4. If Rb < 2.5, there is a
singularity between 0 and ¢ °~  If Rb > 4.0, there is a ;1ngu1ar1ty
at a point less than 0,60. Hence, £q. 2.63 can be used to interpolate
between 0.2 and 0.6 and extrapolate down to x = 0 only if
2.5 <R < 4.0.

The envelope of the famlly of curves which the three point
interpolation can fit through the points R(0.2) = 2.0 and R(0.6) = 3.0
is shown in Flg. 2.5. Note that, unlike the two polint internolation,

the three point interpolation can generate a curve which goes through
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0.6 T T T T

0.5 |

04

|

Fig. 2.4 Location of singularity for three point interpolation versus

R, for a curve with negative second derivatives. The

b
reference point results are Ra(0.2) = 2.0 and

RC(O.S) = 3.0. If the result Rb at Xy = 0.4 is not between
2.5 and 4.0, the location of the singularity, X will lie

in the range of interest, 0 < x < 0.6.
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0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2.9 Envelope of family of curves with three point Interpolation
for R(0.2) = 2.0 and R(0.6) = 3.0. Compare to the upper

curve in Fig. 2.1 obtained with two point interpolation.
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a maximum. Figure 2.5 should be compared to the upper curve in

Fig. 2.1.
Figures 2.4 and 2.5 11lustrate the nature of the three point

interpolation for Ra/xa > Rc/xc, j.e., curves which are concave down.

Now consider the opposite casc where Ra/xa < Rc/xc. Let

=
"

0.5 at Xy = 0.2,
and

R =3.0 at X, = 0.6.

Figure 2.6 shows the location of the singularity as a function of
Rb’ where Xp = 0.4 as before. In this case Rb is limited to
values between 1.0 and 1.75 in order to avoid singularity in the range
0 < x < 0.6. ]

Figure 2.7 shows the envelope of the family of curves obtained for
1.0 < Rb < 1.75. Here we see another limitation of the three point
interpolation. If the formula is used to extrapolate between 0.2
and 0, negative reaction rates are predicted. Obviously this is
meaningless. In order to assure that R > 0 in the extrapolated
region, the derivative of Eq. 2.64 as x approaches zero must be > 0.
The derivative of Eq. 2.64 for the case of X{x) = x):a/xa = x}:b/xb and
the 1imit as x approaches zero is given in Appendix I. For this
specific example (V.e., R(0.2) = 0.5 and R(0.6) = 3.0) the condition
Rb < 1.6 is required to prevent negative values of R near x = 0. The

revised envelope of possible curves is shown in Fig. 2.8. See the

lower curve of Fig. 2.1 for comparison.
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05 b

04l ) |

0.2 -

0.1

fFig, 2.6 Location of singularity for three peint interpolation versus

Rb for a curve with positive second derivatives. The

reference point results are Ra(O.Z) = 0.5 and Rc(o.ﬁ) = 3.0.
If the result Rb at Xy = 0.4 1s not between 1.0 and 1.75,
the location of the singularity, Xpo will 11e in the range

of interest.
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3.0

25+

fig. 2.7 Envelope of family curves with three point interpolation
R(0.2) = 0.5 and R(0.6) = 3.0

for
In som? cases, negative
values of R are predicated as x approaches zero.
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0.1 0.2 0.3 04 0.5 0.6

Fig. 2.8 Revised envelope of fam)ly of curves. Excluding the curves

which give negative values of R changes the envelope shpwn
in Fig. 2.7 to the envelope shown here. Compare to the '
Tower curve in F1g. 2.1 obtained with two point

interpolation.
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2.3.3 Multivariable Estimates Using Three Point Variational

Interpolation.
As with two point interpolation, by successive application of

three point variational interpolation, neutron1é characteristics can
be estimated as a function of more than one variable.

Consider the problem of estimating a reaction rate as a function
of two variables X and Xy- Three point interpolation on both
variables requires a grid of 9 reference point neutronics calculations
as shown in Fig. 2.9. The reference points are denoted

(x]a'xza)l (xlbtxza)v (x]clxza)t (x]aIXZb)t (x]thZb)r (x]cvxzb)r

(xla'x2c)' (xlb'x2c)' and (x]c,xzc). The corresponding reaction rates

at the reference points are denoted Raa' Rba' Rca' Rab' Rbb' Rcb’

R R, , and Rcc. respectively.

ac’ “bc

The procedure to estimate R at some point (x]d,de) is
11lustrated in Fig. 2.10., First, the result Rda is found by
interpolating on L with Xg = Xga. Next, the result Rdb is
found by interpolating on X with Xy = Xouo Thirdly, Rdc s
found by interpolating on X with Xy = Xooo These three results

are used to interpolate on X, with X, = Xpq-

In terms of the three point variational interpolation formula,

Eq. 2.64, the successive three point interpolation can be written as

Rera3(RaarRpae Rop s ReprR

Rca’RaB' bb*"cb’ ac'Rbc'Rcc;x1'x2) (2.68)

= Ror3(Rora(RaasRya Reai % JaR g Rap  Ryp Ropixg ),
RoratRac Rpc Recixy)ixa)
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A

K2c Hac. Rbc. HocQ

X3p Rave Rppe Rae
X2

X2a - Raae Ry.e Ree

] | 1
X1a X1p LI

X

Fig. 2.9 Location of nine reference points for three point

interpalation on two varlables. Neutron transport

calculations are carried out at these nine points. The

resulting reaction rates are denoted by R with two

subscripts corresponding to the X and Xg coordinates,

respectively.
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A
Rdc
X b~ ® * @t .
Rap
X2b |- . ® - — *
X2
y
Xaq = Rad
Rda
X2 [~
| | | L
X1a X Xqd X1e

Fig. 2.10 Successive three point varlational interpolation. To find
the reaction rate at the point (x4, Xp4) requires four
interpolations; one to find Rda' a second to find Rdb’ a

third to find Rdc' and a fourth to find Rdd'
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To extent the three point interpolation io a third variable, Xy»
would require 18 more reference transport calculations, and as such
gets quite cumbersome. We can, however, combine successive two point
and three point interpolations. Ffor two variables, a three point
interpolation could be used for one dimension and a two point
interpolation for the second. That is,

R _,R (2.69)

Rs132(RaarRharReaRap Ryp Repi*17%2)
= Ro1a(Rs1a(Raa RparReaiXy)s RopglRypsRppsRopixydix,).

This requires 6 reference point transport calculations as indicated.
To extend to a third dimension using another two point interpolation

requires 6 more transport calculations.
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2.4 PROPAGATION OF ERROR

Consider Eq. 2.46 which is the formula for successive, two point

interpolation to determine a reaction rate as a function of two
variables, X and xz.

(2.46)

R...R

Rss1(RaaRharRap s Rppixi+%p)

= R (Rg{RaarRpai*y)e Rop(RypsRypixg)ixy)

Note that the "reference values" for interpolation on X, are

actually estimates based on the previous interpolations on X{.

Refer to Fig. 2.3. The question arises, “How does using these
estimates as the basis for interpolation on Xy affect the accuracy

of the result?" Let us compare the result at Xp = X4 and X5 = Xy
obtained by two methods. The first is by using Eq. 2.46. The second
method assumes that two more transport calculations are carried out to
determine the exact results at (x]d,xZa) and (x]d.be), denoted Rdae
and Rdbe' respectively. That is, in method 2 the reference values for
interpolation on x2 are exact. Assume that the reference results
obtained by variational interpolation on x, are related to these exact

values by

Raa = Faldaer (2.10)

and

db = FoRabe-
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The difference in the result at (xld'de) is given by

B = Ro{faRyae Folapei®2) = Rsp{RyaeRapei*a)- (2.71)
The magnitude of this additional error {i.e., in addition to the error
from using vartational interpolation to begin with) depends on the
relative magnitude and sign of (fa-l) and (fb-l). Referring to

Eq. 2.45, note that Ra and Rb terms appear in both the numerator

and denominator. If fa ~ fb' then

B~ (F TR Ry a0 Ripei¥o) - (2.72)

The fractional difference is (fa-l). If (fa-]) and (fb-l) are
opposite in sign; that is, an over estimate of Rda and underestimate

of R or vise versa, then the fracttonal difference will be less

db

than or equal to {f-1). Near Xy =¥ it will be ~ (fa—l),

ca
and near Xy = Xy it will be ~ (fb—l).
Figure 2.11 shows the relative difference as a function of Xy

for three illustrative cases:

fo= f, = 1.05,
f, = 1.05 and f = 1.00,
f, = 1.05and f = 0.95.

The example 1s based on the exact reference points (0.2,2.0) and
{0.6,3.0). MNote how the magnitude of the addition error 1s less

than 5% in all cases.
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6 T | r | !
f, =1.05
4 -
21—
(4]
-2 t—
4l x, =02
X, = 0.6
-6 ] ] ] | |
0 0.1 0.2 0.3 0.4 0.5 0.6
X
fig. 2.11 [I1lustration of additicnal error due to successive two

point Interpolation. Refer to Fig. 2.3. The ratios of the
interpolated results Rda and Rdb to the exact results at
(x]d,xza) and (x]d,x2b) are denoted fa and fb'
respectively. Here, f, = 1.05 and f, ranges from 0.95 to
1.05. The magnitude of the additional error 1s less than
5% in the range of interpolation, 0.2 < x £ 0.6.
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for the three point interpolation the additional fractional eri v
can, in some cases, exceed the magnitude of (fa-l), (fb-1) or (:c-l).
Here fa’ fb and fc are the ratios of the results obtained by three
point interpolation on % at Ko = %oas Xop and Xoc? respectively, to
the exact results if additional transport calculations had been
carried out at (xld’XZa)' (xld’XZb) and (x]d,XZC),
respectively. See fig. 2.10.

The additional fractional error is shown in figs. 2.12-2.14. In
each case fa = 1.05 and fc takes on three values 1.05, 1.00, and
0 95. figure 2.12 1s for fb = 1.05, Ftg. 2.13 for fb = 1.00 and
Fig. 2.14 for fb = 0.95. The exact reference results are (0.2,2.0),
(0.4,2.67) and (0.6,3.0). Note that tn Fig. 2.12, the error exceeds
5% in the range 0.2 < Xy < 0.4 for fc = 1.00 and 0.95. In
Fig. 2.13, the magnitude of the error is less than 5% in all cases.
In Fig. 2.14, the magnitude of the error exceeds 5% for fc = 1.05
when 0.28 < x < 0.4 and exceeds 5% for fb = 0.05 when 0.4 < x < 0.6.

In the previous examples, the error due to the first interpolation
was assumed to be less than or equal to 5%. Cheng has evaluated the
error due to the Schwinger functional (Eq. 2.16) as well as the two
point interpolatton form of this functional (Eq. 2.33) by comparing
the results to those obtained with transport calculations at various

12,36

points, For the examples he chose, the errors were on the

order of 2-5% over a relatively large variation in the design vartable.
An expression for the error can be developed in terms of a series

solution for the neutron flux. The relationship of the variational

36,37

principles to perturbation theory has been shown. Consider the

neutron transport equation
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flg. 2.12 Additiona) error due to successive three point

interpolation for fb = 1.05. Refer to fig. 2.10.

ratios of the inlerpolated results Rda' Rdb and Rdc

to the exact results at these points are denoted fa’ f

and Fc'

0.95 to 1.05. The magnitude of the error exceeds 5% in

some cdses.

respectively. f, = 1.05 and f. ranges from

0 T T r T T
81 —
6.—
41—
2
s
S
e o
(5]
S
a
-2
-4 = x, =02
xy, =04
6L Ao =0.6 _
f, =105
g f, =1.00 -
-10 L 1 [ i 1
0 0.1 0.2 0.3 0.4 0.5 0.6
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10

Percent error
o

2l x, =02
x, =0.4
x, =035
41—
f, =1.05
-6 f, =1.00 |
-8 —
-10 | | { | i
0 0.1 0.2 0.3 0.4 0.5

Fig. 2.13 Additional error due to successive three point

tnterpolation for fb = 1.00,

0.6
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10 T T
T i
6 —
4(— /]
L fp =105/ |
0 |
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41—

o X, = 0.2
Ry = 0.4
-6~ x, =086
f, =105
-8 f, =095 —
-10 | l | | _
0 0.1 0.2 0.3 0.4 0.5 0.6
X
Fig. 2.14 Addittonal error due to successive three point

interpolation for fb = 0.95.
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Lé = 8, (2.73)

and the associated adjoint equation

L'e =8 =& (2.18)

If the reference system, Lo' is perturbed, the altered system, L,

can be related to it by

-
n

L0 + adl, (2.75)

where a is a perturbation parameter. The series solution for ¢ is

L3
t

E aley. (2.76)

i=0
The reaction rate, <I,¢>, can thus be determined exactly by an

infinite series of the solutions, ¢1. to the higher order equations

Lo¢1 = -5L¢1_]. (2.71)

That is,

R = E al<i,oq>. (2.78)

i=0
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The variational functionals are given in terms of both forward and
adjoint solutions. The adjoint flux can similarly be written as
™
"y =Za1¢:. (2.79)
1=0 :

where ¢: 1s the solution to

* & * %
Loby = -8L &y 1 (2.80)

If the exact solutions, ¢ and @i. given by £qs. 2.76 and
2.79 are used in the vartational expressions the resultant reactlon
rate 1s exact. Truncating the series with the first term gives the
Roussopoulos and Schwinger functions described in sectlon 2.1. That
1s, these estimates are based on the solutions 90 and ¢; at

the reference point.

The error of the fractlonal variational functionals, Aan, s
given by36
n m «© n
Aan = Z Z N = Z D, (2.81)
J=0 120 k=m+l J=0
where
R R R T S YL L E
and

m

r
D ujlf¢;,s> + E u1+] <¢;.6L¢1> .

=0
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Here m is the number of terms retained in the solution for ¢
(Eq. 2.76), and n 1s the number of terms retained in the solution for
¢ (Eq. 2.79).
for the Schwinger functional, m=n=0, and Eq. 2.81 reduces to
@«
aF - oKtV [<E,0 ><p, 6L, > - <L, ><b. ,6Le >]
0o 'Yo” Yo' Tk Y T}
k=1

L] L
+ [€6,,5> + a<h,8lo,>]. (2.82)

Hence the error can be evaluated if the solutions, by » are

calculated.



-58-
3. NONLINEAR SIMPLEX METHOD FOR OPTIMIZATION

3.1 BACKGROUND

As previously mentloned, the nonlinear simplex method of Nelder
and Mead]4 was chosen for the blanket optimization problem. It is a
direct search method which relies on evaluatind_a function at a
sequence of points and comparing valués in orderlto reach the optimal
point. The method 1s based on a geometrical design known as a
simplex. An n-dimensional simplex is defined by n + 1 points which
are the points at which the function 1s compared. This should not be
confused with the simplex algorithms of linear programming.

Nelder and Mead's method 1s an improvement on the algorithm
proposed by Spendley, et a1.42 Spendley's method uses & r gular
simplex. A regular simplex is one in which the vertices are equally
spaced. An equilateral triangle is an example of a regular simplex.
Nelder and Mead's method allows the simplex to become nonregular. It
's one of the most efficlent direct search methods available and works
well if the number of variables is not more than five or s1x.]3

While other modifications to Nelder and Mead's method have been
proposed.‘a'44 they have not been incorporated in the algorithm used
in this study. The optimization subroutine used in the blanket
optimization problem was previously coded and used by J. Trenholme to

optimize the design of experimental lasers at Lawrence Livermore

National Laboratory.‘5
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3.2 DESCRIPTION OF THE ALGORITHM

The objective 1s to minimize a function F, where F is a function

of n variables Xpr Xy wnes Xpo The simplex consists of n + 1

ints, P,.
po ]

The following notation will be used. Let

Ph = point with the highest function value,
PS = point with the second highest function value,
Pg = point with the lowest function value, and

P = centroid of all points except Ph.

That 1s,

n+l
p=1_§:p. A
n ]
3=1
1#h
Also let
F = F(P),
Fo = F(P),
Fy = F(Pg).

The method of Nelder and Mead is a follows:m']4

1. Choose the points of the initial simplex. In the

optimization subroutine used 'n this work, a single starting
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point is specified in the input file. the routine then
chooses the initial points of the simplex so that they
surround the starting point. It is advantageous, although
not required, to choose the starting point from within the
feasible region. In general, a feasible starting point can
easily be detemined by examining the results of the reference
point transport calculations. It is also advisable to run
the problem starting at several different points which will
help determine if the optimum 1s unique.

Evaluate F at each point and determine the highest point, Ph.

Calculate the centroid, P, of the remaining points.

Reflection.. The highest point, Ph’ is reflected through

the centroid of the remaining points, P, The reflected point
is denoted Pr’ The value of F at Pr is calculated and

denoted Fr' The reflection factor, a > 0, 1s the
ratlo of the distance between P and P, to the distance

between Ph and P. That 1is,

Pr - P =alf - Pn), (3.2)

or

P = {Vea)P - af, .

If @ = 1, the reflected point is as for on the other side

of the centroid as the high point is from the near side. The
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reflection move 1s 11lustrated in Fig. 3.1a for a two
dimensional case.

If g < F < F_, replace P, by P and return to

Step 2. That is, if the value of the function at the
reflected point falls between the low value and second to
highest value, the old high point is replaced by the
reflected point.

Extens on. If Fr < FQ, extend the simplex using an

extension factor Y > 1. That is, find the extended point,

Pe. such that

Po - P =T(P - P) (3.3)

or

Po = (1 - )P+ P,

The value of the function at this point is Fe' In this

case 3 new low value has been found (Fr < FE) so the
reflected point 1s moved farther in the same direction to sce
if f continues to decrease. There are two possible resulis:
a) |If Fe <_rn, replace Ph by Pe and return to Step 2.

b} If Fe > FQ, replace Ph by Pr and return to Step 2. In
this case the extension has failed. It can be viewed as
moving into a valley (Fr < fn) but the extenston produces a
result fe that is up the slope on the opposite side. The

extension move is illustrated in Fig. 3.1b.
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A) Reflaction B) Extension /f\Pe

f
- - - —_ ]
P, -P= afP-P,) Po-P=y(P -P) /1
]

C) Contraction, F, <F, D) Contraction, F, > Fy

Fig. 3.1 Four basic moves in Nelder and Mead's nonlinear simplex

method of optimization.
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Contraction. If Fr > Fs' contract the simplex using a
contraction factor B, where 0 < B < 1. There are two

cases:

a) If Fr < Fh, find the contracted point Pc defined by

- By, (3.3)

or

P = (1-R)F+ BP..

This is 1llustrated in Fig. 3.1c.

b) If Fr > F , find the contracted point Pc defined by

h*

P - P = B(P, - P), (3.4)

or

Po = (1~ BYP « By

This 1s 11lustrated in Fig. 3.1d. Note that Step 6a 1s the
equivalent of replacing Ph by Pr and then finding Pc defined
by Eq. 3.4, for either 7a or 7b there are again two cases to
consider:

c} If FC < Fh and Fc < Fr' replace Ph by PC and return to
Step 2.

d) If Fc >F or Fc > Fr' reduce the size of the simplex by

h z

halving the distance from P, and return to Step 2. That 1s,

2
replace all PJ by (PerI)IZ. This last move is referred to
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as a huddle.

We see that in Nelder and Mead's method, each iteration begins
with a reflection move. Subsequent steps depend on the value of the
functton at the reflected point with respect to the highest,
second-to-highest and lowest values of function evaluated at the

vertices of the simplex (1.e., how Fr compares to Fh' F_, and Fg).

s
The authors recommend the values o =1, B = 0.5, and Y = 2 as the best

strategy.]4 A flow diagram s given in Fig. 3.2.
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Enter
® Calculate initial Pi and Fi P, =(1+a) P-aP,
. Determine_Ph P, =(1-7) P+ 1P,
e Calculate P P =1 B 4gp
® FormP, o =(1-BIF+0P,
® Calculate F,
¥
isF, <F? N o sk, >F2 Yo ik >F,2 |0
| l [
Yes No Yes Replace P, by P,
Form P, FormP e
Calculate F_ Calculate F.
' —J-
TR S, isF,>F e
Yes Yes Replace Ph by P,
Replace Py, by Pe Replace Ph by Pr Replace all Pj's
»— ~— -
No ini Y
Has minimum es Exit

been reached?

fig. 3.2 Loglc flow dtagram for Nelder and Mead's noniinear simplex

method (after Ref. 14).
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3.3 CONVERGENCE CRITERION

After each iterai'on, tw. convergence criteria are checked to see
1f the search should be halted, 1.e.; if the minimum has been
located. The first criterion compares the highest function value fin
the simplex, Fh' to the lowest, F!. If these two values differ

by less than some small number, ¢, the search is halted. That is, if
F, - F, <e¢. {3.5)

The second criterion 1s based on the distance between the location
of highest and lowest value of the current simplex. If the

distance is less than §, the subroutine terminates. Let [Phpl]

represent the distance between Ph and PQ. If
(PP, < &, (3.6)

the search is halted. Both ¢ and § are input parameters for the
opttmization subroutine. Clearly the optimal point is P!, and the
value of the function is F! 7t the time when either criteria is

met
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3.4 HANDLING CONSTRAINTS

Constraints 1imit the acceptable range from which points can be
chosen iIn searching for the minimum value of F. With Nelder and
Mead's method constraints are handled in the definition of the
function to be minimized. That is, if a constraint 1s violated, F is
set equal to an arbitrarily large number. As such, if a point in the
simplex results in a violated constraint, contraction moves will be
made until all points of the simplex are inside tﬁe feasible region.
See Fig. 3.3. A problem can arise if the search is started in the
unfeasible region. If all points of the initial simplex 11e in the
unfeasible region, they all have the same value, and the first
convergence criterion, £q. 3.5, 1s satisfied. As a result the search
terminates. This difficulty can easily be corrected.

fox and Liebman proposed a modified method of handling
constra’lnts.43 It 1s 11lustrated in Fig. 3.4. Here the value of
the function in the infeasible region slopes down toward the feasible
region 1tke a funnel. In this way, if the search is begun in the
infeasible region, it will proceed until it falls into the “well" of
the feasible region.

In the next chapter, the method of estimating neutronic
performance is combined wiih the optimization algorithm described in
this chapter to optimize the blanket of an tnertlal confinement fusion

reactor.
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Fig. 3.3 A simple method of handling constiraints. The figure of

mer{E: f, 1s defined to be an arbitrarily large number

outside the feasible region.
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fig. 3.4 Fox and Liebman's method of handling constraints. The

search is directed toward the feasible region.
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4. OPTIMIZATION OF A MODIFIED HYLIFE CHAMBER

4.1 DESCRIPTION OF THE PROBLEM

4.1.) The HYLIFE Reactor Concept.

The High Yleld Lithium Injection Fusion Energy (HYLIFE) chamber
for inertial confinement fusion (ICF) has been described in detail in

1,46-51  1he HYLIFE Concept 1s 11lustrated 1n

the titerature.
Fig. 4.1, and a cross sectional view is shown in fig. 4.7

In the HYLIFE chamber, an array of 1ithium jets 1s injected into
the chamber between fusion pulses to provide the equivalent of a
T-m-thick blanket between the fusion target and the first structurat
wall. This energy conversion blanket shields the chamber structuratl
materials from direct exposure to the x-rays, debris, and high-energy
neutrons emitted by the fusion pellet. The 14 MeV neutron flux is
reduced by more than a factor of 200, and neutron damage levels are
low enough to allow the 5-m-radius chamber wall to operate for more

52,53

the 30 years without replacement. With a 1.0 m thick blanket

of natural 1ithium (7.42% 6L1 and 92,58% 7L1). HYLIFE achieves a
tritium breeding ratio of 1.75.54

The subject of this first blanket optimization problem 1s a
modification of the HYLIFE chamber. The modified design is an attempt'
to increase the energy deposited in the chamber per fusion reaction.
The ratio of total energy deposited to the fusion energy released per
DT reaction s defined as the fuslon energy multipliication .ictor, .

M It 1s given by

Pe
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(En + 3.5)/11.6, (4.1)

-
"

E = the total energy (MeV) deposited as a result
of neutron reactions within the chamber. It
includes the neutron energy deposited in the

compressed fuel region of an ICF target.

The factor 3.5 's the fusion alpha particle energy in MeV and 17.6 MeV
is the total fusion energy released per DT reaction. In general, Hf
will be stightly greater than one due to erocergic neutron reactions
with blanket materials, e.g., the 6L1(n.T)u reaction which
releases 4.8 MeV. For HYLIFE, Hf is 1.16.

the approach in the modified HYLIFF design is to reduce the
tritium breeding ratio and capture the excess neutrons in 55Hn.
€ach capture in 55Hn adds 9.8 ficVY to the energy balance. The
55Hn(n,r) reaction releases 7.3 MeV while the decay of the
product, 56Hn. releases an additional 2.5 MeV of recoverable
energy.55 The half-11fe for the B~ decay is 2.6 hours.

Increasing Hf by capturing neutrons in structural material has
been previously proposed.56 The authors of Refs. 57 and 58
sugoested a 14% Mn steel called Fe-1422 for the purposes of increasing
M- In this work, a 20% Mn steel, known as Nippon Steel Alloy NM-1,
is U‘ed.59 The composition of NM-1 by weight percent is 77.5% Fe,
20.0% Mn, 2.0% Cr and 0.5% ¢.>°

The potential auvantage of increasing the fusion energy

multiplication factor is a lower cost of electricity from a

fusion-electric power plart, This follows since more power fis
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available for a given investment in the laser driver and target
factory in the case of ICF (or for a given investment in the magnets
for magnet.c fusion reactors). That 1s, fixing the size of the laser
and the characteristics of the target, fixes the fusion energy
released per puise. If this energy can be increased as a result of
neutron reactions in the blanket, more thermal energy wil’™ be
available for conversion to electricity. In the blanket optimization
problem, the characteristics of the driver and target are fixed, as is
the chamber pulse repetition rate. The variables relate only to the
design of the blanket 1tself as discussed below.

There are two simple ways to reduce the trittum breeding ratio tn
HYLIFE; one is to reduce the fraction of 6L1 in Tithium and the
other 15 to reduce the effective thickness of the 11thium blanket,
V.e., the 1ithium jet array.60 In addition, the L’ cooled graphite
reflector {see f1g. 4.1 and 4.2) s replaced by a sodium cooled
Mn-steel blanket in the modified design. Hence all the tritium
breeding must occur in the 1ithium blanket. The two design variable
for this problem are

X = 6L1 fraction ia L1,

and

effective L1 blanket thickness, m.

[,V
1]

Note that the actual thickness of the L1 blanket ts held constant
while the packing fraction of 1iquid 1ithium jets within that region
is varied. This s, in essence, a variation of the material density

and thys qualifies as a linear perturbation as seen from Eq. 2.34.
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4.1.2 (Constraints on the Design.

Reducing the blanket thickness is advantageous in that 1t reduces
the L1 flow rate resulting in savings in pumping power and capital
costs for 1iquid metal rumps and piping. There is a lower T1imit,
however, set by a constra: t on the maximum allowable radiation damage
rate in the first structural wall. For HYLIFE the rate was limited to
the point where the wall was expected to maintain its structural
integrity for the 30 year 1ife of the power plant.] The 1ife
1imiting radiation damage mechanism for HYLIFE was found to be the
atsplacement of atoms from their lattice p051t10ns.] Displaced
atoms leave vacancies which can conglomerate to form volds within v he
steel, and this leads to a phencmena known as void swel]ing.ﬁl
After some total amount of damage, expressed in terms of displacements
per atom or dpa, the structural natertal is deformed, and/or its
properties are degraded to the point where it loses its integrity.

Currently there 1s insufficient data to set absolute damage 1imits
for structures in fuston reactors. It is known, however, that
ferritic steels are less susceptible to the effects of displacement
damage than austenitic steels,62 and a damage 1imit of ~200 dpa
was recently suggested as a reasonable estimate for high Cr ferritic
steels.63 A Tow-alloy, ferritic steel, 2.25 Cr-1 Mo, was specified
for HYLIFE due to ts low cost, resistance to 1iquid-metal corrosion
and resistance to the effects of radiation damage.SI

For the purposes of this study, the total displacement damage in
the first structural wail of the modified HYLIFE chamber is limited to
200 dpa over an operating perlod of 30 years at 70X plant capacity

factor. 1his gives a constraint on the displacement damage rate of
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9.5 dpa per full-power-year. The dpa rate is expected to depend
primarily on the blanket thickness, LY but may also depend somewhat

6

on the “L1 fracttion.

Another constraint in the optimization problem is the reguirement
for a tritium breeding ratio high enough to assure a sclf-sufficient
fuel cycle. A tritium breeding ratio > 1.05 has been chosen to
satisfy this criteria. Clearly the tritium breeding ratio wiil be a
function of both design variables.

4.1.3 Fiqure of Merit for HYLIFE.

The figure of merit for this optimization problem 1s the capital
cost of the power plant divided by the net electric power production.

That 1is.

£ =C /P, (4. 2)
where
Cy = tetal plant capital cost including the

cost of the reactor, laser and target

factory, $, and
P = net electric power produced and available

for sale, kW .
e

The cost of electricity (1.e., ¢/kHeh) from a fusion electric

power plant 1s expected to be dominated by the carrying charges un the

4

capital investment, The capital cost portion of the cost of

electricity is given by

Ce = QCT/8760an (4.3}
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where

fixed charged rate, yr'] (typically 15% per year),

- -
n n

plant capacity factor (typically 70%), and

8760 = number ¢f hours per year.

"

Since to first order, 1 and f are independent of the blanket
design, the cost of electricity is proportional to CT/Pn. Hence
minimizing the pYant capital cost per unit of net electric power is
equivalent to minimizing the cost of electricity under these
assumptions. ‘

The total capital cost is broken into four components,

¢, = CR + CP + CL + CTF’ (4.4)
where
C, = cost of the reactor including the balance of
plant required for heat transfer and conversion
to electririty,

€, = cost of Vithium recirculating p .ps and piping

-

required to maintain tne flowing 14thium blanket,

L, = cost of the laser driver, and

C, = cost of the target factory.

The cost of the reactor scales as the plant thermal power, Pt'

ralsed tn the 0.8 pouer.64

o« pU-8 (4.5)
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The thermal power is simply the fusion power, Pf. times the fusion

energy multiplication factor, Hf. Hence
0.8
cR « (HfPf) . (4.6)

As previously stated, Pf is fixed but Hf will be a function of
both the 6L1 fraction, Xy and the L1 blanket thickness, x,.

The cost of the pumps will be proportional to the total Tithium
flow rate through the chamber. The flow rate is taken to be

proportional to the effective blanket thickness Xy hence
Cp = Xyt (4.7)

The cost of the laser and target factory are fixed and independent
of the two design variables.
The actual costs are referenced to those listed in Table 4.1 for

47

HYLIFE. Using these values, the direct capital cost of the

mod1fied HYLIFE chamber in 38 is,
¢, 0.9 0.8
T . (Hf/l.ls) + 0.16x2 + 0.43. (4.8}

The net electric power is gliven by

Pa = Pq - PP Pp’ (4.9)
where

Pg = gross electric power, M,

P! = laser power requirement, Hue,



-79-

Table 4.1 X
Refcrence HYLIFE plant characteristics for comparison

Tritium breeding ratio T=1.75
Neutron energy deposition En-= 16.9 MeV
Fusion power Pf = 2700 MW
Fusion energy multiplication factor Hf = 1.16
Thermal power Pt = 3130 HHf
Thermil conversion efficiency ng = 39%
Gross etectrical power Pg = 1220 HHe
Laser power consumption P! = 135 HHe
Auxiliary power requirements Pa =15 HHe
Lithium pumping pouer(a) Pp = 30 HHe
Net electrical power Pn = 980 HNe
Direct capital costs
Reactor (%) Cq = 3960 M
Lithium pumps CP = $160 M
Laser (¢} - C, - 3330 M
Target factory CTF = $100 M
TOTAL Cr=$1.55 8

{a

-~

(b)

(c}

based vn a 1ithium blanket thickness of 1.0 m and ~50% efficient
EM pumps.

reactor includes the chamber and balance of plant required for
heat transfer and conversion to electricity; 1t excludes the L}

recirculating pumps.

half the estimated cost of 4.5 MJ laser; it 1s assumed that the
laser drives two full stzed reactors by switching beams.


http://Therm.il
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P_ = plant auxillary power requirements, HHe, and

p 11thium pumping power, Hue.

-l
n

The gross electric power 1s equal to the thermal conversion efficiency
times the thermal power and, therz2fore, 1s proportional to the fusion
energy multiplication factor Mf. The laser and auxiliary power
requirements are independent of the blanket design. The 1ithium
pumping power 1s taken to be proportional to the lithium flow rate and
hence to the blanket thickness, Xy Again, the values are based on

the HYLIFE parameters 11sted in table 4.71. Hence

P = 1220(Hf/].16) - 135 - 75 - 30x2. (4.10)

or

Pn = 1220(Hf/l.]6) - 30x2 - 210,

where Xy is in meters.

Combining Eqs. 4.8 and 4.10 and normalizing to the HYLIFE cost of

$1.55 B and net power of 980 HHe gives the figure of merit as

F= [0.62(Hf/1.16)0'8 + 0.10%, + 0.28}/0, T e

where

D= 1.24(Hf/l.16) - 0.03x, - 0.21.
4.1.4 Summary.
In summary, the optimization problem is to minimize F given by

Eq. 4.11 subject to the constraint on the dispiacement damage rate,

D < 9.5 dpasyr, (4.12)
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and the constraint on the tritium breeding ratio,
T >1.05. (4.13)

The methods of Chapter 2 are used to write analytical expressions
for the fusion energy multiplicatton factor, the tritium breeding
ratio, and the displacement damage rate, as a function of the two
design variables, X and Xy Hence the figure of merit can be
calculated at any point (x],xz). The methods of Chapter 3 are
then applied to optimize the figure of merit subject to the
constraints.

The first calculation of the optimal design point for the modified
HYLIFE chamber is based on the two point variational interpolation
method for estimating the neutronic performance. As such, four
reference point neutron transport caiculations are required. The
neutronics model and results for these inittal reference point

calculations are discussed in the next section.
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4.2 REFERENCE POINT TRANSPORT CALCULATIONS

4.2.1 TART Monte Carlo Transport Code.

ATl neutronics calculations were carried out with TART, a coupled
neutron-photon Monte Carlo transport code.65 Cross sections are
derived from TART's data base, the Evaluated Nuclear Data Library
which includes neutron data from 10'9 MeV to 20 MeV and photon data
from 1 keV to 20 HeV.9 It 1s a multigroup code utilizing 175 energy
groups.

An 1nput file 1s created by the user which describes the geometry
of the problem, composition of each zone, the characteristics of the
neutron source and the type of output desired. Geometry refers to the
boundary functions of a problem. Combining a number of boundary
functions creates a unique and unambiguous volume called a zone. The
boundaries are either planes or quadradic. TART is capable of
handling three dimensional problems. The composition of each zone is
described by specifying the isotopes, the isotopic fraction and
density of the material represented by the zone. For fusion reactor
problems a monoenergetic source of 14.1 MeV neutrons ts generally
specified. Many different kinds of outpu: can be obtained from the
same TART prob'em. Of particular interest for this study are reaction
rates, znergy dependent neutron flux, and energy deposition as a
result of neutron interactions. AT1 output is normalized to one
source neutron. A typical probiem will track 20,000 neutrons (20
groups of 1000) and take 1-3 minutes of CRAY time. In addition to
Ref. 65, a TART users manual is available on the MFECC computer

network (see Appendix II}).
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4.2.2 Neutronics Hoqel of the HYLIFE Chamber.

Thé neutronics model of the modified HYLIFE chamber is shown in
Figs. 4.3 and 4.4. Figure 4.3 represents a horizontal slice through
the midplane of the chamber. Note that it has been subdivided into
two halves and Fig. 4.4 shows only the right half. This was necessary
since the current version of TART does not allow the user to output
reaction rates and neutron flux for the same zone. A new version of
TART will correct this d‘IFch1ty.66

Zone 1 represents the compressed OT in which the 14.1 MeV fusion
neutrons are born. The neutron source 1s distributed uniformly
throughout this hemispherical zone. The target has a density radius
product, pR, of 3 g/cmz. Zone 2 is essentially void, containing
L1 vapor at a very low density.

Zones 3 and 4 represent the Li jet array where all the trittum
breeding occurs in this modified HYLIFE concept. The effective
density and isotopic fraction of 6L1 is varied in these zones. The
inner radius of these zones in 0.5 m and they are 2.0 m thick. The
density of LY in zones 3 and 4 1s less than normal density in order to
represent the packing fraction of 1iquid Li jets within the jet
array. Using density multipliers of 0.375 and 0.625 give effective
thicknesses of 0.75 m and 1.25 m for the LY blanket. Thece are the
two reference values for xz. That 1is, x2a = 0.75 and
Xop = 1.25. The reference values for 6L1 concentration in the L§
are 0.50% and 7.42%, 1.e. Xia = 0.0050 and X1p = 0.0742. The

combinations of these values define the four reference point

calculations for the two point interpolation on two vartiables.
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modified HYLIFE chamber. Zone numbers are indicated.
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Returning to Figs. 4.3 and 4.4, zones 5 and 6 are again L1 vapor
regions. Zones 7-10 represent a low-alloy, ferritic steel, first
structural wall for the chamber. The inner radius is 5.0 m and the
wall 1s 2 cm thick. The neutron flux in the T-m-high zone 10 s used
to determine the peak neutron damage rate in the first structural
wall. It gives a peak damage rate since it 1s nearer to the neutron
source and protected by less L1 than the wall as a whzle. Zones 11
and 12 represent the energy multiplying steel blanket. These
1-m-thick zones contair BO vol% Mn steel and 20 vol% Na coolant.

figure 4.4 is a vertical slice through the neutronics model. The
top and bottom boundaries are reflecting planes. That is, 1f a
neutron's path intersects one of these planes, it is "reflected" back
into the problem at the point of intersection. The bottom plane
represents the symmetry of the HYLIFE chamber.

The top (and the bottom) of the HYLIFE chamber contain thick pools
of Li. With a top reflecting plane in the neutronics model, neutrons
are reflected back into the Li jet array and the effect is essentially
the same as if a Li pool would have been added at the top. This was
verified by comparing the results of a TART calculation with a model
such as this to the results reported in Ref. 1i which modeled the
HYLIFE chamber in detail. Both the tritium breeding ratio and neutron
energy deposition were very close. With the reflected model, the
tritium breeding ratio and neutron energy deposition were 1.74 and
17.0 MeV, respectively, compared to the Ref. 54 results of 1.75 and
16.9 MeV. Hence it is felt that the simple model illistrated in
Figs. 4.3 and 4.4 adequately represents the chamber being considered
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in this study.
A detatled description of the geometry and composition of the

neutronics model is given in Tables 4.2 and 4.3.

4.2.3 Results of the Four Initial Transport Calculations.

The results of the reference point neutronics calculations are
given in Tables 4.4 and 4.5. With a few exceptions all parameters
listed are output directly by TART. The exceptions are discussed
below.

The energy deposition by isotope in the L1 blanket required a
modification of the standard method that TART uses to calculate energy
deposition. Normally, energy-dependent energy deposition factors are
determined for the mixture of isotopes making up the material in a
zone. These factor times the expected number of collisions per energy
group, summed over all energy groups gives the total energy ‘deposited
in the zone.

To get the energy deposition by isotope requires the order of
summations to be changed. By determining energy deposition factors
for each isotope in the material, multiplying it by the number of
collisions with that isotope, and summing over all energy groups gives
the energy deposition by i1sotope in the zone.

The other calculated parameter 1s the displacement damage rate.
Using the neutron fluence in zone 10 calculated by TART, the

displacement damage rate (dpa per full power year) 1s calculated as

D=¢§ E 95 Q1, (4.14)

i

follows:
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Table 4.2

Geometric characteristics of the modified HYLIFE neutronics model

Inner Outer
Radius Radius Height
Zone Description {cm) {cm) {cm) Material
1 Target 0 0.03 - 1
2 Li vapor 0 50 400 2
3, 4 L1 Blanket 50 250 400 -3
5,6 L1 vapor 250 400 400 2
7, 8 Steel Wall 500 502 300 4
9, 10 Steel Wall 500 502 100 4

1, 12 Steel Blanket 502 600 400 5
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Table 4.3

Material compositions of the modified HYLIFE neutronics model

Composition Density Isotopic Fractions
Material (Vo1%) {g/cn3) (%)

1 0T 100 100 0 50
T 50
2 t1 100 10-8 6 1 7.42
Ty 92.58
3a LY 100 0.490 64 7.82
Tty 92.58
b ti 100 0.495 614 0.50
T4 99,50
q* Fe 100 7.86 Fe 10€.00
gh* NM-1 80 6.49 Na 5.97
Na 20 Cr 2.01
Mn 19.03
Fe 72.99

* The first structural wall is 2.25 Cr-1 Mo steel. For the purposes
of these calculations, it 1s represented by 100% natural Fe.

** The steel blanket is 80 Vol% KM-1 steel (77.5 wt% Fe, 20.0 wt¥% Hn,
2 wt% Cr) and 20 vol¥% Na as the coolant.
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Table 4.4

Reaction rates and neutron damage rates for the
four initial reference points

Reference Point 1 2 3 4
6L Fraction, % 0.50 7.42 0.50 7.42
LY Thickness, m 0.75 0.75 1.25 1.2%
Reactions?
6L\(n,T)a 0.440 0.797 0.733 1.004
(1.2)¢ (1.2) (1.0) {1.1)
7L1(n,n'T)u 0.604 0.628 0.718 0.663
{(1.2) {0.8) (1.1) (1.2)
L i(n,Y) 0.004 -- 0.007 -
(1.2) (1.5)
Mn(n,Y) 0.331 0.156 0.185 0.057
(1.9) {2.3) (1.5) (4.1)
fe(n,Y) 0.343 - 0.159 0.193 0.057
(1.8) {2.1) {1.5) (3.8)
Displacement Damage Rateb 15.5 13.5 3.95 2.92
(3) (3) (8) (8)

a) per DT fuslon reaction.
b) dpa per full-power-year based on 2700 MW of fusion power.

c) percent standard deviation.
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Table 4.5

Energy deposition for the four initial reference points

Reference Point 1 2 3 4
511 Fraction, % 0.50 7.42 0.50 7.42
LY Thickness, m 0.75 0.75 1.25 1.25

Energy DeposiHona

Target 1.83 1.85 1.83 1.84
(0.4){c)  (0.4) (0.5) (0.4)
64 2.09 4.66 3.61 5.12
(1.2) (1.0) {0.9) (1.0)
U 8.96 8.21 9.64 8.73
(1.7) (3.0) (2.3) (4.7}
First wall 0.73 0.35 0.40 0.09
(1.7) (3.0) (2.3) (4.7)
Steel blanket 5.29 2.94 2.51 0.89
(1.5} (2.1) (1.7 (3.5)
Mn decayP 0.83 0.39 0.46 0.14
Alpha particle 3.52 3.52 3.52 3.52
TOTAL 23.25 21.92 22.03 20.93

a) MeV per DT fusion reaction.

b} energy released from decay of 56mn equals 2.5 MeV per Mn(n,Y)
reaction.

c¢) percent standard deviation.
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where
S = neutron source, n/yr,
¢, = energy dependent displacement cross section, b,

¢, = energy dependent neutron ¢luence, n/'cm2 per source

neutron, and
} = energy group index for the multigroup calcrtation.
The source of DT neutrons is related to the fusion pcwer, Pf, by

s =11.2 x 1024 Pes (1.15)

where Pf is in MW.

The displacement damage cross section for iron is shown in

Fig. 4.5. This cross section was calculated by Doran and Graves67

68,69

and is somewhat higher than a previously publisied verston. It

is based on an effective displacement energy of 40 eV, which is

recommended for iron. For low energy neutrons, the displacement cross

-0.5 68

section varies as © from a value ¢f 17b at 0.025 eV.
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4.3 INITIAL OPTIMIZATION RESULTS FOR KYLIFE

Estimated Neutronic Performance.

Based on the results of the four reference point neutronics
catculations, the tritium breeding ratio, displacement damage rate and
neutron energy deposited in :he chamber are estimated using successive
two point interpotation (Eq. 2.46).

The results for tritium breeding are shown in Figs. 4.6-4.9.
Figure 4.6 shows the number of 6[1(n,T}a reactions per 0T
reaction, denoted Td, as a functioi of the two design variables, 6L1
fraction in the L1 blanket and the L1 btlanket thickness. (Note that
those portions of the surface outside the range 0.5% < X < 7.42%
are extrapolations not interpolations.) As seca in Fig. 4.6, T6
increases with increasing 6L1 fraction and also with increasing
blanket thickness. The rise in T6 is very sharp at low 6L‘i
concentrations.

The number of 7L1(n,n'T)u reactions per OT fusion reaction,
denoted T7, as a function of the two design variables is shown in
Fig. 4.7. Note the change in the vertical scate from the previous
figure. £s indicated, T7 decreases with increasing 6Li fraction.
This is as expected since the 7L1 concentration decreases as the
6L1 concentratiﬁn increases. Also, T7 increases with increasing
blanket thickness.

The sum of T6 and T7 gives the tritium breeding ratio, denoted T,
as shown in Fig. 4.8. Since the variation in T7 over this range of

® variables 1s relatively small, the tritium breeding ratio surface

essentially mimics the features of the T6 surface. Some difference,



6Li fraction, %

Flg. 4.6 6L1(n.T)u reactions per DT reaction as a function of the

SL1 fraction and L1 blanket thickness.



-96-

81i fraction, %

tig. 4.7 7Li(n,n'T)a reactions per DT reaction as a function of

the 6L‘l fraction and the L1 blanket thickness.
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1.4

SLi fraction, %

fig. 4.8 Tritium breeding ratio as a function of the 6L1 fraction

v
and the L1 blanket thickness.
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however, are visible. Note how at Xy = 1.25 m, T goes through a
broad maximum as X increases, indicating that T7 is falling faster
than T6 is rising in this region.

A contour plot of the tritium breeding ratio is shown in
Fig. 4.9. The first solid line is T = 1.05, the constraint on the
breeding ratio. At low 6L1 fractions T is primarily a function of
the 6L1 fraction whereas above ~5% BLi. T is primarily dependent
on the blanket thfickness.

The displacement damage rate, dpa per full-power-year, 1s shown in
Fig. 4.10 as a function of the two design variables. As indicated,
the dpa rate decreases with increasing 6L1 fraction and increasing
blanket thickness. The contour plot, Fig. 4.11, gives a better
indication of the nature of the dependence of damage rate on the two
design variables. It is clear that the dpa rate depends primarily on
the blanket thickness. This is due to the nature of the displacement
damage cross section. Most of the displacement damage resulis from
high energy neutrons. Hence simply moderating the fusion neutrons is
sufficient to decrease the dpa rate significantly. Increasing the
6L1 fraction attenuates the neutron flux reaching the first wall by
absorbing neutrons in 6L1(n,T)u reactions. Since 6Li more
readily captures lower energy neutrons, the dpa rate decreases only
s1ightly with increasing ®L1 fraction. The dashed 1ine 1s the
displacement damage rate constraint of 9.5 dpa/yr.

Next, consider the energy deposited in the chamber. Figures 4.712
and 4.13 stiow the neutron energy deposited in 6Li and 7Li. The
features of these surfaces are similar to these for T6 and T7. The

energy deposited in the first structure wall and the Na cooled steel
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blanket is shown in Fig. 4.14, The energy deposited in these reglons
is primarily due io the energy released in neutron capture reactions
in Fe and Mn. As indicated, the energy deposition in these regions
Increases with decreasing 6L1 fraction and wikth decreasing L1

blanket thickness. This follows since decreasing the 6L1 fraction
and the L) blainket allows more neutrons to penetrate the L1 blanket
and be captured in structures.

The total energy deposited in the chamber 1s shown in Fig. 4.15.
It includes the neutron energy deposited in the compressed fuel of the
target (i.84 MeV), the fuslon alpha particle energy (3.52 Me¥;, and
the 56Mn decay energy. The 56Hn decay energy 1s 2.5 MeV per
55Hn(n,r) capture reaction. In general, the total energy
deposition increases with decreasing 6L1 and L1 blanket thickness.

At very low 6L‘I concentrations, however, the enerqy deposition
begins to fail off. This is due to the nature of the variational
estimates in the extrapolated region (x] < 0.5%) and %s not based on
the physical situation. The varlation interpolation estimate for the
energy depssition in 6L‘i must go to zero as«ihe—SLﬁ‘fract1on goes

to zero. The varlational estimate of the energy'ﬂeposit1on in

501

structures, however, has no additional boundary condition at low
fractions, and hence the extrapolation to values below X, = 0.5%
does not rise as steeply as would be expected based on the number of

neutrons penetrating the L1 blanket as the number 0;16L1(n,T)u
reactions falls to zero.

To get a more accurate estimate of the total energy deposition,
especially at low 6L1 fractlons, a neutron balance approach is

used. The number of available neutrons per DT fusion reaction 1s 1.00
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from the tusion reaction, plus 0.05 from (n,2n) reactions with D and T
in tke compressed fuel of the target, plus 0.06 from (n,2n) reactions
with 7L1 in the L1 blanket for a total of 1.11.

There are three primary neutron sinks in the chamber; neutrons can
be captured 1n 6L1(n,T)n, Fe(n,Y) and Mn(n,Y) reactions. The
sum of these three reactions for the four reference point transport
calculations l1isted in Table 4.4 is essentially constant (to within
1%) with an average value of 1.114.

In the neutron balance method, the number ef 6L1(ﬁ,f)u
reactions is estimated using variational interpolation and then the
number of neutrons available far capture in Fe or Mn is calculated
from,

N=1.114 -Té6. {4.16)

Also note from Table 4.4 that Mn capture reactions are always
~49% of the total capture in Fe and Mn. Etact Fe(n,Y) reaction
releases ~7.7 MeV and each Mn(n,Y) reaction releases ~7.3 MeV.

In addition, each Mn capture leads to a B~ decay which releases
2.5 MeV of recoverable energy. Therefore, the energy deposited in

structures due to neutron capture and 56Hn decay 1is

7.7(0.51)N + 9.8{0.49)N,

m
n

or

8.73N. (4.17)

m
n

Summing the energy deposited in the first wall, steel blanket and

Mn decay listed in Table 4.5 gives a total energy deposition which is
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scmewhat higher than predicated by Eqs. 4.16 and 4.17 when the value
of T6 from Table 4.4 is used. This additional energy, which can be
viewed as deposition due to scattering reactions in these regions,
must be added to Ec to get the correct total energy deposition in
the structures. The additional energy for reference point cases 1-4
are 0.96, 0.92, 0.09, and 0.16 MeV, respectively.

The neutron balance estimate of the energy deposited in the first
wall and steel blanket is shown in Fig. 4.16. This surface shows the
sharp rise in energy deposition as the 6Li approaches zero as
expected. The improved estimate of the total energy deposited in the

6

chamber is shown in Fig. 4.17. It increases with decreasing "Li
fraction and decreasing L1 blanket thickness over the entire range of
X, and X5

A contour plot of the fusion energy multiplication factor, Mf,
is given in Fig. 4.18. This figure clearly shows the sharp rise at
Tow 6L1 concentrations.
4.3.2 Optimal Design Point.

Based on the previous results the figure of merit is calculated as
a function of the two design variables as shown in Fig. 4.19. Recall
that low values of F, the normalized capital cost per net electric
power production, are desirable. As seen in Fig. 4.19, f decreases
with decreasing 6L1 fraction and L1 blanket thickness. A contour
plot of f is shown in Fig. 4.20.

The constraints on the tritijum breeding ratio and displacement
damage rate 1imit the degree to which the 6L‘i fraction and blanket
thickness can be decreased 1n the attempt to decrease F. Figure 4.21

shows these two constraints overlaid on the contour plot of F. Note
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the scale of the horizontal axis has been changed in order to focus on
the region of interest. The optimal design point lies at the
intersection of the two constraints. The optimal 6L1 concentration

1s 0.27% and the optimal Li blanket thickness if 0.86 m. At this
point the modified HYLIFE plant costs 4.8% more than HYLIFE but
produces 16% more electric power. The power plant cost per urit of
net electric power 1is, therefore, reduced by 10%, and the figure of
merit is 0.90.

4.3.3 Comparison to Transport Calculation at Optimal Point.

In order to check the accuracy of the result an additional neutron
transport calculation was carried out for these conditions, i.e.,
X) = 0.27% and Xy = 0.86 m. The results of the neutron transport
calculation are compared with the estimated parameters in Table 4.6.
The variational estimate of the number of 6L1(n.T)u reactions
is low by ~17%. This relatively large error 1s not totally
surprising considering the steepness of the T6 surface at such low
6L‘i concentrations {see fig. 4.6). In particular, T6 increases by
0.8 per 1% increase in 6L‘I fraction in this region. On the other
hand the number of tritium breeding reactions with 7L1 is predicted
quite accurately. The actual tritium breeding ratio thus exceeds the
required 1.05 by 0.074 and the breeding ratio constraint is satisfied.
The neutron capture rate in Mn and fe is overestimated. This is a
direct result of underestimating T6 since the neutron balance method
is used to calculate these rates,
The underestimate of thc energy deposited in 6L1 is consistent
with underestimating T6. The estimated energy deposition in 7L‘i is

very close to the transport calculation result. The energy deposited
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Table 4.6

Comparison of nesutronic performance at x7 = 0.27%, xp = 0.86 m

TART Estinated
Reactions®
b i1n,T)a 0.441 (1.2)° 0.368
T (nn T 0.683 (1.2) 0.682
T 1.124 1.050
Mn(n,Y} 0.318 (1.2) 0.366
Fe(n,Y) 0.336 (1.4) 0.380
Energy Deposit‘lon,a MeV
Target 1.85 (0.4) 1.84
b4 2.12 (1.2) 1.64
T 9.22 (0.8) 9.19
Structures® 6.48 (1.4) 6.81
Alpha particle _3.52 _3.52
TOVAL 23.19 23.00
Displacement damage rate® 10.82 9.50

a) per DT fusion reaction.

b) Energy deposited in first structural wall and steel blanket
including Mn decay energy.

c) dpa per full-power-year based on 2700 MW of fusion power.

d) percent standard devilation,
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6Hn decay

in the first structural wall and steel blanket in¢ciuding 5
is overestimated by ~5%. The errors in estimating the energy
deposition nearly cancel and the total is low by less than 1%. The
final parameter is the displacement damage rate. It is underestimated
by ~12%. This means that the displacement damage rate constraint is
not really met at this point.

Based on this comparison some conclusions can be drawn with
respect to the location of the optimal design point. Since the
tritium breeding ratto is higher than required, the 6L'I
concentration cculd in fact by lowered below 0.é7%. Also since the
displacement damage rate is not met, the L1 blanket must be made
somewhat thicker than 0.86 m. This then will allow an even greater

reduction in the 6L1 concentration. A better estimate of the

location of the optimal design point is made in the next section.
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4.4 IMPROVED ESTIMATES OF LOCATION OF OPTIMUM

4.4.1 [mproved Estimate Using Tay'or Expansien ¢t Original Optimal

Point.

An improved estimate of the location of the optimal design point
can be made by making use of the results of the add1t10nél transport
calculation discussed in the previous section and tabulated in
Table 4.6. Since the location of the optimal dés1gn point is at the
intersection of the two constraints, the objective is to produce a
better estimate of point at which T = 1.05 and D = 9.50. This can be
done by expanding T and D in first order Taylor Series in the two
design var‘iables.70 The required partial derivatives are
approximated by finite differences betueeg points bouﬁﬁ1ng the
ortginal optimal design point, t.e. X = 6,27% and Xy = 0.86 m.

The vaiues of T and D at these adjacent points are caiculated using

successive variation interpolation as in the previous section.

The Taylor Series expansions for T and D are70
[} 1
T(x],xz) = T(x1°,x2°) + Tx]Ax] + sznxz, (4.18)
and
1 1
D(x],xz) = D(XIO'XZO) + Dx]Ax] + szsz, (4.19)
where,

(x],xz) = New optimal design point,
(x1o,x2°) = {0.0027,0.86) = original optimal design point,

tritium breeding ratio constratint,

T(x],xz) = 1.05

D(x].xz) = 9.50 = displacement damage rate constraint,

T(x ) = 1.124 = TART result,

10" *20
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D(XIO'XZO) = 10.82 = TART result,
T

and 0;1 = partial derivatives of 7 and D with respect

x1
to 3] at the point (xlo‘XZO)'
] ] .
sz and sz = partial derivatives of T and D with respect
to x2 at the point (XID'X20)’
Ax] = (x]-x1o), and

Ax2 = (x2-x20).

The parti.] derivatives at (x]o,XZO) are

T, = 19.8,
D, - -35.7,
T;2 = 0.645, and
D, = -33.7.

These were calculated from the variations in T and D between X, = 0.24

and 0.30% with X, = 0.86, and between x2 = 0.85 and 0.87 with

Xy = 0.27%.

Substituting the above partials and the known values for T and D,

Eqs. 4.18 and 4.19 reduce to

-0.074 = 79.8Axl + 0.645Ax2,

and

-1.32 = -35.7Ax] - 33.7Ax2.

Solving for Ax, and bx, gives bx, = -0.00136, and bx, = 0.041.

The new opftimal design point is, therefore, x

1

= 0.14%, anu x

2

{4.20)

(4.21)

= 0.90 m.
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4.4.2 Improved Estimate Using New Set of Four Reference Points.

As previously noted, the original estimate of the optimal design
point, 1.e., X = 0.27% and Xy = 0.86 m, did not fall between the
~reference values for the 6L1 fraction, i.e., 0.5 and 7.42%. Hence
the neutronic performance in the vicinity of the optimal point was
estimated based on extrapolations on X An improved estimate of
the location of the optimal design point is obtained 3f it falls
within the rectangle defined by the four reference points. In this
section the two reference value for X, are 0.07% and 0.5%, which,
based on the results of the previous section, 1.e., x]o = 0.14%,
should bound the optimal 6L'i fraction.

The results of the two new reference point transport calculations
are tabulated in Tables 4.7 and 4.8, Comparing these results to the
results given in Tables 4.4 and 4.5 reveals that the 7L'i(n,n'T)u
reaction rate, the energy deposited in 7L1, and the displacement
damage rate are independent of X in this range. That is, the
variations are less than one standard deviation for the Monte Carlo
result. Hence in evaluating the figure of merit and constraints,
these parameters are only functions of Xy and are estimated using
two point interpolation cn Xy In each case, the average of the
results at X = 0.07 and 0.5% serves as the reference value for
tnterpolatior on Xy These average reference values are listed in
lable 4.9.

The neutron balance method described in section 4.3 is also used
here to estimate the energy deposition in structures. In this case,

however, the average number of available neutron is 1.101 compared to
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Table 4.7

Reaction rates and neutron damage rates for

x] = 0.07%, xp = 0.75 and 1.25 m

Reference Point 5 6
8.1 Fraction, % 0.07 0.07
L1 Thickness, m 0.75 1.2%
Reactions per DT reaction
6L1(n,T)a 0.229 0.503
(1.9)2 (1.6)
7L1(n,n'T)u 0.680 g8.709
(0.8) (1.0)
TLi(n,Y) 0.013 0.n29
(1.7} (1.5)
Mn(n,Y) 0.403 0.253
(1.3) (1.8)
Fe(n,Y) 0.444 0.297
(1.2) (1.7)
Displacement Oamsge Rateb 15.6 3.97
(3) (8)

a}

b}

percent standard deviation.

dpa per full-power-year based on 2700 MW of fusion power.
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Table 4.8

Energy deposition for x7 = 0.07%, xp = 0.75 and 1.25 m

Reference Point 5 6
504 Fraction, % 0.07 0.07
L1 Thickness, m 0.75% 1.25

Energy Depositiond

Target 1.83 1.84
(0.4)b (0.4}
614 1.12 2.43
{1.9) (1.6)
UK 8.99 9.62
(0.5) (0.6)
First wall 1.12 0.81
(1.6} (1.7)
Steel blanket 6.37 3.62
(1.4) (1.8)
Mn decay 1.01 0.63
Alpha particle 3.52 3.52
TOTAL 23.96 22.47

a) MeV per DT reaction.

b) percent standard deviation.
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Table 4.9

Reference results used to interpolate on xp

Parameter ) 0.7 m 1.25 m
"3{n,n'T)a reactions 0.672 0.713
Energy depostilion in 7L1, MeV 8.98 9.63

Displacement damage rate, dpa/yr 15.52 3.96
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6 1

1.114 used previously. Also at 0.07% “ti, neutron capture in "Li
becomes significant (1.e., > 1%) and is therefore included as a sink
in the neutron balance. Finally Mn accounts for 48% of the captures
in Mn and fe compared to 49% in the previous case.

The expression for energy deposition in structures due to neutron

capture and 56Hn decay 1s

E=8.71(1.101 - T6 - C7), Mev, (4.22)

where

C7 = neutron capture in 7L1(n,Y) reactions.

Compare this to Eqs. 4.16 and 4.17. As before, T6 and (7 are
estimated using variational interpolation.

The direct neutron enefb} deposition 1s equal to the difference
between the result obtained with Eq. 4.22 and the sum of the tabulated
energy deposition in the steel.wall, in the steel blanket, and due to
Mn decay.

The resulting contour plot of the figure of merit 1s shown in
Fig. 4.22. The displacement damage rate and tritium breeding
constraints have been overlaid. In this case, the optimal design
point is located at Xy = 0.13% and Xy = 0.86 m. The 6L1
concentration agrees more closely with the improved estimate obtained
in the previous section, 1.e., 0.14%. The optimal L1 blanket
thickness however, is the same as the original estimate. This is as
expected since the blanket thickness 1s limited by the displacement

6.4 fraction.

Hence, the two new transport calculations at different values of 6L‘i

damage rate which in this range is independent of the
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fraction did not add any riew information relative to the damage rate.
To get an mproved estimate of the displacement damage rate as a

function of thickness requires additional transport calculations at an

intermediate value of xp. This is discussed in the next section.

4.4.3 Using Three Point Interpolation on One Variable.

In this section the optimal design point is estimated using three
point interpolations on X, followed by two point interpolations on
X Two new transport calculations were carried out with
X, = 1.00 m; one with X = 0.07%, and one with X = 0.5%. The
results at these points are given in Tables 4.70 and 4.11.

Note that the number of 6L‘I(n,T)u reactions varies linearly
with the L1 blanket thickness in tiis range. Therefore T6 1s
estimated by a twe point interpolation on X between two linear
expressions in X5, one at Xy = 0.07% and one at X, = 0.5%. The
energy deposition in 6L1 is also linear 1in Xy and thus estimated
in the same manner as T6.

As before T7, E7 and the displacement damage rate are independent
of the 6L1 fraction at these low concentrations. Note that the
variation in the displacement damage rate at 1.00 m is within the 6%
standard deviation. The average values for T7, £7 and displacement
damage rate at 1.0 m are 0.709, 9.46 MeV and 7.34 dpa/yr. These,
along with the values 1isted in Table 4.9, serve as the reference
points for three point interpolation on X5 Also, the neutron

balance method, £q. 4.22, 1s used to calculate the energy depositicn

in structures.
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Table 4.10

Reaction rates and neutron damage rates for

x1 = 0.07 and 0.50% with xp = 1.00 m

Reference Point 7 8
©L1 Fraction, % 0.07 0.50
L% Thickness, m 1.00 1.00
Reacttons per DT reaction
BLi(n,T)a 0.366 0.688
(1.5)8 (1.0)
LAn,n'T)a 0.704 0.713
(1.3) (1.2)
TLi(a,Y) 0.021 0.009
(1.3) (1.0)
Mn{n,Y) 0.32% 0.253
(1.3) (2.5}
Fe(n,Y) 0.370 0.262
(1.2) (2.3)
Displacement damage rated 1.57 .
(6) (6)

a) percent standard deviation.

b) dpa per full-power-year based on 2700 MW of fusion power.
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Table 4.11

Energy deposition for x7 = 0.07 and 0.50% with xp = 1.00 m

Reference Poini 7 8
L1 Fraction, % 0.07 . 0.50
LY Thickness, m 1.00 1.00

Energy Depositiond
Target 1.83 1.82

(0.4)b {0.5)
614 1.75 2.98
(1.5) (1.0)
Ty 9.52 9.40
(0.8) (0.8)
First wall 0.96 0.53
(1.9) (1.9}
Steel blanket 4.81 3.77
(1.4) (2.0)
Mn decay 0.81 0.63
Alpha particle 3.52 3,52
TOTAL 23.20 22.65

a) MeV per DT reaction

b) percent standard deviation.
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The resulting figure of merit contour plot with constraints is
shown in Fig. 4.23. In this case the'bredicted optimal design point
is X = 0.09% and Xy = 0.91 m. Note that the value of X,
increased to lower the dpa rate as expected. The results of this
final estimate are compared to the results of a transport calculation
at this design point 1n the next section.

A transport calculation was carried out with a Li blanket
thickness of 0.91 m and a 6L1 fraction of 0.09% in order to check
the estimated results at the optimal design point..

The neutronic performance is compared in Table 4.12. A1l the
results agree quite closely. The tritium breeding ratio s off by
~0.5%, the total energy deposition 1s within 1% of the transport
calculation result, and the dpa rate is high by ~0.5%. The close
agreement in the dpa rate is somewhat fortuitous considering that the
standard deviation in the result is ~5%.

Based on the agreement with the transport calculation the optimal

design point of 0.09% 6L1 and a blanket thickness of 0.91 m is quite

acceptable.
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Table 4.12

Comparison of TART and estimated results at
x1 = 0.09% and x3 = 0.9T m

TJART Estimated
Reactions per DT reaction
bL4(n,T)e 0.357 (1.7)¢ 0.350
Li(n,Tia 0.698 (0.7) 0.700
T 1.055 1.050
Lin,Y) 0.016 (1.6) 0.016
Mn{n,Y) 0.353 (1.5) 0.353
fFe(n,Y) 0.390 (1.4) 0.382
Energy depositiond
Target 1.82 (0.4) 1.84
6.4 1.67 (1.7) 1.70
Ly 9.45 (0.5) 9.32
Structures 6.17 (1.5) 6.03
Mn decay 0.88 0.88
Alpha particle 3.52 3.52
TOTAL 23.51 23.29
Displacement damage rateb 9.45 (9) 9.50

a) MeV per DT reaction,

b) dpa per full-power-year based on 2700 MW of fusion power.

c¢) percent standard deviation.
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4.5 SUMMARY OF OPTIMIZATION RESULTS. Y

The plant parameters at the final optimal design pSﬁpt are
compared to the reference HYLIFE parameters in Table 4.1%. With the
modified design, the fusion energy multiplication factor is increased
to 1.34. As a result, the modified design produces 19.4% more
electric power. The plant capital cost, however, is only 6.5% higher
for an 10.8% reduction in the cost per kWe. To put this into
perspective note that with the modified HYLIFE design the driver and

target factory coild cost $200 M more (direct) for the same cost of

electricity as from HYLIFE.

The various optimal design points described in this chapter are

summarized in Table 4.14.
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Table 4.13

Comparison of HYLIFE and modified HYLIFE parameters at
X7 = 0.09% and xp = 0.91 m )

Tritium breeding ratio
Neutron energy deposition, Mev
Fusion power, MW
Fusion energy multiplication factor
Thermal power, HNt
Thermal conversion efficiency, %
Gross electrical power, MWe
Laser power consumption, MWe
Auxiliary power requirements, MWe
Lithium pumping power, Mue
Net electrical power, MWe
Direct capital costs, $M

Reactor

Lithium pumps

Laser

Target factory

TOTAL

1.75

16.9
2700

3130
39
1220
135
75
30
980

960
160
330
100

1550

Modified
HYLIFE

1.05

20.0°
2700
1.34
3607
39
1407
135
75
27

1170

1075
146
330
100

1651

(a) based on results of transport calculation.
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Table 4.14

Summary of optimal design points discussed in Chapter 4%

Uptimai Point

Reference Points

Number x1, % X2, m x1, % X2, m Method
1 0.27 0.86 0.50 0.7% Successive two
0.50 1.25 point interpolation
71.42 0.75
7.42 1.25
2 0.14 0.90 0.27 G.86 Taylor Series
about point 1
3 0.13 0.86 0.07 0.75 Successive two
G.07 1.25 point interpolation
0.50 0.75
0.50 1.25
4 0.09 0.91 0.07 0.75 Three point
0.07 1.00 interpolation on Xy
0.07 1.25 Two point
0.50 0.75 interpolatinn on Xq
0.50 1.00
0.50 1.25



-135-

5. OPTIMIZATION OF THE CASCADE CHAMBER

5.1 DESCRIPTION OF THE PROBLEM

5.1.17 The Cascade Reactor Concept.

The subject of the second optimization problem is another inertial

n,m The primary

confinement fusion reactor concept called Casrade.
feature of Cascade ({see Fig. 5.1) 1s a rotating chamber in which a
cascading blanket of solid 11thium cerami~ pebbles breeds tritium,
acts as the heat transfer medium, and protects the chamber wall from
the damaging effects of neutrons, x-rays and target debris. Pebbles
are injJected at each end of the chamber, and are held against the wall
by centrifugal action. The pebbles catcade toward larger radii and
exit through apertures 1nto « stationary pebble catcher. Heat and
tritium are removed, and the pebbles are recirculated for reinjection
into the chamber. This concept is currently under investigation at
Lawrence Livermore Natiopal Laboratory, and researchers at GA
Technologies are participating in the study under contract.

As reported 1n the 11terature,72 the solid breeding material
used in Cascade is L120. While L120 is a good tritium breeding

material, there are some coicerns about the corrosive effects of LiOH

13,74

which is formed from Li20. From a compatibility standpoint,

a more attractive ceramic tritium breeding material fis

L1A9.02.75 Unfortunately, L1A9.02 will not give a tritium
breeding ratio greater than one unless a neutron multiplier is placed

between the fusion neutron source and the L1A9.02 breeding blanket.25
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Stationary
pebble catcher -\

Target
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Rotating
chamber

Ceramic pehhte
breeding blanket

\ OCutlet to

hezt-transfer
loops

fFtg. 5.1 The Cascade chamber.
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In this optimization problem, a Cascade chamber using a L1A102
breeding blanket and a Be0 neutron multiplier is investigated.

Beryllium is an excellent neutron multiplier with a threshold of only

1.85 Hev.76 Beryl1ium oxide 15 proposed here to aliow for high

temperature operation, which is one of the goals of the Cascade

concept.77’7a

A flowing layer of Be0 pebbles can be maintained on the surface of
the L'iAQO2 blanket by fabricating the BeO larger and less dense
than the L1A9.02 pebbles.79 The normal density of BeD is
3.01 g/cm3, while L1A102 has a normal density of 2.55 g/cm3.

Therefore, the Be0 pebbles must be fabricated at Tess than 85% normal

density.

Three blanket design variables are considered in the Cascade

optimization problem. They are

Xy = 6L1 fraction in L1,
x2 = L1A102 blanket thickness, m, and
*q = Be0 multiplier thickness, m.

5.1,2 Ffiqure of Merit for Cascade.

The figure of merit chosen for this design is simply the sum of
the LiAQO2 blanket thickness and the BeD multiplier thickness.
That is, we seek to minimize

F=x, + x3. (5.1)

At this stage in the development of the Cascade concept, it is not
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possible to optimize a more general system parameter, such as the cost
of electricity, since cost estimates for the reactor plant have not
yet been made. By minimizing the total blanket thickness (the
multiplier is considered part of the blanket) the size of the rotating

chamber can be minimized. This inner radius of the blanket is assumed
to be fixed by the damaging effects (ablaticn and vaporization) of the

x-rays and target debris.

Pitts previously sought to minimize the size of the chamber from a
mechanical and thermal perspect1ve.BO In this problem, the neutronic

perspective is considered.

5.1.3 Constraints on the Design.

Three constraints are imposed on the Cascade design. The first is
a requirement'fér a trit1um breeding ratio greater than 1.05. This 1s
the same constraint as used for the modified HYLIFE chamber
optimization problem discussed in Chapter 4. The constraint is

expressed as,

T > 1.05. (5.2)

The second constraint relates to the mechanical design of the
Cascade chamber. GA Technologies recently proposed a concept where

the rotating chamber is constructed of individual SiC panels held

81

together by A% tendons. The AL tendons are actually a

composite of AL and SiC fibers to increase tensile strength of

AL. Based on a temperature 1imit of 400°C for the tendons, the heat

generation rate in the tendons due to neutron and gamma heating must

3 81

be less than 0.89 W/cni™. The second constraint 1s
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G < 0.85 W/emS. (5.3)

The heat rate in the tendons is calculated from,

o
fl

EtPf/l7.6Vt, (5.4)
where
E, = energy deposited in the zone representing the AL/SiC

tendons, MeV per DT reaction,

Rl
"

the fusion power, W, and

<
1

volume of the zone representing the tendons, cma.

The value 17.6 1s the total energy in MeV released per DT reaction.
for Cascade, the fusion power is 3000 MW.

A third constraint is pléced on the total neutron leakage rate
from the Cascade chamber. This parameter glves an indication of the
effectiveness of the blanket design in performing one of i1ts primary
functions, namely, capturing the fusion neutrons.

The beam ports at the ends of the Cascade chamber provide a direct
leakage path from the chamber. The two ports subtend 1.25% of the
total solid angle. The neutron leakage through the ports, however,
will be greater than 1.25% of the fusion neutron source for two
reasons.82 One 1s that neutrons entering the blanket can be
scattered out through the ports. The second is that neutron
multiplication in the Be0 region will tend to increase the neutron
leakage through the ports.

There will also be some neutron leakage through the L1A202

blanket itself., The constraint on the total neutron leakage is set at
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0.1 neutrons per DT reaction. That fis,
L <0.1. {5.5)

The constraints given by Eqs. 5.2, 5.3 and 5.5 are evaluated as a
function of the three design variables using successive, two point
variational interpolation. As such, eight reference point transport

calculations are required. The neutronics model for the Cascade

chamber is discussed in the next section.
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5.2 REFERENCE POINT TRANSPORT CALCULATIONS

5.2.1 Neutronics Mode] for the Cascade Chamber.

The neutronics model of the Cascade chamber is shown in Fig. 5.2.
The football shaped chamber (see Fig. 5.1) is approximated by a
sphere. As in the neutronics model for the modified HYLIFE chamber,
the 14.1 MeV neutron source is uniformly distributed throughout a
region of DT compressed to a density-radius product of 3.0 g/cmz.
The target, zone 1, 1s located at the center of the chamber. The
region between the target and the blanket is void.

The innermost blanket region, zone 3, contains the BeQ neutron
multiplier. This zone is 0.1 m thick and has an inner radius of
3.4 m. The density of Be0 within zone 3 is varied to represent
variations in the effective multiplier thickness, Xq-

The HMO2 breeding blanket, zone 4, extends from a radius of
3.5 to 4.5 m. Again the material density is varied to represent
variations in the breeding blanket thickness, Xy The 6L'i
fraction of 1ithium in this zone is the third design variable, Xy

Outside the breeding blanket is a 2-cm-thick shell, zone 5, of SiC
representing the chamber wall. This is followed by a 2-cm-thick
region, zone 6, that contains the AL/SiC fiber composite and
represents the tendons. The two beam ports are represented by
cylindrical voids in the blanket. The radius of these holes is 0.72 m
so that the solid angle fraction subtended at a radius of 4.5 m 1s
1.25%.

The geometric characteristics are listed in Table §.1. The volume

of zone 6 is 5.09 x 106 cm3. Thus from Eq. 5.4, the heat rate in
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Fig. 5.2 Neutronics model of the Cascade chamber.
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Table 5.1

Geometric characteristics of the Cascade neutronics model.

Inner Outer
Radius Radius
Zone Description (cm) {cm) Material
1 Target 0 0.03 1
2 Vacuum 0 340 Void
3 Neutron muitiplier 340 350 2
4 Breeding blanket 350 450 3
5 Chamber wall 450 452 4
6 Tendons 452 454 5
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the AR/SYC tendons for 3000 MW of fusion power fis

G = 33.5 Et' (5.6)

where

E, = energy deposited in zone 6, MeV per DT reaction.

The composition of the materials used in the neutronics
calculations are 1isted in Table 5.2. The tendons are 65 vol% AR
and 35 vol% SiC fibers. These fibers contain €O and 5102 impurities
which gives rise to the indicated oxygen content. The fiber
composition Vs 57 wt% S1, 31 wt® C, and 12 wtk G. ‘

§.2.2 Results of the eight initlal transport calculations.

As previously stated, eight reference point transport calculations
are required for the Cascade chamber optimization problem. The eight
points are defined by the combinations of two values for each of the
three design variables. The reference values for the design variables
are 6L1 fractions of 7.42 and 50%, L1A9.02 blanket thicknesses of
0.30 and 0.50 m, and BeO multiplier thicknesses of 0.05 and 0.15 m.

The results are given in Tables 5.3-5.6. The reaction rates and
the neutron balance for the four transport calculations with 0.05 m of
Be0 and 0.15 m of Be0 are given in Tables 5.3 and 5.5, respectively.
The neutron balance gives the net neutron gain or Toss in the various
regions of the chamber. The small remainder is the neutron capture in
the SiC wall and AL/SiC tendons.

The energy deposition per DT reaction in each zone is given in
Table 5.4 for the four cases with 0.05 m of BeQ, and in Table 5.6 for

the four cases with 0.15 m of Be0®. The key number here is the energy
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Table 5.2

Composition of materials used in the Cascade neutronics caiculattons

Density Isotopic Fractions
Material {g/emd) (%)
i 100 D 50.00
T 50.00
2 3.01 Be 50.00
o 50.00
32 2.55 6Ly 1.86
Ity 23.14
an 25.00
0 50.00
3b 2.55 LK) 12.50
N 12.50
AS. 25.00
0 50.00
4 3.20 Si 50.00
c 50.00
5 2.60 c 19.71
0 5.72
$) 15.49
AL 59.08

a) natural 1ithium.

b) 1ithium enriched to 50% Sti.
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Reaction rates and neutron balance for
transport calculations with 0.05 m of BeO

Table 6.3

Reference point 1 2 3 4
L‘IM.O2 thickness, m 0.30 0.30 0.50 0.50
6Ly Fraction, % 7.42 50.00 7.42 50.00
Reactionsd
6L1(n,T)e 0.797 0.948 0.999 1.100
(1.2)b (1.3) (1.7) (1.1)
Li(n,n'T)a 0.070 0.038 0.075 0.040
{(0.9) (1.0) (1.5) (1.9)
Be(n,2n) 0.269 0.266 0.264 0.267
(1.6) (1.4) (1.1) (0.9)
Neutron balanced
Target 1.057 1.056 1.055 1.057
Be0 0.189 0.188 0.187 0.184
L1A20; -0.893 -1.046 -1.104 -1.179
Port leakage -0.046 -0.033 -0.043 -0.030
(4.1) (3.5) (3.2) (8.6)
Blanket leakage  -0.303 -0.161 -0.094 -0.031
(2.0) (2.5) (2.7) (3.1)
Remainder 0.004 0.004 0.001 0.001

a)

b)

per DT reaction.

percent standard deviation.
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Table 5.4

Energy deposition fer the
transport calculatiens with 0.05 m of Be0

Reference point 1 2 3 4
L1A102 thickness, m 0.30 0.30 0.50 0.50
6L Fraction, % 7.42 50.00 7.42 50.00

Energy deposited?

Target 1.80 1.85 1.85 1.83
(0.4)b (1.0) (0.7) {0.8)
Be0 3.05 3.02 3.06 3.03
(0.9) (0.4) (1.0) (0.4)
L1A20; 9.19 9.98 10.77 11.28
(0.7) (0.7) (1.1) (0.8)
$4C wall 0.11 0.11 0.03 0.02
(2.9) (2.9) {(10.2) (1.5)
Tendons 0.059 0.059 0.013 0.014
(3.1} (2.8) (8.2) (6.3)
Port leakage 0.20 0.20 0.19 0.18
(5.9) (7.5) (1.7) (8.8)
Blanket leakage 0.66 0.65 0.14 0.13
(3.7) (2.7) (7.4) (7.6)

a) MeV per D1 reaction.

b) percent standard deviation.
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Table 5.5

Reaction rates and neutron balance for
transport calculations with 0.15 m of 8e0Q

Reference point 5 6 1 8
L\AlOz thickness, m 0.30 0.30 0.50 0.50
6Ly fraction, % 7.42 50.00 7.42 50.00
Reactionsd
6Li(n,T)a 1.158 1.211 1.263 1.276
(0.:) (0.9) {0.8) {1.2)
Liga,n'Ta 0.023 0.012 0.023 0.012
{.6) (2.7) (3.2) {3.0)
Be{n,2n) 0.562 0.569 0.561 0.556
(1.1) {1.4) (1.1} (1.3)
Neutron balanced
Target 1.052 1.051 1.061 1.057
Bel 0.321 0.318 0.325 0.315
L1ARO, -1.179 -1.252 -1.290 -1.30%
Port leakage -0.057 -0.051 -0.056 -0.050
(3.8)' {4.6) (4.2) {6.4)
Blanket leakage -0.136 -0.065 -0.039 -0.016
(1.9} (3.3) {5.3) {12.9)
Remainder 0.001 0.001 0.001 0.00

a) ner DT reaction.

b) percent standard deviation.
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Table 5.6

Energy deposition for the

transport calculations with 0.15 m of BeQ

Reference point 5 6 7 8
L\Aﬁoz thickness, m 0.30 0.30 0.90 0.50
BL1 Fraction, % 7.42 50.00 7.42 50.00
Energy depositedd
Target 1.81 1.83 1.84 1.83
{(0.6)b {0.7) (0.8) (0.5)
BeO 6.89 6.82 6.94 6.82
(0.6) (0.9) {0.5) (0.9)
L1ARG, 1.117 7.91 8.36 8.38
(0.9) {(0.7) (1.0) (1.2)
SiC wall 0.05 D.04 0.01 0.01
(6.2) (4.5) (7.8) {8.0)
Tendons 0.026 0.024 0.007 0.006
(5.4) (3.8) (7.1) (16.5)
Port leakage 0.21 0.20 0.18 0.19
(8.0) (6.5) (6.3) (3.1)
Blanket leakage 0.28 0.26 0.06 0.06
(4.8} (4.3) (8.2) (14.6)

a)

b)

AeV per DT reaction.

percent standard deviation.
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deposition in the AR/SiC tendons. The other information is provided
for completeness.

The results of the eight reference point transport calcuiations
form the basis for estimating the neiutronic performance as a function

of the three design varilables. This is discussed in the next section.
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5.3 INITIAL OPTIMIZATION RESULTS FOR CASCADE

5.3.1 Estimated Neutronic Performance.

The neutronic performance is estimated as a function of the three
design variables by successive, two point variation interpolation. In
particular, the constraints un the tritium breeding ratio, the tendon
heat generation rate, and the total ne:tron leakage must be determinzd.

The tritium breeding ratio as a function of the 6L1 fraction and
the L‘IAQ.O2 blanket thickness for the case of a 0.05-m-thick Be0
multiuiier is shown in Fig. 5.3. Note from Table 5.3 that the tritium
breeding is dominated by the contribution from 5L1. A contour plot
of the tritium breeding ratio with 0.5 m of Bel is shown in Fig. 5.4.
To meet the constraint of T > 1.05 requires a L‘iA!O2 blanket
thickness greater than ~0.37 m if the L1 is enriched to ~40% 6L1.

Figures 5.5 and 5.6 show the tritium breeding ratio in the

L1A20, blanket when a 015-m-thick Be0 multiplier is used. Here

2
the benefit multiplier is clear. The tritium breeding ratio exceeds
the minimum required value of 1.05 over the entire range of 6L1
fractions and L1A!02 blanket thickness shown. The only exception

is for thin blankets with denatured L1, 1.e., less than ~3% 6L1.

As seen in the previous four figqures, the tritium breeding ratto
shows the same trends as discussed for the modified HYLIFE chamber.
In particular, the breeding ratio increases with increasing 6L1
fraction and with increasing blanket thickness. The breeding ratios
were calculated by interpolating on X first, then on Xo and
finally on Kq-
As Indicated in Tables 5.4 and 5.6 the energy deposition in the
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Contour plot of tritium breeding ratio with 0.05 m of BeO.

The tritium breeding ratio must be greater than 1.05.
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Fig. 5.6 Contour plot of tritium breeding ratlo with 0.15 m of Be®.

The tritium breeding ratto must be greater than 1.05.
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6L1 fraction. Figure 5.7

AL/Sic tendons is independent of the
shows the heat generatlon rate (H/cma) in the tendons as a function
of the Be0 thickness and the L‘iAI.O2 blanket thickness. As

indicated, the heat generatlon rate decreases as the thickness of
elther reglon increases.

A contour plot of the tendon heat rate is shown in Fig. 5.8.
Recall the heat rate must be < 0.85 H/cma. In order to meet this
constraint, the minimum required L‘IA!O2 thickness s ~0.38 m
with 0.05 m of BeO. The required thickness decreases with increasing
Bed thickness to ~0.30 m with 0.15 m of Be0. The heat generation
rate is calculated by first interpolating on Xy and then on Xq-

The neutron leakage is calculated from a neutron balance with the

net gain in the Be0 region and the net absorption in the L1A9.02

blanket being estimated by successive two point interpolation. That

is

L =1.056 + Ng - Na, (5.7)
where

Ng = aet neutron gain in BeO, and

Na = net neutron absorption in L1A102.

The factor of 1.056 1s the number of neutrons emitied by the target
per DY reaction. It exceeds one because of (n,2n) reactions with
D and T in the compressed fuel zone.

6

The total neutron leakage as a function of the "Li fraction and

L1A102 blanket thickness 1s shown in Figs. 5.9 and 5.10 for the

case of a 0,05-m-thick Be0 multiplier. The leakage decreases with



-157-

ey e a e e

20~ - : ‘ R i

-
(4]

Heat generation rate, W/cm3
-
=)

o '0.45
/_y'/ «
0.5 “pa0 & &
S o) &
v O
o Vv"\\b
A -~
s 0.35
0 - . 4 1 - - ..J ’
0.06 0.08 0.10 0.12 0.14 0.30

BeO multiplier thickness, m

fig. 5.7 Heat generatton rate in AR/S1C tendons as a function of BeD
thickness and L1A9.02 thickness. The fusion power Is

3000 MW.




-158-

0.50 T T T T - \I T T T T
\\
BN N
0.48
N ‘\\~
0461 . L
;\\ e
N
0.44
£ _ ‘
7 N :
g ~._ 04
(= - N *
§ o4z . NG
£ ; >
2 AN L Tl
g o040 » “ -
) N : Ny T
S - - L
o' o3} ' .06 ™~ ~
g : - e
3 N ~. ~ \\
0.36 T T~ e
0.8 . e T
~ ~. T~ \\
0.34 1 T R T~ T~
- M X \\\ . ‘\\\\ "-\\\ o~ e
. - - - ~
0.32 - 12 - S Tl T
3 - R S - T~ T~ — e
e e T T T
e T, T

0.30 1- S L ! 1
005 006 007 008 009 010 011 012 013 014 015
BeO multiplier thickness, m

Fig. 5.8 Contour plot of the heat generation rate in the tendons.

The heat rate must be less than 0.85 H/cms.
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increasing 6L1 fraction and with increasing blanket thickness since
in both cases more neutrons are captured by 6L1 as these variables
increase. The curves extend down to 7.42% 6L1, 1.e., natural
11thium. Note from Fig. 5.10, that even if the L1 is enriched to 80%
in 6L1. a 0.41-m;th1ck blanket 1s required to keep the neutron
leakage below 0.1 per DT reaction.

Figures 5.11 and 5.12 show the neutron leakage as a function of
the 5L'i fraction and the L‘IAP.O2 blanket thickness when a
0.15-m-thick B8e0 multiplier ‘s used. Note that the range of the
vertical scale of Fig. 5.11 1s about a factor of two smailer than in
Fig. 5.9. In this case, the minimum required breeding blanket
thickness decreases frum ~0.49 m with natural L1 to ~0.33 m with
L1 enriched to 80% °L1.

The three constraints, Eqs. 5.2, 5.3 and 5.5 are shown a5 a
function of the 6Lﬁ fraction and the L‘IA!O2 blanket thickness
for 0.05, 0.10, and 0.15 m of 8e0 in Figs. 5.13, 5.4 and 5.15,
respectively. In each case it is desirable to find the minimum value
of the L‘iAQO2 thickness such that the figure of merit, Xy + Xg,
is minimized.

Comparing these three figures gives an indication of how the
constraints vary as a function of the BeO thickness. The minimum

L1AR0, blanket thickness set by the tritium breeding ratio

2
constraint decreases with increasing Bel thickness. The same trend
applies to the hcat generation rate constraint.

Note that for the neutron leakage constraint, the minimum
L\Am2 blanket thickness is greater at 0.10 m of 8e0 than at 0.05

or 0.15 m, This rise and fall in the required blanket thickness is
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related to the two modes of neutron leakage. As indicated in
Tables 5.3 and 5.5, increasing the Be0 thickness incrz2ases the neutron
leakage through the ports and decreases the blanket leakage. Ffor a
blanket highly enriched in 6L‘I, the Increase in port leakage can
exceed the decrease in blank-t jeakage. Az a result a thicker
breeding blanket is required to maintain a constant totai leakage rate
of 0.1 per DT reaction.

In a1l three figures the 1imiting constraint is the neutron
leakage constraint. Assuming a upper 1imit of 80% on the 6L1
enrichment, the minimum L1AR0. blanket thicknesses are 0.41, 0.44,

2
and 0.33 m for the 0.05, 0.10, and 0.15 m thick BeO cases,

respectively.

5.3.2 Optimal Design Point.

The direct search algorithm gives the optimal design point as
63.6% 6L1, 0.397 m of L1A102 and 0.040 m of Be0. This result is
shown graphically in Figs. 5.16 and 5.17. Figure 5.1€ shows the
minimum blanket thickness as set by the neutron leakage constraint and
the heat generation constraint as a function of the BeO thickness.
for less than 0.04 m of 3e0 the hcat generation rate is the limiting
constraints Between 0;04 and 0.16 m of BeO, neutron leakage is the
1imiting constraint. Beyond 0.1o m, the L1M.02 blanket thickness
1s again limited by the heat generation rate.

Also shown in Fig. 5.16 is the figure of merit, i.e., the total
blanket thickness. Note that there are two ‘ocal mirima, one at
0.04 m of Be0 and the other at 0.16 m. The minima at 0.04 m however,
is the lower of the two.

The constraints as a functlon of the 6L1 fraction and the
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L1A9.02 thickness are shown in Fig. 5.17 for the optimal 0.04 m of

Be0. Note again how the optimal design point 1ies at the Intersection
of the neutron leakage and heat generation rate constraints. Clearly
higher 6L1 enrichments give the same minimum thickness since the

heat rate s independent of this variable. The minimum acceptable

6

L% fraction, 63.6%, 1s chosen from a resource consideratton.

5.3.3 Comparison to transport calculation at the optimal point.

An additional neutron transport calculation was carried out at
63.6% 6L1. 0.40 m of L1A9.02 and 0.04 m of BeO®. The results are
compared to the estimated results at the optimal point tn Tabte 5.7.
The estimated tritium breeding ratio is ~3% higher than the TART
resuit and the estimated neutron teakage is low by ~6%. While these
are acceptable differences, heat generation rate in the A%/SiC
tendons 1s actually 22% ivigher than the estimated result.

In the next section an improved estimate of the localion of the

optimal design point is mad: based on a new estimaie o the tendon heat

generation rate as a functlon of the L1A9.02 and Be0O thickness.
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Table 5.7

Comparison of neutronic performance at

x] = 63.6%, %, = 0.40 m, and g = 0.04 m
Parameterd TART Estimated
®Li(n,T)a 0.985 (1.3)° 1.021
T(n,n'Tia 0.032 (2.0) 0.032
Tritium breeding ratio 1.017 1.0583
Total neutron leakage 0.106 (3.0) 0.100
Energy deposited in 0.031 (4.0) 0.02%

tendons, MeV

a) per BT reaction.

b) percent standard deviation.
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5.4 IMPROVED ESTIMATE OF LOCATION OF OPTIMUM

As indicated in the previous section, there is a significant
difference between the estimated heat generation rate in ihe AL/SiC
tendons and the results of the neutron transport calcvlation. It is
postulated that this difference is largely due to the fact that a
significant fraction of the energy deposited in the AL/SiC tendons
is photon energy that originates in the L‘iA!O2 blanket. The break
down 1s given in Tables 5.8 and 5.9. The variational interpolation
formula used to predict the energy deposition in the tendons only
accounts for vartations in the neutron flux in that region. It does
not arrount for variations in the photon source 1jacents region
and ti.  ransport of those photons into the tendons.

An alternate approach is therefore used to estimate the heat rate
in the tendons as a function of the Be0 and L1All[]2 blanket
thickresses. It 1s assumed that the heat generation rate decrec.ses
exponentially with the thickness of Be0 and with the thickness of
L1A20,. That ts

E = ED eKD(-szz) exp(—u3x3) (5.8)
<here

E = energy deposition in the AL/SiC tendons, MeV,

E0 = energy deposition with no blanket, MeV,
#y = attenuatien coefficient for L1ﬂ!02 thickness, m'], and
Hy = attenuation coefficient for BeO thickness, m"

Using the energy deposition results given in lables 5.4 and 5.6
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Table 5.8

Photon energy source and deposition in
AR/S1C tendons with 0.05 m of BeO.

Reference point 1 2 3 4

L1A20, thickness, m n.30 0.30 0.50 0.50
611 Fraction, % 7.42 50.00 7.42 50.00
Photon source’ 0.028 0.039 0.006 0.006
Photon depns1t10na 0.043 0.043 0.010 0.012
Photon/Total? 0.73 0.73 0.717 0.86

a) MeV per DT reaction.

b) Ratio of photon energy deposition to total enerqy denosition.

Total deposttion given in Table 5.4.
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Table 5.9

Photon energy source and deposition in
AL/S1C teadons with 0.15 m of Be0.

Reference point 5 6 7 8

L1420, thickness, m 0.30 0.30 0.50 0.50
5.1 Fraction, % 7.42 50.00 7.42 50.00
photon source? 0.013 0.007 0.006 0.003
Photon depos1t10na 0.021 u.019 0.006 0.005
Photon/Tota1® 0.81 0.79 0.86 0.87

a; MeV per DT reaction.
b) Ratio of photon energy deposition to total energy deposition.

Total deposition given in Table 5.6.
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the following system of equations can be written,

0.059 = ED exp(-0.3u2) exp(-0.0ﬂua), (5.9)
0.014 = Eo exp(~0.5u2) exp(-0.05u3), (5.10)
0.025 = ED exp(-0.3u2) exp(-0.15u3). (5.11)

Solving for the three unknowns and substituting into Eq. 5.8 gives
£ = 0.827 exp(—7.37x2) exp(-8.59x3). {65.12)

Using this expression, the predicted energy deposition for the
optima) design point of Xy = 0.40 m and Xy = 0.04 m is 0.031 Mev
or 1.03 H/cma. Hence at this part?cﬁ1ar point the new estimate is
quite accurate.

The heat generation rate in the tendon as a funciion of the BeO
muitiplier thickness and L1A9.02 thickness 1s shown in Figs. 5.18
and 5.19. Note that the surface in Fig. 5.1B is somewhat flatter than
the earlier estimate siown in Fig. 5.7.

The optimization problem was rerun, using the exponential estimate
for the lieat generation rate in the tendons. The optimal design point
i this case 1s 34.2% SL1, 0.424 m of L1ARD,, and 0.042 m of Beo.

The constraints and location .f the optimal design point for this case
are shown in Fig, 5.20

A final transport calculation was carried out at the new optimal

point. The results are compared to the estimated results in

Table 5,10. In this case the agreement 1s close for all the relevant

parameters.
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Table 5.10

Comparison of neutronic performance at
X1 = 34.2%, xp = 0.424 m, and x5 = 0.042 m.

Parameterd TART Estimated
8 4(n,T)a 1.019 (1.0)° 1.029
7L1(n,n'T)u 0.040 (1.1) 0.057
Teitium breeding ratio 1.059 1.086
Total neutron Teakage 0.097 (3.7) ' 0.100
Energy deposited in 0.024 {3.0) 0.025

tendons, MeV

a) per DT reaction.

b) percent standard deviation.
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5.5 SUMMARY

In summary, the Cascade chamber can be designed with a L1A9.02

breeding blanket 1f a Be0 neutron multiplier is used. The
configuration that minimized the total blanket thickness s 0.042 m of
Be0 followed by 0.424 m of L1A!02. The L1 must be enriched to at

least 3¢.2% 1n oL,

Since the blanket is a pebble bed, the actual thickness is the
effective thickness divided by the pebble packing fraction. Assuming
a 50% packing fraction gives an actual total blanket thickness of

0.93 m.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 SUMMARY AND CONCLUSIONS

Optimal blanket design i1s a key element in effective fusion
reactor design. A methology has been developed to systematically
optimize the blanket design as a function of several variables. The
optimization pr-dolem consists of four essential elements: the figure
of merit for the particular reactor concept, a technique for
estimating the neutronic performance as a function of the selected
design variables, constraints on both the design variables and the
neutronic performance, and a method for optimizing the figure of merit
subject to the constraints.

In the method presented, the neutronic performance is estimated
using variational interpolation. By successive interpolations, the
neutronic performance can be estimated as a function of several design
variables based on a 1imited number of reference point, neutron
transport calculations. Since only forward flux solutions are
required for the interpolation, any number of neutronic
characteristics can be estimated based on the same reference point
transport calculations. The applicability of this approach has been
demonstrated in the optimization of two inertial confizement fusion
reactor concepts, one as a function of two variables and the second as
a function of three vartables.

The variaticnal interpolation approach should not be used
indiscriminately. If the reference point results vary linearly with

one or more of the design variables, it is senseless to use a
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nonlinear interpolation. Also, with the three point interpolation,
care must be taken to check for singularities within the range of
interest. Where possible, it is advisable to relate the variational
results to known boundary or continuity conditions. The neutron
balance method is an example of this approach.

The optimization algorithm employed in this work is a direct
search, nonlinear simplex method. The method seeks to inimize a
figure of merit by comparing its value at several points and selecting
a new point based on the results of the comparison. The method was
found to work quite efficiently. Even with convergence parameters

c=6=10"

, the optimum was generally found with less than 200
iterations. (To prevent the possiblity of an endless search, the
maximum number of iterations is specificd in the input file.)

Hundreds of iterations were typically completed in less than a second
of CRAY-1 CPU time. In a typical problem, each iteration involved
calculating several neutronic characteristics using successive
variational interpolation, and then calculating a figure of merit that
depends on the neutronic results.

It was found that graphical display of the constraints and figure
of merit was very useful in understanding the factors determining to
the location of the minimum. In addition, a visual display can reveal
a nonunique minimum as in Fig. 5.20.

The optimization methodology was applied to two different ICF
reactor concepts. The first optimization problem involved a
modification to the HYLIFE concept. The oblect was to increase the

fusion energy multiplication factor and thus reduce the plant capital

cost per unit of net electric power. By reducing the trittum breeding
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ratio and capturing more neutrons in a manganese steel, the energy
multiplication factor was increased by 22% and the plant cost per kWe
reduced by 12%.

The two design variables in this problem were the 6L‘I fraction
in 1ithium and the effective thickness of the 1ithium blanket.
Constraints were imposed on the minimum tritium breeding ratio and a
maximum displacement damage rate in the first structural wall. The
optimal design point was found to be slightly less than 0.1% of 6L1
in an 0.91-m-thick blanket.

The second optimization problem Qas based on the Cascade reactor
concept. A version using a LlAD.O2 breeding blanket with a Be0
neutron muttipiier was investigated. In this case the objective was
to minimize the sum of the multiplier thickness and the breeding
blanket thickness. Constraints were imposed on the minimum tritium
breeding ratio, the maximum neutron leakage, and the maximum heat
generdtion rate in the AR/SAC tendons that wrap the chamber.

The Cascade chamber was optimized as a function of three design
variables: the Be0 multiplier thickness, the 5L1 fraction and the
L1A102 blanket thickness. The optimal design point was found to
Tie at the intersection of the neutron leakage constraint and the heat
generation rate constraint. The blanket parameters at this point were

0.042 m of BeO, and a 0.42-m-thick L1A9.02 blanket eniriched to
34.2% OLi.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

it 1s hoped that the method developed and demonstrated here will
be used in future conceptual reactor design studies for both inertial
and magnetic confinement fusion, The exploratory nature of such
studies 1s an ideal format for multivariable optimization. The study
of fusion-fission hybrid blankets is another area for potential future
application of this method for systematic optimization.

An interesting application of the techniques developed here would
be to compare the optimal blanket designs for the same reactor but
with various figures of merit. Ffor the modified HYLIFE concept the
blanket was optimized to reduce the cost per unit of net electric
power. In doing so, Mn is activated, and the afterheat problem is
thus heightened. If minimizing induced activity had been the figure
of merit, a completely different blanket design would have emerged.
Alternatively, a cost penalty proportional to the chamber's afterheat
could be inciuded in defining the figure of merit. The Cascade
reactor concept should also be reexamined from an economic perspective
once cost scaling relations are developed.

One fina1 recommendation for future work would be to automate and
more closely couple the graphics with the definition of the figure of
merit and constraints. As it now stands, the graphics are done

separately.
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6.3 A FINAL WORD

In an optimization problem a complex decision involving the
selection of values for a number of interrelated variables, §s made by
focussing on a single figure of merit designed to quantify performance
and measure the quality of the decision. This figure of merit is
maximized or minimized subject to the constraints that may 1imit the
selection of decision variable values. Since all the complexities of
the system being analyzed can not, in general, be fully represented in
the model, optimization should be regarded as a tool of
conceptualization and Qnalysis rather than a principle ylelding the
true optimum.83 The result is only as good as the model. A
thorough understanding of the system one is dealing with, 1.e., being
able to select an appropriate figure of merit, define the constraints,
and model the system as accurately as possible, is, therefore, the

first prerequisite to effective design optimization.
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APPENOIX - I DERIVATIVE OF THE THREE POINT INTERPOLATION FORMULA
WITH E(x) PROPORTIONAL TO x.

Consider the case where I(x) is proportional to x. The three

point interpolation formula, Eq. 2.64, becomes

RS[B = xRa/xa (I.1)
- [(x-xa)/(xc-xa)][xcRa/xa - Rc][xRb/xb - xRa/xa]/D,
where
D= [(x-xb)/(xc-xb)][xcRb/xb - Rc]
- [(x—xa)/(xc—xa)][xcRa/xa - Rc].
Equaticn [.1 can be rewritten as
RSIB = xRa/xa - [(x-xa)/xa][xRb/xb - xRa/xa]1ac/D. {1.2)
where
9= (x—xb)’\bc/xb - (x-xa)1ac/xa,
ac = (XRy = xRV X -x, ),
and

1bc = (xcRb - xbRc)/(xc-xb).

Note that 1ac is the intercept on the R-axis of a straight line
through the points (xa.Ra) and (xc'Rc)‘ Likewise, 1bc is the
intercept on the R-axis of a 1ine through (xb.Rb) and (xC,Rc).

Gathering terms, Eq. [.2 can be rewritten as
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2
RSIa = xRa/xa - (C1x - sz)/(c3x + C4). (1.3)
where
= 1ac(Rb/xb_' Ra/xa)/xa,

5 = 1ac(Rb/xb - Ra/xa),

C, = 3. /% -~ !ac/xa’ and

bc” b

The derivative of R with respect to x is then,

SI3

2
s13 = Ra/%g = [1C4% ¢ C)(Cqx - Cy) - (Cyx° - C,x)C,1/0,  (I.4)

R
where

2
D = (ng + C4) .

The Timit as x approaches zero fis

1im Rgy3 = Ra/xa + C2/Ca. (1.5)
x>0

To avoid negative values of R as x approaches zero, £q. 1.5 must be

greater than or equal to zero. That is,

Ra/xa - 1ac(Rb/xb - Ra/xa)/('lac - 1bc) >0, (I.6)
or

(3. R /x

ac b’ ~ 1bcRa/xa)/“ac - ‘bc) 2 0. (L.7)
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APPENDIX II USER INFORMATLION
The fusion reactor blanket opt1mization code 1s avajlable on the
National Magnetic Fusion Energy Computer Center (NMFECC) system. To
access the code type

FILEM RDS 3011 .FRBOPTC filelist

where "filelist" 1s one or more of the following filenames.

MVOHY = multivariable optimization program for the modified HYLIFE
concept. It inciludes the figure of merit function and the
successive interpolation functions. MVOHY reads INPUT,
calls CREEP, and writes OUTFILE.

INPUT = sample input file for MVOHY. This file allows the user to

change the starting point of the search, the step size, the
convergence criterion, and the maximum number of iterations

without recompiling the program.

OUTFILE = sample output file from MVOHY. It includes information
written by CREEP.
i
CREEP = subroutine for the direct search, nonlinear simplex

optimization algorithm. o
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BCRP = binary file of CREEP.

MVOHY3 = multivariable opitmization program for the modified HYLIFE
concept which 1ncludes three point interpolation for one of

the variables.

MVOCS = muitivariable optimization program for the Cascade reactor

concept. This is a 3 variablie problem.

Combining an MVO program with the subroutine CREEP makes up the
fuslon reactor bianket optimization code. The code runs on CRAY-)
machines with the CIVIC compiler.

The figure of merit function in MVG changes from problem to
problem. Since the optimization algorithm, CREEP, does not change
from problem to problem, the binary file BCRP can simply be passed to
the 1nader using a LIB= specification in the CIVIC statement.
Alternatively, the subroutine CREEP must be merged with the MVO
program.

Many comment statements have been included in an attempt to make
the MV0 and CREEP routines self explanatory. Questions that do arise
can be referred to the author in care of Lawrence Livermore National

Laboratory, Livermore, CA 94550.
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