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MULTIVARIABLE OPTIMIZATION OF FUSION REACTOR BLANKETS 

Wayne R. Meier 

ABSTRACT 

The neutron blanket that surrounds the plasma In a deuterium-
tritium fusion reactor Is an essential component of the system. A 
method for optimizing the design of a fusion reactor blanket as a 
function of several design variables 1s described. The method Is 
applied to two Inertlal confinement fusion reactor concepts for 
electric power production. 

The optimization problem consists of four key elements: a figure 
of merit for the reactor, a technique for estimating the neutronic 
performance of the blanket as a function of the design variables, 
constraints on the design variables and neutronic performance, and a 
method for optimizing the figure of merit subject to the constraints. 

The figure of merit and constraints depend on the application and 
design objectives of the particular reactor concept. In general, they 
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may be functions of the design variables and of the neutronlc 
performance. A variational Interpolation method Is used to write 
analytical expressions for the neutronlc performance based on a 
limited number of reference point, neutron transport calculations. 
This allows the figure of merit and constraints to be evaluated as a 
function of the design variables. A direct search, nonlinear simplex 
method Is used to optimize the figure of merit subject to the 
constraints. 

The first reactor concept Investigated uses a liquid lithium 
blanket for breeding tritium and a steel blanket to Increase the 
fusion energy multiplication factor. The capital cost per unit of net 
electric power produced 1s minimized subject to constraints on the 
tritium breeding ratio and radiation damage rate. The optimal design 
has a 91-cm-thlck lithium blanket denatured to 0.1% Li. 

The second reactor concept Investigated uses a BeO neutron 
multiplier and a LIAIO- breeding blanket. The total blanket 
thickness Is minimized subject to constraints on the tritium breeding 
ratio, the total neutron leakage, and the heat generation rate In 
aluminum support tendons. The optimal design consists of a 
4.2-cm-thlck BeO multiplier and 42-cm-th1ck L1AI0 2 breeding 
blanket enriched to 34% 6L1. 
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1. INTRODUCTION 

1.1 THE IMPORTANCE OF OPTIMAL BLANKET DESIGN 

Controlled thermonuclear fusion holds the promise of one day 
providing an environmentally acceptable, safe, and abundant source of 
energy. As national and international fusion programs progress toward 
the demonstration of energy breakeven, Increasing attention 1s being 
given to the future applications of fusion. Conceptual design studies 

1 2 
have been carried out for electric power plants, * fusion-fission 

3' hybrids which produce fissile fuel for fission reactors, synthetic 
4 5 6 

fuel producers, ' and other applications of both magnetic and 
Inertlal confinement fusion. 

The majority of current fusion research Is focused on 
demonstrating the feasibility of fusing two heavy Isotopes of 

2 3 
hydrogen, namely, deuterium ( H or D) and tritium ( H or T ) . The 
DT fusion reaction Is 

D + T -> 4He • n. (1.1) 
This reaction releases 17.6 HeV; the alpha particles carries off 
3.5 MeV and the neutron kinetic energy 1s 14.1 MeV. 

Deuterium is a naturally occurring Isotope of hydrogen with an 
abundance of 1 part in -6500. Tritium, on the other hand, 1s 
radioactive and fl~ decays with a half-life of 12.3 years. 
Therefore, tritium occurs only 1n trace quantities In nature. 

The neutron from the DT fusion reaction, however, can be used to 
produce tritium via reactions w1th"11th1um. The process of producing 
tritium in a fusion reactor Is referred to as tritium breeding-. 



-2-

Natural lithium has two Isotopes, 92.58% 7L1 and 7.42% 6L1, and 
both Isotopes undergo tritium breeding reactions. These reactions 
are 

n + 6L1 •* T + 4He t 4.8 HeV, (1.2) 
and 

n * 7L1 -» T + 4He * n' - 2.5 HeV. (1.3) 
As Indicated, the breeding reaction with LI releases 4.8 HeV, while 
the breeding reaction with L1 consumes 2.5 HeV. 

The cross sections for these reactions are shown 1n Fig. 1 
(Ref. 9). The l.1(n,n'T)a reaction only occurs with high-energy 
neutrons, while the cross section for the L1(n,T)a reaction 
Increases with decreasing neutron energy reaching -1000 b for 
thermal neutrons. The J.1 reaction Is very Important since it 
produces a tritium atom and a lower energy neutron that can breed more 
tritium with LI. As a result, the fusion reactor can achieve a 
tritium breeding ratio, defined as trltons bred per trlton burned, 
greater than one. A tritium breeding ratio greater than one 1s 
necessary because of the loss of Lrltlum by radioactive decay, and 
because of losses 1n the recovery and recycling operations. 

Surrounding the fusion plasma 1s a region within which the neutron 
kinetic energy Is converted to thermal energy and tritium Is bred 1n 
lithium. This region 1s referred to as the fusion reactor blanket, 
neutron blanket or, simply, Lhe blanket. The thermal energy of the 
blanket 1s removed by a primary coolant and used to generate 
electricity. In fusion-fission hybrid applications, fertile materials 
( 2 3 8U or 2 3 2 l h ) are located 1n the blanket where they absorb 
neutrons to breed fissile fuel. 
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g. 1. Cross sections for tritium producing reactions In lithium. 
L1 breeds tritium only with high energy neutrons, 

whereas the cross section for L1(n,T)a reactions 
Increases with decreasing neutron energy. 
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Slnce 80X of the energy released In OT fusion Is carried by the 
fusion neutron and since efficient tritium breeding Is necessary for a 
self-sufficient fuel cycle, optimal blanket design Is a key element In 
effective fusion reactor design. 
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1.2 ESSENTIAL ELEMENTS OF THE BLANKET OPTIMIZATION PROBLEM 

In the early stages of fusion reactor design, considerable 
latitude exists In the composition and configuration of the blanket. 
This 1s evident in reviewing the variety of designs presented In 
Refs. 1 and 2. The problem facing the design.engineer Is how to 
select the "best" set of blanket design parameters, I.e., the 
materials, isotoplc fractions and geometric factors which define the 
blanket. 

The state of the art In blanket engineering is to develop a point 
design that meets the system constraints (e.g., tritium breeding ratio 
greater than one) and then to Iterate around that point In an effort 
to come up with a more attractive design (I.e., Improve some figure of 
merit for the system). These modifications are often directed by 
Intuition and experience, and the final design Is not necessarily the 
most attractive. The optimization problem Is complicated by the 
nonlinear Interdependence of design and performance parameters and by 
the fact that modifications often produce conflicting effects, 
Improving one system parameter while degrading another. 

In this research, a methodology has been developed for 
systematically determining the design parameters that optimize a 
figure of merit for the reactor. The blanket optimization problem 
consists of four essentlcl elements: 
1. The figure of merit for the particular reactor design, 

2. A technique for estimating the neutronic performance as a function 
of selected design parameters (the Independent variables), 

3. Constraints on both the design parameters and the neutronic 
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performance, and 
4. A method for optimizing the figure of merit subject to the 

constraints. 
1.2.1 The figure of Merit. 

The figure of merit will depend on the application and design 
objectives of the particular reactor concept. In fact several 
different figures of merit may be appropriate for a single concept 
depending on one's perspective. Consider a fusion electric power 
plant for example. Minimizing the cost of electricity, minimizing the 
Induced activation and minimizing the plant tritium Inventory are each 
desirable design goals, fusion-fission hybrids can also have 
different figures of merit. Some hybrid designs seek to maximize the 
energy multiplication from fast fission of the fertile material, 

whereas other concepts seek to suppress fission and maximize the 
3 fissile fuel produced per unit of thermal power. In general, the 

figure of merit can be a function of the design variables themselves 
{composition and configuration) and the neutronlc performance of the 
reactor which depends on these design variables. 
1.?.2 A Technique for Estimating Neutronlc Performance. 

An important element In the optimization problem is the technique 
for estimating the neutronlc performance of the blanket as a function 
of the design variables. Neutron'c performance refers to the response 
of the fusion reactor blanket to Incident fusion neutrons. In 
particular, the performance may be characterized by such things as the 

tritium breeding ratio, the amount of energy deposited as the result 
of neutron Interactions, the neutron damage rate in structural 

materials and/or the amount of neutron activation. 
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The objective of a neuronics calculation Is to determine the 
neutronlc performance of a reactor blanket with a specific composition 
and configuration, I.e., a specific set of design parameters. 
Meutronlcs calculations for conceptual fusion reactor blankets are 
carried out with either dlscrete-ordlnate or Monte Carlo neutron 
transport codes. 

In general, optimization algorithms require the evaluation and 
comparison of the figure of merit at many different points In the 
search for the most attractive point. In the case of a fusion reactor 
blanket, an evaluation of the neutronlc performance Is required each 
time a new point (I.e., a new set of design parameters) 1s chosen for 
comparison. One approach would be to perform a new neutronlcs 
calculation for each point requested by the optimization algorithm. 
While this gives a very accurate evaluation of the neutronlc 
performance and, hence, the figure of merit at the point, the 
computing time required to perform the neutron transport calculations 
quickly becomes prohibitive. (For example, a single typical Monte 
Carlo calculation takes 1-3 minutes of CRAY time. This is -10 % of 
dally time allocation (per machine) for the entire Inertlal 
Confinement Fusion Program at Livermore.) 

In this research, a variational Interpolation method 1s used to 
11 12 evaluate the neutronlc performance. ' With this approach, 

analytical expressions can be written for the neutronlcs performance 
as a function of the design variables based on only a limited number 
of reference-point, neutron transport calculations. Hance, the figure 
of merit can be evaluated at any Intermediate point without the need 
for additional transport calculations. 
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This technique for estimating the neutronics performance as a 
function of the selected design variables Is discussed In Chapter 2. 
1.2.3 Constraints on the Design. 

Constraints limit the acceptable range from which blanket design 
variables can be chosen in the attempt to optimize the figure of 
merit. Constraints can be Imposed on design variables, neutronic 
performance, and factors which depend on the design variables and/or 
the neutronic performance. An example of the first type of constraint 
might be a limit on the blanket thickness. Requiring a tritium 
breeding ratio greater than 1.05 is an example of the second type. A 
limit on the allowable capital cost of the fusion reactor 1s an 
Illustration of the third type of constraint. 

Clearly the constraints imposed 1n any optimization poblem will 
be specific to the system being considered. Just as there may be 
several Interesting and appropriate figures of merit, so there may be 
several different constraints for the same system. That 1s, 1t may be 
desirable to optimize the blanket under the Imposition of different 
constraints and compare the results. 

The manner In which constraints are handled in the optimization 
problem 1s discussed In Chapter 3. 
1.2.4 An Optimization Method. 

There is a wide variety of potential methods of optimizing a 
13 figure of merit. One of the primary considerations In selecting 

an appropriate method for the blanket optimization problem is the 

nonlinearity of the system. The neutronics performance, constraints 
and figure of merit can all be nonlinear functions of the design 
variables. Another important consideration is that the form of the 



-9-

flgure of merit may vary from one prnblem to another. For this reason 
a general purpose method Is desirable, that 1s, one which 1s not 
dependent on the mathematical characteristics of the figure of merit. 

14 The nonlinear simplex method of Nelder and Head was chosen for the 
13 blanket optimization problem. According to Walsh, this Is one of 

the most efficient direct search methods available and works 

particularly well for up to five or six variables. The nonlinear 
simplex method Is described In Chapter 3. 
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1.3 PREVIOUS FUSION REACTOR OPTIMIZATION STUDIES 

Two basic types of fusion reactor optimization studies nave been 
carried out In the past. In the first type, a reactor figure of merit 
1s optimized as a function of the plasma performance, size of the 
fusion chamber, and/or other plant parameters assuming that the 
blanket neutronic performance Is fixed. In the second type, a 
neutronic parameter or a reactor figure of merit Is optimized as a 
function of one or more blanket design variables assuming that the 
plasma performance 1s fixed. Clearly the subject of this research 1s 
of the second type in,that variations 1n neutronic performance as a 
function of the blanket design are Included In evaluating the figure 
of merit. 

References 15-20 are examples of the first type of optimization 
study. In each case the blanket neutronic performance was fixed or 
had simple scaling relationships with the parameters being 
Investigated (I.e., 1n Ref. 18 the f1ss1le-fuel production rate 1s 
proportional to the fusion power). In some cases a limited number of 
different blanket designs are compared, but the neutronic performance 
of each design Is fixed. 

In most of the optimization studies of the second type, a new 
neutron transport calculation 1s carried out each time the blanket 
composition and/or configuration Is changed 1n attempting to optimize 
the chosen figure of merit. Gerstl's blanket and shield optimization 

21 was accomplished by this procedure. Abdou Investigated options 
and trade-offs 1n the nuclear design of the blanket/shield of a 

Tokamak Experimental Power reactor by comparing the neutronic results 
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of many different cases. His objective was to minimize the 
blanket/shield thickness subject to constraints on radiation damage 
and heating rates In the magnets. The authors of Ref. 23 sought to 
minimize the peak-to. average fissile fuel production rate across a 
fuel assembly In the blanket of a fusion-fission hybrid reactor. They 
did so by comparing this figure of merit for 13 separate cases. In 
Ref. 24, the cost of electricity from an EBT power plant was evaluated 
as a function of several blanket design variables. Separate 
neutronlcs calculations were carried out for each modification from 
the baseline case. As one design variable was changed all others were 
held fixed. Thus, the results show the dependence of the cost of 
electricity on each variable independently and not as a function of > 
several variables simultaneously. Gohar and Abdou carried out an 
extensive series of neutronlcs calculations to define and optimize the 
neutronlc performance of the different solid breeder options for the 

25 STARfIRE blanket design. The authors Included contour plots of 
the tritium breeding ratio and heating rates as a function of two 
variables but did not specify their method. Perkins and Kulclnski 
reported on the economic optimization of the blanket for the Mirror 
Advanced Reactor. Their procedure required a neutronlcs 
calculation for each iteration in the blanket design. 

Some attempts have been made to reduce the number of neutronlcs 
calculations required or to automate the iterative process. In their 
optimization of a magnet shield, Abdou and Maynard used attenuation 
coefficients to estimate the heating and neutron damage rates In the 

?7 magnets for various shield designs. The authors of Ref. 26 
studied the optimization of a Tokamak reactor. They estimated nuclear 



-12-

reactlon rates and heating rates by an analytical expression involving 
a leading coefficient plus a sum of exponential terms related to the 
thickness of various blanket zones. According to their report, only a 
limited number of neutron transport calculations were required to 
determine the coefficients of their expression. Engle and Mynatt 
automated their shield optimization problem by Incorporating the 

29 transport calculations in the optimization process. Each boundary 
Is varied twice, and a separate neutronlcs calculation carried out at 
each position. From these results, the dose-weight derivatives are 
determined and used to modify the shield configuration In an effort to 
optimize the design. 

Schwartz proposed a method to optimize an economic figure of merit 
30 for a fusion-fission hybrid. Starting from a reference point, 

each design variable was changed while holding the others fixed. 
Neutronlcs calculations were carried out at each point and the partial 
derivatives approximated by the finite differences. The economic 
flguie of merit was then expressed in terms of the first order Taylor 
series expansions. A gradient projection algorithm was used to 
optimize the design. 

Greenspan has developed a method for optimizing a neutronic 
characteristic of the blanket by varying the distribution of materials 

31 32 within the blanket. ' It can also be used to minimize a blanket 
characteristic such as total cost, weight or volume. His method is 
based on a variational technique which uses both forward and adjoint 

flux calculations. Each iteration requires two transport 
calculations, one forward and one adjoint, and determines a new 
material distribution which improves the neutronic characteristic of 
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interest. The method can optimize a single characteristic subject to 
a single constraint. It 1s not applicable to problems Involving the 
optimization of broader system parameters such as the cost of 
electricity. 

In this research, a variational Interpolation method is used to 
estimate the neutronic performance as a function of more than one 
variable simultaneously. The method provides analytical expressions 
for the neutronic characteristics as a function of the blanket design 
variables based on a limited number of neutron transport 
calculations. This 1s the subject of Chapter 2. 
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1.4 ORGANIZATION OF THE THESIS 

The remainder of this thesis Is divided Into five chapters. The 
variational interpolation method, and how it is used to make 
multivariable estimates of the neutronic performance. Is described In 
Chapter 2. The nonlinear simplex optimization method which is used to 
locate the optimal design point Is discussed 1n Chapter 3. The 
techniques developed 1n Chapters 2 and 3 are applied 1n Chapters 4 
and 5. In Chapter 4, the design of an Inertlal Confinement Fusion 
(ICF) reactor with a liquid lithium breeding blanket 1s optimized. 
The second optimization problem, discussed 1n Chapter 5, is also for 
an ICF reactor. In this case, however, the blanket contains a solid 
lithium compound for tritium breeding. Conclusions and suggestions 
for future work are given In Chapter 6. 
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2. ESTIMATING NEUTRONIC PERFORMANCE 

In this chapter the technique used to estimate the neutronlc 
performance as- a function of the design variables 1s described. The 
heart of the technique 1s the variational interpolation method 

11 12 described by Cheng and Conn. ' Variational interpolation Is a 
particular application of a broader category of variational methods. 
Background Information and related applications are discussed In 
Refs. 33-38 and references cited 1n these papers. 

2.1 VARIATIONAL ESTIMATES OF LINEAR FUNCTIONALS 

In the study of the neutronlcs of fusion reactor blankets, one 1s 
primarily Interested In Integral properties which can be written as 
linear functional of the neutron flux. Examples Include tritium 
production, nuclear heating, displacement damage, He and H production, 
and neutron activation rates. Consider for example a reaction 
rate, R. The reaction rate can be expressed as the Inner product of 
the macroscopic reaction cross section and the neutron flux 
distribution, 3 7 

R = <l.*>. (2.1) 

The Inner product notation < > Indicates a sum over all discrete 
Independent variables (e.g., various regions of the blanket) and an 
Integral over all continuous Independent variables (e.g., space. 
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energy, and direction). 
The neutron flux, $, is the solution to the time independent 

19 Boltzmann transport equation, 

L* = S, (2.2) 
where 
L = Transport operator such that 

l_+ = Q.jy, + i $ . T A u dQ'dE', 
B' E' 

$ = <fr(r.,S5,E) the angular flux distribution at position r., 
direction Q and energy E, 

l j = Z-.(r_,E) the total macroscopic cross section, 
f = f (r_,Q' -» fi,E' -• E) is the transfer probability function 

such that £T(r_,£')f: Is the transfer kernal for neutron 
transfer from fi', E' to a, E, and 

S = S(r_,8,E) 1s the external or independent neutron source. 
Let x be a variable that characterizes the blanket. The reaction 

rate, R(x), can be estimated using the flux, $ , calculated for some 
d 

reference system, x = x. , In several ways. I f we define 

then 

4<t-a E + - $ a , ( 2 . 3 ) 

R(x) = <Z.4» = <IA> * <X.*<)>>. (2.4) 
a a 
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The estimate. 

R(x) = <£.*>, (2.5) 

1s thirefore 1n error to first order in 5 6 . 
A variational estimate of R yie'lds a result accurate to second 
37 * order In «*, and «*,, where a a 

««t>* = <0* - <t>*. (2 -6 ) 

The a d j d n t f l u x , * , Is the s o l u t i o n to 

* * * 
L 4> = S , (2 .7 ) 

39 .'here the adjoint operator, I*, Is defined by 

* * * <6 ,L*> = <L a ,6>. (2.8) 

Consider for example the Roussopoulos functional defined by: 7,10 

* R R { * a ' * a : x > = < S ( x ) ' V * <*a»S(x)-L(x)«a>. (2.9) 

In order to give this physical significance, lot S = I so that 
the adjoint flux can be related to the reaction rate by 

<L * ,*> - <S ,*> = <£,*> = R. (2.10) 
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Uslng Eqs. 2.3, 2.6, and 2.10 In Eq. 2.9 gives 

R R = <E»it>-6«|.a> + <**-«**, S-L(<J>-*<t»a)>- (2.11) 

Expanding gives 

RR = <E,<p - <K,«<t>a> *• <• -44>a, S-L<|>+U$a>. (2 .12) 

Noting '"rom Eq. 2.2 that S-L* = 0, Eq. 2.12 becomes 

R„ = <£,<)>> - <!,«*> * <• ,L«4 > - <*t>>>.L«* >. (2-13) 
K a a a a 

* 
Note that using Eqs. 2.8 and 2.7 along with the fact that S = I, 

the third term can be written as 

<<(> ,L6* a> = <L $ ,«((.a> = <l,i$a>. (2.14) 

Hence the second and third terms of Eq. 2.13 cancel, and we are left 

with 

R R = <l,*> - <4<t>a.LHa>. (2.15) 

This demonstrates that the variational estimate, Eq. 2.9, provides a 
* result accurate to second order 1n 4<t>. and &6 as previously stated. 

a a 
The variational Interpolation method of estimating R 1s derived 

2 
from the Schwlnger (fractional) functional, 



-19-

R S < W X ) = < * a - S ( x , > < I ( x , , * a > / < * a , L ( x ) * a > - ( 2 , 1 6 ) 

The Schwlnger functional Is derived from the Roussopoulos functional 
as follows. First, two scale factors are defined for <t»a, and *a, 
respectively, 

and 
C = <X,* a>/<6 a,L* a>, (2.17) 

C 5 <<|>a,S>/<(|>a,L<t>a>. ( 2 . 1 8 ) 

The Roussopoulos functional, Eq. 2.9, for C 4, and C*. becomes 
a a 

R R(C <t>a,C*a;x) = <X(x),C4 a> + <C * a,S(x)> - <C *a,L(x)C<t>a>. (2.19) 

Substituting Eqs. 2.17 and 2.18 gives 

RR = <£. * a
> < tt» a • S>/-<*a. L«t»a> + <*a,S><E,*a>/<(|>a,L4a> 

- <**,U a><r,* a><**,S>/<4*,L4 a><* a,L* a>. (2.20) 

Cancelling a <<K,L<t> > term 1n the numerator and denominator of the a a 
third term of Eq. 2.20 reveals that the third term is Just the 
negative of the first term. Hence Eq. 2.20 reduces to 

RR = < V S > < Z , V / < * a , L V ' < 2 - 2 1 ) 

which Is Eq. 2.16. That Is, 
R S ( V V x ) * RR< c*V C*a : x )- <2-22> 
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2.2 TWO POINT VARIATIONAL INTERPOLATION FOR FUSION REACTORS 

2.2.1 Two Point Variational Interpolation In Terms of Forward Fluxes. 
In this section, the two point variational Interpolation formula 

1s discussed, and an expression In terms of the forward fluxes at 
x = x and x = x. Is derived. The advantages of this formulation 
have been pointed out by Cheng. In particular since only forward 
fluxes are Involved (A and $. ) no adjoint calculations are a D 
required. Calculating * and $. allows one to Interpolate 1n a D 

x on the functional <£(x),<|>> for any Z(x). That 1s, estimates 
of several different reaction rates, damage rates, etc., can be made 
based on the results of two transport calculations. This Is 1n 
contrast to Eq. 2.23 (below) where an adjoint calculation Is required 

* for each E(x) (I.e., S ) of Interest as Indicated by Eq. 2.7. 
The Interpolation form of Eq. 2.16 uses the forward flux 

calculated at x = x and the adjoint flux calculated at a different 
reference point, x = xfa. It 1s given by, 

R S I ( V * a i X ) = <^,S(x)><E(x),<fra>/<(i>*,L(x)(t>a>. (2.23) 

For a fusion reactor blanket the external neutron source is fixed 
In most cases of Interest (I.e., a fixed fusion power level). 
Therefore, 

L(x I* = L(x. )$. = S = constant. (2.24) 
« a D D 
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If the perturbation 1s linear In x, then L(x) can be written as 

where 

L(x) = L(x a) * SL(x), (2.25) 

6L(x) = [(x-x a)/(x b-x a)][L(x b) - L(x a)]. 

By substituting Eq. 2.25 Into Eq 2.23 and using Eqs. 2.8 and 2.24, the 
variational Interpolation formula can be written 1n terms of forward 
fluxes only. Consider the first term 1n the numerator of Eq. 2.23. 
Using Eq. 2.24 It can be written as 

< V S { x ) > = <t'b,1-(xb)<t>b>. (2.26) 

Then using Eq. 2.8, 

<4>b-S(x)> ^ <L*(xb)4.*,*b>. (2.27) 

Using the fact that L $ = S = I, g^ves 

<4>b.S(x)> = <I(xb),4>b> (2.28) 

Next consider the denominator of Eq. 2.23. first substitute 
Eq. 2.25, 

<VL(x)4. a> = < V E l a • [ ( x - x a ) / ( x b - x a ) ] ( L b - L a ) ] V , (2.29) 
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where the notation L = L(x a ) and U = U x b ) n a s b e e n u s e d -

Expanding the right hand side of Eq. 2.29 gives 

<VL a * a > * [ < x - * a > / < V x a ) ] [ < V L b V " < ^ ' L a V ] - ( 2 - 3 0 ) 

Using Eqs. 2.24 and 2.8 this becomes 

< L * V V * t ' x - x a » / ( x b - x a » " < L b * b - V " < L b V V ] - < 2- 3 ,> 

<r(x b),* b> v t ( x - x a > / t x b - x a , 1 [ < I l x b , , V " ^ V ' V 1 , ( 2 > 3 2 ) 

Substituting Eqs. 2.28 and 2.32 Into Eq. 2.23 gives an Interpolation 

formula In terms of the forward fluxes <t> and *. , 
a D 

where 

R S I ( W X ) = < J < x l ' * a

> < W / D ' ( 2 - 3 3 ) 

D • <!„.•,,> * [ < x - x a ) / < V V ] I < W " < £ b ' V ] -

Here the notation J(x.) = Xfl and E(x_) = Efa has been used. 
Note that at x = x , R c r = < £ , * > , and at x = x. , 

a ol d a D 
RSI = ^ b ' V * ' H e n c e ' E(>- 2 - 3 3 Provides the exact 
solution at the two reference points and an estimate for other values 
of x. (Exact means the same result as from the transport 
calculation.) It has been shown that for x < x < x. variational 
Interpolation relies on cancellation of error. That Is, as x 
approaches x. from x . Si)), Is growing while 4$. 1s tending D a a u 
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to zero. For values of x that do not 11e between x and x. both 
4<k and 4<t>. Increase as the distance from the reference point a D 

Increases. Therefore, great accuracy 1s not expected In using 

Eq. 2.33 to extrapolate. 
The magnitude of the error will depend both on the proximity of 

the reference points and on the sensitivity of the reaction rate to 
the design variable. In general, the farther apart x and x. are, 
the greater the error In the estimated value of R at Intermediate 
values of x will be. Also, 1f R Is very sensitive to x, the error 
will be larger than 1f R Is a weak function of x. To determine what 
the error actually Is requires a transport calculation at the 
Intermediate point of Interest. 
2.2.2 Variational Interpolation for Variations 1n Blanket Composition. 

Of particular Interest In the study of fusion reactor blankets, is 
how reaction rates change as the Isotopic composition of the blanket 
(or a region of the blanket) 1s changed. For reactions with 
Isotope-j, the macroscopic cross-section 1s 

I. = N.ff = V V j / M » < 2 - 3 4 ) 

where 
f, = atom fraction of Isotope-j 1n the blanket material, 
N. - number density of Isotope-j, 
a. = microscopic reaction cross section with 1sotope-j, 
p = material density, 
N = Avagadro's number, and 
H = effective atomic weight of the material. 
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To Investigate the effects of varying the fraction of Isotope-j 1n 
the blanket, x 1s set equal to f; hence, the macroscopic 
cross-sections for reactions with Isotope-j are proportional to x. As 
a result,, varying x gives a linear perturbation In L and Eq. 2.33 can 
thus be applied. 

In this case, Eq. 2.33 can be simplified by noting that 

Z(x) = xl a/x a. (2.35) 

Substituting gives 

R S I ( W X ) = ( x / x a , < £ a , V < £ b ' V / D ' ( 2 l 3 6 ) 

where 
D = <S b >+ b> • [<*-x a)/(* b-x a)][<x b/x a)<I a.* a> - < W ] " 

In terms of the reaction rates obtained from the transport 
calculations at the two reference points, I.e., 

Ra = < X a ' V ' 
and (2.37) 

R b - <I b.* b>. 

Eq. 2.36 becomes 

R S I ( R a , R b ; x ) = ( x / x a , R a V 0 , ( 2- 3 8 ) 

where 
D = R b • [<x-x a)/(x b-x a)][(x b/x a)R a - R b ] . 
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EquaHon 2.38 Is exact at x = x and x = x b and gives a nonlinear 
Interpolation for Intermediate values of x. That 1s, R,.. = R at 
x = x , and R.. - R. at x = x. . Also note that since E(x) 1s 
proportional to x, R = 0 at x = 0, and In this case Eq. 2.38 Is also 
exact at x = 0. 

To Illustrate the nature of Eq. 2.38, two cases are shown In 
Fig. 2.1; the lower curve has reference values R(0.2) = 0.5 and 
R(0.6) = 3.0 while the upper curve 1s for R(0.2) = 2.0 and 
R(0.6) = 3.0. The units are arbitrary. 
2.2.3 Singularities of the Two Point Interpolation formula. 

Equation 2.38 has a singularity when 0 = 0 . Setting 0 = 0 and 
solving for the location of the singularity, x , gives 

x s - xa - < V x a > V t < V x a > R a " " b ^ < 2 - 3 9 > 

This 1s of concern only 1f x > 0 (since negative atom fractions are 
meaningless} which occurs If R > R. , assuming a < b. For R < R. , 

a - b a a b 
Eq. 2.38 1s well behaved and gives a nonlinear estimate of R{x) which Is 
monotonlcally Increasing with x. If the reference point calculations give 
R 3 > R. , then Eq. 2.38 1s Inadequate. In this case a 3-po1nt variational a D 

Interpolation formulation may be useful. The 3-po1nt Interpolation formula 1s 

developed later in this chapter. 
In the case where the blaiket Is composed of only two Isotopes the atom 

fraction of each 1s related to x by 
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R 1.5 

Fig. 2.1 Illustrative examples of two point variational Interpolation 
when E(x) Is proportional to x (Eq. 2.38). The reference 
points for the lower curve are R(0.2) - 0.5 and 
R{0.6) = 3.0. The upper curve has reference points 
R(0.2) = 2.0 and R(0.6) = 3.0. 
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f, = x, 
and (2-40) 

f 2 = 1 - x. 

Then for 1sotope-2, Eq. 2.35 becomes 

5l(x) = (l-x)I a/(l-x a), (2.41) 

and Eq. 2.38 becomes 

R S I 2(R a,R b;x) = d-x)R aR b/[(l-x a)0J, (2.42) 
where 

0 = R b t [{x-x a)/(x b-x a)][(1-x b)R a/(l-x a> - R b ] . 
Note that R, and R. are the reaction rates with 1sotope-2 derived a b 
from the reference point calculations at x = x and x = x., 

respectively. For 1sotope-2, Eq. 2.42 Is exact at x = x„, x = x. and 
a D 

also at x = 1. It Is not exact at x = 0. 
To summarize. In the case of blanket composed of only two Isotopes 

where the design variable of Interest Is the atom fraction of the 
first Isotope, the two point variational Interpolation formula gives 
exact values for reaction rates with 1sotope-l at x - 0, x and x., 
and gives exact values for reaction rates with 1sotope-2 at x = x,, x. 

a D 

and 1. 
If the atom fraction of an Isotope Is unaffected by the variation 

of x, then 
E(x) = I = I = constant. (2.43) 

3 D 
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In this case Eq. 2.33 becomes 

RSIC ( Ra» Rb : x ) • R a V D ' ( 2- 4 4» 
where 

D - R b • t(x-x a)/(x b-x a)][R a - R b ] . 

One example where this holds 1s 1n a blanket containing 3 or more 
Isotopes with one or more specified as constant. In particular, 
3 Isotopes could be specified as f. - x, f„ = 1 - C - x, and 
f„ = C = constant. Another example where Eq. 2.44 holds Is In 
regions of the blanket other than the region where x 1s varied. In 
these cases, the variational estimate reflects the cha/ige In the flux 
due to a change 1n x. 

Generalizing Eqs. 2.38, 2.42, and 2.44, the two point variational 
Interpolation formula becomes 

R s l(R a.R b;x) = (i(x)/i:a)RaRb/o, • (2.45) 
where 

0 - R b • [<x-x a>/<x 0-x a)][(VS a> Ra " M ' 

2.2.4 Multivariate Estimates Using Two Point Variational Interpolation. 
The previous section shows how variational Interpolation can be 

used to estimate neutronlc characteristics as a function of a single 
design variable. In practice It is desirable to evaluate the effects 
of variations In several design variables simultaneously. By 
successive application of the variational Interpolation procedure 
discussed in the previous section, one can estimate the neutronlc 
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character is tics of Interest at any point In an n-dimensional space, 
based on a limited number of reference point transport calculations. 

Consider the problem of estimating reaction rates as a function of 
two design variables x, and x-. To do this using the variational 
Interpolation scheme requires four reference point transport 
calculations. These four points are most conveniently chosen to 
define a rectangle 1n Cartesian coordinates as shown In Fig. 2.2. The 
reference points are denoted ( x

l a > x 2 a ) > ' xih' x2a'' ' xla' x?h' a n d 

(x., ( x _ . ) . The corresponding reaction rates at these four points are 

denoted R , R. , R . and R... respectively, aa ba ab bb 
The procedure used to estimate the reaction rate at some point 

( x l d , x 2 ( j ) Is illustrated In Fig. 2.3. First, the result R d a Is found 
by Interpolating on x. with x„ = x, . Next, the result R.. Is found 
by Interpolating on x. with x. = x,. . The two results are then used 
to Interpolate on x_ with x, - x, ., to find the result R. .. As such, 
3 Interpolations are required to estimate the reaction rate. 

In terms of the previous expressions for Schwlnger Interpolation, 
the successive Interpolation approach can be written as 

SSI aa ba ab bb 1 2 
= R S I ( R S I ( R a a ' R b a : x l ) ' R S I ( R a b ' R b b i X l ) ; X 2 > < 2 ' 4 6 ' 

(Clearly one could Just as easily Interpolate on x first and then 
on Xj). 

To extend the approach to a third variable, x„, requires four 
additional reference point transport calculations. Assuming the first 
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*2b b̂b 

*2a 

Fig. 2.2 Location of four reference points for two point 
Interpolation on two variables. Neutron transport 
calculations are carried out at these four points. The 
resulting reaction rates are denoted by R with two 
subscripts corresponding to the x, and x„ coordinates, 
respectively. 
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*2b 

*2a 

Mb 

Md 

R da 

b̂b 

'ba 

Fig. 2.3 Successive two point variational Interpolation. To find the 
reaction rate at the point (xld.x,,,) requires three 
interpolations; one to find R. , a second to find R, h, and a 
third to find R dd" 
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four are In the plane x, = x, , the four additional points would be 1» 
the plane x, = x,. . Applying Eq. 2.46 1n the plane x„ = x 3 gives the 
result RJJ.. A second application of Eq. 2.46 with x, = x-. gives 
R... . These are then used to Interpolate on x 3 to give the desired 
result R d ( ) r i. In this case a total of 7 Interpolations are required. 

Generalizing, In order to span n-space with this technique requires 
2 reference point transport calculations and (2 -1) successive 
Interpolations for each reaction of Interest at each point of Interest. 
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2.3 THREE POINT VARIATIONAL INTERPOLATION FOR FUSION REACTORS 

The three point variational Interpolation formula based on the Schwinger 

functional Is given by, 

Rsi3<vyv x ) = ^w.v 
+ <**.S(x)-L(x)<t>a><Z(x),4>b-*a >/<$*, L(x)(*b-<l)a)> (2.47) 

-.V 
where S |x) has been set equal to £(x). The subscripts a, b and c 
refer to conditions at x = x , x = x. and x = x , respectively, 
where x < x . < x . a b c 
2.3.1 Three Point Variational Interpolation In Terms of Forward Fluxes. 

For a fixed external source and linear perturbations, a formula 1n 
terms of forward fluxes only can be derived. For a fixed external 
source, 

L $ = L.<*>. = L 4 = S = constant. (2-48) 
a r\ D o c c 

If the perturbation 1s linear 1n x, then L(x) can be written as 

where 

or as, 

where 

L ( ) (> ' La * Xca ( Lc- La>' ( 2 - 4 9 ) 

Kca " ( x - x a , / ( x c - x a ' ' 

L ( x » = Lb ( xcb ( Lc- Lb>- ( 2 - 5 0 ) 

\ b = (x-x b)/(x c-x b). 
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Conslder the term, 

<<>*S(x)-L{x)<|> > (2.51) 

1n the numerator of the second term 1n Eq. 2.47. Substituting 
Eqs. 2.48 and 2.49 and expanding gives 

< V L
C V " < V L a V " x c a < V ( L c - L a , * a > - ( 2- 5 2 ) 

Noting that the f i rs t two terms of (2.52) cancel, we are left with, 

" X c a K ' L c V " < » J ' L a V 1 - ( 2 - 5 3 ) 

Using Eqs. 2.8 and 2.48 this can be rewritten as, 

" W ^ c V V " ^ c - L c V ] - ( 2 - 5 4 ) 

Using Eq. 2.8 again gives, 

X c a [ < Z c ' V " " W 1 ' ( 2 - 5 5 ) 

Hence, <|>c has been eliminated from this term. 
Next, consider the denominator of the second term In Eq. 2.47, 

«t'c
,.l(x)(4>b-4,a,>- ( 2- 5 6 ) 
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Expandlng gives. 

<*c.L(x)*b> - <*c,L(x)*a>. (2.57) 

Using Eq. 2.50, the first terra of (2.57) becomes, 

<*c-L bV • S :b <*e'« L
e- Lb>V- ( 2- 5 8 ) 

Using Eqs. 2.8 and 2.48 gives, 

<*c' Lc*c > * X c b [ < L c V V ' < * c ' L c V ] ' ( 2 5 9 > 
and then 

< ĉ,<t>c> + ̂ c b ^ ^ c ' V " < £
C ' * c > ] - < 2 - 6 0 ) 

Similarly the second term of (2.57) reduces to 

- ^ c ' V ' x c a [ < x c ' V ' < x c ' V ] - ( 2 - 6 1 ) 

Using Eqs. 2.49. 2.50. 2.55. 2.60, and 2.61, Eq. 2.47 can be 
written as 

R s i 3 ( V W x > = < S ' X > - V < 2 - 6 2 > 
[ ( x - x a ) / ( x c - x a ) ] [ < I c . « a > - <5l c.<)) c>]<£(x),*b-* a>/0. 

where 

0 * [ (x-x b ) / (x e -x b ) ] [< I c .«> b > - <SC,4>C>3 

" [ < x - x a , / ( x c - x a , ] f < £ c ' V " < X c ' V ] -
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In terms of the reaction rates at the reference points 

Ra = <W» 
Rb = < Ib'*b >' a n d (2.63) 
Rc = <lc,*c>. 

Eq. 2.62 becomes, 

- [(x-x a)/(x c-x a)][(X c/5: a)R a-R c][(Z(x)/Z b)R b - (il(x)/Za)Ra]/D, 
where 

0 - [(x-x b)/(x c-x b)][(VyR D-R c] 

- [(x-x aJ/(x c-x a)][(I c/I a)« a-"cl-

Note that Eq. 2.64 Is exact at x = x , x. and x giving the results R , 

R b and R , respectively. 
2.3.2 Singularities of the Three Point Interpolation Formula. 

This three point Interpolation formula has singularities when the 
denominator of Eq. 2.64 equals zero. This occurs when 

(2.65) 
[<x-x b)/(x c-x b)][{I c/£ b)R b-R c] = [(x-x a)/(x e-x a)][(J cA a)R a-RJ. 

The value of x at which Eq. 2.65 holds 1s, 

x s = < x b [ ( W R D - R c ] / ( x c ~ x b ) " x a [ ( W R a - R c ] / ( V x a ) ) / D ' ( 2 - 6 6 > 
where 
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0 « [(VVW'W " "WW^a'-
For the case where I{x) Is proportion*! to x, I.e., S /I = x /x and 

c a c a 
1 /l. = x./x , Eq. 2.66 reduces to c b b a n 

*. " " " c V W W - (xcRa-xaRc)/(xc-xa,)/0- < 2" 6 7' 
where 

0 = < xc Rb- xb Rc> / I ( xc- xb> xb ] - < x c R a - x a R c , / [ ( V x a ) x a > ; 

In using the three point Interpolation one must check to see 1f the 
singularity lies ,n the range of Interest. Consider a specific 
example where 

R = 2.0 at x, = 0.2, a a 
and 

R = 3.0 at x = 0.6. c c 

Figure 2.4 shows the location of the singularity, x , as a function 
of the reaction rate, R. , at x. = 0.4. If R,_ < 2.5, there 1s a b b b ~ 
singularity between 0 and 0 "" If R. > 4.0, there Is a singularity 
at a point less than 0.60. Hence, Eq. 2.63 can be used to Interpolate 
between 0.2 and 0.6 and extrapolate down to x « 0 only 1f 
2.5 < R. < 4.0. 

D 

The envelope of the family of curves which the three point 
Interpolation can fit through the points R(0.2) = 2.0 and R(0.6) = 3.0 
1s shown In Fig. 2.5. Note that, unlike the two point Interpolation, 
the three point Interpolation can generate a curve which goes through 
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"s 0.3 

Fig. 2.4 Location of singularity for three point Interpolation versus 
R. for a curve with negative second derivatives. The 
reference point results are R (0.2) = 2.0 and 
R (0.6) = 3.0. If the result R b at x b = 0.4 Is not between 
2.5 and 4.0, the location of the singularity, x b > will H e 
1n the range of Interest, 0 < x < 0.6. 
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Flg. 2.5 Envelope of family of curves with three point Interpolation 
for R(0.2) = 2.0 and R(0.6) = 3.0. Compare to the upper 
curve In Fig. 2.1 obtained with two point Interpolation. 
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a maximum. Figure 2.5 should be compared to the upper curve In 
F1g. 2.1. 

Figures 2.4 and 2.5 Illustrate the nature of the three point 
Interpolation for R_A_ > R„/x„, I.e., curves'which are concave down. 

a a C C 
Now consider the opposite case where R_/x, < R./x . Let 

d a C C 

R, = 0.5 at x, = 0.2, a a 

and 
R = 3.0 at x = 0.6. c c 

Figure 2.6 shows the location of the singularity as a function of 

R. , where x. = 0.4 as before. In this case R. 1s limited to b b b 
values between 1.0 and 1.75 1n order to avoid singularity In the range 
0 < x < 0.6. 

Figure 2.7 shows the envelope of the family of curves obtained for 
1.0 < R. < 1.75. Here we see another limitation of the three point 
Interpolation. If the formula Is used to extrapolate between 0.2 
and 0, negative reaction rates are predicted. Obviously this Is 
meaningless. In order to assure that R > 0 1n the extrapolated 
region, the derivative of Eq. 2.64 as x approaches zero must be > 0. 
The derivative of Eq. 2.64 for the case of £(x) = xX A = xl./x. and 
the limit as x approaches zero 1s given 1n Appendix I. For this 
specific example (I.e., R{0.2) = 0.5 and R(0.6) = 3.0) the condition 
R . < 1.6 1s required to prevent negative values of R near x = 0. The 
revised envelope of possible curves Is shown In F1g. 2.8. See the 
lower curve of Fig. 2.1 for comparison. 
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*s 0.3 -

fig. 2.6 Location of singularity for three point Interpolation versus 
R. for a curve with positive second derivatives. The 
reference point results are R (0.2) = 0.5 and R (0.6) -- 3.0. 
If the result R. at x. = 0.4 Is not between 1.0 and 1.75, 
the location of the singularity, x., will H e In the range 
of Interest. 
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Flg. 2.7 Envelope of family curves with three point Interpolation for 
R(0.2) = 0.5 and R(0.6) = 3.0. In some cases, negative 
values of R are predicated as x approaches zero. 
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Flg. 2.8 Revised envelope of family of curves. Excluding the curves 
which give negative values of R changes the envelope shown 
1n Fig. 2.7 to the envelope shown here. Compare to the 
lower curve In Fig. 2.1 obtained with two point 
Interpolation. 
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2.3.3 Multivariate Estimates Using Three Point Variational 
Interpolation. 

As with two point interpolation, by successive application of 
three point variational Interpolation, neutronlc characteristics can 
be estimated as a function of more than one variable. 

Consider the problem of estimating a reaction rate as a function 
of two variables x. and x,. Three point interpolation on both 
variables requires a grid of 9 reference point neutronics calculations 
as shown In Fig. 2.9. The reference points are denoted 

' xla , x2a'" * xlb* x2a'' * xlc , x2a'* * xla , x2b'* ' xlb' x2b'' ' xlc' x2b'' 
(x. ,x„ }, (x l b,x„ ), and (x. ,x. ). The corresponding reaction rates 
at the reference points are denoted R , R t. f R _, R_. , R.., R ., r aa ba ca ab bb cb 
Rac' Rbc* a n d Rcc' r f c > P e c t 1 v e l v -

The procedure to estimate R at some point (x 1 r i,x..) is 
Illustrated In Fig. 2.10. First, the result R. a is found by 
interpolating on x. with x- = x„ . Next, the result R,. 1s 
found by interpolating on x. with x, * x„. . Thirdly, R. is 
found by Interpolating on x. with x„ = x, . These three results 
are used to Interpolate on x- with x, = x, .. 

In terms of the three point variational interpolation formula, 
Eq. 2.64, the successive three point interpolation can be written as 

RSI33 ( Raa , Rba' Rca , Rab" ,'*bb , Rcb' Rac , Rbc , Rcc : xT x2 ) ( 2 l 6 8 ) 

* RSI3' RSI3' Raa , Rba* Rca ! Xl'- , RSI3' Rab , Rbb , Rcb ; xl'' 
R S I 3 ( R a c ' R b c , R c c ; V ; x 2 1 , 
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%a» 

Fig. 2.9 Location of nine reference points for three point 
interpolation on two variables. Neutron transport 
calculations are carried out at these nine points. The 
resulting reaction rates are denoted by R with two 
subscripts corresponding to the x. and x„ coordinates, 
respectively. 
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*2b 

*2d 

"2a 
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R d c 

R d b 
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< 
l R d d 
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R d a 
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i i i 1 k. 
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Fig. 2.10 Successive three point variational Interpolation. To find 
the reaction rate at the point (x-|d, X2 d) requires four 
Interpolations; one to find R. , a second to find R.. , a 
third to find R d c , and a fourth to find R d ( J. 
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To extent the three point Interpolation to a third variable, x», 
would require IB more reference transport calculations, and as such 
gets quite cumbersome. We can, however, combine successive two point 
and three point Interpolations. For two variables, a three point 
Interpolation could be used for one dimension and a two point 
Interpolation for the second. That 1s, 

R S I 3 2 ( R a a , R b a , R c a ' R a b , R b b * R c b ; x r x 2 > ( 2- 6 9 ) 

= R S I 2 ( R S I 3 ( R a a * R b a , R c a ; x l 1 , R S I 3 < R a b ' R b b ' R c b ; x l ) : x 2 ) -

This requires 6 reference point transport calculations as Indicated. 
To extend to a third dimension using another two point Interpolation 
requires 6 more transport calculations. 
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2.4 PROPAGATION OF ERROR 

Consider Eq. 2.46 which Is the formula for successive, two point 
Interpolation to determine a reaction rate as a function of two 
variables, x, and x„. 

• w w w w w w (2-46) 

• W W W W V * RSI ( Rab , Rbb ; x l , ; x2 ) 

Note that the "reference values" for Interpolation on x« are 
actually estimates based on the previous Interpolations on x,. 
Refer to Fig. 2.3. The question arises, "How does using these 
estimates as the basis for Interpolation on x„ affact the accuracy 
of the result?" Let us compare the result at x. = x. and x_ = x.. 
obtained by two methods. The first 1s by using Eq. 2.46. The second 
method assumes that two more transport calculations are carried out to 
determine the exact results at (X...X. ) and (x. ..x,, ), denoted R. 
and R r i h p, respectively. That Is, In method 2 the reference values for 
Interpolation on x. are exact. Assume that the reference results 
obtained by variational Interpolation on x. are related to these exact 
values by 

and 
R. = f ^ , (2.70) 
da a dae' 

Rdb = fb Rdbe-
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The difference In the result at ( x l d , x 2 d ) Is given by 

A • R S I < f a R d a e ' f b ' W x 2 > " « S I < » d a e - W V ' < 2 - 7 1 > 

The magnitude of this additional error (I.e., In addition to the error 
from using variational Interpolation to hegin with) depends on the 
relative magnitude and sign of (f -1) and (f.-l). Referring to 

a o Eq. 2.4S, note that R and R. terms appear In both the numerator a D 
and denominator. If f - f. , then 

a D 

A-'V^SI'WWV- ( 2 - 7 2 > 

The fractional difference is (f a-l). If (f a-l) and (f b-l) are 
opposite 1n sign; that Is, an over estimate of R. and underestimate 
of R... or vise versa, then the fractional difference will be less db 
than or equal to (f-1). Near x- = y 1t will be - (f -1), 
and near x- - x_. It will be - (f.-l). 2 2b b 

Figure 2.11 shows the relative difference as a function of x„ 
for three Illustrative cases: 

f = f. = 1.05, a b 
f =1.05 and f K = 1.00, a b 
f = 1.05 and f. = 0.95. a b 

The example Is based on the exact reference points (0.2,2.0) and 
(0.6,3.0). Note how the magnitude of the addition error Is less 
than 5% In all cases. 
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Flg. 2.11 Illustration of additional error due to successive two 
point interpolation. Refer to Fig. 2.3. The ratios of the 
Interpolated results R. and R.. to the exact results at 
(x. .,x2 ) and ("^."pi,) are denoted f and f., 
respectively. Here, ffl = 1.05 and f b ranges from 0.95 to 
1.05. The magnitude of the additional error is less than 
5% in the range of Interpolation, 0.2 < x < 0.6. 
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for the three point Interpolation the additional fractional err':' 
can, 1n some cases, exceed the magnitude of ( f - 1 ) , (f h-l) or (i - 1 ) . 

a D c 
Here f , f t and f are the ratios of the results obtained by three a b c 
point Interpolation on x, at x~ = x„ , x,. and x, , respectively, to 
the exact results 1f additional transport calculations had been 

carried out at ( x 1 d . x 2 a > ' ( x
1 d > x

2 b ) a n d < xid* x2c'* 
respectively. See F1g. 2.10. 

The additional fractional error 1s shown In Figs. 2.12-2.14. In 
each case f = 1.05 and f takes on three values 1.05, 1.00, and a c 
0 95. figure 2.12 1s for f b = 1.05, Fig. 2.13 for f b = 1.00 and 
Fig. 2.14 for f. = 0.95. The exact reference results are (0.2,2.0), 
(0.4,2.67) and (0.6,3.0). Note that 1n Fig. 2.12, the error exceeds 
554 In the range 0.2 < x ? < 0.4 for f = 1.00 and 0.95. In 
fig. 2.13, the magnitude of the error Is less than 554 In all cases. 
In Fig. 2.14, the magnitude of the error exceeds 5% for f =1.05 
when 0.28 < x < 0.4 and exceeds 5% for f. = 0.05 when 0.4 < x < 0.6. 

b 
In the previous examples, the error due to the first Interpolation 

was assumed to be less than or equal to 5%. Cheng has evaluated the 
error due to the Schwlnger functional (t'q. 2.16) as well as the two 
point Interpolation form of this functional (Eq. 2.33) by comparing 
the results to those obtained with transport calculations at various 
points. * For the examples he chose, the errors were on the 
order of 2-5X over a relatively large variation In the design variable. 

An expression for the error can be developed 1n terms of a series 
solution for the neutron flux. The relationship of the variational 
principles to perturbation theory has been shown. • Consider the 
neutron transport equation 
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4 -

x a = 0.2 

*h = 0.4 

*= = 0.6 

fa = 1.05 

*h = 1.00 

f =1-05 

0.1 0.2 0.3 0.4 0.5 0.6 

fig. 2.12 Additional error due to successive three point 
Interpolation for f b = 1.05. Refer to fig. 2.10. The 
ratios of the Interpolated results R R and R 
to the exact results at these points are denoted f„, f. 

a b 
and f , respectively, f, = 1.05 and f ranges from 
0.95 to 1.05. The magnitude of the error exceeds 554 In 
some cases. 
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10r 

£ 0 

-10 

x n = 0.2 
x h = 0.4 

*c = 0.5 

f

n 
= 1.05 

*h = 1.00 

0.1 0.2 0.3 0.4 0.5 0.6 

Fig. 2.13 Additional error due to successive throe point 
Interpolation for f. - 1.00, 
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8 -

6 -

4 -

x 
= 0.2 
= 0.4 

fa =1.05 
t =0.95 

0.95 

0.1 0.2 0.3 0.4 0.5 0.6 

Fig. 2.14 Additional error due to successive three point 

Interpolation for ffa - 0.95. 
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L+ = S, (2.73) 

and the associated adjoint equation 

* * * 
L <(> = S = T.. (2.74) 

If the reference system, L , 1s perturbed, the altered system, L, 
can be related to 1t by 

L = L Q + oiL, (2.75) 

where a 1s a perturbation parameter. The series solution for <t> 1s 

V j o'<t>i. 
1=0 

The reaction rate, <£,*>, can thus be determined exactly by an 
Infinite series of the solutions, <t>,, to the higher order equations 

Lo*1 = - S L * 1 - r ( 2 , 7 7 ) 

That Is, 

R = V j a1 ,̂̂ :*. (2.78) 
1=o , 
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The variational functional are given 1n terms of both forward and 
adjoint solutions. The adjoint flux can similarly be written as 

»*-JV< r (2.79) 

1=0 
whe re $, is the solution to 

Lo*l = -*L *1-T (2.80) 

If the exact solutions, <)> and <> , given by Eqs. 2.76 and 
2.79 are used In the variational expressions the resultant reaction 
rate 1s exact. Truncating the series with the first term gives the 
Roussopoulos and Schwlnger functions described In section 2.1. That 

* 1s, these estimates are based on the solutions <j> and A at 
o o 

the reference point. 
The error of the fractional variational functlonals, AF , 1s 

mn 
given by 36 

n m n 
AF 

j=o 1=0 k=m+l ]=o 

where 

and 
N = J ^ * * * 1 [ ^ . A J X A J . S I A ^ - <£,*fc><4>j . *L* 1 >•]. 

(2.81) 

D = a J * V ~ ^ 1+1 * 
<*. .S> + > a <A. ,£LAf:> 

1=0 
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Here m Is the number of terms retained in the solution for <t> 
(Eq. 2.76), and n 1s the number of terms retained In the solution for 
<,* {Eq. 2.79). 

For the Schwinger functional, m=n-0, and Eq. 2.81 reduces to 

fiFoo ° / J a k t l [ < E > t ' o > < i v i L y - < * . v < v S L v ] 

k=l 
* [<*>*.S> • a«t,*,SL<t>0>]. (2.82) 

Hence the error can be evaluated If the solutions, $. , are 
calculated. 
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3. NONLINEAR SIMPLEX METHOD FOR OPTIMIZATION 

3.1 BACKGROUND 

As previously mentioned, the nonlinear simplex method of Nelder 
14 

and Mead was chosen for the blanket optimization problem. It 1s a 
direct search method which relies on evaluating a function at a 
sequence of points and comparing values 1n order to reach the optimal 
point. The method 1s based on a geometrical design known as a 
simplex. An n-dimenslonal simplex Is defined by n + 1 points which 
are the points at which the function 1s compared. This should not be 
confused with the simplex algorithms of linear programming. 

Nelder and Mead's method Is an Improvement on the algorithm 42 proposed by Spendley, et al. Spendley's method uses i r gular 
simplex. A regular simplex 1s one In which the vertices are equally 
spaced. An equilateral triangle Is an example of a regular simplex. 
Nelder and Mead's method allows the simplex to become nonregular. It 
Is one of the most efficient direct search methods available and works 

13 well 1f the number of variables 1s not more than five or six. 
While other modifications to Nelder and Mead's method have been 

43 44 
proposed, they have not been Incorporated In the algorithm used 
1n this study. The optimization subroutine used In the blanket 
optimization problem was previously coded and used by J. Trenhoime to 
optimize the design of experimental lasers at Lawrence Llvermore 45 National Laboratory. 
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3.2 DESCRIPTION OF THE ALGORITHM 

The objective 1s to minimize a function F, where F Is a function 
of n variables x., x„ x . The simplex consists of n t 1 
points, P.. 

The following notation will be used. Let 

P. = point with the highest function value, 
P = point with the second highest function value, 
P. = point with the lowest function value, and 

P" = centrold of all points except P.. 

That Is, 

ntl 

•iE 
j^h 

P . (3.1) 

Also let 
Fh - F<V« 
F s = F ( P s ) . 
\ - H?%). 

The method of Nelder and Mead Is a f o l l o w s : 1 3 , 1 4 

1. Choose the points of the Initial simplex. In the 
optimization subroutine used In this work, a single starting 
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polnt Is specified In the Input file, the routine then 
chooses the Initial points of the simplex so that they 
surround the starting point. It Is advantageous, although 
not required, to choose the starting point from within the 
feasible region. In general, a feasible starting point can 
easily be detemlned by examining the results of the reference 
point transport calculations. It 1s also advisable to run 
the problem starting at several different points which will 
help determine If the optimum Is unique. 

2. Evaluate F at each point and determine the highest point, P.. 

3. Calculate the centrold, P, of the remaining points. 
4. Reflection. The highest point, P., 1s reflected through 

the centrold of the remaining points, P. The reflected point 
1s denoted P . The value of F at P 1s calculated and r r 

denoted F . The reflection factor, a > 0, 1s the 

ratio of the distance between P and P to the distance 

between P h and P. That Is, 

P r - P = o(P - P n ) , (3.2) 
or 

P r = <Ha)P - aP h. 

If a = 1, the reflected point Is as for on the other side 

of the centrold as the high point 1s from the near side. The 
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reflection move is Illustrated In Fig. 3.1a for a two 
dimensional case. 

5. If F. < F < F , replace P. by P„ and return to 
& — r — s r n J r 

Step 2. That is, If the value of the function at the 
reflected point falls between the low value and second to 
highest value, the old high point 1s replaced by the 
reflected point. 

6. Extens on̂ . If F < F , extend the simplex using an 
extension factor T > 1. That is, find the extended point, P„, such that e 

P e - P = T(P r - P) (3.3) 
or 

P e = (1 - T)P + TP f. 

The value of the function at this point is F . In this 
e 

case a new low value has been found (F < F.) so the 
reflected point is moved farther 1n the same direction to see 
If f continues to decrease. There are two possible results: 
a) If F < T., replace P. by P and return to Step 2. 
b) If F > F„, replace P u by P and return to Step 2. In 

e - i.' r h J r r 

this case the extension has failed. It can be viewed as 
moving Into a valley (F < F.) but the extension produces a 
result F that 1s up the slope on the opposite side. The 
extension move 1s Illustrated in Fig. 3.1b. 
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A) Reflection 

P t - P = a(P-P h) 

P r -P = a(P-P„) ^ ' 

B) Extension 

Pe P, 

Pc - P = 0(P, - P) 

C) Contraction, Fr < F h D) Contraction, Fr > F h 

Fig. 3.1 Four basic moves 1n Nelder and Head's nonlinear simplex 
method of optimization. 
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7. Contraction. If F > F , contract the simplex using a 
contraction factor 3, where 0 < p < 1. There are two 
cases: 
a ) l f K ± F K > f , n d t n e contracted point P defined by 

P c - P = P(P r - P), (3.3) 

P c = (1 - B)P • BP p. 

This Is Illustrated 1n F1g. 3.1c. 
b) If F > F h > find the contracted point P defined by 

Pc " P = B ( P h " P )' ( 3- 4 ) 

P c = (1 - P)P • PP„ 

This Is Illustrated In Fig. 3.Id. Note that Step 6a 1s the 
equivalent of replacing P. by P and then finding P defined 
by Eq. 3.4. For either 7a or 7b there are again two cases to 
consider: 
c) If F < F. and F„ < F . replace P. by P and return to 

e n c r r h J c 
Step 2. 
d) If F > F. or F > F , reduce the size of the simplex by 

c _ h c ~ r 

halving the distance from P„ and return to Step 2. That Is, 

replace al l P. by (P,tP,) /2. This last move Is referred to 
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as a huddle. 
Me see that In Nelder and Head's method, each Iteration begins 

with a reflection move. Subsequent steps depend on the value of the 
function at the reflected point with respect to the highest, 
second-to-highest and lowest values of function evaluated at the 
vertices of the simplex (I.e., how f compares to f h > F , and F.). 
The authors recommend the values a = 1, p = 0.5, and T = 2 as the best 

14 strategy. A flow diagram Is given In Fig. 3.2. 
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Enter 
• Calculate initial P. and F-
• Determine P h 

• Calculate P 
• Form Pr 

• Calculate F r 

Yes 

Form Pe 

Calculate F. 

Yes 

Pr = (1 + a ) P - a P h 

P e = d - 7 ) P + 7P r 

P c = (1 - )3) P + ,CPh 

1 

No Yes is F f < Fj? No is F r > Fs? Yes is F r > F h? No is F f < Fj? is F r > Fs? is F r > F h? 

1 1 
No 

No 
> 

Replace P h by Pe 

Yes Replace P h by Pr 

~*—Y—"— 
Form P c 

Calculate F„ 

is F. > F J - 1 No 

Yes Replace P h by P c 

Replace P h by P r Replace all P:'s 
b y f P j + P j , ) ^ 

No 

~>^" . ) . 

Has minimum 
been reached? 

Yes -*• Exit 

Fig. 3.2 Logic flow diagram for Nelder and Head's nonlinear simplex 
method (after Ref. 14). 



-66-

3.3 CONVERGENCE CRITERION 

After ea:h Iteration, tw>. convergence criteria are checked to see 
If the search should be halted, 1.a.-; if the minimum has been 
located. The first criterion compares the highest function value 1n 
the simplex, F. , to the lowest, F.. If these two values differ 
by less than some small number, c, the search Is halted. That Is, if 

K h - F t < «. (3.5) 

The second criterion Is based on the distance between the location 
of highest and lowest value of the current simplex. If the 
distance is less than &, the subroutine terminates. Let [P hP,] 
represent the distance between P. and P.. If 

n it 

[P nPl J < *• < 3- 6> 

the search is halted. Both t and S are Input parameters for the 
optimization subroutine. Clearly the optimal point is P., and the 
value of the function Is F «t the time when either criteria Is 
met 
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3.4 HANDLING CONSTRAINTS 

Constraints limit the acceptable range from which points can be < 
chosen In searching for the minimum value of F. With Nelder and 
Head's method constraints are handled 1n the definition of the 
function to be minimized. That 1s, 1f a constraint Is violated, F 1s 
set equal to an arbitrarily large number. As such, 1f a point 1n the 
simplex results In a violated constraint, contraction moves will be 
made until all points of the simplex are Inside the feasible region. 
See Fig. 3.3. A problem can arise if the search 1s started 1n the 
unfeasible region. If all points of the Initial simplex H e 1n the 
unfeasible region, they all have the same value, and the first 
convergence criterion, Eq. 3.5, 1s satisfied. As a result the search 
terminates. This difficulty can easily be corrected. 

Fox and Mebman proposed a modified method of handling 
43 constraints. It Is Illustrated In Fig. 3.4. Here the value of 

the function 1n the Infeaslble region slopes down toward the feasible 
region H k e a funnel. In this way, 1f the search Is begun 1n the 
Infeaslble region, 1t will proceed until 1t falls Into the "well" of 
the feasible region. 

In the next chapter, the method of estimating neutronlc 
performance Is combined wlih the optimization algorithm described 1n 
this chapter to optimize the blanket of an Inertlal confinement fusion 
reactor. 
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Feasible 
~ region 

Fig. 3.3 A simple method of handling constraints. The figure of 
merit, F, Is defined to be an arbitrarily large number 
outside the feasible region. 
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Feasibie 
region 

Fig. 3.1 Fox and Llebman's method of handling constraints. The 
search Is directed toward the feasible region. 
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4. OPTIMIZATION OF A MODIFIED HYLIFE CHAMBER 

4.1 DESCRIPTION OF THE PROBLEM 

4.1.1 The HYLIFE Reactor Concept. 
The High Yield Lithium Injection Fusion Energy (HYLIFE) chamber 

for Inertlal confinement fusion (ICF) has been described 1n detail In 
the literature. 1 , 4 6~ 5 1 The HYLIFE Concept Is Illustrated In 
Fig. 4.1, and a cross sectional view 1s shown In Fig. 4.? 

In the HYLIFE chamber, an array of lithium Jets 1s Injected Into 
the chamber between fusion pulses to provide the equivalent of a 
l-m-th1ck blanket between the fusion target and the first structural 
wall. This energy conversion blanket shields the chamber structural 
materials from direct exposure to the x-rays, debris, and high-energy 
neutrons emitted by the fusion pellet. The 14 MeV neutron flux Is 
reduced by more than a factor of 200, and neutron damage levels are 
low enough to allow the 5-m-rad1us chamber wall to operate for more 

52 53 the 30 years without replacement. ' With a 1.0 m thick blanket 
of natural lithium (7.42X 6L1 and 92.58% 7 L 1 ) , HYLIFE achieves a 
tritium breeding ratio of 1.7S. 5 4 

The subject of this first blanket optimization problem Is a 
modification of the HYLIFE chamber. The modified design 1s an attempt 
to Increase the energy deposited 1n the chamber per fusion reaction. 
The ratio of total energy deposited to the fusion energy released per 
0T reaction Is defined as the fusion energy multiplication . idor, 

t M f. It Is given by 
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H f = (E n • 3.5)/17.6, (4.1) 
where 

E = the total energy (HeV) deposited as a result 
of neutron reactions within the chamber. It 
Includes the neutron energy deposited In the 
compressed fuel region of an ICF target. 

The factor 3.5 Is the fusion alpha particle energy 1n MeV and 17.6 HeV 
1s the total fusion energy released per DT reaction. In general, H. 
will be slightly greater than one due to exoergic neutron reactions 
with blanket materials, e.g., the L1(n,T)o reaction which 
releases 4.8 HeV. For HYLIFE, H f 1s 1.16. 

lhe approach In the modified HYLIFF design 1s to reduce the 
55 tritium breeding ratio and capture the excess neutrons In Hn. 

55 Each capture In Hn adds 9.8 HJV to the energy balance. The 
55 Hn{n,T) reaction releases 7.3 HeV while the decay of the 

56 product, Hn, releases an additional 2.5 HeV of recoverable 
55 energy. The half-life for the 3 decay Is 2.6 hours. 

Increasing H, by capturing neutrons In structural material has 
56 been previously proposed. The authors of Refs. 57 and 58 

suggested a 1454 Hn steel called Fe-1422 for the purposes of Increasing 
H f. In this work, a 20X Hn steel, known as Nippon Steel Alloy NM-1, 

59 Is ued. The composition of NH-1 by weight percent Is 77.5X Fe, 
20.OX Hn, 2.OX Cr and 0.5X C . 5 9 

Ihe potential advantage of Increasing the fusion energy 
multiplication factor Is a lower cost of electricity from a 
fusion-electric power plan*. This follows since more power Is 
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available for a given investment 1n the laser driver and target 
factory In the case of 1CF (or for a given Investment 1n the magnets 
for magnetic fusion reactors). That Is, fixing the size of the laser 
and the characteristics of the target, fixes the fusion energy 
released per pulse. If this energy can be Increased as a result of 
neutron reactions in the blanket, more thermal energy v\V be 
available for conversion to electricity. In the blanket optimization 
problem, the characteristics of the driver and target are fixed, as is 
the chamber pulse repetition rate. The variables relate only to the 
design of the blanket itself as discussed below. 

There are two slmole ways to reduce the tritium breedtng ratio in 
HYLIFE; one Is to reduce the fraction of Li 1n lithium and the 
other is to reduce the effective thickness of the lithium blanket. 
I.e., the lithium jet array. In addition, the LI cooled graphite 
reflector (see Fig. 4.1 and 4.2) 1s replaced by a sodium cooled 
Mn-steel blanket in the modified design. Hence all the tritium 
breeding must occur In the lithium blanket. The two design variable 
for this problem are 

x, = 6L1 fraction 1n L1, 
and 

x_ = effective L1 blanket thickness, m. 

Note that the actual thickness of the LI blanket Is held constant 
while the packing fraction of liquid lithium jets within that region 
Is varied. This Is, In essence, a variation of the material density 
and thus qualifies as a linear perturbation as seen from Eq. 2.34. 
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4.1.2 Constraints on the Design. 
Reducing the blanket thickness 1s advantageous In that 1t reduces 

the LI flow rate resulting \t: savings 1n pumping power and capital 
costs for liquid metal rjmps and piping. There 1s a lower limit, 
however, set by a constri <t on the maximum allowable radiation damage 
rate In the first structural wall. For HYLIFE the rate was limited to 
the point where the wall was expected to maintain Its structural 
Integrity for the 30 year life of the power plant. The life 
limiting radiation damage mechanism for HYLIFE was found to be the 
Displacement of atoms from their lattice positions. Displaced 
atoms leave vacancies which can conglomerate to forn, voids within ihe 
steel, and this leads to a phenomena known as void swelling. 
After some total amount of damage, expressed 1n terms of displacements 
per atom or dpa, the structural naterlal Is deformed, and/or Its 
properties are degraded to the point where 1t loses Its Integrity. 

Currently there 1s Insufficient data to set absolute damage limits 
for structures In fusion reactors. It Is known, however, that 
ferrltlc steels are less susceptible to the effects of displacement 

CO 

damage than austenltlc steels, and a damage limit of ~200 dpa 
was recently suggested as a reasonable estimate for high Cr ferrltlc 
steels. 6 3 A low-alloy, ferrltlc steel, 2.25 Cr-1 Ho. wis specified 
for HYLIFt due to U s low cost, resistance to liquid-metal corrosion 

51 
and resistance to the effects of radiation damage. 

For the purposes of this study, the total displacement damage 1n 
the first structural wall of the modified HYLIFE chamber Is limited to 
200 dpa over an operating period of 30 years at 70% plant capacity 
factor. This gives a constraint on the displacement damage rate of 
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9.5 dpa per full-power-year. The dpa rate 1s expected to depend 
primarily on the blanket thickness, x 2 > but may also depend somewtvit 
on the L1 fracMon. 

Another constraint In the optimization problem Is the requirement 
for a tritium breeding ratio high enough to assure a self-sufficient 
fuel cycle. A tritium breeding ratio > 1.05 has been chosen to 
satisfy this criteria. Clearly the tritium breeding ratio will be a 
function of both design variables. 
4.1.3 Figure of Merit for HYLIFE. 

The figure of merit for this optimization problem Is the capital 
cost of the power plant divided by the net electric power production. 
That is. 

where 

f «= C T/P , (4.2) 
I n 

C. - total plant capital cost Including the 
cost of the reactor, laser and target 
factory, I, and 

P n = net electric power produced and available 
for sale, kW . 

The cost of electricity (I.e., t/\M h) from a fusion electric 
power plsnt Is expected to be dominated by the carrying charges on the 

capital Investment. The capital cost portion of the cost of 

electricity Is given by 

C sr 1C T/8?60fP (4.3) 
e T n 
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where 
1 = fixed charged rate, yr" (typically 15% per year), 
f = plant capacity factor (typically 70%), and 

8760 = number cf hours per year. 

Since to first order, 1 and f are Independent of the blanket 
design, the cost of electricity 1s proportional to C T/P . Hence 
minimizing the plant capital cost per unit of net electric power 1s 
equivalent to minimizing the cost of electricity under these 
assumptions. 

The total capital cost 1s broken Into four components. 

where 
C, , C R + C p + C L + C T F , (4.4) 

C„ = cost of the reactor Including the balance of 
plant required for heat transfer and conversion 
to electric",ty. 

C 0 = cost of lithium recirculating p .ips and piping 

required to maintain the flowing lithium blanket. 

C = cost of the laser driver, and 

C. = cost of the target factory. 

The cost of the reactor scales as the plant thermal power. P., 
64 raised to the 0.B power, 

C « P 0 ' 8 
LR *t ' (4.5) 
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The thermal power Is simply the fusion power, P,, times the fusion 
energy multiplication factor, M,. Hence 

C R « ( M f P f ) 0 > 8 . (4.6) 

As previously stated, P„ Is fixed but Hf will be a function of 
both the L1 fraction, x,, and the L1 blanket thickness, Xp. 

The cost of the pumps will be proportional to the total lithium 
flow rate through the chamber. The flow rate Is taken to be 
proportional to the effective blanket thickness x_, hence 

C p <* x 2. (4.7) 

The cost of the laser and target factory are fixed and independent 
of the two design variables. 

The actual costs are referenced to those listed in Table 1.1 for 
47 HV L I F E . Using these values, the direct capital cost of the 

modified HYLIFE chamber In *B 1s, 

C T 0.<t6(H f/l.I6) 0 - B * 0.16x 2 t 0.43. (4.8) 

The net electric power Is given by 

where 

p = p - p - p - p , (4.9) 
n g I a p' ' ' 

P = gross electric power, HH , 
y e 

P, = laser power requirement, MM , 
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Table 4.1 
Reference HYLIFE plant characteristics for comparison 

Tritium breeding ratio T = 1.75 
Neutron energy deposition E = 16.9 HeV 
Fusion power P f = 2700 MM 
Fusion energy multiplication factor H f = 1.16 
Thermal power ? t = 3130 HW f 

Therm.il conversion efficiency n. = 39X 
Gross electrical power P = 1220 HW 

g e 
Laser power consumption P. = 135 HW o 

Auxiliary power requirements P, = 75 HW„ 
a e 

Lithium pumping power' 3' P =. 30 HW e 

Net electrical power P = 980 HW 
r n e 

Direct capital costs 
Reactor ( b ) C R = $960 H 
Lithium pumps C„ - $160 M 
Laser ( c ) C L = J330 H 
Target factory C T f = J100 H 

TOTAL C T - SI.55 B 
(a) based on a lithium blanket thickness of 1.0 m and ~50X efficient 

EH pumps. 
(b) reactor Includes the chamber and balance of plant required for 

heat transfer and conversion to electricity; It excludes the LI 
recirculating pumps. 

(c) half the estimated cost of 4.5 HJ laser; It 1s assumed that the 
laser drives two full sized reactors by switching beams. 

http://Therm.il
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P, = plant auxiliary power requirements, MW . and o e 
P = lithium pumping power, MW . 

The gross electric power Is equal to the thermal conversion efficiency 
times the thermal power and, ther3fore, 1s proportional to the fusion 
energy multiplication factor H f. The laser and auxiliary power 
requirements are independent of the blanket design. The lithium 
pumping power 1s taken to be proportional to the lithium flow rate and 
hence to the blanket thickness, x». Again, the values are based on 
the HYLIFE parameters listed 1n table 4.1. Hence 

P n = 1220(Mf/1.16) - 135 - 75 - 30x 2, (4.10) 

or 
P n = 1220{Hf/1.16) - 30x 2 - 210, 

where x 2 Is In meters. 
Combining Eqs. 4.8 and 4.10 and normalizing to the HYLIFE cost of 

J1.55 B and net power of 980 MW gives the figure of merit as 

F = [0.62(M f/1.16)° - 8 • 0.10x 2 t 0.28]/0, ' (4.11) 
where 

0 = 1.24(Mf/1.16) - 0.03x 2 - 0.21. 

4.1.4 Summary. 
In summary, the optimization problem Is to minimize F given by 

Eq. 4.11 subject to the constraint on the displacement damage rate, 

0 < 9,5 dpa/yr, (4.12) 
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and the constraint on the tritium breeding ratio, 

T > 1.05. (4.13) 

The methods of Chapter 2 are used to write analytical expressions 
for the fusion energy multiplication factor, the tritium breeding 
ratio, and the displacement damage rate, as a function of the two 
design variables, x 1 and x,. Hence the figure of merit can be 
calculated at any point (x.,x.). The methods of Chapter 3 are 
then applied to optimize the figure of merit subject to the 
constraints. 

The first calculation of the optimal design point for the modified 
HYLIFE chamber is based on the two point variational Interpolation 
method for estimating the neutronlc performance. As such, four 
reference point neutron transport calculations are required. The 
neutronlcs model and results for these Initial reference point 
calculations are discussed In the next section. 
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4.2 REFERENCE POINT TRANSPORT CALCULATIONS 

4.2.1 TART Honte Carlo Transport Code. 
All neutronlcs calculations were carried out with TART, a coupled 

65 neutron-photon Honte Carlo transport code. Cross sections are 
derived from TART's data base, the Evaluated Nuclear Data Library 

-9 which Includes neutron data from 10 HeV to 20 HeV and photon data 
9 from 1 keV to 20 MeV. It 1s a multlgroup code utilizing 175 energy 

groups. 
An input file Is created by the user which describes the geometry 

of the problem, composition of each zone, the characteristics of the 
neutron source and the type of output desired. Geometry refers to the 
boundary functions of a problem. Combining a number of boundary 
functions creates a unique and unambiguous volume called a zone. The 
boundaries are either planes or quadradlc. TART 1s capable of 
handling three dimensional problems. The composition of each zone Is 
described by specifying the Isotopes, the 1sotop1c fraction and 
density of the material represented by the zone. For fusion reactor 

problems a monoenergetlc source of 14.1 HeV neutrons 1s generally 
specified. Hany different kinds of output can be obtained from the 
same TART prob'em. Of particular Interest for this study are reaction 
rates, anergy dependent neutron flux, and energy deposition as a 
result of neutron interactions. All output Is normalized to one 
source neutron. A typical problem will track 20,000 neutrons (20 

groups of 1000) and take 1-3 minutes of CRAY time. In addition to 
Ref. 65, a TART users manual Is available on the MFECC computer 
network (see Appendix II). 
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4.2.2 Neutronlcs Model of the HYLIFE Chamber. 
The neutronlcs model of the modified HYLIFE chamber Is shown 1n 

Figs. 4.3 and 4.4. Figure 4.3 represents a horizontal slice through 
the mldp lane of the chamber. Note that it has been subdivided Into 
two halves and Fig. 4.4 shows only the right half. This was necessary 
since the current version of TART does not allow the user to output 
reaction rates and neutron flux for the same zone. A new version of 
TART will correct this difficulty. 6 6 

Zone 1 represents the compressed OT 1n which the 14.1 HeV fusion 

neutrons are born. The neutron source Is distributed uniformly 
throughout this hemispherical zone. The target has a density radius 

2 product, pR, of 3 g/cm . Zone 2 1s essentially void, containing 
L1 vapor at a very low density. 

Zones 3 and 4 represent the LI jet array where all the tritium 
breeding occurs 1n this modified HYLIFE concept. The effective 

density and isotoplc fraction of L1 Is varied in these zones. The 
Inner radius of these zones 1n 0.5 m and they are 2.0 m thick. The 

density of L1 1n zones 3 and 4 1s less than normal density In order to 
represent the packing fraction of liquid LI jets within the jet 
array. Using density multipliers of 0.375 and 0.625 give effective 
thicknesses of 0.75 m and 1.25 m for the L1 blanket. These are the 

two reference values for x„. That Is, x, = 0.75 and 
x„. = 1.25. The reference values for L1 concentration In the LI 2b 
are 0.50% and 7.42%, I.e. x, = 0.0050 and x 1 u - 0.0742. The 

la lb 
combinations of these values define the four reference point 
calculations for the two point Interpolation on two variables. 
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11 

Fig. 4.3 Cross sectional view of the neutronlcs model for the 
modified HYLIFE chamber. Zone numbers are indicated. 
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Fig. 4.4 Neutronlcs model of the modified HYLIFE chamber. 
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Returning to Figs. 4.3 and 4.4, zones 5 and 6 are again L1 vapor 
regions. Zones 7-10 represent a low-alloy, ferrltlc steel, first 
structural wall for the chamber. The Inner radius Is 5.0 m and the 
wall Is 2 cm thick. The neutron flux In the l-m-h1gh zone 10 1s used 
to determine the peak neutron damage rate In the first structural 
wall. It gives a peak damage rate since 1t Is nearer to the neutron 
source and protected by less LI than the wall as a while. Zones 11 
and 12 represent the energy multiplying steel blanket. These 
l-m-th1ck zones contain 80 vol% Hn steel and 20 vol% Na coolant. 

Figure 4.4 1s a vertical slice through the neutronlcs model. The 
top and bottom boundaries are reflecting planes. That Is, If a 
neutron's path Intersects one of these planes, 1t Is "reflected" back 
Into the problem at the point of Intersection. The bottom plane 
represents the symmetry of the HYLIFE chamber. 

The top (and the bottom) of the HYLIFE chamber contain thick pools 
of L1. With a top reflecting plane 1n the neutronlcs model, neutrons 
are reflected back Into the LI jet array and the effect 1s essentially 
the same as 1f a LI pool would have been added at the top. This was 
verified by comparing the results of a TART calculation with a model 
such as this to the results reported 1n Ref. 10 which modeled the 
HYLIFE chamber 1n detail. Both the tritium breeding ratio and neutron 
energy deposition were very close. With the reflected model, the 
tritium breeding ratio and neutron energy deposition were 1.74 and 
17.0 HeV, respectively, compared to the Ref. 54 results of 1.75 and 
16.9 HeV. Hence 1t Is felt that the simple model Illustrated 1n 
Figs. 4.3 and 4.4 adequately represents the chamber being considered 
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1n this study. 
A detailed description of the geometry and composition of the 

neutronlcs model Is given In Tables 4.2 and 4.3. 
4.2.3 Results of the Four Initial Transport Calculations. 

The results of the reference point neutronlcs calculations are 
given In Tables 4.4 and 4.5. With a few exceptions all parameters 
listed are output directly by TART. The exceptions are discussed 
below. 

The energy deposition by Isotope In the LI blanket required a 
modification of the standard method that TART uses to calculate energy 
deposition. Normally, energy-dependent energy deposition factors are 
determined for the mixture of Isotopes making up the material 1n a 
zone. These factor times the expected number of collisions per energy 
group, .summed over all energy groups gives the total energy deposited 
In the zone. 

To get the energy deposition by Isotope requires the order of 
summations to be changed. By determining energy deposition factors 
for each Isotope In the material, multiplying 1t by the number of 
collisions with that Isotope, and summing over all energy groups gives 
the energy deposition by Isotope In the zone. 

The other calculated parameter Is the displacement damage rate. 
Using the neutron fluence 1n zone 10 calculated by TACT, the 
displacement damage rate (dpa per full power year) Is calculated as 
follows: 

D = sV^a 1 * r (4.14) 
1 
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Table 4.2 
Geometric characteristics of the modified HYLIFE neutronlcs model 

Inner Outer 
Radius Radius Height 

Zone Description (cm) (cm) (cm) Material 

1 Target 0 0.03 --
2 L1 Vapor 0 50 400 
3, 4 L1 Blanket 50 250 400 
5, 6 L1 Vapor 250 400 400 
7, 8 Steel Hall 500 502 300 
9, 10 Steel Wall 500 502 100 
11. 12 Steel Blanket 502 600 400 
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Table 4.3 
Material compositions of the modified HYLIFE neutronlcs model 

Material 
Composition 

(VolX) 
Density 
(g /cm 3 ) 

I so top l c Frac t ions 
(X) 

OT 100 100 0 
T 

50 
50 

LI 100 10-8 7 U 
7 L1 

7.42 
92.58 

L1 100 0.490 &L1 
?L1 

7.42 
92.58 

L1 100 0.495 &L1 0.50 
99.50 

Fe 100 7.86 Fe 100.00 

NH-1 80 
Na 20 

6.49 Na 
Cr 
Mn 
Fe 

5.97 
2.01 

19.03 
72.99 

2 

3a 

3b 

4* 

The first structural wall Is 2.25 Cr-1 Mo steel. For the purposes 
of these calculations, it 1s represented by 100X natural Fe. 

** The steel blanket is 80 Vol?4 NM-1 steel (77.5 wtX Fe, 20.0 wtX Hn, 
2 w W Cr) and 20 volX Na as the coolant. 
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Table 4.4 
Reaction rates and neutron damage rates for the 

four initial reference points 

Reference Point 
6L1 Fraction, % 
L1 Thickness, m 

1 2 3 4 
0.50 7.42 0.50 7.42 
0.75 0.75 1.25 1.25 

Reactions 
6L1(n,T)a 0.440 0.797 0.733 1.004 

d - 2 ) c (1-2) (1.0) (1.1) 
7L1(n,n'T!a 0.664 0.628 0.718 0.663 

(1.2) (0.8) (1.1) (1.2) 
7L1(n,Tt) 0.004 — 0.007 

(1.2) (1.5) 

Hn(n.T) 0.331 0.156 0.185 0.057 
(1.9) (2.3) (1.5) (4.1) 

Fe(n,Y) 0.343 0.159 0.193 0.057 
(1.8) (2.1) (1.5) (3.8) 

Displacement Damage Rate0 15.5 13.5 3.95 2.92 
(3) (3) (8) (8) 

a) per DT fusion reaction. 
b) dpa per full-power-year based on 2700 HH of fusion power. 
c) percent standard deviation. 
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Table 4.5 
Energy deposition for the four Initial reference points 

Reference Point 
6L1 Fraction, X 
L1 Thickness, m 

1 
0.50 
0.75 

2 
7.42 
0.75 

3 
0.50 
1.25 

4 
7.42 
1.25 

Energy Deposition 
Target 1.83 

(0.4)(c) 
1.85 
(0.4) 

1.83 
(0.5) 

1.84 
(0.4) 

&L1 2.09 
(1.2) 

4.66 
(1.0) 

3.61 
(0.9) 

5.72 
(1.0) 

\\ 8.96 
(1.7) 

8.21 
(3.0) 

9.64 
(2.3) 

8.73 
(4.7) 

First wall 0.73 
(1.7) 

0.35 
(3.0) 

0.40 
(2.3) 

0.09 
(4.7) 

Steel blanket 5.29 
(1.5) 

2.94 
(2.1) 

2.57 
(1.7) 

0.89 
(3.5) 

Mn decay0 0.83 0.39 0.46 0.14 

Alpha particle 3.52 3.52 3.52 3.52 

TOTAL 23.25 21.92 22.03 20.93 

a) MeV per 0T fusion reaction. 
b) energy released from decay of "Mn equals 2.5 MeV per Mn(n,Y) 

reaction. 
c) percent standard deviation. 
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where 
S = neutron source, n/yr, 
<r, = energy dependent displacement cross section, b, 

o *, = energy dependent neutron fluence, n/cm per source 

neutron, and 
1 = energy group index for the muUlgroup calclation. 

The source of OT neutrons is related to the fusion power, P f, by 
S = 11.2 x 1 0 2 4 P f, (4.15) 

where P f 1s in HW. 
The displacement damage cross section for Iron is shown In 

Fig. 4.5. This cross section was calculated by Ooran and Graves 

and 1s somewhat higher than a previously published version. ' It 
Is based on an effective displacement energy of 40 eV, which 1s 
recommended for Iron. For low energy neutrons, the displacement cross 

section varies as H" 0' 5 from a value of lib at 0.025 eV. 6 6 
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Fig. 4.5 Displacement damage cross section for Iron. 
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4.3 INITIAL OPTIMIZATION RESULTS FOR HYLIFE 

Estimated Neutronlc Performance. 
Based on the results of the four reference point neutronlcs 

calculations, the tritium breeding ratio, displacement damage rate and 
neutron energy deposited 1n che chamber are estimated using successive 
two point Interpolation (Eq. 2.46). 

The results for tritium breeding are shown 1n F1gs. 4.6-4.9. 
Figure 4.6 shows the number of L1(n,T)o reactions per DT 
reaction, denoted To, as a function of the two design variables, L1 
fraction In the LI blanket and the L1 blanket thickness. (Note that 
those portions of the surface outside the range 0.5% < x. < 7.42% 
are extrapolations not Interpolations.) As seen 1n Fig. 4.6, T6 
Increases with Increasing L1 fraction and also with Increasing 
blanket thickness. The rise 1n T6 Is very sharp at low LI 
concentrations. 

The number of L1(n,n'T)a reactions per DT fusion reaction, 
denoted T7, as a function of the two design variables 1s shown 1n 
Fig. 4.7. Note the change In the vertical scale from the previous 
figure. As Indicated, T7 decreases with Increasing L1 fraction. 
This 1s as expected since the L1 concentration decreases as the 
11 concentration Increases. Also, T7 Increases with Increasing 

blanket thickness. 
The sum of T6 and T7 gives the tritium breeding ratio, denoted T, 

as shown In Fig. 4.8. Since the variation 1n T7 over this range of 
•variables Is relatively small, the tritium breeding ratio surface 
essentially mimics the features of the T6 surface. Some difference, 
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however, are visible. Note how at x 2 = 1.25 m, T goes through a 
broad maximum as x. Increases, Indicating that T7 Is falling faster 
than T6 1s rising 1n this region. 

A contour plot of the tritium breeding ratio 1s shown In 
Fig. 4.9. The first solid line Is T = 1.05, the constraint on the 

breeding ratio. At low L1 fractions T Is primarily a function of 
ft fi 

the LI fraction whereas above ~5X LI, T 1s primarily dependent 
on the blanket thickness. 

The displacement damage rate, dpa per full-power-year, 1s shown In 
F1g. 4.10 as a function of the two design variables. As Indicated, 
the dpa rate decreases with Increasing LI fraction and Increasing 
blanket thickness. The contour plot, Fig. 4.11, gives a better 
Indication of the nature of the dependence of damage rate on the two 
design variables. It is clear that the dpa rate depends primarily on 
the blanket thickness. This 1s due to the nature of the displacement 
damage cross section. Most of the displacement damage results from 
high energy neutrons. Hence simply moderating the fusion neutrons Is 
sufficient to decrease the dpa rate significantly. Increasing the 
L1 fraction attenuates the neutron flux reaching the first wall by 

absorbing neutrons in L1(n,T)o reactions. Since LI more 
readily captures lower energy neutrons, the dpa rate decreases only 

slightly with Increasing L1 fraction. The dashed line 1s the 
displacement damage rate constraint of 9.5 dpa/yr. 

Next, consider the energy deposited In the chamber. Figures 4.12 
and 4.13 siiow the neutron energy deposited In Li and LI. The 
features of these surfaces are similar to those for T6 and T7. The 
energy deposited 1n the first structure wall and the Na cooled steel 
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Fig. 4.9 Contour plot of the tritium breeding ratio for the modified 

HYLIfE chamber. 
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F1g. 4.10 Displacement damage rate 1n dpa per full-power-year as a 
function of the LI fraction and the L1 blanket thickness. 
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Fig. 4.11 Contour plot of the displacement damage rate. For a 
30 year wall life, the damage rate must be less than 
9.5 dpa/yr. 
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blanket Is shown In Fig. 4.14. The energy deposited In these regions 
Is primarily due to the energy released in neutron capture reactions 
In Fe and Hn. As Indicated, the energy deposition 1n these regions 
Increases with decreasing L1 fraction and with decreasing LI 
blanket thickness. This follows since decreasing the LI fraction 
and the L1 blanket allows more neutrons to penetrate the L1 blanket 
and be captured In structures. 

The total energy deposited In the chamber Is shown In Fig. 4.15. 
It Includes the neutron energy deposited In the compressed fuel of the 
target (1.84 HeV), the fusion alpha particle energy (3.52 HeV/, and 
the Hn decay energy. The Hn decay energy 1s 2.5 HeV per 
Hn(n,T) capture reaction. In general, the total energy 

deposition Increases with decreasing L1 and LI blanket thickness. 
At very low LI concentrations, however, the energy deposition 

begins to fall off. This Is due to the nature of the variational 
estimates 1n the extrapolated region (x, < 0.5%) and Is not based on 
the physical situation. The variation Interpolation estimate for the 
energy deposition In L1 must go to zero as the- LV fraction goes 
to zero. The variational estimate of the energy'deposition in 
structures, however, has no additional boundary condition at low Li 
fractions, and hence the extrapolation to values below x. = 0.5% 
does not rise as steeply as would be expected based on the number of 
neutrons penetrating the L1 blanket as the number of Ll(n,T)o 
reactions falls to zero. 

To get a more accurate estimate of the total energy deposition, 
especially at low L1 fractions, a neutron balance approach Is 
used. The number of available neutrons per DT fusion reaction Is 1.00 
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F1g. 4.14 Energy deposited 1n structures as a function of the Li 
fraction and L1 blanket thickness. 
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F1g. 4.15 Total energy deposited 1n the chamber per DT reaction as a 
function of the two design variables. The 3.5 MeV alpha 
particle energy and Hn decay energy are Included. 
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from the fusion reaction, plus 0.05 from (n,2n) reactions with 0 and T 
in the compressed fuel of the target, plus 0.06 from (n,2n) reactions 
with 7L1 1n the Li blanket for a total of 1.11. 

There are three primary neutron sinks 1n the chamber; neutrons can 
be captured in L1(n,T)a, Fe(n.Y) and Mn(n,Y) reactions. The 
sum of these three reactions for the four reference point transport 
calculations listed In Table 4.4 1s essentially constant (to within 
IX) with an average value of 1.114. 

In the neutron balance method, the number of L1\?:,T)a 
reactions 1s estimated using variational Interpolation and then the 
number of neutrons available fjr capture In Fe or Hn Is calculated 
from, 

N = 1.114 -T6. (4.16) 

Also note from Table 4.4 that Hn capture reactions are always 
-49% of the total capture In Fe and Hn. Each Fe(n,Y) reaction 
releases -7.7 HeV and each Hn(n,Y) reaction releases -7.3 HeV. 
In addition, each Hn capture leads to a (T decay which releases 

2.5 HeV of recoverable energy. Therefore, the energy deposited 1n 
56 structures due to neutron capture and Hn decay 1s 

E = 7.7(0.51 )N + 9.8(0.49)N, 
or 

E c = 8.73N. (4.17) 

Summing the energy deposited In the first wall, steel blanket and 

Hn decay listed 1n Table 4.5 gives a total energy deposition which 1s 
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scmewhat higher than predicated by Eqs. 4.16 and 4.17 when the value 
of T6 from Table 4.4 is used. This additional energy, which can be 
viewed as deposition due to scattering reactions in these regions, 
must be added to E. to get the correct total energy deposition In 
the structures. The additional energy for reference point cases 1-4 
are 0.96, 0.92, 0.09, and 0.16 MeV, respectively. 

The neutron balance estimate of the energy deposited in the first 
wall and steel blanket Is shown 1n Fig. 4.16. This surface shows the 
sharp rise in energy deposition as the L1 approaches zero as 
expected. The improved estimate of the total energy deposited In the 
chamber 1s shown in Fig. 4.17. It increases with decreasing LI 
fraction and decreasing Li blanket thickness over the entire range of 
x. and x ?. 

A contour plot of the fusion energy multiplication factor, M, ; 

is given in Fig. 4.18. This figure clearly shows the sharp rise at 
low Li concentrations. 
4.3.2 Optimal Design Point. 

Based on the previous results the figure of merit is calculated as 
a function of the two design variables as shown in F1g. 4.19. Recall 
that low values of F, the normalized capital cost per net electric 
power production, are desirable. As seen In Fig. 4.19, F decreases 
with decreasing Li fraction and LI blanket thickness. A contour 
plot of F is shown in Fig. 4.20. 

The constraints on the tritium breeding ratio and displacement 
damage rate limit the degree to which the L1 fraction and blanket 
thickness can be decreased In the attempt to decrease F. Figure 4.21 
shows these two constraints overlaid on the contour plot of F. Note 
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F1g. 4.16 Energy deposited In structures as a function of the two 
design var1ah;?s using the neutron balance method. 
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Fig. 4.17 Total energy deposited in the chamber per DT reaction using 

the neutron balance method. 
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Fig. 4.18 Contour plot of the fusion energy multiplication factor for 
the modified HYLIFE chamber. 
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F1g. 4.19 Figure of merit as a function of the L1 fraction and the 
L1 blanket thickness. The figure of merit is a normalized 
capital cost per unit of net electric power production. 
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F1g. 4.20 Contour plot of the figure of merit for the modified HYLIFE 
chamber. 
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Fig. 4.21 First estimate of the location of the optimal design 
point. The point lies the Intersection of the tritium 
breeding and displacement damage constraints. 
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the scale of the horizontal axis has been changed In order to focus on 
the region of Interest. The optimal design point lies at the 
Intersection of the two constraints. The optimal L1 concentration 
1s 0.21% and the optimal L1 blanket thickness 1f 0.86 m. At this 
point the modified HYLIFE plant costs 4.8K more than HYLIFE but 
produces 16% more electric power. The power plant cost per unit of 
net electric power 1s, therefore, reduced by 10%, and the figure of 
merit Is 0.90. 
4.3.3 Comparison to Transport Calculation at Optimal Point. 

In order to check the accuracy of the result an additional neutron 
transport calculation was carried out for these conditions, I.e., 
x, = 0.27% and x~ = 0.86 m. The results of the neutron transport 
calculation are compared with the estimated parameters 1n Table 4.6. 

The variational estimate of the number of L1(n,T)a reactions 
1s low by -17%. This relatively large error Is not totally 
surprising considering the steepness of the T6 surface at such low 
LI concentrations (see Fig. 4.6). In particular, T6 Increases by 

0.8 per 1% Increase In L1 fraction 1n this region. On the other 
hand the number of tritium breeding reactions with LI Is predicted 
quite accurately. The actual tritium breeding ratio thus exceeds the 
required 1.05 by 0.074 and the breeding ratio constraint 1s satisfied. 

The neutron capture rate 1n Mn and Fe Is overestimated. This Is a 
direct result of underestimating T6 since the neutron balance method 
1s used to calculate these rates. 

The underestimate of the energy deposited 1n LI Is consistent 
with underestimating T6. The estimated energy deposition 1n L1 Is 
very close to the transport calculation result. The energy deposited 
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Table 4.6 
Comparison of nsutronic performance at xi = 0.27%, xp = 0.86 m 

TART Estimated 

Reactions3 

6Li;n,T)a 0.441 (1.2) 2 0.368 
7L1(n,n'T)a 0.683 (1.2) 0.682 
T 1.124 1.050 
Hn(n,Y) 0.318 (1.2) 0.366 
Fe(n,T) 0.336 (1.4) 0.380 

Energy Deposition, HeV 
Target 1.85 (0.4) 1.84 
6L1 2.12 (1.2) 1.64 
7L1 9.22 (0.8) 9.19 
Structures 6.48 (1.4) 6.81 
Alpha particle 3.52 3.52 
TOTAL 23.19 23.00 

Displacement damage rate 10.82 9.50 

a) per DT fusion reaction. 

b) Energy deposited In first structural wall and steel blanket 
Including Mn decay energy. 

c) dpa per full-power-year based on 2700 HW of fusion power. 
d) percent standard deviation. 
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56 
In the first structural wall and steel blanket including Mn decay 
1s overestimated by ~5%. The errors in estimating the energy 
deposition nearly cancel and the total Is low by less than IX. The 
final parameter Is the displacement damage rate. It 1s underestimated 
by -12%. This means that the displacement damage rate constraint is 
not really met at this point. 

Based on this comparison some conclusions can be drawn with 
respect to the location of the optimal design point. Since the 
tritium breeding ratio Is Mgher than required, the Li 
concentration could in fact by lowered below 0.27%. Also since the 
displacement damage rate Is not met, the L1 blanket must be made 
somewhat thicker than 0.86 m. This then will allow an even greater 
reduction 1n the LI concentration. A better estimate of the 
location of the optimal design point is made in the next section. 
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4.4 IMPROVED ESTIMATES OF LOCATION OF OPTIMUM 

4.4.1 Improved Estimate Using Taylor Expansion ;t Original Optimal 

Point. 
An Improved estimate of the location of the optimal design point 

can be made by making use of the results of the additional transport 
calculation discussed 1n the previous section and tabulated 1n 
Table 4.6. Since the location of the optimal design point 1s at the 
Intersection of the two constraints, the objective Is to produce a 
better estimate of point at which T = 1.05 and 0 = 9.50. This can be 
done by expanding T and D In first order Taylor Series 1n the two 
design variables. The required partial derivatives are 
approximated by finite differences between points bounding the 
original optimal design point, I.e. x. = 0.2754 and x„ = 0.86 m. 
The values of T and 0 at these adjacent points are calculated using 
successive variation Interpolation as In the previous section. 

The Taylor Series expansions for T and 0 are 

i • 

T ( x r x 2 ) = T < x
l o ' x

2 o > * T
x i A x i + T x 2 A x 2 ' (4-18) 

and 

D(x 1 (x 2) = D(x ] o,x 2 o) • Dx1 4 xl • 0 x 2 A x
2 . C-19) 

where, 
(x.,x?) = New optimal design point, 
( x ] o , x 2 o ) = (0.0027,0.86) = original optimal design point, 
T( K . , X „ ) = 1.05 = tritium breeding ratio constraint, 
0(x,,Xp) = 9.50 = displacement damage rate constraint, 
T(x 1 o,x 2 o) = 1.124 = TART result, 
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0 ( x 1 o , x 2 o ) = 10.82 = TART result, 
i i 

T , and D , = partial derivatives of T and 0 with respect 
to x, at the point (x, ,x_ ), 

Tx2 a n d 0x2 = P a r t 1 a l derivatives of T and D with respect 
to x- at the point (x. ,x ? 1, 

fix, = (x,-x,,l, and I I lo 
flx2 = < x 2 - x 2 o ) . 

The partKl derivatives at (x. ,x, ) are 

T x l " 7 9 ' 8 ' 

D", - - 35 .7 , 

\ 2 = 0.645, and 

D' = - 33 .7 . x2 

These were calculated from the variations In T and D between x, = 0.24 
and 0.30% with x - 0.86, and between x„ = 0.85 and 0.87 with 
x. = 0.275i. 

Substituting the above partlals and the known values for T and 0, 
Eqs. 4.18 and 4.19 reduce to 

-0.074 = 79.8&x1 * 0.645ftx2, (4.20) 

and 
-1.32 = -35.7AX - 33.7&X . (4.21) 

Solving for flx] and Ax 2 gives flx] = -0.00136, and Ax 2 = 0.041. 
The new optimal design point 1s, therefore, x.. = 0.1454, ano x. = 0.90 m. 
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4.4.2 Improved Estimate Using Hew Set of Four Reference Points. 
As previously noted, the original estimate of the optimal design 

point, I.e., x, = 0.27% and x~ = 0.36 m, did not fall between the 

reference values for the LI fraction, i.e., 0.5 and 7.42%. Hence 
the neutronic performance In the vicinity of the optimal point was 
estimated based on extrapolations on x,. An Improved estimate of 
the location of the optimal design point Is obtained 1f it falls 
within the rectangle defined by the four reference points. In this 
section the two reference value for x. are 0.0754 and 0.554, which, 
based on the results of the previous section, i.e., x, - 0.1454, 

lo 
should bound the optimal Li fraction. 

The results of the two new reference point transport calculations 
are tabulated in Tables 4.7 and 4.8. Comparing these results to the 
results given in Tables 4.4 and 4.5 reveals that the L1(n,n'T)a 
reaction rate, the energy deposited in LI, and the displacement 
damage rate are Independent of x. in this range. That is, the 
variations are less than one standard deviation for the Honte Carlo 
result. Hence 1n evaluating the figure of merit and constraints, 
these parameters are only functions of x„ and are estimated using 
two point interpolation on x p. In each case, the average of the 
results at x. = 0.07 and 0.554 serves as the reference value for 
interpolation on x_. These average reference values are listed in 
lable 4.9. 

The neutron balance method described 1n section 4.3 1s also used 
here to estimate the energy deposition in structures. In this case, 
however, the average number of available neutron is 1.101 compared to 
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Table 4.7 

Reaction rates and neutron damage rates for 
XT = 0.07X, x 2 = 0.75 and 1.25 m 

Reference Point 5 6 
6L1 Fraction, % 0.07 0.07 
L1 Thickness, m 0.75 1.25 

Reactions per DT reaction 
6L1(n,T)a 0.229 

(1.9)3 
0.503 
(1.6) 

7L1(n,n ,T)a 0.680 
(0.8) 

0.709 
(1.0) 

7L1(n,T) 0.013 
(1.7) 

0.029 
(1.5) 

Hn(n.Y) 0.403 
(1.3) 

0.253 
(1.8) 

Fe(n,Y) 0.444 
(1.2) 

0.297 
(1.7) 

Displacement Dams ge Rate b 15.6 
(3) 

3.97 
(8) 

a) percent standard deviation. 
b) dpa per full-power-year based on 2700 MW of fusion power. 
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Table 4.8 
Energy deposition for xi = 0.07%, xg = 0.75 and 1.25 m 

Reference Point 5 6 
6L1 Fraction, % 0.07 0.07 
L1 Thickness, m 0.75 1.25 

Energy Deposition3 

Target 

&L1 

\ 1 

First wall 

Steel blanket 

Hn decay 
Alpha particle 
TOTAL 23.96 22.47 

al HeV per DT reaction. 
b) percent standard deviation. 

1.83 
(0 .4 ) b 

1.84 
(0.4) 

1.12 
(1.9) 

2.43 
(1.6) 

8.99 
(0.5) 

9.62 
(0.6) 

1.12 
(1.6) 

0.81 
(1.7) 

6.37 
(1.4) 

3.62 
(1.8) 

1.01 0.63 

3.52 3.5? 
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Table 4.9 
Reference results used to interpolate on xg 

Parameter 0.75 m 1.25 m 

L1(n,n'T)o reactions 0.672 0.713 

Energy deposition in Li, HeV 8.98 9.63 

Displacement damage rate, dpa/yr 15.52 3.96 



-124-

1.114 used previously. Also at 0.01% L1, neutron capture In L1 
becomes significant (I.e., > IX) and Is therefore Included as a sink 
In the neutron balance. Finally Hn accounts for 48% of the captures 
In Mn and Fe compared to 49% 1n the previous case. 

The expression for energy deposition In structures due to neutron 
56 capture and Hn decay Is 

E = 8.71(1.101 - T6 - C7), HeV, (4.22) 
where 

C7 = neMtron capture in L1(n,Y) reactions. 

Compare this to Eqs. 4.16 and 4.17. As before, T6 and C7 are 
estimated using variational Interpolation. 

The direct neutron energy deposition Is equal to the difference 
between the result obtained with Eq. 4.22 and the sum of the tabulated 
energy deposition In the steel, wall, in the steel blanket, and due to 
Hn decay. 

The resulting contour plot of the figure of merit Is shown in 
Fig. 4.22. The displacement damage rate and tritium breeding 
constraints have been overlaid. In this case, the optimal design 
point 1s located at x 1 = 0.13% and x 2 = 0.86 m. The LI 
concentration agrees more closely with the Improved estimate obtained 
1n the previous section, I.e., 0.14%. The optimal LI blanket 
thickness however, is the same as the original estimate. This 1s as 
expected since the blanket thickness is limited by the displacement 
damage rate which in this range is Independent of the L1 fraction. 
Hence, the two new transport calculations at different values of LI 
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Fig. 4.22 Third estimate of the location of the optimal design point. 
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fractlon did not add any new Information relative to the damage rate. 
To get an Improved estimate of the displacement damage rate as a 

function of thickness requires additional transport calculations at an 
Intermediate value of xg. This Is discussed In the next section. 
4.4.3 Using Three Point Interpolation on One Variable. 

In this section the optimal design point 1s estimated using three 
point Interpolations on x ? followed by two point Interpolations on 
x,. Two new transport calculations were carried out with 
x„ = 1.00 m; one with x, = 0.07%, and one with x 1 = 0.5%. The 
results at these points are given 1n Tables 4.10 and 4.11. 

Note that the number of L1(n,T)o reactions varies linearly 
with the L1 blanket thickness In this range. Therefore T6 1s 
estimated by a two point Interpolation on x, between two linear 
expressions 1n x ?, one at x. = 0.0754 and one at x. = 0.554. The 
energy deposition 1n L1 Is also linear In x. and thus estimated 
In the same manner as T6. 

As before T7, E7 and the displacement damage rate are Independent 
of the L1 fraction at these low concentrations. Note that the 
variation 1n the displacement damage rate at 1.00 m 1s within the 6% 
standard deviation. The average values for T7, E7 and displacement 
damage rate at 1.0 m are 0.709, 9.46 MeV and 7.34 dpa/yr. These, 
along with the values listed in Table 4.9, serve as the reference 
points for three point Interpolation on x„. Also, the neutron 
balance method, Eq. 4.22, 1s used to calculate the energy deposition 
1n structures. 
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Table 4.10 
Reaction rates and neutron damage rates for 

x 1 = 0.07 and 0.50X with x 2 = 1.00 m 

Reference Point 
6L1 Fraction, % 
L1 Thickness, m 

7 
0.07 
1.00 

8 
0.50 
1.00 

Reactions per 0T reaction 
6L1(n,T)o 0.366 

(1.5) a 
0.588 
(1.0) 

7L1(n,n'T)a 0.704 
(1.3) 

0.713 
(1.2) 

7L1(n,Y) 0.021 
(1.3) 

0.009 
(1.0) 

Hn(n,T) 0.325 
(1.3) 

0.253 
(2.5) 

Fe(n,T) 0.370 
(1.2) 

0.262 
(2.3) 

Displacement damage rate b 7.57 
(6) 

7.11 
(6) 

a) percent standard deviation. 
b) dpa per full-power-year based on 2700 HW of fusion power. 
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Energy deposition for xi 

Reference Point 
6L1 Fraction, % 
L1 Thickness, m 

Energy Deposition3 

Target 

6 L1 

\i 

First wall 

Steel blanket 

Mn decay 

Alpha particle 

TOTAL 

a) HeV per DT reaction 

b) percent standard deviation 

able 4.11 

= 0.07 and 0.5054 with X2 = 1.00 m 

7 8 
0.07 0.50 
1.00 1.00 

1.83 
(0 .4 ) b 

1.82 
(0.5) 

1.75 
(1.5) 

2.98 
(1.0) 

9.52 
(0.8) 

9.40 
(0.8) 

0.96 
(1.9) 

0.53 
(1.9) 

4.81 
(1.4) 

3.77 
(2.0) 

0.81 0.63 

3.52 3.52 

23.20 22.65 
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The resulting figure of merit contour plot with constraints 1s 
shown In Fig. 4.23. In this case the predicted optimal design point 
1s x 1 = 0.0974 and x„ = 0.91 m. Note that the value of x„ 
Increased to lower the dpa rate as expected. The results of this 
final estimate are compared to the results of a transport calculation 
at this design point In the next section. 

A transport calculation was carried out with a L1 blanket 
thickness of 0.91 m and a L1 fraction of 0.09% 1n order to check 
the estimated results at the optimal design point.. 

The neutronlc performance 1s compared In Table 4.12. All the 
results agree quits closely. The tritium breeding ratio 1s off by 
-0.5%, the total energy deposition 1s within 1% of the transport 
calculation result, and the dpa rate Is high by -0.554. The close 
agreement 1n the dpa rate 1s somewhat fortuitous considering that the 
standard deviation In the result Is -554. 

Based on the agreement with the transport calculation the optimal 
design point of 0.0954 L1 and a blanket thickness of 0.91 m 1s quite 
acceptable. 
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Fig. 4.23 Fourth estimate of the location of the optimal design point. 



-131-

Table 4.12 
Comparison of TART and estimated results at 

xi = 0.0954 and x 2 = 0.91 m 

Reactions per DT reaction 
6L1(n,T)a 
7L1(n,T)a 
T 
7L1(n,Tf) 
Hn(n,Y) 
Fe(n,T) 

Energy deposition3 

Target 
6L1 
7L1 
Structures 
Hn decay 
Alpha particle 

TOTAL 

Displacement damage rate b 

TART 

0.357 (1.7) c 

0.698 (0.7) 
1.055 

0.016 (1.6) 

0.353 (1.5) 

0.390 (1.4) 

23.51 

9.45 (5) 

Estimated 

0.350 
0.700 
1.050 
0.016 
0.353 
0.382 

1.82 (0.4) 1.84 

1.67 (1.7) 1.70 

9.45 (0.5) 9.32 

6.17 (1.5) 6.03 

0.88 0.88 

3.52 3.52 

23.29 

9.50 

a) MeV per DT reaction. 
b) dpa per full-power-year based on 2700 HH of fusion power. 
c) percent standard deviation. 



-132-

4.5 SUMMARY OF OPTIMIZATION RESULTS. ', 
The plant parameters at the final optimal design po'Snt are 

compared to the reference HYLIFE parameters In Table 4.13*. With the 
modified design, the fusion energy multiplication factor Is Increased 
to 1.34. As a result, the modified design produces 19.454 more 
electric power. The plant capital cost, however, 1s only 6.5% higher 
for an 10.8% reduction 1n the cost per kWe. To put this Into 
perspective note that with the modified HYLIFE design the driver and 
target factory could cost J200 M more (direct) for the same cost of 
electricity as from HYLIFE. 

The various optimal design points described 1n this chapter are 
summarized In Table 4.14. 
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Table 4.13 
Comparison of HYLIFE and modified HYLIFE parameters at 

XT = 0.0955 and xj = 0.91 m 

Modified 
HYLIFE HYLIFE 

Tritium breeding ratio 1.75 1.05 

Neutron energy deposition, MeV 16.9 20.0 
Fusion power, HW 2700 2700 
Fusion energy multiplication factor 1.16 1.34 
Thermal power, MW t 3130 3607 
Thermal conversion efficiency, 54 39 39 
Gross electrical power, HWe 1220 1407 

Laser power consumption, HWe 135 135 
Auxiliary power requirements, MWe 75 75 
Lithium pumping power, HWe 30 27 
Net electrical power, HWe 980 1170 
Direct capital costs, (H 

Reactor 960 1075 
Lithium pumps 160 146 
Laser 330 330 
Target factory 100 100 

TOTAL 1550 1651 

(a) based on results of transport calculation. 
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Table 4.14 
Summary of optimal design points discussed 1n Chapter 4 

Number 
Optimal 

xl, % 
Point 
x2, m 

Reference 
xl, % 

Points 
x2, m Method 

1 0.27 0.86 0.50 0.75 Successive two 

0.50 
7.42 
7.42 

1.25 
0.75 
1.25 

point Interpolation 

2 0.14 0.90 0.27 0.86 Taylor Series 

about point 1 

3 0.13 0.86 0.07 0.75 Successive two 
0.07 
0.50 
0.50 

1.25 
0.75 
1.25 

point Interpolation 

4 0.09 0.91 0.07 0.75 Three point 
0.07 1.00 Interpolation on x. 
0.07 1.25 Two point 
0.50 
0.50 
0.50 

0.75 
1.00 
1.25 

Interpolation on x-. 
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OPTIHIZATION OF THE CASCADE CHAMBER 

5.1 DESCRIPTION OF THE PROBLEM 

5.1.1 The Cascade Reactor Concept. 

The subject of the second optimization problem Is another Inertlal 
71 72 confinement fusion reactor concept called Cascade. ' The primary 

feature of Cascade (see Fig. 5.1) Is a rotating chamber In which a 

cascading blanket of solid lithium cerami- pebbles breeds tritium, 
acts as the heat transfer medium, and protects the chamber wall from 
the damaging effects of neutrons, x-rays and target debris. Pebbles 
are Injected at each end of the chamber, and are held against the wall 
by centrifugal action. The pebbles cascade toward larger radii and 
exit through apertures Into u stationary pebble catcher. Heat and 
tritium are removed, and the pebbles are recirculated for relnjectlon 
into the chamber. This concept 1s currently under Investigation at 
Lawrence Llvermore National Laboratory, and researchers at GA 
Technologies are participating 1n the study under contract. 

72 As reported 1n the literature, the solid breeding material 
used 1n Cascade is L1.0. While L1„0 Is a good tritium breeding 

material, there are some concerns about the corrosive effects of L10H 
73 74 which is formed from L1-0. ' From a compatibility standpoint, 

a more attractive ceramic tritium breeding material is 

L1A40 2. 7 5 Unfortunately, L1A10 2 will not give a tritium 
breeding ratio greater than one unless a neutron multiplier Is placed 

25 between the fusion neutron source and the L1AStO_ breeding blanket. ' 
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F ig . 5.1 The Cascade chamber. 
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In this optimization problem, a Cascade chamber using a L1A10. 
breeding blanket and a BeO neutron multiplier 1s Investigated. 
Beryllium 1s an excellent neutron multiplier with a threshold of only 
1.85 HeV. Beryllium oxide Is proposed here to allow for high 
temperature operation, which 1s one of the goals of the Cascade 

77 7fl concept. ' 
A flowing layer of BeO pebbles can be maintained on the surface of 

the L1A10. blanket by fabricating the BeO larger and less dense 
79 than the LIAiOp pebbles. The normal density of BeO Is 

3 3 
3.01 g/cm , while L1A8.i)? has a normal density of 2.55 g/cm . 
Therefore, the BeO pebbles must be fabricated at less than 85% normal 
density. 

Three blanket design variables are considered 1n the Cascade 
optimization problem. They are 

x, = 6L1 fraction In L1, 
x. = LIAlOp blanket thickness, m, and 

x_ = BeO multiplier thickness, m. 

5.1.2 figure of Merit for Cascade. 

The figure of merit chosen for this design Is simply the sum of 
the LIAiO blanket thickness and the BeO multiplier thickness. 
That 1s, we seek to minimize 

(5.1) 

At this stage In the development of the Cascade concept, 1t is not 



-138-

posslble to optimize a more general system parameter, such as the cost 
of electricity, since cost estimates for the reactor plant have not 
yet been made. By minimizing the total blanket thickness (the 
multiplier Is considered part of the blanket) the size of the rotating 
chamber can be minimized. This Inner radius of the blanket 1s assumed 
to be fixed by the damaging effects (ablation and vaporization) of the 
x-rays and target debris. 

Pitts previously sought to minimize the size of the chamber from a 
BO mechanical and thermal perspective. In this problem, the neutronlc 

perspective 1s considered. 
5.1.3 Constraints on the Design. 

Three constraints are Imposed on the Cascade design. The first Is 
a requirement for a tritium breeding ratio greater than 1.05. This is 
the same constraint as used for the modified HYLIFE chamber 
optimization problem discussed 1n Chapter 4. The constraint 1s 
expressed as, 

T > 1 . 0 5 . (5.2) 

The second constraint relates to the mechanical design of the 

Cascade chamber. GA Technologies recently proposed a concept where 
the rotating chamber Is constructed of Individual SIC panels held 

fli together by At tendons. The AH tendons are actually a 

composite of Al and SIC fibers to Increase tensile strength of 
AH. Based on a temperature limit of 400°C for the tendons, the heat 

generation rate 1n the tendons due to neutron and gamma heating must 
3 81 be less than 0.85 W/cm . The second constraint Is 
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(5.3) 

The heat rate In the tendons Is calculated from, 

E tP f/17.6V t, (5.4) 

energy deposited 1n the zone representing the A8./S1C 
tendons, HeV per OT reaction, 

the fusion power, M, and 
3 volume of the zone representing the tendons, cm . 

The value 17.6 Is the total energy 1n HeV released per DT reaction. 
For Cascade, the fusion power Is 3000 HW. 

A third constraint 1s placed on the total neutron leakage rate 
from the Cascade chamber. This parameter gives an Indication of the 
effectiveness of the blanket design 1n performing one of Its primary 
functions, namely, capturing the fusion neutrons. 

The beam ports at the ends of the Cascade chamber provide a direct 
leakage path from the chamber. The two ports subtend 1.25X of the 
total solid angle. The neutron leakage through the ports, however, 
will be greater than 1.2554 of the fusion neutron source for two 
reasons. One Is that neutrons entering the blanket can be 
scattered out through the ports. The second Is that neutron 
multiplication 1n the BeO region will tend to Increase the neutron 
leakage through the ports. 

There will also be some neutron leakage through the L1A10. 
blanket Itself. The constraint on the total neutron leakage Is set at 

G < 0.85 W/cm 

G 

where 
Et = 

Pf -
Vt = 
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0.1 neutrons per DT reaction. That Is, 

L < 0.1. (5.5) 

The constraints given by Eqs. 5.2, 5.3 and 5.5 are evaluated as a 
function of the three design variables using successive, two point 
variational Interpolation. As such, eight reference point transport 
calculations are required. The neutronlcs model for the Cascade 
chamber 1s discussed In the next section. 
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5.2 REFERENCE POINT TRANSPORT CALCULATIONS 

5.2.1 Neutronlcs Model for the Cascade Chamber. 
The neutronlcs model of the Cascade chamber Is shown 1n F1g. 5.2. 

The football shaped chamber (see F1g. 5.1) Is approximated by a 
sphere. As In the neutronlcs model for the modified HYLIFE chamber, 
the 14.1 HeV neutron source Is uniformly distributed throughout a 

2 
region of DT compressed to a density-radius product of 3.0 g/cm . 
The target, zone 1, Is located at the center of the chamber. The 
region between the target and the blanket 1s void. 

The Innermost blanket region, zone 3, contains the BeO neutron 
multiplier. This zone Is 0.1 m thick and has an Inner radius of 
3.4 m. The density of BeO within zone 3 Is varied to represent 
variations 1n the effective multiplier thickness, x„. 

The LlAHOp breeding blanket, zone 4, extends from a radius of 
3.5 to 4.5 m. Again the material density 1s varied to represent 
variations 1n the breeding blanket thickness, x~. The LI 
fraction of lithium 1n this zone 1s the third design variable, x.. 

Outside the breeding blanket is a 2-cm-thlck shell, zone 5, of S1C 
representing the chamber wall. This Is followed by a 2-cm-thlck 
region, zone 6, that contains the AH/SIC fiber composite and 
represents the tendons. The two beam ports are represented by 
cylindrical voids In the blanket. The radius of these holes Is 0.72 m 
so that the solid angle fraction subtended at a radius of 4.5 m 1s 
1.25%. 

The geometric characteristics are listed In Table 5,1. The volume 
ft o 

of zone 6 1s 5.09 x 10 cm . Thus from Eq. 5.4, the heat rate In 
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Fig. 5.2 Neutronlcs model of the Cascade chamber. 
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Table 5.1 

Geometric characteristics of the Cascade neutronlcs model. 

Zone Description 
Inner 
Radius 
(cm) 

Outer 
Radius 
(cm) Material 

1 Target 0 0.03 1 
2 Vacuum 0 340 Void 
3 Neutron multl pller 340 350 2 
4 Breeding blanket 350 450 3 
5 Chamber wal 1 450 452 4 
6 Tendons 452 454 5 
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the Al/SIC tendons for 3000 MM of fusion power 1s 

G = 33.5 E t, (5.6) 
where 

E, = energy deposited In zone 6, MeV per DT reaction. 

The composition of the materials used In the neutronlcs 
calculations are listed 1n Table 5.2. The tendons are 65 vol'/. AH 
and 35 volX S1C fibers. These fibers contain CO and S10 Impurities 
which gives rise to the Indicated oxygen content. The fiber 
composition 1s 57 wtX SI, 31 wt% C, and 12 wtX 0. 
5.2.2 Results of the eight Initial transport calculations. 

As previously stated, eight reference point transport calculations 
are required for the Cascade chamber optimization problem. The eight 
points are defined by the combinations of two values for each of the 
three design variables. The reference values for the design variables 
are 6L1 fractions of 7.42 and 50%, L1A8.0, blanket thicknesses of 
0.30 and 0.50 m, and BeO multiplier thicknesses of 0.05 and 0.15 m. 

The results are given In Tables 5.3-5.6. The reaction rates and 
the neutron balance for the four transport calculations with 0.05 m of 
BeO and 0.15 m of BeO are given 1n Tables 5.3 and 5.5, respectively. 
The neutron balance gives the net neutron gain or loss In the various 
regions of the chamber. The small remainder 1s the neutron capture 'in 
the SIC wall and AI/S1C tendons. 

The energy deposition per DT reaction In each zone 1s given In 
Table 5.4 for the four cases with 0.05 m of BeO, and In Table 5.6 for 
the four cases with 0.15 m of BeO. The key number here is the energy 
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Table 5.2 

Composition of materials used 1n the Cascade neutronics calculations 

Material 
Density 
(g/cm3) 

Isotoplc Fractions 
(X) 

2 

3* 

3b 

100 

3.01 

2.55 

2.55 

3.20 

2.60 

0 
T 

Be 
0 

6 L1 
\ 1 
AH 
0 

?L1 
\\ 
M 
0 

S1 
C 

C 
0 
S1 
Alt 

50.00 
50.00 

50.00 
50.00 

1.86 
23.14 
25.00 
50.00 

12.50 
12.50 
25.00 
50.00 

50.00 
50.00 

19.71 
5.72 

15.49 
59.08 

a) natural lithium. 
b) lithium enriched to 5054 6 L 1 . 
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Table 5.3 
Reaction rates and neutron balance for 

transport calculations with 0.05 m of BeO 

Reference point 1 2 3 4 
L1A10 2 thickness, m 0.30 0.30 0.50 0.50 
6L1 Fraction, X 7.42 50.00 7.42 50.00 

Reactions3 

6L1(n,T)o 0.797 
(1.2) b 

0.948 
(1.3) 

0.999 
(1.7) 

1.100 
(1.1) 

7L1(n,n'T)a 0.070 
(0.9) 

0.038 
(1.0) 

0.075 
(1.5) 

0.040 
(1.9) 

Be(n,2n) 0.269 
(1.6) 

0.266 
(1.4) 

0.264 
(1.1) 

0.267 
(0.9) 

Neutron balance3 

Target 1.057 1.056 1.055 1.057 
BeO 0.189 0.188 0.187 0.184 
L1A102 -0.893 -1.046 -1.104 -1.179 
Port leakage -0.046 

(4.1) 
-0.033 
(3.5) 

-0.043 
(3.2) 

-0.030 
(8.6) 

Blanket leakage -0.303 
(2.0) 

-0.161 
(2.5) 

-0.094 
(2.7) 

-0.031 
(3.1) 

Remainder 0.004 0.004 0.001 0.001 

a) per DT reaction. 
b) percent standard deviation. 
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Table 5.4 

Energy deposition for the 
transport calculations with 0.05 m of BeO 

Reference point 1 2 3 4 
L1A40 thickness, m 0.30 0.30 0.50 0.50 
6L1 Fraction. X 7.42 50.00 7.42 50.00 

Energy deposited3 

Target 1.80 
(0.4) b 

1.85 
(1.0) 

1.85 
(0.7) 

1.83 
(0.8) 

BeO 3.05 
(0.9) 

3.02 
(0.4) 

3.06 
(1.0) 

3.03 
(0.4) 

L1AI02 9.19 
(0.7) 

9.98 
(0.7) 

10.77 
(1.1) 

11.28 
(0.8) 

S1C wall 0.11 
(2.9) 

0.11 
(2.9) 

0.03 
(10.2) 

0.02 
(7.5) 

Tendons 0.059 
(3.1) 

0.059 
(2.8) 

0.013 
(8.2) 

0.014 
(6.3) 

Port leakage 0.20 
(5.9) 

0.20 
(7.5) 

0.19 
(7.7) 

0.18 
(8.8) 

Blanket leakage 0.66 
(3.7) 

0.65 
(2.7) 

0.14 
(7.4) 

0.13 
(7.6) 

a) MeV per 01 reaction. 

b) percent standard deviation. 
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Table 5.5 
Reaction rates and neutron balance for 

transport calculations with 0.15 m of BeO 

Reference point 5 6 7 8 
L1AH0. thickness, m 0.30 0.30 0.50 0.50 
6L1 Fraction, % 7.42 50.00 7.42 50.00 

Reactions3 

6L1(n,T)a 1.158 
(O.J) 

1.217 
(0.9) 

1.263 
(0.8) 

1.276 
(1.2) 

7L1(.i,n,T)o 0.023 
(-6) 

0.012 
(2.7) 

0.023 
(3.2) 

0.012 
(3.0) 

Be{n,2n) 0.562 
(1.1) 

0.569 
(1.4) 

0.561 
(1.1) 

0.556 
(1.3) 

Neutron balance3 

Target 1.052 1.051 1.061 1.057 
BeO 0.321 0.318 0.325 0.315 
L1AI02 -1.179 -1.252 -1.290 -1.305 
Port leakage -0.057 

(3.8) 
-0.051 
(4.6) 

-0.056 
(4.2) 

-0.050 
(6.4) 

Blanket leakage -0.136 
(1.9) 

-0.065 
(3.3) 

-0.039 
(5.3) 

-0.016 
(12.9) 

Remainder 0.001 0.001 0.001 0.001 

a) oer DT reaction. 
b) percent standard deviation. 
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Table 5.6 
Energy deposition for the 

transport calculation? with 0.15 m of BeO 

Reference po Int 5 6 7 8 
LlAd.0. thickness, m 0.30 0.30 0.50 0.50 
6L1 Fraction . % 7.42 50.00 7.42 50.00 

Energy depos 1teda 

Target 1.81 
(0.6)b 

1.83 
(0.7) 

1.84 
(0.8) 

1.B3 
(0.5) 

BeO 6.89 
(0.6) 

6.82 
(0.9) 

6.94 
(0.5) 

6.82 
(0.9) 

L1A(L02 7.77 
(0.9) 

7.91 
(0.7) 

8.36 
(1.0) 

8.38 
(1.2) 

SIC wall 0.05 
(6.2) 

0.04 
(4.5) 

0.01 
(7.8) 

0.01 
(8.0) 

Tendons 0.026 
(5.4) 

0.024 
(3.8) 

0.007 
(7.1) 

0.006 
(16.5) 

Port leakage 0.21 
(8.0) 

0.20 
(6.5) 

0.18 
(6.3) 

0.19 
(3.1) 

Blanket ' leakage 0.28 
(4.8) 

0.26 
(4.3) 

0.06 
(8.2) 

0.06 
(14.6) 

a) HeV per DT reaction. 
b) percent standard deviation. 
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deposltlon In the A1/S1C tendons. The other Information 1s provided 
for completeness. 

The results of the eight reference point transport calculations 
form the basis for estimating the neutronlc performance as a function 
of the three design variables. This 1s discussed in the next section. 
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5.3 INITIAL OPTIMIZATION RESULTS FOR CASCADE 

5.3.1 Estimated Neutronlc Performance. 
The neutronlc performance 1s estimated as a function of the three 

design variables by successive, two point variation Interpolation. In 
particular, the constraints on the tritium breeding ratio, the tendon 
heat generation rate, and the total ne,'tron leakage must be determined. 

The tritium breeding ratio as a function of the L1 fraction and 
the L1A10, blanket thickness for the case of a 0.0S-m-th1ck BeO 
multiplier 1s shown In F1g. 5.3. Note from Table 5.3 that the tritium 
breeding 1s dominated by the contribution from LI. A contour plot 
of the tritium breeding ratio with 0.5 m of 8e0 Is shown 1n Fig. 5.4. 
To meet the constraint of T > 1.05 requires a L1A&0, blanket 
thickness greater than -0.37 m 1f the L1 1s enriched to -40% L1. 

Figures 5.5 and 5.6 show the tritium breeding ratio In the 
L1ASL0. blanket when a 015-m-thlck BeO multiplier 1s used. Here 
the benefit multiplier Is clear. The tritium breeding ratio exceeds 
the minimum required value of 1.05 over the entire range of LI 
fractions and L1A&0, blanket thickness shown. The only exception 
Is for thin blankets with denatured L1, I.e., less than ~3% L1. 

As seen 1n the previous four figures, the tritium breeding ratio 
shows the same trends as discussed for the modified HYLIFE chamber. 
In particular, the breeding ratio Increases with Increasing LI 
fraction and with Increasing blanket thickness. The breeding ratios 
were calculated by Interpolating on x, first, then on x„ and 
finally on x„. 

As Indicated In Tables 5.4 and 5.6 the energy deposition In the 
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Fig. 5.3 Tritium breeding ratio as a function of L1 fraction and 
L1AI0 2 thickness with 0.05 m of BeO. 
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F1g. 5.4 Contour plot of tritium breeding ratio with 0.05 m of BeO. 
The tritium breeding ratio must be greater than 1.05. 
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fig. 5.6 Contour plot of tritium breeding ratio with 0.15 m of BeO. 
The tritium breeding ratio must be greater than 1.05. 
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Al/SIc tendons Is Independent of the LI fraction. Figure 5.7 
shows the heat generation rate (W/cm ) In the tendons as a function 
of the BeO thickness and the L1A9.0- blanket thickness. As 
Indicated, the heat generation rate decreases as the thickness of 
either region Increases. 

A contour plot of the tendon heat rate 1s shown in Fig. 5.8. 
3 Recall the heat rate must be < 0.85 W/cm . In order to meet this 

constraint, the minimum required L1A8.0- thickness Is -0.38 m 

with 0.05 m of 8e0. The required thickness decreases with Increasing 
BeO thickness to -0.30 m with 0.15 m of BeO. The heat generation 
rate 1s calculated by first Interpolating on x. and then on x„. 

The neutron leakage 1s calculated from a neutron balance with the 
net gain 1n the BeO region and the net absorption 1n the L1A40 ? 

blanket being estimated by successive two point interpolation. That 
Is 

L = 1.056 t N - N , (5.7) 
g a' 

where 
N = iiet neutron gain In BeO, and 
N - net neutron absorption 1n L1A10,. a c 

The factor of 1.056 Is the number of neutrons emitted by the target 
per Dl reaction. It exceeds one because of (n,2n) reactions with 
D and 1 In the compressed fuel zone. 

The total neutron leakage as a function of the LI fraction and 
L1A!0 2 blanket thickness 1s shown In Figs. 5.9 and 5.10 for the 
case of a 0.05-m-th1ck BeO multiplier. The leakage decreases with 
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Fig. 5.7 Heat generation rate In AH/SIC tendons as a function of BeO 
thickness and L1A8,0? thickness. The fusion power Is 
3000 HW. 
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fig. 5.8 Contour plot of the heat generation rate In the tendons. 
3 The heat rate must be less than 0.85 W/cm . 
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Fig. 5.9 Total neutron leakane per OT reaction as a function of LI 
fraction and L1AI0 2 thickness with 0.05 m of BeO. 



-160-

0.05 m BeO 

0.08 

0.10 

0.12 

0.14 

0.16 

0.18 

10 20 30 40 50 
6 Li fraction, % 

60 70 80 

Fig. 5.10 Contour plot of neutron leakage with 0.05 m of BeO. The 
total neutron leakage Is limited to 0.10. 
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Increaslng LI fraction and with Increasing blanket thickness since 
In both cases more neutrons are captured by L1 as these variables 
Increase. The curves extend down to 7.42% L1, I.e., natural 
lithium. Note from Fig. 5.10, that even If the L1 1s enriched to 80% 
In L1, a 0.41-m-thlck blanket 1s required to keep the neutron 
leakage below 0.1 per OT reaction. 

Figures 5.11 and 5.12 show the neutron leakage as a function of 
the LI fraction and the L1A&0, blanket thickness when a 
0.15-m-thlck BeO multiplier '.s used. Note that the range of the 
vertical scjle of F1g. 5.11 1s about a factor of two smaller than In 
F1g. 5.9. In this case, the minimum required breeding blanket 
thickness decreases from -0.49 m with natural L1 to -0.33 m with 
LI enriched to 8054 6 L 1 . 

The three constraints, Eqs. 5.2, 5.3 and 5.5 are shown as a 
function of the LI fraction and the LIAHO, blanket thickness 
for 0.05, 0.10, *nd 0.15 m of BeO In Figs. 5.13, 5.14 and 5.15, 
respectively. In each case It 1s desirable to find the minimum value 
of the LlAftO- thickness such that the figure of merit, x„ + x„. 
Is minimized. 

Comparing these three figures gives an Indication of how the 
constraints vary as a function of the BeO thickness. The minimum 
L1A9.0, blanket thickness set by the tritium breeding ratio 
constraint decreases with Increasing BeO thickness. The same trend 
applies to the heat generation rate constraint. 

Note that for the neutron leakage constraint, the minimum 
LlAfcO blanket thickness Is greater at 0.10 m of BeO than at 0.05 
or 0.15 m. This rise and fall 1n the required blanket thickness 1s 
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Fig. 5.11 Total neutron leakage per DT reaction as a function of 
6L1 fraction and LIAHOj thickness with 0.15 m of BeO. 
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Fig. 5.12 Contour plot of neutron leakage with 0.15 m of BeO. The 
total neutron leakage Is limited to 0.10. 
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Fig. 5.13 Three constraints as a function of LI fraction and 

L1A10 2 thickness with 0.05 m of BeO. 
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M g . 5.14 Three constraints as a function of L1 fraction and 

LIAHOj thickness with 0.10 m of BeO. 
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- Tritium breeding ratio 
constraint T > 1.05 
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Fig. 5.15 Ihree constraints as a function of LI fraction and 

L1AI0 2 thickness with 0.15 m of BeO. 
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related to the two modes of neutron leakage. As indicated in 
Tables 5.3 and 5.5, Increasing the BeO thickness increases the neutron 
leakage through the ports and decreases the blanket leakage, for a 
blanket highly enriched in LI, the Increase in port leakage can 
exceed the decrease In blank-1 leakage. Ar, a result a thicker 
breeding blanket is required to maintain a constant total leakage rate 
of 0.1 per DT reaction. 

In all three figures the limiting constraint is the neutron 
leakage constraint. Assuming a upper limit of BOX on the LI 
enrichment, the minimum L1A8.0. blanket thicknesses are 0.41, 0.44, 
and 0.33 m for the 0.05, 0.10, and 0.15 m thick BeO cases, 
respectively. 
5.3.2 Optimal Design Point. 

The direct search algorithm gives the optimal design point as 
63.b'A 6L1, 0.397 m of L1AI0 2 and 0.040 m of BeO. This result 1s 
shown graphically In F1gs. 5.16 and 5.17. Figure 5.16 shows the 
minimum blanket thickness as set by the neutron leakage constraint and 
the heat generation constraint as a function of the BeO thickness, 
for less than 0.04 m of 3e0 the heat generation rate 1s the limiting 
constraints Between 0.04 and 0.16 m of BeO, neutron leakage is the 
limiting constraint. Beyond 0.16 m, the L1AI0_ blanket thickness 
1s again limited by the heat generation rate. 

Also shown in F,1g. 5.16 Is the figure of merit, I.e., the total 
blanket thickness Note that there are two 'ocal minima, one at 
0.04 m of BeO and the other at 0.16 m. The minima at 0.04 m however, 
1s the lower of the two. 

The constraints as a function of the L1 fraction and the 
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fig. 5.16 Minimum blanket thickness as 1 function of 8e0 thickness. 
The lower curves show the minimum U A 1 0 2 thickness as 
set by the neutron leakage anu heat rate constraints. The 
top curve Is the total blanket thickness Including the BeO 
thickness. 
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L1AI0„ thickness are shown 1n Fig. 5.17 for the optimal 0.04 m of 
BeO. Note again how the optimal design point lies at the Intersection 
of the neutron leakage and heat generation rate constraints. Clearly 
higher L1 enrichments give the same minimum thickness since the 
heat rate is Independent of this variable. The minimum acceptable 
Li fraction, 63.6%, Is chosen from a resource consideration. 
5.3.3 Comparison to transport calculation at the optimal point. 

An additional neutron transport calculation was carried out at 
63.6% Li, 0.40 m of LIAlOj and 0.04 m of BeO. The results are 
compared to the estimated results at the optimal point 1n Table 5.7. 
The estimated trllium breeding ratio is -354 higher than the TART 
result and the estimated neutron leakage is low by ~6X. While these 
are acceptable differences, heat generation rate 1n the A1/S1C 
tendons is actually 72% ii'gher than the estimated result. 

In the next section an improved estimate of the location of the 
optimal design point is mau: based on a new estimate o the tendon heat 
generation rate as a function of the L1AI0, and BeO thickness. 
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fig. 5.17 First estimate of the location of the optimal design 

point. The point lies at the intersection of the neutron 
leakage and heat generation rate constraints. 
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CompaHson 
x ] = 63.6%, x 2 

Parameter 3 

6 L 1 ( n r T ) a 

7 L 1 ( n , n ' T ) a 

Tritium breeding ratio 

Total neutron leakage 

Energy deposited 1n 
tendons, HeV 

a) per OT leactlon. 

b) percent standard deviation. 

Table 5.7 

neutronic performance at 
= 0.40 m, and x = 0.04 m 

TART Estimated 

0.985 (1.3) b 1.021 

0.032 (2.0) 0.032 

1.017 1.053 

0.106 (3.0) 0.100 

0.031 (4.0) 0.025 
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5.4 IMPROVED ESTIMATE OF LOCATION OF OPTIMUM 

As Indicated In the previous section, there Is a significant 
difference between the estimated heat generation rate In Lhe AI/S1C 
tendons and the results of the neutron transport calcrlatlon. It Is 
postulated that this difference Is largely due to the fact that a 
significant fraction of the energy deposited 1n the AI/S1C tendons 
Is photon energy that originates In the L1A8.0- blanket. The break 
down 1s given In Tables 5.8 and 5.9. The variational Interpolation 
formula used to predict the energy deposition 1n the tendons only 
accounts for variations In the neutron flux In that region. It does 
not acrount for variations In the photon source Jjacents region 
and ti r-ansport of those photons into the tendons. 

An alternate approach Is therefore used to estimate the heat rate 
1n the tendons as a function of the BeO and L1A10. blanket 
thicknesses. It Is assumed that the heat generation rate decreases 
exponentially with the thickness of BeO and with the thickness of 
L1A!0 2. That Is 

E = E Q exp(-u 2x ?) exp(-u 3x 3) (5.8) 
-•here 

E ^ energy dbposltlon In the A4/S1C tendons, MeV, 
E = energy deposition with no blanket, MeV, 
M 2 = attenuation coefficient for LU&O- thickness, m" , and 
Mo = attenuation coefficient for BeO thickness, m" . 

Using the energy deposition results given In Tables 5.4 and 5.6 
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Table 5.8 

Photon energy source and deposition in 
AI/S1C tendons with 0.05 m of BeO. 

Reference point 1 2 3 4 
L1A8.02 thickness, m " 3 0 0.30 0.50 0.50 
6L1 Fraction, % 7.42 50.00 7.42 50.00 

Photon source 3 0.028 0.039 0.006 0.006 

Photon deposition3 0.043 0.043 0.010 0.012 

Photon/Totalb 0.73 0.73 0.77 0.86 

a) Mev per DT reaction. 
b) Ratio of photon energy deposition to total energy deoositlon. 

Total deposition given In Table 5.4. 
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Table 5.9 
Photon energy source and deposition In 

AI/S1C te.idons with 0.15 m of BeO. 

Reference point 5 6 7 8 
L 
6 
L1A10 2 thickness, m 0.30 0.30 0.50 0.50 
5L1 Fraction, % 7.42 50.00 7.42 50.00 

Photon source 3 0.013 0.007 0.006 0.003 

Photon deposition3 0.021 u.019 0.006 0.005 

Photon/Total*5 0.81 0.79 0.86 0.8" 

<•) HeV per DT reaction. 

b) Ratio of photon energy deposition to total energy deposition. 

Total deposition given In Table 5.6. 
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the following system of equations can be written, 

0.059 = E Q exp(-0.3w 2) expf-O.O'i'ig), (5.9) 
0.014 = E Q exp(-0.5y 2) exp(-0.05|> ), (5.10) 
0.025 = £ o exp(-0.3w 2) exp(-0.15u 3). (5.11) 

Solving for the three unknowns and substituting into Eq. 5.8 gives 

E = 0.827 exp(-7.37x 2) exp(-8.59x 3). (5.12) 

Using this expression, the predicted energy deposition for the 

optimal design point of x 2 = 0.40 m and x„ = 0.04 m Is 0.031 HeV 
3 or 1.03 W/cm . Hence at this particular point the new estimate 1s 

quite accurate. 
The heat generation rate in the tendon as a function of the BeO 

multiplier thickness and L1A&0, thickness Is shown 1n Figs. 5.18 
and 5.19. Note that the surface in Fig. 5.18 1s somewhat flatter than 
the earlier estimate shown In F1g. 5.7. 

The optimization problem was rerun, using the exponential estimate 
for the lieat generation rate 1n the tendons. The optimal design point 
1n this case 1s 34.2X 6 L 1 , 0.424 m of L1A10 2, and 0.042 m of BeO. 
The constraints and location A the optimal design point for this case 
are shown In Fig. 5.20 

A final transport calculation was carried out at the new optimal 
point. The results are compared to the estimated results In 
Table 5.10. In this case the agreement 1s close for all the relevant 
parameters. 
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Fig. 5.18 New estimate of heat generation rate In AI/S1C tendons as 
a function of BeO thickness and LIAfcO- thickness. 
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F1g. 5.19 Contour plot of new heat generation rate. 



-178-

0.60 

0.48 

0.46 

0.44 

0.42 

0.40 

g N 0.381 

0.36 

0.34 -

0.32 

0.30 

Neutron leakage 
constraint L < 0.1 

VX /- Tritium breeding ratio 
constraint T > 1.05 

Optimal design point 

0.042 m of BeO 

irrrmmrmrrrrnTnTinrnTrnTTrrmL 

Heat generation constraint 
G < 0.85 W/cm 3 

10 20 30 40 50 
6 Li fraction, % 

60 70 80 

Fig. 5.20 Final estimate of location of optimal design point. 
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Table 5.10 
Comparison of neutronic performance at 

x-\ = 34.2%, x 2 = 0.424 m, and x 3 = 0.042 m. 

Parameter3 TART Estimated 

6L1(n,T)o 1.019 (1.0) b 1.029 

7Ll(n,n'T)a 0.040 (1.1) 0.057 

TiHIum breeding ratio 1.059 1.086 

Total neutron leakage 0.097 (3.7) 0.100 

Energy deposited In 0.024 (3.0) 0.025 
tendons, MeV 

a) per DT reaction. 
b) percent standard deviation. 
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5.5 SUMMARY 

In summary, the Cascade chamber can be designed with a L1AI0, 
breeding blanket if a BeO neutron multiplier is used. The 
configuration that minimized the total blanket thickness Is 0.042 m of 
BeO followed by 0.424 m of L1AI0,. The L1 must be enriched to at 
least 34.2% In 6 L 1 . 

Since the blanket Is a pebble bed, the actual thickness is the 
effective thickness divided by the pebble packing fraction. Assuming 
a 50% packing fraction gives an actual total blanket thickness of 
0.93 m. 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 SUMMARY AND CONCLUSIONS 

Optimal blanket design Is a key element In effective fusion 
reactor design. A methology has been developed to systematically 
optimize the blanket design as a function of several variables. The 
optimization problem consists of four essential elements: the figure 
of merit for the particular reactor concept, a technique for 
estimating the neutronlc performance as a function of the selected 
design variables, constraints on both the design variables and the 
neutronlc performance, and a method for optimizing the figure of merit 
subject to the constraints. 

In the method presented, the neutronlc performance 1s estimated 
using variational Interpolation. By successive Interpolations, the 
neutronlc performance can be estimated as a function of several design 
variables based on a limited number of reference point, neutron 
transport calculations. Since only forward flux solutions are 
required for the Interpolation, any number of neutronlc 
characteristics can be estimated based on the same reference point 
transport calculations. The applicability of this approach has been 
demonstrated 1n the optimization of two Inertlal confinement fusion 
reactor concepts, one as a function of two variables and the second as 
a function of three variables. 

The variational Interpolation approach should not be used 
indiscriminately. If the reference point results vary linearly with 
one or more of the design variables, 1t Is senseless to use a 
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nonllnear Interpolation. Also, with the three point Interpolation, 
care must be taken to check for singularities within the range of 
Interest. Where possible, It Is advisable to relate the variational 
results to known boundary or continuity conditions. The neutron 
balance method 1s an example of this approach. 

The optimization algorithm employed In this work 1s a direct 
search, nonlinear simplex method. The method seeks to minimize a 
figure of merit by comparing Its value at several points and selecting 
a new point based on the results of the comparison. The method was 
found to work quite efficiently. Even with convergenc? parameters 
e = i = 10" , the optimum was generally found with less than 200 
Iterations. (To prevent the posslbllty of an endless search, the 
maximum number of Iterations Is specific^ In the Input file.) 
Hundreds of Iterations were typically completed In less than a second 
of CRAY-1 CPU time. In a typical problem, each Iteration Involved 
calculating several neutronic characteristics using successive 
variational Interpolation, and then calculating a figure of merit that 
depends on the neutronic results. 

It was found that graphical display of the constraints and figure 
of merit was very useful In understanding the factors determining to 
the location of the minimum. In addition, a visual display can reveal 
a nonunlque minimum as In Fig. 5.20. 

The optimization methodology was applied to two different ICF 
reactor concepts. The first optimization problem Involved a 
modification to the HYLIFE concept. The object was to Increase the 
fusion energy multiplication factor and thus reduce the plant capital 
cost per unit of net electric power. By reducing the tritium breeding 
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ratlo and capturing more neutrons In a manganese steel, the energy 
multiplication factor was Increased by 22% and the plant cost per kWe 
reduced by 12%. 

The two design variables 1n this problem were the L1 fraction 
In lithium and the effective thickness of the lithium blanket. 
Constraints were Imposed on the minimum tritium breeding ratio and a 
maximum displacement damage rate In the first structural wall. The 
optimal design point was found to be slightly less than 0.1% of L1 
1n an 0.9l-m-th1ck blanket. 

The second optimization problem was based on the Cascade reactor 
concept. A version using a LIA10_ breeding blanket with a BeO 
neutron multiplier was Investigated. In this case the objective was 
to minimize the sum of the multiplier thickness and the breeding 
blanket thickness. Constraints were Imposed on the minimum tritium 
breeding ratio, the maximum neutron leakage, and the maximum heat 
generation rate In the Al/SIC tendons that wrap the chamber. 

The Cascade chamber was optimized as a function of three design 
variables: the BeO multiplier thickness, the Li fraction and the 
L1A8.0- blanket thickness. The optimal design point was found to 
H e at the Intersection of the neutron leakage constraint and the heat 
generation rate constraint. The blanket parameters at this point were 
0.042 m of BeO, and a 0.42-m-thlck L1A40„ blanket enriched to 
34.2% 6L1. 
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6.2 RECOMMENDATIONS FOR FUTURE WORK 

It Is hoped that the method developed and demonstrated here will 
be used 1n future conceptual reactor design studies for both Inertlal 
and magnetic confinement fusion. The exploratory nature of such 
studies 1s an Ideal format for multlvarlable optimization. The study 
of fusion-fission hybrid blankets Is another area for potential future 
application of this method for systematic optimization. 

An Interesting application of the techniques developed here would 
be to compare the optimal blanket designs for the same reactor but 
with various figures of merit. For the modified HYLIFt concept the 
blanket was optimized to reduce the cost per unit of not electric 
power. In doing so, Hn 1s activated, and the afterheat problem 1s 
thus heightened. If minimizing Induced activity had been the figure 
of merit, a completely different blanket design would have emerged. 
Alternatively, a cost penalty proportional to the chamber's afterheat 
could be Included In defining the figure of merit. The Cascade 
reactor concept should also be reexamined from an economic perspective 
once cost scaling relations are developed. 

One final recommendation for future work would be to automate and 
more closely couple the graphics with the definition of the figure of 
merit and constraints. As 1t now stands, the graphics are done 
separately. 
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6.3 A FINAL WORO 

In an optimization problem a complex decision Involving the 
selection of values for a number of Interrelated variables, 1s made by 
focussing on a single figure of merit designed to quantify performance 
and measure the quality of the decision. This figure of merit 1s 
maximized or minimized subject to the constraints that may limit the 
selection of decision variable values. Since all the complexities of 
the system being analyzed can not, 1n general, be fully represented 1n 
the model, optimization should be regarded as a tool of 

conceptualization and analysis rather than a principle yielding the 
83 true optimum. The result Is only as good as the model. A 

thorough understanding of the system one 1s dealing with, I.e., being 
able to select an appropriate figure of merit, define the constraints. 
and model the system as accurately as possible, 1s, therefore, the 
first prerequisite to effective design optimization. 
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APPENOIX - I DERIVATIVE OF THE THREE POINT INTERPOLATION FORMULA 
WITH I(x) PROPORTIONAL TO x. 

Consider the case where l[x) 1s proportional to x. The three 
point Interpolation formula, Eq. 2.64, becomes 

R S I 3 = x R a / x a (1.1) 
- n*-xa)/<xc-xa)][xcRa/*a - R c][*V xb - x V x a ] / D -

where 

0 - [ ( x - x b ) / ( x c - x b ) ] [ x c R b / x b - R c ] 

" [ { x - x a ) / ( x c - x a ) ] t x c R a / x a - R c ] . 

Equation 1.1 can be rewritten as 

RSI3 " x R a / x a " L ( x - V / x a " x V x b " V a ^ a c ^ ' < Z- 2> 
where 

3 - < x-VV*b - < X " W V 

and 

1 = (x R - x R ) / ( x -x ) , ac v c a a c ' ' c a ' 

V ^ ' ^ - ^ W W ' 

Note that 1 Is the Intercept on the R-axIs of a straight line ac 
through the points (x ,R ) and (x ,R ). Likewise, 1. Is the 
Intercept on the R-axIs of a line through (x.,R. ) and (x .R-). 

Gathering terms, Eq. 1.2 can be rewritten as 
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RSI3 = x R a / x a " ( C l x 2 " c
2

x , / t c 3 x + ty* ( I- 3 ) 

where 
Cl " VVb." W / Xa» 
c2 = W x b " Vxa>" 

c3 = 1bc/xb " W a n d 

4 ac be 

The derivative of R... with respect to x 1s then, 

RSI3 = R a / x a " [ ! C 3 X * C 4 ) ( C 1 X " C2> " ( C l x 2 " CgXjCgl/D. (1.4) 
where 

0 = (C 3x + C 4 ) 2 . 

The limit as x approaches zero 1s 
11m Rsi3 = R a/x a • C 2/C 4. (1.5) 

x -» 0 

To avoid negative values of R as x approaches zero, Eq. I.S must be 
greater than or equal to zero. That Is, 

Va-yVb-V'al'fV-'bc'i0- (I-6) 

< W x b " W V / ( 1 a c " 'bc» i°" ( I - 7 > 
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APPENDIX II USER INFORMATION 

The fusion reactor blanket optimization code Is available on the 
National Magnetic Fusion Energy Computer Center (NMFECC) system. To 
access the code type 

FILEM ROS 3011 .FRBOPTC fllellst 

where "fUellst" 1s one or more of the following filenames. 

MVOHY = multlvarlable optimization program for the modified HYLIFE 
concept. It Includes the figure of merit function and the 
successive Interpolation functions. MVOHY reads INPUT, 
calls CREEP, and writes OUTFILE. 

INPUT = sample Input file for MVOHY. This file allows the user to 
change the starting point of the search, the step size, the 
convergence criterion, and the maximum number of Iterations 
without recompiling the program. 

OUTFILE = sample output file from MVOHY. It Includes Information 
written by CREEP. 

CREEP =- subroutine for the direct search, nonlinear simplex 
optimization algorithm. 
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BCRP = binary file of CREEP. 

HV0HY3 = multlvarlable op1tm1zat1on program for the modified HYLIFE 
concept which Includes three point Interpolation for one of 
the variables. 

HVOCS = multlvarlable optimization program for the Cascade reactor 
concept. This 1s a 3 variable problem. 

Combining an HVO program with the subroutine CREEP makes up the 
fusion reactor blanket optimization code. The code runs on CRAY-1 
machines with the CIVIC compiler. 

The figure of merit function In HVC changes from problem to 
problem. Since the optimization algorithm, CREEP, does not change 
from problem to problem, the binary file BCRP can simply be passed to 
the loader using a LIB= specification 1n the CIVIC statement. 
Alternatively, the subroutine CREEP must be merged with the MVO 
program. 

Many comment statements have been Included 1n an attempt to make 
the HVO and CREEP routines self explanatory. Questions that do arise 
can be referred to the author 1n care of Lawrence Llvermore National 
Laboratory, Llvermore, CA 94550. 
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