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GEOCHEMICAL BEHAVIOR OF THE SECOND HOT DRY ROCK GEOTHERMAL 

RESERVOIR AT FENTON HILL, NEW MEXICO 

Charles 0. Grigsby, P. E. T r u j i l l o ,  Jr., D. A. Counce, and 
R. G. Aguilar 

University of Cal i forn ia  
Los Alamos S c i e n t i f i c  Laboratory 

Los Alamos, New Mexico 

INTRODUCTION 

Charac t e r i s t i c s  of a Hot Dry Rock (HDR) geothermal r e se rvo i r  were 
deduced by  matching a geochemistry model which incorpora tes  rock 
d i s so lu t ion  and displacement of an indigenous pore-f luid t o  chemical 
analyses  of r e c i r c u l a t i n g  geothermal f l u i d .  Two r e s e r v o i r s  were 
c rea ted  between a pa i r  of wells by hydraulic f r ac tu r ing .  The geometry 
of these r e se rvo i r  systems, a s  well as opera t iona l  condi t ions  during 
flow experiments and general  heat  ex t rac t ion  and water loss performance 
a r e  descr ibed in  a 
t h e  r e s e r v o i r s  was evaluated by a 75-day flow test designated a s  
Segment 2. 
i n j e c t i o n  well  t o  s t o p  a leak  behind t h e  casing, and t h i s  cementing 
operat ion closed the  connection t o  the  first r e se rvo i r .  
l a r g e r  reservoi r  was evaluated w i t h  two flow tests -- t he  first had a 
dura t ion  of 24 days and is  ca l l ed  Segment 4 and the second, c a l l e d  
Segment 5,  w i l l  end on December 19, 1980 a f t e r  284 days of operat ion.  
Descr ipt ions of t he  f l u i d  geochemistry i n  the  first reservoi r  have 
a l ready  been presented by Grigsby and Tester(21, and a preliminary 
a n a l y s i s  of  t h e  Segment 4 test  has a l s o  been published(3).  
d i scuss ion  w i l l  be mainly concerned with the  geochemistry of t h e  second 
r e se rvo i r .  Of p a r t i c u l a r  i n t e r e s t  i n  a HDR geothermal r e se rvo i r  i s  t h e  
r e l a t i o n s h i p  between t h e  mixed-mean temperature of t he  geothermal f l u i d  
as measured wi th  a downhole thermistor  and the  temperatures given by 
t h e  s i l i c a  and the  Na-K-Ca geochemical thermometers. A s  w i l l  be shown, 
the temperatures predicted by applying t h e  chemical geothermometers 
d i r e c t l y  t o  t h e  produced f l u i d  composition a t  a given time do not  
represent the  t r u e  current r e se rvo i r  temperature. 

preceeding paper by Murphy e t  a l . ( l ) .  The first of 

Subsequent opera t ions  required the  cementing of t h e  

The second, 

Present 

GEOCHEMISTRY 

Fiyid s2mples were - analyzed f o r  pH, Eh, conduct iv i ty ,  SiO,, Na+, 
K+, Ca 
dissolved i n  t h e  l i q u i d  were analyzed for H,,  N,, 0,. CO,, H,S and Rn. 
The da ta  for S i O ,  and Cl'are plot ted vs  time f o r  Segments 4 and 5 i n  
Figures  1 and 2 t o  i l l u s t r a t e  t h e  behavior of  t h e  system. The rapid 
dec l ine  i n  both s i l i c a  and chloride shown i n  t h e  first e i g h t  days i n  
Fig. 1 i s  due t o  open-loop operat ion when the  produced f l u i d  was 
discarded r a t h e r  than re- injected.  
es tab l i shed  i n  day 8, t h e  produced f l u i d  is re-injected and the  s i l i c a  
and chloride concentrat ions r ap id ly  a t ta ined  s teady-state  levels. The 
graphs i n  Fig. 2 a l s o  show dec l ine  from the  high i n i t i a l  concentrat ions 

, L i  , B, SO, , C1-, HC0,-, and F- and samples of the  gas  

After closed-loop operat ion was 

4 
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t o  s teady-state  l e v e l s ,  however, due t o  t h e  absence of a long period of 
open-loop operat ion i n  t h e  Segment 5 tes t ,  s teady-state  condi t ions  were 
reached much more r a p i d l y .  

chemistry. In the  first, the  concentration of an aqueous spec ies  i s  
f i x e d  by mineral-water e q u i l i b r i a .  
quartz-water system which fixes the  s i l i c a  concentrat ions i n  so lu t ion .  
On the  other hand c e r t a i n  spec ies  l i k e  C1- and B, do not  result from 
equ i l ib r ium wi th  any known mineral i n  t he  rock. The cons tan t  r a t i o  of  
boron t o  ch lor ide(3)  suggests  t h a t  these spec ies  a r e  present  i n  t h e  
rock a s  i n t e r s t i t i a l  s a l t s  or pore-fluid. 
i n i t i a t e d  i n  a f r a c t u r e ,  some of t h i s  pore-fluid is displaced 
immediately, r e s u l t i n g  i n  the  high i n i t i a l  concentrat ions of C1- 
observed i n  Figs.  1 and 2. Long-term c i r cu la t ion  w i l l  eventua l ly  
sweep t h e  f l u i d  from t h e  rock pores and microcracks t h a t  a r e  connected 
t o  the main flow system. The dissolved ions i n  the  pore-fluid w i l l  
maintain a constant  r a t i o  i n  t h e  f l u i d  produced a t  t h e  su r face  when t h e  
effects of addi t ion  of  d i f f e r e n t  species concentrat ions i n  the  make-up 
water are accounted for. These r a t i o s  i n  the pore-fluid a r e  most 
e a s i l y  seen by p l o t t i n g  the  nondimensional concentrat ion <C> defined a s  

Two types  of behavior a r e  discernable  from ana lys i s  of t h e  f l u i d  

An example of t h i s  is. the  

When a flow experiment is 

f o r  severa l  dissolved spec ies  VS. time where C" is  the  concentrat ion 
of a given species i n  t h e  pore f l u i d ,  Cm is t h e  concentrat ion i n  t h e  
make-up f l u i d ,  and C is t h e  Concentration of t h a t  species i n  t h e  
produced f l u i d  a t  time t. Plots o f  <C> VS. time for sodium, 
potassium, ch lor ide ,  2nd boron for the  Segment 4 t es t  a r e  shown i n  
Fig. 3. Values f o r  C for each of these curves a r e  s imply t h e  
measured concentrat ions of these  species i n  the  e a r l i e s t  samples taken 
a t  the production well during the  s t a r t  of a flow experiment. The 
values  for C a r e  the  measured concentrat ions i n  the  makeup f l u i d .  

MODELING 

m 

It was found from t h e  results of the  Segment 2 t e s t ( 4 )  t h a t  t h e  
geochemical behavior of the  e a r l y  system could be adequately described 
by two p a r a l l e l  flow paths  a t  different temperatures. Such a model is 
shown schematical ly  i n  Fig. 4. The changes i n  concentrat ion of  a 
chemical spec ies  r e s u l t i n g  from mineral d i s so lu t ion  or pore-fluid 
displacement i n  both flow paths a r e  der ived  by wr i t ing  a mass balance 
on each spec ie s  and on the  t o t a l  mass i n  the  system. Many of t h e  
terms used i n  t h e  model to  account for the  r a t e  of d i s so lu t ion  or 
displacement i n  t h e  separa te  flow paths a r e  not direct ly  measurable; 
t he re fo re ,  t h e  unknown parameters a r e  lumped i n t o  two temperature 
dependent parameters. 
limits t o  match the  ac tua l  behavior measured under open- or  
closed-loop experimental condi t ions.  Comparisons of t h e  best-fit 
so lu t ions  obtained for the da ta  from Segment 4 a r e  shown i n  Fig. 5. 
The close f i t  of the  ca l cu la t ions  with the  ac tua l  da ta  
a simple model u i t h  two p a r a l l e l  paths  is s u f f i c i e n t  a t  the present 
time to descr ibe  pore-fluid displacement i n  the reservoi r .  

These parameters are adjusted within reasonable 

suggests  t h a t  
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GEOTHERMOMETRY 

If two p a r a l l e l  flow paths  a t  different temperatures and 
residence times a re  conducting f l u i d  through the  r e s e r v o i r ,  t h e  
produced f l u i d  compositions w i l l  resul t  from t h e  combination of 
reac t ion  rates, res idence t imes and flow r a t e s  i n  each of the  flow 
paths .  
considering a spec ies  such a s  C1- which does not  r e s u l t  from 
mineral-water r eac t ions  i n  t h e  reservoir. From t h e  closed-loop 
portion of t h e  Segment 4 test,*92.5% of the  f l u i d  passes  through t h e  
main f rac ture  system while the  other  7.5% passes through the  secondary 
path. Because there w i l l  be i n s i g n i f i c a n t  thermal drawdown and long 
contac t  times between f l u i d  and rock, t h e  f l u i d  passing through t h i s  
secondary flow path w i l l  t r u l y  r e f l e c t  t he  mean rock temperature i n  
t h i s  path. The quar tz  geothermometer(5) and the  Na-K-Ca 
geothermometer(6) temperatures have been ca lcu la ted  fo r  t h e  f l u i d  
produced during Segments 4 and 5. 
well a s  the downhole measured temperatures a r e  shown i n  Fig. 6. 
no thermal drawdown was measured i n  the  Segment 4 t e s t ,  it i s  not  
su rp r i s ing  t h a t  no dec l ine  i n  geothermometer temperature is seen i n  
Fig. 6a. 
temperature i n  the  Segment 5 test .  
observed i n  the  quartz  geothermometer : however, no s imi l a r  dec l ine  is 
seen i n  the  Na-K-Ca geothermometer. I n  a d d i t i o n ,  t h e  Na-K-Ca 
geothermometer is af fec ted  s i g n i f i c a n t l y  less during the  open-loop 
portion of Segment 4 than is  the  quar tz  geothermometer. This 
i n s e n s i t i v i t y  of t h e  Na-K-Ca geothermometer to re se rvo i r  temperature 
dec l ine  and t o  changes i n  i n l e t  f l u i d  composition during a t e s t  is d u e  
t o  t h e  constant  Na/K r a t i o  i n  the  pore-fluid which is displaced from 
t h e  secondary flow path.  This Na/K r a t i o  is  f i x e d  b,y equi l ibr ium with 
the f e ldspa r s  a t  t he  i n i t i a l  rock temperature ( ~ 1 9 0  C) and d i l u t i o n  of  
the pore-fluid with fresh water does not  a f f e c t  t h e  Na/K r a t i o  i n  t h e  
produced f l u i d .  Because re-equi l ibrat ion of t h i s  geothermometer is 
extremely slow (see, f o r  example, r e f  7)  the Na-K-Ca geothermometer 
reflects the  i n i t i a l  rock temperature r a the r  than changes in t he  
r e se rvo i r  temperature due  t o  hea t  ex t rac t ion .  

The quar tz  geothermometer, on t h e  other  hand, is a f f ec t ed  by 
changes i n  temperature i n  the  main flow path a s  well a s  changes i n  the  
i n l e t  f l u i d  composition. 
Segment 4 tes t  (Fig. 6a)  as well as i n  three per iods  of open-loop 
c i r c u l a t i o n  a t  about days 102, 110 and 230 i n  the Segment 5 tes t  (Fig.  
6b). 
t es t  exceeded the  a b i l i t y  of t h e  main flow path t o  d i s so lve  qua r t z  and 
thus  r a i s e  t h e  s i l i c a  concentrat ion i n  t h e  produced f l u i d .  
Re-establishing the  closed-loop mode resulted i n  a rapid rise i n  the  
s i l i c a  concentrat ion back t o  the pre-open-loop levels. In t e rp re t a t ion  
of  t h i s  response and of t h e  appl ica t ion  of the  quartz  geothermometer 
t o  t h e  HDR system are i n  progress,  however, incomplete knowledge of 
t h e  temperature dependence of t h e  r a t e  of d i s so lu t ion  of quar tz  has 
hampered fu r the r  development of the  ana lys i s .  

Estimates of the  flow s p l i t  between the  paths can be made by 

Graphs of these temperatures as  
Since 

There is, however, measurable dec l ine  i n  downhole 
This temperature dec l ine  is  

This is seen i n  the  first e i g h t  days of t h e  

The sudden change i n  in le t  f l u i d  composition i n  the  Segment 5 
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CONCLUSIONS 

The results of th ree  major heat-extraction experiments conducted 
i n  two hot  d r y  rock geothermal r e se rvo i r s  i nd ica t e  t h a t  t h e  f l u i d  
chemistry is l a r g e l y  influenced by the  i n t e r s t i t i a l  f l u t d  contained i n  
t he  reservoir rock. 
of r e l a t i v e l y  fresh water through t h e  f r a c t u r e  systems u n t i l  the  level 
of dissolved spec ie s  is u l t imate ly  f i x e d  by rock-water equilibrium. 
Because t h e  sodium and potassium observed i n  t h e  system were 
contr ibuted by the  pore-fluid,  t he  Na-K-Ca geothermometer was 
i n s e n s i t i v e  t o  changes i n  t h e  rock temperatures. The quar tz  
geothermometer does r e f l e c t  t h e  changes i n  r e se rvo i r  temperature,  
however the  concentrat ion of s i l i c a  i n  so lu t ion  mus t  be adjusted fo r  
the  effect of mix ing  of small amounts of s i l i ca - sa tu ra t ed  pore-fluid 
wi th  f l u i d  which has passed through the  main flow path. When the  
pore-fluid cont r ibu t ion  is  subt rac ted ,  the r e s u l t i n g  concentrat ion of 
s i l i c a  i n  the  produced f l u i d  can be modeled with a k i n e t i c  model t o  
determine the  ac tua l  temperature of t h e  r e se rvo i r  rock. 

This f l u i d  is  slowly removed by t h e  c i r c u l a t i o n  
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Figure 1 S i l i c a  (a )  and chloride 
Segment 4 test .  
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Figure 2 S i l i c a  ( a )  and chloride 
Segment 5 test. 
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Figure 3 Nondimensional concentrations of Na+, K+, C1- and B i n  the  
produced f lu id  from the  Segment 4 t e s t .  

SCHEMATIC OF FENTON HILL SYSTEM 

MAKEUP WATER 

IXrmERMAL RRTH it 

Figure 4 Schematic of the  parallel-path model for the Fenton H i l l  
System. The main reservoir  c o n s i s t s  of t h e  short-residence 
time fracture system while the  isothermal or secondary path 
has a long residence time. 
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Figure 5 Theoretical f i t  to the experimental data for the pore-fluid 
displacement model . 
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geothermometer temperatures to the measured downhole 
reservoir outlet temperature for Segment 4 (a )  and Segment 5 

Figure 6 Comparison of the Na-K-Ca geothermometer and quartz 
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