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SUMMARY

A series of wind velocity measurements upwind and downwind of the MOD-0A
wind turbine at Clayton, New Mexico, was used to determine some of the charac-
teristics of wakes within approximately two blade diameters of the machine.
The magnitudes and shapes of the velocity profiles downwind of the turbine
were compared with results obtained from a model described by Lissaman et al.
(1982). Generally good agreement was obtained at speeds well below the rated

speed of the MOD-OA, but the results were not as satisfactory for higher
values.
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1. INTRODUCTION

While the use of single wind turbines may be sufficient for a number of
applications, it is also Tikely that clusters of turbines will be required
in many cases, particularly where relatively large amounts of electrical
energy are required. The possibility of one machine interfering with the
operation of another has led to the consideration of the characteristics of
the wakes behind a turbine. Perhaps the principal questions are those con-
cerning the magnitude of the velocity deficit behind a turbine and the distance
required for the ambient wind to "recover" to some given percentage of its
initial value.

Lissaman (1977) has developed a model describing some of the mean features
of wakes behind turbines; wake fluctuations were not treated in his approach.
A number of experimental studies have been carried out to test various aspects
of this model, and a number of revisions have been incorporated based on these
studies. Lissaman et al. (1982) give a good list of much of the experimental
work in this area. One feature that is apparent is that there is a dearth of
experimental tests of the model in actual field conditions such as might be
encountered by a working turbine.

A MOD-OA turbine has been operated at Clayton, New Mexico, by the
National Aeronautics and Space Administration (NASA) for the Department of
Energy (DOE) since 1977. As part of their study of wind characteristics
affecting turbine operation, Connell and George (1982) presented a.study of
a case in which a wake was measured at an array of towers downstream of the
turbine. The emphasis in that report was on the structure of the wind field
in the wake rather than on a comparison with wake models. 1In this report
additional data are presented for a number of cases with a variety of wind
conditions that resulted in wakes measured at the tower array or at two addi-
tional towers located on the other side of the MOD-0A, opposite the tower
array. These data are compared with the model predictions, and an evaluation

of the model's performance is given.






2. SITE AND INSTRUMENTATION

The MOD-0A turbine used in these studies is located on the outskirts of
Clayton, New Mexico. The predominant strong winds at this site are from the
southwest; in that direction the fetch is generally open desert with sparse
vegetation consisting primarily of grasses. While the terrain is not per-
fectly level, elevation changes are generally quite gentle and small (<20 m
in 3 km), and the topography would be described as simple by most observers.

A plane array of seven towers, known as the vertical plane array or VPA, is
located 76 m (4 rotor radii) to the southwest of the turbine; some of its fea-
tures are described elsewhere (Connell and George, 1982). A line from the
center tower of this array through the turbine Ties on an azimuth of 205
degrees. The towers are placed to each side of this center tower at distances
of 9.5, 16.4 and 19.1 m, corresponding to 0.5, 0.86 and 1.0 blade radii of the
MOD-0A.

On the other side of the turbine, lying 76 m to the northeast on the
same azimuth, is another tower. A final tower lies 19.1 m to the northwest
of that, on an azimuth of 115 degrees. This pair of towers will be referred
to simply as "the two towers" to distinguish them from the VPA. Figure 1
shows a diagram of the Tayout of the turbine, the towers and the VPA.

For winds coming from the northeast, such that the towers are upwind of
the turbine, the fetch is not nearly as simple as that southwest of the VPA.
A mixture of trees and houses in Clayton lies within a few hundred meters or
less to the north and northeast. Although these obstacles are generally less
than 15 m high, they could conceivably have some influence on the wind charac-
teristics measured at the towers and even the turbine and VPA.

The instruments relevant to this study consist of 6111(a)
mometers located at a height of 30.5 m on the VPA towers and the two towers
to the northeast. This height corresponded to that of the nacelle of the

propeller ane-

(a) R.M. Young Company, 2801 Aero-park Drive, Traverse City, MI 49684
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FIGURE 1. Schematic Diagram of Two Towers, Turbine
and VPA at Clayton, New Mexico

MOD-0A. The anemometers were equipped with polypropylene propellers with a
distance constant of 3 meters. Data were recorded on magnetic tape at a rate
of four scans per second. In data processing, two successive scans were aver-
aged, the recorded wind components were corrected for non-cosine response
using the approach of Horst (1973), the mean wind direction was found at each
anemometer location and the data series was then resolved into components
along and perpendicular to the mean wind direction. Means were defined for
20-min periods. Fluctuations of the crosswind component were used to com-
pute g, the square root of the variance of the v component. The ratio

ov/U} where U is the mean wind speed, is called the turbulent intensity in



this report. This differs from the more usual definition, ou/U} but is justi-
fied by noting that it is the parameter describing the ambient turbulence
structure required by the Lissaman model.

In some applications of the model, the turbulent intensity is not known.
It may be inferred from a measurement or estimate of the atmospheric stabi]ity,
but such an approach introduces an additional source of uncertainty. For the
measurements reported here, no stability estimates were available, but the
direct determination of o, made such estimates unnecessary.

The wind directions derived from the "upwind" instruments and the
instruments in the wake of the turbine differed by less than 4 degrees on the
average. This is about the estimated accuracy to which the arms of the ane-
mometers were aligned, and should not be a source of significant difficulty
in the succeeding data analysis. Connell and George (1982) have noted the
possibility of tower shadow effects influencing the results for certain wind
directions. Such effects are not obvious for the directions chosen in this
report, but there is no way of ensuring that such effects are totally absent.

Several calibration runs were made during which the turbine was not
operating for one reason or another. These measurements provided an oppor-
tunity to test whether the anemometers at the various towers gave comparable
values of speed in the absence of wake effects. The results were generally
quite good, and provide an estimate of the relative accuracy that can be
expected between various instruments. It is well known, however, that Gill
anemometers are susceptible to performance degradation after prolonged oper-
ation in dusty or extreme environments. In a number of instances one or more
components on the anemometers failed. It is believed that the data finally
chosen were not obtained with defective instruments, but no simple tests are
available to assess anemometer performance in situ. By noting the dates of
the various calibration runs given in Section 4, however, some confidence
can be obtained that the wake cases presented were chosen from periods when
reliable data were being recorded.






3. WAKE MODEL

A computer code called WAKEWIND was used to model the wake behind the
Clayton, New Mexico, wind turbine using the approach reported by Lissaman et
al. (1982). This model is based on observations of co-flowing jets in fluids
as reported by Abramovich (1963). Abramovich's results were obtained in a
non-turbulent fluid, and Lissaman's principal contribution has been to include
the effects of ambient turbulence in an ad hoc fashion. Later modifications
introduced additional effects arising from the profile drag of the turbine,
and WAKEWIND incorporates all of these features. Details of the wake model
can be found in Lissaman et al. (1982) and Eberle (1981). Eberle arrived at
a somewhat different formulation from that used by Lissaman, but the effects
incorporated are essentially the same, with one exception that will be noted
later.

The model treats three different regions of the wake: near, far and a
transition region connecting the two. The near wake includes a core region
with a constant velocity equal to that immediately behind the turbine. The
radius of this core decreases linearly with downstream distance and the down-
wind extent of the near wake is defined by that distance at which the core
vanishes. The growth of the wake is determined by both ambient and machine-
generated turbulence. The velocity profile in the near wake is an empirical
function of radial distance from the center of the wake normalized by the
Tocal wake radius. A different velocity profile is observed further down-
stream in the far wake, but it is also a function of the normalized radial
coordinate. In the far wake, the wake growth is controlled by turbulence
alone. A transition region connects the near and far wakes.

A principal input to the model is the ratio m of the upstream wind speed
to that immediately behind the turbine. A1l of the empirical results reported
by Abramovich depend on this ratio. The velocity ratio m is uniquely related
to the axjal induction factor, which depends, in turn, on the aerodynamic

efficiency of the wind turbine.



The initial wake radius is found by assuming that the wind speed at the
turbine is the mean of the upstream and downstream values and by conserving
mass as air passes the turbine. The downstream value is defined here as the
wind speed immediately behind the turbine. The wake radius at the end of the
near wake is determined by a momentum balance, using the empirical velocity
profile with no core region and a centerline wind speed equal to that immedi-
ately behind the turbine.

The rate of growth of the near wake, from its initial to its final
radius, determines its downwind extent. Abramovich's data only include the
growth due to mechanical turbulence generated by the shear in the wake itself.
Lissaman added the growth due to ambient turbulence and turbulence produced
by the profile drag of the turbine blades. The resultant growth rate is
assumed to be the Pythagorean sum of the individual growth rates.

The growth of the far wake is assumed to be dominated by the effects of
ambient turbulence. By equating the mass flux for the co-flowing jet velocity
profile observed by Abramovich with that for a Gaussian profile as observed
for turbulent diffusion of a passive substance, Lissaman finds the growth
rate dr/dx due to ambient turbulence to be equal to 2.8 times the turbulence
intensity; r is the wake radius while x is the downstream distance. Although
the wake model uses the Abramovich profile for the far wake, the two profiles
are quite similar.

A transition region connects the near and far wakes. The wake radius
at the far end of the transition region is determined by a momentum balance
in the same manner as the radius at the end of the near wake, again assuming
a centerline velocity equal to that immediately behind the turbine but using
the velocity profile observed in the far wake. The downwind extent of the
transition region then follows from the assumption that the growth rate is
equal to that of the near wake. The velocity profile in the transition region
is a linear combination of those in the near and far wakes.

In summary, WAKEWIND predicts three principal features: magnitude,
shape, and dimensions. The magnitude of the velocity deficit depends solely



of the velocity ratio m and the conservation of momentum. The shape of the
velocity profile is determined by the co-flowing jet observations reported by
Abramovich. The dimensions of the wake are determined by Lissaman's ad hoc
extension of Abramovich's data for a non-turbulent fluid to include the effects
of ambient turbulence and turbulence produced by the turbine blades.

Lissaman et al. (1982) note that in an earlier version of their model
the effect of viscous drag caused by the rotor was neglected, and Eberle's
model (1981) Teaves out this effect as well. Figures 2 and 3 show some com-
parisons of the Eberle model, and the Lissaman model with and without viscous
drag. Eberle's model shows a somewhat more extended potential core region
with correspondingly greater velocity deficits close to the turbine in the
transition region. The models all show generally similar behavior well down-
stream of the machine.
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4. RESULTS

For the cases discussed in this report, the velocity profiles were com-
puted along a horizontal line containing the downwind anemometers, i.e., along
a line running through the VPA for winds from the northeast and along a line
containing the two towers for southwesterly winds. The input parameters were
the incident wind speed, direction, and turbulent intensity, obtained from one
or more of the upwind anemometers. The axial induction factor was obtained
from a tabulation provided by T. Richards of NASA/Lewis Research Center, as
were the profile drag coefficient and blade solidity. No attempts have been
made to adjust the model to produce a best fit to the data, nor have any
"corrections" been applied to the data.

Several criteria were used in selecting data periods to be analyzed.
The primary one, of course, was that the wind blew in a direction such that a
wake could be observed at the downstream towers. A second criterion was
relative stationarity of the wind speed during the 20-min averaging periods.
Some effort was also made to choose times that provided a range of operating
conditions for the MOD-0A.

Table 1 gives a summary of the cases studied. The wake regions given in

the Tast column are determined from the model calculations and not the measure-
ments. The times shown are the starting times of the 20-min averaging periods.
Those cases with zero power were used as calibrations to evaluate the perfor-
mance of the anemometers by comparing the indicated speeds at the upwind and
downwind towers. Their behavior is shown in Figures 4 through 8. In each
figure the solid 1line is the speed determined from one or more upstream ane-
mometers, while the squares are the speeds recorded by the downstream instru-
ments. Figures 9 through 20 give the behavior observed during wake periods.
In these figures the solid Tine corresponds to the predictions of the Lissaman
model, while the squares denote the observations. Each model prediction shows
a region of constant speed at the edges of the wake; this speed is simply the
value obtained from the upwind anemometer(s) and is one of the input variables
in the model. The abscissas have units of rotor radii. They are measured

13



either along the line joining the two towers to the northeast of the turbine
or the Tine passing through the VPA towers. The zero point is located either
at the more eastern of the two towers or at the center tower of the VPA,
respectively. In all cases, the values depicted in the figures are shown as
an observer would see them if looking from the southwest toward the northeast.

A few general features are apparent. For northeasterly winds the model
predictions are quite good, both in the predictions of the velocity deficit
and in the shape of the profile. The agreement for southwesterly winds is not
quite as satisfactory, although the general features of the wake are repro-
duced reasonably well. The latter cases correspond to higher wind speeds than
do the former cases, and it is possible that the axial induction factor is not
as well-known for this range. For the case of May 10, 1982, it is also possi-
ble that the data from the downwind anemometers were beginning to deteriorate;
some problems in their circuitry were discovered a few weeks later. However,
similar discrepancies between model and measurements were seen on April 23,
1982, and May 3, 1982. On this second date, a temporary shutdown of the tur-
bine permitted a calibration to be made, and the calibration showed very good
agreement among the anemometers.

Unfortunately, the VPA and tower instrumentation were not functioning
properly during those rare occasions when northeasterly winds in the range of
10 m/s or higher occurred. There was an opportunity on May 30, 1982, but the
anemometers on the upwind towers were not functioning properly. Attempts to
use one of the VPA towers at the edge of the wake to obtain ambient wind con-
ditions were not satisfactory. The two anemometers presumed to be outside the
wake gave slightly different wind speeds and direction, and the resultant wake
predictions using each in turn were sufficiently different as to preclude con-
fidence in either. Moreover, the shape of the wake profile differed signifi-
cantly from the predicted shape, the only cases in which such behavior was
observed to occur. In view of this, further analysis of this case was dropped.

For northeasterly winds, the discrepancies that do exist show a slight
tendency for the modeled wake to overestimate the velocity deficit derived
from the actual measurements. For the higher, southwesterly winds the

14



tendency is reversed, with the model generally giving underestimates of the
velocity deficit. It is difficult to evaluate the relative merits of the
Eberle model and the two Lissaman models (with and without viscous drag) using
such a limited data base. From a practical standpoint there is relatively
little difference between them, since a machine is unlikely to be located
closer than several blade diameters downwind from another machine. Within

the experimental accuracy obtained in these measurements, the Lissaman model
seems to provide a reasonable representation of the measured wake behavior.
However, further study of wake characteristics at the higher wind speeds, as
well as studies at larger downstream distances, is indicated.

15



TABLE 1. Summary Description of Some Features of the Cases
Selected for Wake or Calibration Measurements

Incident Incident Nacelle

Speed Angle  Turbulent Power Angle Wake(a)
Date Time (m/s) (deg) Intensity (kW) (deg)  Region

12/23/81 12:17:55 4.22 21 0.18 0 0 9
12/23/81 12:39:55 4.14 34 0.17 0 0 9
01/06/82 17:19:48 5.67 23 0.13 62 20 4
01/06/82 17:41:48 6.43 21 0.13 105 16 3,4
01/06/82 . 18:47:48 5.76 21 0.12 53 15 3
01/12/82 15:11:56 5.83 37 0.15 64 31 4
01/12/82 15:55:57 6.74 38 0.11 103 31 3
03/22/82 11:12:42 7.44 206 0.18 89 194 4
03/22/82 16:32:49 9.66 192 0.12 162 184 3
03/29/82 12:08:44 15.25 191 0.12 0 175 9
03/29/82 13:14:45 16.48 202 0.16 0 195 9
04/23/82 15:20:40 10.28 202 0.15 156 184 4
04/23/82 16:48:40 12.26 190 0.087 197 186 3,2
05/03/82 10:44:38 8.17 193 0.21 111 193 4
05/03/82 14:02:40 9.71 209 0.28 0 0 9
05/10/82 15:55:23 11.93 202 0.20 196 212 4
05/10/82 18:07:24 11.23 200 0.095 198 209 3
(a) Key

9 = outside wake

1 = potential core

2 = near wake, outside potential core

3 = transition region

4 = far wake

16
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5. RECOMMENDATIONS

While the observations reported here are useful in evaluating some
aspects of wakes, they are necessarily limited in scope. Additional measure-
ments, at greater downwind distances (5 to 10 rotor diameters), are suggested.
Further studies of wake performance for winds near rated turbine speeds would
also be valuable.

The turbine location at Clayton is not suitable for wake measurements at
the larger distances. Another flat homogeneous site with a well-defined pre-
dominant wind direction is needed. Only one upwind anemometer would be
required, although a second provides an often welcome backup. There are a
number of possibilities for downwind configurations of anemometers. One would
be to have three towers at each of three downwind distances, e.g., 5, 7 and
10 rotor diameters (D). In each set of three, one anemometer would be located
along a line passing through the turbine in the most l1ikely wind direction of
interest; the other two instruments would be located to one side of this line.
The spacing within each set of three would increase with downwind distance,
e.g., 0.751 D, 1.25 D and 1.75 D.

The use of the three rather than two downwind anemometers, as sometimes
used in this study, would allow greater revolution of the shape of the wake.
Initial tests could use only hub-height anemometers, with more levels being
added later if desired. The use of several downwind areas of towers would
also permit the study of the decay of the wake in regions where the placement
of additional turbines has been contemplated. Wake "profiles" based on a
single anemometer at one downwind distance and on a knowledge of the wind
direction are also possible, but far less desirable.
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