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The objective of these studies is to compare transport, energy
loss, and other phenomena for electrons in water in the liquid and vapor
phases. Understanding the differences and similarities is an
interesting physics problem in its own right. It is also important for
applying the relatively large body of experimental data available for
the vapor to the liquid, which is of greater relevance in radiobiology.
This paper presents a summary of results from a series of collaborative
studies carried out by the authors at Oak Ridge National Laboratory
(ORNL) and the Gesellschaft fiir Strahlen— und Umweltforschung (GSF). In
these studies, identical calculations were performed using two Monte
Carlo computer codes: the ORNL ~ode, OREC, for liquid water and the GSF

code, MOCA, for water vapor. More extensive discussion of this work can

be found in the following references:

1. J. E. Turner, H. G. Paretzke, R. N. Hamm, H. A. Wright, and
R. H. Ritchie, "Comparative Study of Electron Energy Deposition and

Yields in Water in t..e Liquid and Vapor Phases.,” Rad. Res. 92,
47-60 (1982).

2. J. E. Turner, H. G. Paretzke, R. N. Hamm, H. A. Wright, and
R. H. Ritchie, "Comparison of Electron Transport Calculations for
Water in the Liquid and Vapor Phases," Proc. 8th Symp.

Microdosimetry, Jiilich, pp. 175-185, Commission of the European
Communities, Luxembourg (1982).

3. J. E. Turner, H. G. Paretzke, R. N. Hamm, H. A. Wright, and
R. H. Ritchie, "Effects of Phase on Electron Transport in Water,"

Report ANL-82-88, pp. 91-100, Argonne National Laboratory, Argonne,
IL (1982).

4, H. G. Paretzke, J. E. Turner, R. N. Hamm, H. A. Wright, and
R. H. Ritchie, "Calculated Yields and Fluctuations for Electron

Degradation in Liquid Water and Water Vapor,” J. Chem. Phys. 84,
3182-3188 (1986).



The principal results are summarized here in a series of figures

with self-contained legends. They are grouped into five general areas:
1. Physical differences, Figs. 1 - 4.

2. Average quantities, Figs. 5 - 7.

3. Transport phenomena, Figs. 8 - 9.

4. Fluctuation phenomena, Figs. 10 - 12.

5. Event correlations, Figs. 13 - 14.
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Ratios of ionization and total inelastic cross sections as functions

of electron energy in the two phases (Refs. 1,4). Except at jow
energies. ionization accounts for a larger share of the inelastic
cross section in the liquid, than in the vapor. Ve calculate

W = 25 eV/ip for the average energy to produce an ion pair in the
liquid, compared with ¥ = 33 eV/ip measured and calculated for the
vapor (Ref. 1).
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Inverse mean free paths as functions of electron energy (Ref. 4).
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Fig. 3. Normalized single~collision energy-loss spectra for 5-keV electrons.
Collision spectra in liquid water are somewhat harder than those in
the vapor. This fact, coupled with the lower binding energies of
the outer ele~trons. contribute to the lower W wvalue in the
condensed state (Ref. 4).
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Fig. 4. Nonlocalization of energy losses occurs only in the liquid. The
calculated displacement occurs for losses up to 50 eV and is a
function of electron energy and energy loss. This figure shows the
relative frequency of displacements for collisions by electrons of
energy 100 eV, 1 keV, and 10 keV, averaged over all energy losses.
See R. N. Hamm, J. E. Turner, R. H. Ritchie, and H. A. Wright, Rad.
Res. 104, S-20 (1985). (Figure previously unpublished.)
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4: "Vapor,” Ref. 1; Open circles,
M. Terrisol et al.. Proc.
39," ICRU Repart 39 (1984).
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Slowing—down spectra for l-keV and 10-keV electrons in the

phases (Ref. 1).
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Calculated total and partial yields for ionizations from various

shells in water vapor and liquid water as functions of electron
energy (Ref. 4).
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Depth dose curves for a broad, parallel beam of 1-keV electrons.
starting at a depth of 0 and traveling initially toward the right.
Because of the generally harder collision spectrum, buildup is

faster in the liquid. Area under the two curves i{s the same (energy
conservation) (Ref. 1).
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Radial dose distributions around a pencil beam of 1-keV electrons at

a depth of 285 pm. (The same electron histories were used
calculate Figs. 8 and 9.)

the liquid greatly f{lattens the radial dose close

The nonlocalization of energy losses in

to

to the track,
compared with the vapor (Ref. 1).
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10. Fano factors. The

lower values at energies
consistent with the lower W value for the liquid (Ref. 1).

above ~30 eV are
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Distributions of the number of ionizations produced by
with initial energies from 20 eV to 400 eV (Ref. 4).
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13. Preliminary calculations of the nearest-neighbor distributions for
all inelastic events 1in the tracks of 100-eV electrons. The
“Liquid-No Smear” curve is obtained by “turning off” the
nonlocalization of energy-loss events in the code for the liguid.
Work still in progress.
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14.

Preliminary results for mean distance between all inelastic events
and between ionizations in tracks of electrons with initial energies
up to 10 keV. Work still in progress.



