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ABSTRACT

The steady-state solution of the nonlinear Vliasov-Poisson equations is

reduced to a nonlinear eigenvalue problem for the case of double-layer

(potential drop) boundary conditions. Solutions with no relative electron-ion

drifts are found. The kinetic stability is discussed. Suggestions for

creating these states in experiments and compucer simulations are coffared.
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Both laboratory experrf.rnents1'3 and space-plasma observations?=6 have

shown that plasmas can develop states which have 3 narrow, isolated region of

"

apid porential change surrounded by large regi¢ns of effectively uniform
plasma porential. Such staces are called double-layers because of the dipole-
sheer nature of che spuece change distribution required. Theoretical
models1,7=% of double layers have generally required a relative electron-ion
drift (i.e., a plasma current), but recently computer simulationsi® and
studies of thermal barrier cells in ctandem mirror devices!?12 have found
states with abrupt potential drops with little or no plasma current.
Currentless double layers have a particular significance for two reasons:
1 Their E-;T energy dissipation vanishes so that no external energy
source is reguired vo maintain chem: and (2), in contrast to collisionless

shocks,1? they involve no mass flow and, hence, nc supply of streaming plasma
is necessary. A currentless solitary wave solution has recently t=en found by
Hasegawa and Saco.m

The goal of this letrer is to find solutions to the Vliasov-Poisson
equations which exhibit the following properties: (1) An isolated region of
abrupt potential change exists surrounded by regions where the plasma ls
quasinsutral and the potential is constant. (2) On the high-=density side of
the potential change, the plasma has Mxwellian velocity distributions Ffor
both ions and electrons although the respective temperatures may be
different. (3) On the low~density =side, the electron velocity distribution
remains Maxwellian while the ion disetribution is composed of counterstreaming
ion beams. There is no net current. (4) The potential decreases from the
high-densicy vo the low=densgity side.

The key to obtaining chese solutions is <to recognize that

electrostatically trapped ions can exist on the low-density, low-potential
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side. We will regard the density of these trapped ions to be an adjustable
parameter which, together with the magnitude of the potential drop, provides
us with two paramecers Wwhich are just sufficient to satisfy the two criteria
for a double~laver solution: that the low~density side be quasineutral and
that cthe total charge in the double layer be zero. Hence, the crapped ion
density and the potential drop are the two components of a nonlinear, two-
component eigenvalue problem which determines the double-layer golution.

Our model is that of a one-dimensional Viasov—-Poisson plasma, and we
shall define a nondimensgional potential U

related to the convential potential

by

b= —eo/T, (N

and choose the § = 0 level to be on the high densitcy side. Hence, P will be

positive and monotonically increasing. The steady-state Vlasov equation is

solved by any function of energy. We assume the electron distribution
function is everywhere Maxwellian. Gur model £for che

ion distribution

functions f is

21r'1‘i 1/2 £ e © E > =A )
() T =n=|{ . (2)
[ 0 g < =)
where
= 2 - =
€ (M /2Ti) VR S T Te/Ti . (3)

The positive parameter A governs the denticy of electrostatically trapped ions

(chose with ¢ € 0). The electron and ion densities can then be expressed as
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e - cn 1 on ~172 :
a, =ne ;oA a g, A) =n_ " . hiw(e + yt)} de , (4)

and the Poisson equation is
Pprae? = gty &) - ¥ 26, &

where £ = x/)‘D and XD H (Te/41m°e2)1/2 is the Debye length. Evaluation of the

integral in Bg. (4) leads to

e¥T WT < A

gy, &) = { N L2 _ . (6)
T { 12 2¢”% aesin Ut > A

(p1=A)

Double layer solutions to Eg. (5) can occur if the ner charge densicy

vanishes - - £ + #®». Our assumprion that y + 0 &s § + == is consistent with
this condicion. This requiremeut, combined wicth the asymptotic
dependence ¢ + q;o as [ + +», leads to the eguation
Yo
g(‘bo- a) - e H G(wo. A) =0 (7)

as one of che two nonlinear equations relating cthe potential change q;o

and A.
The electric field must alsoc vanish as [ + &w. Miltiplying Eg. (5)

by 3¢/8Ef and integrating ~e find

b 2 ¥y -
(%\niju - (a_n‘Ji. =2 [ ay [g(e, 8) - e g

b
=2 [° ay Gy =V, &) =0 {8)
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Integration by parts simplifies Eg. (8) to read

2 W
1 YT - - v ’
~ie® = 12 /e T oge o+ /7)) 2 -1+e%=0,
: (\bor-:&)
(8a)
which is cthe second equation relating \po and j, BEquations (7) and (8) are
the nonlinear equations for the two-comwponent eigenvalue (wo, A). Figure 1

presents sclutions of these equations for a range of values of the electraon-
to-ion cemperacure ratio T. We note that in addition to cthe pcrential

-\go

change, chese double layers have a disetinct density change An/no =1 - e

Equations (7) and (8) coupled with che condition
" ' '
V(w.m=zfo Gy , A) dp 20 0< <Y , (9)

represent both necessary and sufficient condivions for che existence of a
Aouble-iayer solution. Necessity follows from the arguments directly
preceding Egs., (7) and (8). Sufficiency will be demonstrated by

construction. The integral

v ' LalTR e - -
s, (ve s a1] £-6 S Su Sy, -8y, (10)

provides the relaction baetween Yy and £ given that p = Gw,l at ¢ = Eqe The end
points must be vreared specially because the integral formally diverges
chere. The guantivies 5\31, B\bz can be caken arbitrarily small, so that a

*
Taylor expansion of G is possible. Hence, near ¢ =0, ¥ =G ypz and the

integral



T Ay =3, -5, an
orovides che relation

.t 2
b= Sy, expl(c 312 e - g0 t12)

which shows that rthe solution exponentially decays ta zero as § » -w.
Similar arguments vield an exponentially decaying appreach to -J;O as y + +w.
These arguments coupled with convergent integral Eg. (10) show that, given a V
satisfying Eg. (9) and Bg. (2}, a solution can be explicitly constructed.
Figqure 2 shows represenvative quantitices. We note that if chere were no
ctrapped ions, cthen it would be impossible to savisfy Eg. (9).

The two-component eigenvalue is composed of the potential change wo plus

.

an addicional component (in our case A) which permicts a variation of che
plasma distribucion function. 'Thus, in general, a double layer cannot ocecur
because the plasma will not have the correct value of i, However, a plasma
distribution function may vary slowly in space (compared to a Debye length} as
a result of changes in mirror ratio, for example. It follows that these slow
spatial variasions perm.t a parameter like A to assume che correct value at
one point in Sspace which is where the double layer will occur. Hence, che
physical interprecation of the two-component eigenvalue problem is thac one
component determines the potential change, the second component determines the
point where the double layer occura.

Double layers must be stable wo exist. Clearly, the solucion given here
is stable to waves in the electron plasma frequency range because the electron

relocity distribution is everywhere Mixwellian. ©On the low-~density side, the
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stability situation is that of councerstreaming ion beams.'>=17  wWe shall
confine our attention to electrostatic stability criteria. When the rodel of
a magnetic field-free plasma is appropriate, zaro-frequency modes of the ion-
acousrtic branch are most unstable.'3 A linear stability analysis?8 yields
stability Ffunctions for both parallel propagating modes Sl and obliquely
propagating modes S° at the maximally unsctable angle 9\q dectermined from
1/2 i1: R
tan 9“ = (0.66)(w°r - A) . The scability criceria are

o *TA

7 1.00 Yo =1/2
Vo= ) - - - . 13

! \1‘25} e [w(bor A)} T L] 113)

Figure 1c shows that solutions are stable to parallel propagating modes for

all t and to obligue modes for T < 0.8. We conjecture tha: there exist other

disctriburtion funcrions without the abrupt energy cutoff which satisfy the

eigenvalue problem and which are stable for larger T values.
If the potential drop occurs aléng a magnetlc field, then we must address

the question of svability with respect to electrostatic ion-cyclotron waves.

Theory15'17 experimenc‘7 and space observations'® have shown that
instabiliries ogcur in this sictuation. An analysis shows thar purely growing
modes are unstable for distribution function Eg. (2), but that this conclusion
depends on the abrupt energy cutoff. Again, fuvure work must search for
distributions which satisfy Egs. (7) - (9) and remain sctabie to ion-cyclotron

modes.

While the dynamics of che formacion of a double layer are ouctside che
scope of this letter, currenctless double layers are consistent with cthe
presence of a negatively-biased rtransparent grii. This ¢an hbe seen hy

extending the definition of V to higher values of
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vy al=2 7 gy gyl >0, (14)
. g - “IJ
o
ﬂ\ B -.‘\DEE o \DEUS - Tyl ‘\11/2 (15)
3y 1 2 ALY '
a
whare aS is the (negative) surface charge density of a grid at

potential 53 = -vuq're/e. Hence, the introduction of a negatively charged grid
.1 an otherwise symmerric plasma device such as a triple plasma device) or
magnetic mirror could lead to the formation of a currentless double layer.
The computational simularion analogy is the gradual buildup of a fixed,
negative charge sheec.

In conclusion we have shown thar solution of a two-component nonlinear
eigenvalue problem derermines the structure of a double laver and specific
resulets for a currentless double layer are presented in Fig. 1. We argued
that the physical information conveyed by the two components is the potential
drop and cthe position of the double layer. Definitive statements regarding
the kinetic stabiliey with respect to electrostatic ion-c¢yclotron modes awaic

fucure work.
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APPENDIX

Zon-3Acoustic Stability of a Double-layer Mde.

Ion=acgustic modes in a counterstreaming-ion~beam plasma are accurace.y

jescribed by a theory which ignores the effect of a magnetic field on che ians

because the frequencies and growth races (if uwnstablel of chese modes are well

. R . 2 .
above the ion=-gyrofrequency i}, provided the inequalicy W >> Qi holds. This
1 I
inagnalicy is strong.y satisfied in most fusion and space plasmas. Forclund

and genk'$ have showm cthae zerco-frequency modes are the mOST unstable.
Therefore, our stabilicy cricerisn is that for wmarginally stable zero=
frejdency modes exist. A gquasineutral dispersion relation provides a good
descriprion of ion~acoustic modes. Straightforward linear stabilicy analysis

vields the stabi..ty criterion

T
e dv .3f, T . dw 3¥f
= = —_ =) = = -_ i . 1
S N i v s 3v- 1 3 . w 2w 1§0 ’ LAY}
where
172 T
w1
w=v|:7—‘} ’ T*T!,‘Er (a2)
i i

£ is the one~dimensional velocity distribution along cthe direction of che
wavevector, an: the equalicy is the marginal Stabilicy condicion. Ilec z be
cthe direction parallel co the double-layer patential drop and ; an orthogonal
direction in which the ion velocity distribution will remain Maxweilian. Lec
(g, u) denote nondimensional velocicies in the (;, ;] directions respectively

and let the wavevector k be in the n direction
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xn = Xnx +nz . {A3)
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jouble=laver model then gives che two=dimensional velocity distribution '

+ 2
(a/7le (s7+u") u” > ui
s, u) = - N o ' 1 A4)
0 u” < u
[a]
where ¢ is a normalizing constant
1 2
- - 0 -1
2 = 2/ fu e du , (a5)
Q
. 2 1/2 : . . s . . .
and uo = :_vpor - A . The one-dimensional velocity distribution f(w) is
.2, 2
o) = ;= o ) -(s“+u”) . _ 26
E(w) Jem 98 g5y du te/mie G(nxs tnu - W), (B6)
o
w = n_u 2
-@ < T - Z7 24
—_ du exp! - |—— - L. (A7)
Sluiru ‘n T - exp: o J u o
a X x

Evaluating 3f/3w and using cthe resulting expression in Eg. (A1), one finds

2
re C el v- nZu 24
s+1=-t [ (3w f|u'>u exp[= ( - ) =u’] du
T o] X
X
- cnzu w2 uz anzu
+ v [ 3)dw flul> du exp(- — - S5+ —5 ) .
x e "k %

(AB)




T e nlEE R

L O e

el p——

-11=-

The next step is to interchange the order of integration and perform the w-

intagration
c - 2nzcu -(uz/ni) 2n u
= - r ; -
Stl=-=+1 [ dui—7e T{—] . (A9)
n o vt on X
® x
where
2 2
« d -1 . 2 =«
I(a) = f_Q T:D— e ™ sinh(an) = 2 fg/ e  dt . (A10)
¥y N

The second term in Eg. (A9) can be integrated by pirrts to give

-u? n_u
s+i1=-ts e %p (225, CA1D)
Vr ua x
where the function
2,2 2
2 1 (v =1 -
rigy = 28”1 e T g - e ey (a12)

depends only on the orientation of the wavevector. Two orientations are of

interest: First, parallel propagation where 8 ~ »and F = 1. Secondly, the

direction for which 3 = 1.51 where F achieves its maximum value F = 1.28.
Polzen)

Combining the relation ¢ = e ' derived from Eg. {7), with Eg. (A11)},

one obtains the stabilicy functians of Bg. (13).

nr
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Fig. l{a,b). 3Solutions of the nonlinear =igcenvalue problem:

Note that A/T is auite constant. (c). The stability

functions
S and 34 [=q. (13)]. 35 < ) rapresents stability.
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Fig. 2. Electron and ion densities as a function of petential for t = 1.

Curve a is the electron density e™¥. Curve b is the ion density g{v,4)
] [Eg. (8)]. Curve ¢ is the difference G(y,d) and depicts regions of positive
and negyative charge density. Dashed curved would be :the lon densicy 42 & = 7.

t is avident that the required region of positive charge density cannot
axist Sor 4 = Q,




