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ABSTRACT 

The s t e a d y - s t a t e s o l u t i o n of t h e non l inea r Vlasov-Poisson e q u a t i o n s i s 

reduced t o a n o n l i n e a r e i g e n v a l u e problem fo r t h e case of d o u b l e - l a y e r 

( p o t e n t i a l drop) boundary c o n d i t i o n s . So lu t ions wi th no r e l a t i v e e l e c t r o n - i o n 

d r i f t s a r e found. The k i n e t i c s t a b i l i t y i s d i s c u s s e d . Sugges t ions f o r 

c r e a t i n g t h e s e s t a t e s in expe r imen t s and computer s i m u l a t i o n s a r e o f f e r e d . 
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Both laboratory experiments1"3 and space-plasma observations4-6 have 

shown that plasmas can develop states which h&ve a narrow, isolated region of 

rapid potential change surrounded by large regions of effectively uniform 

plasma potential. Such states are called double-layers because of the dipole-

sheet nature of the space change distribution required. Theoretical 

models1»7~9 of double layers have generally required a relative electron-ion 

drift (i.e., a plasma current), but recently computer simulations^0 and 

studies of thermal barrier cells in tandem mirror devices 1 1 - 1 2 have found 

states with abrupt potential drops with little or no plasma current. 

Currentless double layers have a particular significance for two reasons: 

[U Their B-^ energy dissipation vanishes so that no external energy 

source is required to maintain them; and (2), in contrast to collisionless 

shocks,1^ they involve no mass flow and, hence, no supply of streaming plasma 

is necessary. A currentless solitary wave solution has recently been found by 
14 Hasegawa and Sato. 

The goal of this letter is to find solutions to the Vlasov-Poisson 

equations which exhibit the following properties: (1) Rn isolated region of 

abrupt potential change exists surrounded by regions where the plasma is 

quasineutral and the potential is constant. (2) On the high-density side of 

the potential change, the plasma has Nfexwellian velocity distributions for 

both ions and electrons although the respective temperatures may be 

different. (3) On the low-density side, the electron velocity distribution 

remains fexwellian while the ion distribution is composed of counter streaming 

ion beams. There is no net current. (4) The potential decreases from the 

high-density to the low-density side. 

The key to obtaining these solutions is to recognize that 

electrostatically trapped ions can exist an the low-density, low-potential 
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side. We will regard the density of these trapped ions to be an adjustable 

parameter which, together with the magnitude of the potential drop, provides 

us with two parameters which are just sufficient to satisfy the two c r i t e r i a 

for a double-layer solution: that the low-density side be quasineutral and 

that the to t a l charge in the double layer be zero. Hence, the trapped ion 

density and the potential drop are the two components of a nonlinear, two-

component eigenvalue problem which determines the double-layer solution. 

Our model is that of a one-dimensional Vlasov-Poisson plasma, and we 

shall define a nondimensional potential ty related to the convential potential 

by 

if = - e $ / T e , (1) 

and choose the \\> = 0 level to be on the high density side. Hence, vp will be 

positive and monotonically increasing. The steady-state vlasov equation is 

solved by any function of energy. We assume the electron distribution 

function is everywhere Maxwellian. Our model for the ion distribution 

functions f is 

2TTT. 1 / 2 _ e" e e > -A 

(V) n--h=( 
o 0 E < -A 

where 

S = <tt72/2T. ) - .JIT , T = T /T. . (3) 
i T e i 

The positive parameter A governs the den-icy of electrostatically trapped ions 

(those with e < 0 ) . The electron and ion densities can then be expressed as 



n = n e"b , n. - n g<i|j, A) = n i'°°, h[ir<e + I L T ) ] " 1 ^ 2 de , (4 ) 
e o j . o o J —iu T 

and che P o i s s o n e q u a t i o n i s 

3 2 I | J / 3 5 2 = g<* , A> - e~* = G(\|i» A) , ( 5 ) 

2 1 /** where £ = x/X_, and i = (T / 4 i m e J ' * i s t h e Debye l e n g t h . E v a l u a t i o n o f t h e 
D D S O 

i n t e g r a l i n Eq. (4) l e a d s t o 

g(i |i , A) = ! , _ _ _ 2 . (6) 

V 2 
l ° ' ^ I" V 2

 2 = _ t ^ / / ; ^T > A 
<I ] IT -4 ) 

Double layer solutions to Eq. (5) can occur if the net charge density 

vanishes ~ C "** ± 0 ° - 0"Jr assumption that i|j -+ 0 as £ + -» is consistent with 

\-his condition. This requirement, combined with the asymptotic 

dependence ip + <p as 5 + +a>, leads to che equation 

g('i) , A) - e = G(i|i , A) = 0 , (7) 
o o 

as one of che two nonlinear equations relating che potential change I|I 
o 

and 4 . 

The e l e c t r i c f i e l d mus t a l a o v a n i s h a s 5 * ±00. M u l t i p l y i n g E q . <5) 

by 3 I ( I / 3 5 a n d i n t e g r a t i n g we f i n d 

(&! - © I =» /!°** w*-»- *'*J 

= 2 / di|i G(<|i) = V(ili , A) = 0 . <B) 

file:///-his


Integration by parts simplifies E3. 18) to read 

•; ie ° /" .,, (2//u)e"'r dt + <2//*)i+ T-4) V 2 eA-11- 1 + e ° = 0 , 
T CJ> T-i) ° 

(8a) 

which is the second equation relating 1(1 and A. Equations (7) and (8) are 

the nonlinear equations for the two-component eigenvalue (ip , A) . Figure 1 

presents solutions of these equations for a range of values of the electron-

to-ion temperature ratio T. We note that in addition to the potential 
-ill o change, these double layers have a distinct density change An/n = 1 - e o 

E q u a t i o n s (7) and (8) c o u p l e d w i t h t h e c o n d i t i o n 

v ( K a) = 2 f , , Gd j j ' , A) dip' ? 0 0 < ; <; \|; , (9 ) 
o o 

represent both necessary and sufficient conditions for the existence of a 

louble-layer solution. Necessity follows from the arguments directly 

preceding Bqs. (7) and (8). Sufficiency will be demonstrated by 

construction. The integral 

ffy d*' [v<*'" * > ] " V 2 - ? - «, « * , < * < *0 - 5*2 , (10) 

provides the relation between \jj and 5 given that I]I = 6ii at r = 5 . The end 

points must be treated specially because the integral formally diverges 

there. The quantities &|i , <5i|i can be taken arbitrarily small, so that a 
1 p Taylor expansion of G is possible. Hence, near \|i = 0, V = G I|I and the 

integral 
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iG ,' " ' ^/-i, = ^ - r , (11) 

provides the relation 

•i> = 5-J»1 e x p [ ( G , ) 1 / 2 (? - 5 1 ]] , (12) 

which shows t h a t the s o l u t i o n exponent ia l ly decays t o zero as % * - » . 

Similar arguments y i e l d an exponen t ia l ly decaying approach t o -Ji as ••, * +m. 
o 

These arguments coupled with convergent integral Bq. (10) show that, given a V 

satisfying Bq. (B) and Bq. ;9), a solution can be explicitly constructed. 

Figure 2 shows representative quantitices. We note that if there were no 

trapped ions, then it would be impossible to satisfy Eq. i9). 

The two-component eigenvalue is composed of the potential change i|> plus 

an additional component (in our case i) which permits a variation of the 

plasma distribution function. Thus, in general, a double layer cannot o«cur 

because the plasma will not have the correct value of \ . However, a plasma 

distribution function may vary slowly in space (compared to a Debye length) as 

a result of changes in mirror ratio, for example. It follows that these slow 

spatial variations pernut a parameter like & to assume the correct value at 

one point in space which is where the double layer will occur. Hence, the 

physical interpretation of the two-component eigenvalue problem is that one 

component determines the potential change, the second component determines the 

point where the double layer occurs. 

Double layers must be stable to exist. Clearly, the solution given here 

is stable to waves in the electron plasma frequency range because the electron 

velocity distribution is everywhere ffexwellian. On the low-density side, the 
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stability situation is that of counterstreaming ion b e a m s . 1 5 - 1 7 We shall 

confine our attention to electrostatic stability criteria. When the irodel of 

a magnetic field-free plasma is appropriate, aero-frequency modes of the ion-

acoustic branch are most unstable.^ A linear stability analysis 1 8 yields 

stability functions for both parallel propagating modes S and obliquely 

propagating modes S at the maximally unstable angle 9 determined from o M 
tan 9„. = (0.66) (ill T - 4) . The stability criteria are 

M 0 

Figure 1c shows that solutions are stable to parallel propagating modes for 

all T and to oblique modes for T < 0.8. We conjecture that there exist other 

distribution functions without the abrupt energy cutoff which satisfy the 

eigenvalue problem and which are stable for larger T values. 

If the potential drop occurs along a magnetic field, then we must address 

the question of stability with respect to electrostatic ion-cyclotron waves. 

Theory 1^' 1 7 experiment 1 7 and space observations ' have shown that 

instabilities occur in this situation. An analysis shows that purely growing 

modes are unstable for distribution function Bq. (2), but that this conclusion 

depends, on the abrupt energy cutoff. Again, future work must search for 

distributions which satisfy Eqs. (7) - (9) and remain stable to ion-cyclotron 

modes. 

While the dynamics of the formation of a double layer are outside the 

scope of this letter, ourrentless double layers are consistent with the 

presence of a negatively-biaaed transparent gril. This can be seen by 

extending the definition of V to higher values of i|i 
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• •!/ , i ' = 2 , ' , 9 di|> G ( ^ ) > 0 , i 1 4 ) 
• g - - . 1 , 

%\ - - ^ - - ^ - [ ' ( V ^ 2 ' 

where a i s the (negative) surface charge density of a grid at 

potential i = —Ji T ' e . Hence, the introduction of a negatively charged grid q g e 

in an otherwise symmetric plasma device such as a t r ip le plasma device or 

magnetic mirror could lead to the formation of a currentiess double layer . 

The computational simulation analogy i s the gradual buildup of a fixed, 

negative charge sheet. 

In conclusion we have shown that solution of a two-component nonlinear 

eigenvalue problem determines the structure of a double layer and specific 

resul ts for a currentiess double layer are presented in Pig. 1. We argued 

that the physical information conveyed by the two components is the potential 

drop and the position of the double layer. Definitive statements regarding 

the kinetic s t ab i l i ty with respect to electrostat ic ion-cyclotron modes await 

future work. 
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APPENDIX 

Ion-Acoustic S t a b i l i t y of a Double-layer todel 

I on -acous t i c nodes in a counterstreaminq-ion-bfiam plasma are accura te ly 

described by a theory which ignores che e f f ec t of a magnetic f i e ld on che ions 

hecause che frequencies and growth r a t e s l i f uns tab le ) of these modes a r e well 

above the ion-gyrofre<mency p. provided che i n e q u a l i t y di"". >> n. ho lds - This 
' 1 D l L 

inequality is scrongly satisfied in most fusion and space plasmas. Forrlund 

and aior.K1'' have shown chat zero-frequency modes are che most unstable. 

Therefore, our stability criterion is that for marginally stable zero-

frequency modes exist. A quasineutrai dispersion relation provides a good 

description of ion-acoustic modes. Straightforward linear stability analysis 

yields the stabi..-ty criterion 

S = — i — -r-1 - 1 = - r — 1<0, lAl) 
M ' v • 3v • 2 • w 3w = 

where 

i i 

f i s the one-dimensional velocity distribution along the direction of che 

wavevector, an-.: the equality is the marginal s t ab i l i ty condition. Iiet z be 

che direction parallel to the double-layer potential drop and x an orthogonal 

direction in which the ion velocity distribution will remain texweiiian. Cac 

is» u) denote nondimensionai velocities in che ix, z) directions respectively 

and le t che wavevector £ be in the n direction 



• 1 0 -

= '<- = JC:'n x +• n z'' . (A3) 

i o u b l e - l a y e r model t h e n g i v e s t h e t w o - d i m e n s i o n a l v e l o c i t y d i s t r i b u t i o n 

-. 2 
. , - ( s +u ) 2 . 2 

( c / f l ) e u > u 
h i s , u) =" • ., „, , lA4) 

0 u " <: u"" 

where c i s a n o r m a l i z i n g c o n s t a n t 

_ 1 = , 2/ /-r • '" e ~ U du , (AS) 

. 1 /2 and u = a -Jj r - i 1 ' . The o n e - d i m e n s i o n a l v e l o c i t y d i s t r i b u t i o n f (w) i s o • o 

2 2 
f(w) = ' d s f i i - du i c / i r l e fifn s + n u - w) , <R6) 

- -•» • I u I >u *• x z ' 

' • - £ _ 1 du expf - i 5 - ] - u 2 l . IA7) 
lu l >u -n ir • • n ' 

E v a l u a t i n g 3f /3w and u s i n g t h e r e s u l t i n g e x p r e s s i o n i n Eq. (A1) , one f i n d s 

2 
w - n u _ 

a + ' - "T / ! „ ( ~ V j *» / 7 u | > u e x p C " ( n * ) " u 3 d u 

TTIl O X 

en u 2 2 2wn u. 
+ T L . ( 3] * / |„l>„ duexp[- — - - + - I 3J " " J | u l > u " " " ^ 2 2 IT wim o n n n 

X X X X (AS) 
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The next step is to interchange the order of integration and perform the w-
integratian 

2 2 
2n cu -(u /n ) 2n u 

S + 1 - - ̂  + T £ du i-i-j.) . X I (-5.) , (A9) 
n o , it n x 
X X 

where 

2 2 
1(a) = '" -2D_ e" n sinh(an) = 2 f0"'2 e C dt . (AID) 

The second term in Bq. IPS) can be integrated by p. rts to give 

2 -u. n u 
s + , « -T + _ £ £ _ e ° F f_5_°) , ( A 1 1 ) 

/TT UQ x 

where the function 

2 2 2 
F(3> = 28 2 f 1 e 8 < C " 1 ) dt = 8e" B 1(28) , (A12J 

'o 

depends only on the orientation of the wavevector. Two orientations are of 

interest: First, parallel propagation where 8 •»• "and F = 1. Secondly, the 

direction for which 3 « 1.51 where F achieves its maximum value F = 1.23. 

Combining the relation c =• e derived from Bq. (7), with Bq. (A11), 

one obtains the stability functions of Bq. (13). 
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T = T J / T ; 

fig. l(a,h) 
Note that A/T 

(?PPL-30230O) 
Solutions of the nonlinear eigenvalue problem: 

i s quite constant. (c). The s tab i l i ty functions 
[Eq. (13)]. 3 < 0 represents s tabi l i ty . 

* 
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(PPPL-302299) 
Fig. 2. Slectron and ion densities as a function of potential for T = 1. 

Curve a is the electron density e~*. Curve b is the ion density g(i^,i) 
[Eq. (&)]. Curve c is the difference G(iji,&) and depicts regions of positive 
ami ne<3ati.-Jfe charge density. Dashed curved would he the ion density if d - a. 
It is evident that the required region of positive charge density cannot 
exist for A = 0. 


