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FOREWORD 

Th i s  document i s  based on a  subcont rac t  r e p o r t  submi t ted  t o  Oak 

Ridge Na t i ona l  Labora to ry  (No. 620-13819C, l e t t e r  r e l ease  X07) by 

Science App l i ca t i ons ,  I n c .  The s tudy  was funded by t h e  U . S .  

Department o f  Energy, A s s i s t a n t  Secre ta ry  f o r  Resource A p p l i c a t i o n s ,  

D i v i s i o n  o f  H y d r o e l e c t r i c  Resources Development. The purpose o f  t h i s  

document i s  t o  p r o v i d e  summary. i n f o r m a t i o n  f o r  use by  p o t e n t i a l  

developers and r e g u l a t o r s  o f  sma l l -sca le  h y d r o e l e c t r i c  . p r o j e c t s  

( de f i ned  as e x i s t i n g  dams t h a t  can be r e t r o f i t t e d  t o  a  t o t a l  s i t e  

capac i t y  o f  - (30 MW), where t u r b i n e - r e l a t e d  m o r t a l i t y  o f  f i s h  i s  a  

p o t e n t i a l  i s sue  a f f e c t i n g  s i t e - s p e c i f i c  development. M i t i g a t i o n  

techniques f o r  t u r b i n e - r e l a t e d  m o r t a l i t y  a r e  n o t  covered i n  t h i s  

r e p o r t ,  b u t  t hey  w i l l  be t h e  s u b j e c t  o f  another  document scheduled f o r  

p r e p a r a t i o n  i n  1981. 

Oak Ridge Na t i ona l  Labora to ry  i s  implement ing t h e  Environmental  

Subprogram P lan  o f  t h e  Department o f  Energy, D i v i s i o n  o f  H y d r o e l e c t r i c  

Resources Development ( H i  1  debrand and Grimes 1979). Th i s  p resen t  

document i s  t h e  f o u r t h  i n  a  s e r i e s  o f  analyses o f  env i ronmenta l  i ssues  

r e l a t e d  t o  sma l l -sca le  h y d r o e l e c t r i c  development. The p rev ious  t h r e e  

r e p o r t s  i n  t h i s  s e r i e s  (Loar  e t  a l .  1980, H i ldebrand  1980a, and 

H i ldebrand  1980b) address dredging,  upstream f i s h  passage, and water  

l e v e l  f l u c t u a t i o n ,  and t hey  a r e  a v a i l a b l e  f rom t h e  Na t i ona l  Technica l  

I n f o r m a t i o n  Serwice, U.S. Department o f  Commerce, 5285 P o r t  Royal 

Road, S p r i n g f i e l d ,  V i r g i n i a  22161. 

Stephen G. H i  1  debrand 

Environmental  Sciences D i v i s i o n  

Oak Ridge Na t i ona l  Labora to ry  

Oak Ridgc, Tcnncsscc 37830 



T H I S  PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



ABSTRACT 

Turbak, S. C. , D. R. Re ich le ,  and C.  R. Shr iner .  1980. 
Ana l ys i s  o f  env i ronmenta l  i ssues  r e l a t e d  t o  sma l l - sca le  
h y d r o e l e c t r i c  development. I V :  F i s h  mor ta l  i t y  
r e s u l  t i ng from t u r b i n e  passage. ORNL/TM-7521. Oak 
Ridge Na t i ona l  Laboratory ,  Oak Ridge, Tennessee. 116 
PP- 

Th i s  document p resen ts  a s t a t e - o f - t h e - a r t  rev iew o f  1  i t e r a t u r e  

concern ing t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y .  The rev iew  d iscusses 

convent iona l  and, t o  a  l e s s e r  degree, pumped-storage ( r e v e r s i b l e )  

h y d r o e l e c t r i c  f a c i l i t i e s .  Much o f  t h e  research  on convent iona l  

f a c i l i t i e s  d iscussed i n  t h i s  r e p o r t  dea ls  w i t h  s t u d i e s  performed i n  

t h e  P a c i f i c  Northwest and covers b o t h  p r o t o t y p e  and model s t ud ies .  

Research conducted on Kaplan and F r a n c i s  t u r b i n e s  d u r i n g  t h e  1950s and 

1960s has been e x t e n s i v e l y  rev iewed and i s  discussed. Very 1  i t t l e  

work on t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  has been undertaken w i t h  newer 

t u r b i n e  designs developed f o r  more modern sma l l -sca le  hydropower 

f a c i l i t i e s ;  however, one s tudy  on a  b u l b  u n i t  (Kaplan runner)  has 

r e c e n t l y  been re leased.  I n  d i s c u s s i n g  t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  

a t  pumped-storage f a c i l i t i e s ,  much o f  t h e  l i t e r a t u r e  r e l a t e s  t o  t h e  

Ludington Pumped Storage Power P lan t .  As such, i t  i s  used as t h e  

p r i n c i p a l  f a c i l i t y  i n  d i scuss ing  research  concern ing pumped s torage.  
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1. INTRODUCTION 

The o b j e c t i v e  o f  t h i s  document i s  t o  present  a  s t a t e - o f - t h e - a r t  

review o f  t u r b i n e - r e l a t e d  m o r t a l i t y  o f  f i shes .  A1 though f i s h  

m o r t a l i t y  i n  hyd rau l i c  t u rb ines  i s  on l y  one o f  the  p o t e n t i a l  impacts 

r e s u l t i n g  from hydropower development (Hi ldebrand 1979), i t  appears , to 

be an important  one. The complet ion o f  l a r g e  h y d r o e l e c t r i c  and 

storage p r o j e c t s ,  -as w e l l  as renewed i n t e r e s t  i n  developing 

smal l -scale hydropower p r o j e c t s ,  w i l l  r e s u l t  i n  more water f l ow ing  

through tu rb ines .  Turb ine- re la ted  impacts may be p a r t i c u l a r l y  severe 

t o  j u v e n i l e  anadromous f i shes  which, du r ing  downstream mig ra t i on ,  may ' 

encounter a  se r ies  o f  h y d r o e l e c t r i c  i n s t a l l a t i o n s .  The extensive work 

conducted on the  salmonid f i shes  o f  the P a c i f i c  Northwest prov ides 

s p e c i f i c  i n s i g h t s  i n t o  t h i s  problem. 

This rev iew considers f i s h  m o r t a l i t y  r e s u l t i n g  from tu rb ines  

i n s t a l  1  ed i n  bo th  convent ional and nonconventional h y d r o e l e c t r i c  

i n s t a l l a t i o n s  i n  North America. Conventional f a c i l i t i e s  i nc lude  

r u n - o f - r i v e r  and pondage operat ions,  whereas nonconventional p l a n t s  

c o n s i s t  o f  pumped-storage operat ions.  Although the  l i t e r a t u r e  on 

t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  has been reviewed (Lucas 1962, B e l l  e t  

a1 . 1967, and Montreal Engineering Company, Ltd. 1980), pumped-storage 

operat ions were no t  considered. I n fo rma t ion  on convent ional 

i n s t a l l a t i o n s  i s  p r i m a r i l y  from s tud ies  undertaken i n  the  ~ o l u m b i a  

River  drainage bas in  by the  F i she r ies  Research Engineering Program, 

U.S. Army Corps o f  Engineers, Nor th  P a c i f i c  D i v i s i o n  and, t o  a  l esse r  

ex ten t ,  from i n v e s t i g a t i o n s  conducted i n  western and eastern Canada. 

M o r t a l i t y  data from pumped-storage tu rb ines  draw h e a v i l y  from work 

done a t  Ludington, Michigan, t he  s i t e  o f  the  w o r l d ' s  l a r g e s t  

pumped-storage operat ion.  

Thc scope o f  t h i s  document may bc d c f i n c d  even f u r t h e r .  1.n 

s tud ies  undertaken a t  the  convent ional  h y d r o e l e c t r i c  i n s t a l l a t i o n s ,  

on ly  m o r t a l i t y  occu r r i ng  as a  resuq t o f  f i s h  passage from the  t u r b i n e  

i n take  t o  the  d r a f t  tube e x i t  w i l l  be reviewed. For nonconventional 



h y d r o e l e c t r i c  f a c i l  i t i e s ,  i n v e s t i g a t i o n s  o f  m o r t a l i t y  associated w i t h  

bo th  t h e  pumping and t h e  generat ing modes o f  opera t ion  w i l l  be 

discussed. I n  e i t h e r  t ype  o f  f a c i l i t y ,  m o r t a l i t y  r e s u l t i n g  from 

m i t i g a t i v e  measures, such as the  i n s t a l l a t i o n  o f  screens o r  passage 

f a c i l i t i e s  a t  t h e  t u r b i n e  in take,  o r  from p reda t i on  i n  t h e  t a i l r a c e  

area a re  beyond t h e  scope o f  t h i s  r e p o r t ,  b u t  they are  important  

cons idera t ions  i n  t h e  o v e r a l l  eva lua t i on  o f  t u r b i n e - r e l a t e d  f i s h  

m o r t a l i t y .  

A g lossary  o f  t e c h n i c a l  terms used f requen t l y  i n  t h i s  document i s  

p rov ided  i n  Appendix A. A p p ~ n d i x  B presents a 1  i s t  of con tac ts  

i d e n t i f i e d  w i t h  expe r t i se  i n  t u r b i n e - r e l a t e d  m o r t a l i t y  o f  f i s h .  



3  

2. CONVENTIONAL HYDROELECTRIC TURBINE INSTALLATIONS 

Most s t u d i e s  on f i s h  m o r t a l i t y  r e s u l t i n g  f rom t u r b i n e  passage a re  

assoc ia ted  w i t h  conven t iona l  h y d r o e l e c t r i c  p l a n t s .  Both model and 

p r o t o t y p e  i n v e s t i g a t i o n s  a re  r e p o r t e d  i n  t h e  l i t e r a t u r e .  Model 

s t u d i e s  r e f e r  t o  those conducted i n  a  h y d r a u l i c  l a b o r a t o r y  on sca le  

models o f  t u r b i n e s  i n  use a t  d i f f e r e n t  l o c a t i o n s .  P ro to t ype  s tud ies  

a re  a c t u a l  f i e l d  i n v e s t i g a t i o n s  undertaken a t  a  s p e c i f i c  u n i t  o r  u n i t s  

w i t h i n  a  powerhouse. The l a t t e r  t ype  o f  s tudy  has been performed 

p r i m a r i l y  a t  i n s t a l l a t i o n s  i n  t h e  P a c i f i c  Northwest;  l o c a t i o n s  o f  

these p l a n t s  a r e  shown i n T F i g u r e .  1. 

2 . 1  Background 

. Water resources development i n  t h e  P a c i f i c  Northwest has been and 

w i l l  p robab l y  con t i nue  t o  be p ro found l y  i n f l u e n c e d  by commercial and 

s p o r t  f i s h i n g '  o f  anadromous spec ies.  The e f f e c t  o f  h y d r a u l i c  

s t r u c t u r e s  on m i g r a t o r y  f i s h  has been t h e  s u b j e c t  o f  ex tens i ve  s tudy  

by t h e  U.S. Army Corps o f  Engineers,  t h e  Na t i ona l  Mar ine F i s h e r i e s  

Serv ice ,  and t h e  f i s h e r y  agencies i n  t h e  s t a t e s  o f  Oregon and 

Washington and t h e  p rov ince  o f  B r i t i s h  Columbia. I n v e s t i g a t i o n s  o f  

t u r b i n e - r e l a t e d  m o r t a l i t y  were conducted p r i m a r i l y  i n  t h e  1950s and 

1960s. More c u r r e n t  research  e f f o r t s  have concent ra ted  on 

(1) n i t r o g e n  gas supe rsa tu ra t i on  problems, (2) development and 

re f inement  o f  f i s h  passage f a c i l i t i e s  a t  dams, and (3) t r a n s p o r t a t i o n  

systems f o r  downstream migran ts .  

I n  s t u d i e s  cdnducted on t h e  e f f e c t s  o f  t u r b i n e s ,  j u v e n i l e  stages 

o f  salmonid f i s h e s  were u s u a l l y  used as t e s t  organisms because these 

vu lne rab le  organisms encounter dams i n  t h e i r  downstream m i g r a t i o n  t o  

t h e  ocean. Table 1 l i s t s  l i f e  h i s t o r y  i n f o r m a t i o n  f o r  t h e  f i v e  

'species o f  P a c i f i c  salmon, t h e  s tee lhead  t r o u t ,  and t h e  A t l a n t i c  
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Figure 1. Hydroelectric installations in the Pacific Northwest at which prototype 
studies were conducted. Source: Redrawn from U.S. Army Corps of 
Engineers, Map of Water and Land Resources for Columbia-North Pacific 
Region, August 1979. 



Table 1. L i f e  h i s t o r y  in format ion  on anadromous f i s h  species used i n  t u rb i ne - re l a ted  m o r t a l i t y  i nves t i ga t i onsa  

Months/seasons i n  which 
the  f o l l ow ing  a c t i v i t i e s  occur Downstream migrants 

Egg Downstream 
Common name S c i e n t i f i c  came Spawning incubat ion  Rearing migra t ion  , Composiaion Size 

A p r i l  t o  Fry  s t a r t  emerging i n  March. Fry Length o f  a l l  
June run peaks i n  A p r i l ,  b u t  consider- chinook f i nge r -  

able numbers migra te  i n  May, l ings :  51-57 mm 
lesser  numbers i n  June. May 
rea r  t o  smolt and migrate the  
f o l l ow ing  year.  

Chinook salmon Oncorhynchus Sept. t o  Sept. t o  March t o  
Fa1 1 tshawytscha Jan. March f o l l ow ing  

Apr i  1 
(UP t o  
1 year) 

Spr ing Late J u l y  Sept. t o  March t o  
t o  l a t e  March f o l l ow ing  
Sept. Apr i  1 

(1 year o r  
longer) 

Spr ing and 
summer o f  
f o l l ow ing  
year 

Length o f  sp r i ng  
chinook year- 
l i ngs :  76-127 mm 

Summer Sept. t o  
mid-Nov. 

Nov. t o  
March 

March t o  
f o l l ow ing  
March 
( 1  year o r  
longer) . 

March t o  
June o f  
f o l l ow ing  
year 

Cdho salmon Oncorhynchus k i su t ch  Sept. t o  
March 

Sept. t o  
Apri  1 

Apri  1. t o  
f o l l ow ing  
spr ing  
(1 year o r  
longer) 

March t o  
Ju l y  o f  
fo l lowing 
year 

May migra te  t o  sea as f r y ,  bu t  
most spend a year i n  f reshwater 
and migra te  as sno l ts .  Main 
downstream movem?nt occurs i n  Hay 
f o r  both smolts and f r y ,  b u t  f r y  
may be moved dow2stream through- 
ou t  the  summer. 

Length of year- 
l i n g  smolts: 
89-114 mm 

Pink salmon Oncorhynchus qorbuscha Late 
Aug. t o  
l a t e  
Sept. 

Late 
Aug. t o  
mid- 
Oct. 

Jan. t o  
May 

Dec. t o  
May 

Migra te  immediat21y a f t e r  emer- 
gence. Peak of run occurs i n  
Apri  1. 

Length o f  mi- 
g ra t i ng  f r y :  
25-38 mm 

Chum salmon Oncorhynchus keta . Mid- 
Sept. t o  

Mid- 
Sept. t o  
ea r l y  
March 

Dec. t o  
May 

Emergence and migra t ion  s i m i l a r  
t o  p i nk  salmon, sxccpt peak 
migra t ion  o f  f r y  i s  i n  May. 

Length o f  mi- 
g r a t i n g  f r y :  
38-51 mm e a r l y  

Jan. 

Temp.-de- 1-3 years A p r i l  t o  Do n o t  migrate u n t i l  a t  l e a s t  
pendent, June year1 i n g  smolts 
80-140 days, 
f r y  emerge 
Apri  1 t o  Hay 

Length o f  second- 
year smolts: 
89-127 mm 

Scckeye salmon Oncorhynchus + Aug. t o  

Steelhead t r o u t  Salmo g a i r d r e r i i  Feb. t o  
Summer, group A ga i r dne r i  i March 

Feb. t o  1 -2  years March t o  Do no t  migrate u n t i l  a t  leas t  
Apr i  1 June y e a r l i n g  sao l t s  

Length o f  t h i r d -  
year smol t s :  
125-203 mm 

Summer, group B 

Winter 

A p r i l  t o  
May 

Apr i  1 t o  1-2 years March t o  
May June 

Feb. t o  
May 

Feb. t o  1-3 years March t o  
Ju l y  (avg. 2 June 

years) 



Table 1 (cont inued) 

M?nths/seasons i n  which 
the  fo l lowinc  a c t i v i t i e s  occur Downstream migrants 

Egg Downstream 
Common name S c i e n t i f i c  pame Spawming i n ~ u b a t i o n  Rearing migra t ion  C~mpos i t i on  Size 

S:eel head t r o u t  
(continued: 

'Spring Late !ate 1-2 years Spring anJ 
Dec. t o  :ec. t o  summer o f  
March ' ay f o l l ow ing  

year 

A:lantic salmon Salmo sa la r  Late : a l l  t o  1-2 years Spring t o  Migrate as sn.olts Smolts are 
sLmmer t o  i p r i n g  summer genera l ly :  
e a r l y  f a l l  127-152 mm long 

a~nformar . ion  on P a c i f i c  salno, and steelhcad compile=. from Department o f  F isher ies ,  Canada (1358:. znd Eel1 (1973); t h a t  on A t l a n t i c  salmor 
f -on Montreal Engineering Company, Inc. (1980). 



salmon. The 1 a t t e r  anadromous spec ies,  A t l a n t i c  salmon, i s  impo r tan t  

i n  t h e  eas te rn  Un i t ed  S ta tes  and Canada. Downstream m i g r a t i o n  i s  

i n i t i a t e d  as a response t o  changing env i ronmenta l  c o n d i t i o n s  such as . 
inc rease  i n  stream f l o w  and r i s i n g  wate r  temperature (Be1 1 1973). 

. . 
Seaward m i g r a t i o n  genera l  l y  begins d u r i n g  t h e  s p r i n g  months, and, f o r  

some spec ies,  i s  c l o s e l y  assoc ia ted  w i t h  t h e  t ime  o f  peak r i v e r  

d ischarge.  

The methods, r e s u l t s ,  and conc lus ions  o f  b o t h  model and p r o t o t y p e  

s t u d i e s  a r e  rev iewed i n  Sec t i on  2.4. Key papers, such as those o f  t he  

U.S. Army Corps o f  Engineers,  Wa l la  Wal la  (Washington) D i s t r i c t ,  a re  

emphasized. I n  t h e  compendium on f i s h  passage th rough t u r b i n e s ,  B e l l  

e t  a l .  (1967) i n d i c a t e d  t h a t  exper iments conducted w i t h  F ranc i s  and 

Kaplan runners should be analyzed separa te ly .  Th i s  document f o l l o w s -  

t h a t  suggest ion, p r e s e n t i n g  t h e  r e s u l t s  and conc lus ions  o f  s t ud ies  

done . w i t h  t h e  d i f f e r e n t  runners i n  separate sec t i ons .  I n  so do ing,  

however, t h e  work i s  n o t  n e c e s s a r i l y  rev iewed i n  a ch rono log i ca l  

sequence. Because t h e  exper imenta l  des ign o f  key i n v e s t i g a t i o n s  o f t e n  

depended on t.he r e s u l t s  o f  p reced ing  exper iments,  a h i s t o r i c a l  

overv iew i s  g i ven  i n  t h e  nex t  two paragraphs. 

Pro to type  s tud ies  were i n i t i a t e d  a t  t h e  Columbia R i v e r ' s  

Bonnevi 1 l e  Dam i n  1939 s h o r t l y  a f t e r  i t s  c o n s t r u c t i o n  (Holmes 1952, 

c i t e d  i n  Davidson 1965). A l though Rock I s l a n d  was t h e  f i r s t  power dam . 

t o  be b u i l t  on t h e  mainstem Columbia, i t s  l i m i t e d  powerhouse and 

upstream l o c a t i o n  ( r i v e r - k i l o m e t e r  726) were n o t  cons idered  

s u f f i c i e n t l y  hazardous t o  r e q u i r e  s tudy  (Davidson 1965). Bonnev i l l e ,  

however, l o c a t e d  o n l y  226 km f rom t h e  r i v e r ' s  mouth, posed a se r i ous  

problem t o  anadromous f i s h  passage. A f t e r  t h e  exper iments undertaken 

a t  Bonnev i l l e ,  o t h e r  p r o t o t y p e  s t u d i e s  were conducted i n  

(1) Washington (Hami l ton and Andrew 1954a, Schoeneman and Junge 1954), 

(2)  Oregon (Schoeneman e t  a l .  1961, Oregon S ta te  Game Commission 

undated a and b,  1960, and 1961), (3) B r i t i s h  Columbia (Hamil t o n  and 

Andrew 1954b, c i t e d  i n  Lucas 1962; Department o f  F i s h e r i e s ,  

Canada 1958; Andrew and, Geen 1958), and (4) t h e  Mar i t ime  Prov inces 

(MacEachern 1959, 1960; Smith 1960, 1961; Semple 1979). 



I n  1959, t he  U.S.  Army Corps o f  Engineers, Walla Walla D i s t r i c t ,  

began a  se r ies  of experiments t h a t  spanned the  f o l l o w i n g  10 years. 

They were designed t o  determine n o t  on ly  t he  ex ten t  o f  f i s h  m o r t a l i t y  

from t u r b i n e  passage, b u t  a l so  the  causes of m o r t a l i t y  and poss ib le  

mod i f i ca t i ons  i n  t u r b i n e  design and opera t ing  cond i t ions  t h a t  would 

reduce m o r t a l i t y .  The f i r s t  group o f  experiments was conducted w i t h  

bo th  Francis  and Kaplan models (Cramer 1960). The nex t  experiments 

sought t o  r e l a t e  t u r b i n e  design cons idera t ions  t o  f i s h  m o r t a l i t y  a t  

t h e  high-head Cushman No. 2 Hyd roe lec t r i c  P lan t  equipped w i t h  Francis  

p ro to types  (Cramer and O l i ghe r  1960). These were fo l lowed by 

a d d i t i o n a l  model s tud ies  o f  Francis  runners (Cramer and Ol igher  

1961a), the  r e s u l t s  o f  which were f i e l d  t e s t e d  i n  f u r t h e r  work done a t  

Cushman No. 2 (Cramer and O l i ghe r  1961b) and w i t h  the  Francis  

p ro to types  a t  t h e  high-head Shasta Hydroe lec t r i c  P l a n t  (U.S. Army 

Corps o f  Engineers, Wal la Walla D i s t r i c t  1963). The f o l l o w i n g  s tud ies  

were a l s o  pro to type ones, b u t  were conducted on the  low-head Kaplan 

runner a t  B i g  C l i f f  Dam (01 i yher and Donaldson 1966; U. S. Army Corps 

o f  Engineers, Wal l a  Wal l a  D i s t r i c t  1979). The f i n a l  experiments were 

done on the  Kaplan p ro to t ype  a t  the  low-head Foster  Dam, which, on the  

bas i s  o f  prev ious experiments, was designed f o r  maximum f i s h  s u r v i v a l  

d u r i n g  t u r b i n e  passage ( B e l l  1979). 

Very l i t t l e  work on f i s h  m o r t a l i t y  i n  t u rb ines  has been conducted 

s ince  1969. 

2.2 Turb ine Types and Operat ion 

An understanding o f  t u r b i n e  func t i on  i s  essen t i a l  f o r  an ana lys is  

o f  f i s h  passage through tu rb ines ;  t he re fo re ,  t u r b i n e  types and 

ope ra t i on  are b r i e f l y  discussed. Hydrau l ic  t u rb ines  a re  c l a s s i f i e d  as 

(1) impulse t u r b i n e s  o r  (2)  r e a c t i o n  tu rb ines .  The terms r e a c t i o n  and 

impul se have h y d r a u l i c  s i g n i f i c a n c e  i n  d i f f e r e n t i a t i n g  between the  

ac t i ons  o f  t he  water and the  two t u r b i n e  types and have become f i r m l y  



estab l ished through general usage. The two groups o f  t u rb ines ,  d i f f e r  

i n  the  type(s) o f  energy t h a t  they are capable o f  conver t ing  i n t o  

mechanical energy and, subsequently, i n t o  e l e c t r i c a l  energy. The 

impulse t u r b i n e  transforms the  k i n e t i c  energy o f  a  h i g h - v e l o c i t y  j e t  

d i scha rg ing '  a t  atmospheric pressure on r e l a t i v e l y  small buckets 

pos i t i oned  on the  circumference o f  a  wheel (Cramer and O l i ghe r  1964). 

I n  reac t i on  tu rb ines ,  t he  e n t i r e  f l o w  through the  system from 

headwater t o  t a i l w a t e r  occurs i n  a  c losed condu i t  system and i s  no t  

open t o  the  a i r  a t  any p o i n t  (Davis 1952). As water approaches the  

runner, i t  has both  pressure energy (because o f  i t s  depth below the  

headwater sur face)  and k i n e t i c  energy (because o f  i t s  v e l o c i t y )  

(Kuiper 1965). F i sh  m o r t a l i t y  i n v e s t i g a t i o n s  have been conducted 

almost e x c l u s i v e l y  w i t h  reac t ion- type tu rb ines .  

Reaction t u r b i  nes can be subdivided i n t o  Francis  and prope l  1  e r  

types. Francis  t u rb ines  are  most commonly used under hyd rau l i c  heads 

ranging from 30 t o  300 m. The number o f  blades i n  a  Francis  runner 

va r ies  from 14 . f o r  lower heads t o  20 f o r  h igher  he'ads (Cramer and 

01 i ghe r  1964). Propel 1  er- type tu rb ines  are  general l y  , i n s t a l  1  ed a t  

lower head p l a n t s  ( ~ 3 0  m) and u s u a l l y  have th ree  t o . e i g h t  blades. The 

c l e a r  opening between blades i s  g rea te r  than t h a t  o f  Francis  runners. 

The Francis  t u r b i n e  i s  a  mixed-f low system i n  which water en ters  

the  ou ter  per iphery  o f  the  runner and f lows toward the  s h a f t  a t  r i g h t  

angles t o  i t, changing d i r e c t i o n  w i t h i n  the  runner t o  a  d i r e c t i o n  

p a r a l l e l  t o  the  s h a f t  (F igure 2). A s i m i l a r  f l ow  p a t t e r n  i s  a l so  

common upstream o f  those p rope l l e r - t ype  tu rb ines  t h a t  have 

convent ional d i s t r i b u t o r  assemblies and t h a t  operate a t  medium heads. 

I n  most o f  t he  p r o p e l l e r  runners r e c e n t l y  i n s t a l l e d  a t  low-head 

f a c i l i t i e s ,  however, water moves through the  t u r b i n e  p a r a l l e l  t o  the  

a x i s  o f  t he  runner ( a x i a l - f l o w )  (F igure 2). The Kaplan t u r b i n e ,  which 

i s  a spec ia l  m o d i f i c a t i o n  o f  t he  a x i a l - f l o w ,  propel  l e r - t y p e  t u r b i n e ,  

has ad jus tab le  blades t h a t  a re  coordinated w i t h  w icke t  gate p o s i t i o n s  

f o r  ob ta in ing  h igher  e f f i c i e n c i e s  throughout t he  opera t ing  head and 

.output  (Mayo 1979). The bas ic  f ea tu res  o f  a  r e a c t i o n  t u r b i n e  u n i t ,  

i l l u s t r a t e d  i n  F igure  3, c o n s i s t  o f  t he  runner o r  wheel, s p i r a l  case, 
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Figure 2. Illustration of mixed-flow Francis runner and axial-flow propeller runner. 
Source: Montreal Engineering Company, Inc. 1980. 
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s tay  r i n g  w i t h  f i x e d  guide vanes, ad jus tab le  w icke t  gates, and d r a f t  

tube. 

The r e a c t i o n  tu rb ines  o r  models o f  such tu rb ines  t h a t  serve as 

t e s t  systems f o r  f i s h  m o r t a l i t y  i n v e s t i g a t i o n s  have been predominant ly 

o lde r  designs. More r e c e n t l y  developed tu rb ine-genera tor  

combinations, which are  p a r t i c u l a r l y  s u i t a b l e  f o r  smal l -scale 

operat ions,  have been reviewed by Mayo (1979). Among the  designs 

described are  the  bu lb  generator and the  TUBE* t u r b i n e  u n i t s ,  bo th  o f  

which are equipped w i t h  p rope l l e r - t ype  runners and h o r i z o n t a l  shaf ts .  

The unique fea tu re  o f  the  bu lb  u n i t  i s  t h a t  the  generator i s  encased 

i n  a s t e e l  bulb,  which i s  l oca ted  i n  t h e  water passages u s u a l l y  

upstream from t h e  runner. The TUBE t u r b i n e  has s t a t i o n a r y  w icke t  

gates o r  guide vanes, a  t u b u l a r  sha f t ,  a  runner w i t h  ad jus tab le  

blades, and a  generator completely removed from the  water passageways. 

I n  t he  more t r a d i t i o n a l  Francis  and Kaplan designs, water en ters  

the  u n i t ' s  i n t a k e  and f lows i n t o  the  s p i r a l  ( o r  semi -sp i ra l )  case 

(F igure 4). I n  these passages, water v e l o c i t y  i s  r e l a t i v e l y  low, and 

pressure i s  s t r o n g l y  p o s i t i v e .  Ve loc i t y ,  acce le ra t i ng  through the  

guide vanes and w icke t  gates, reaches a  maximum when f l o w i n g  through 

the  runner and decelerates a f t e r  passage through the  runner. Some o f  

the  remaining pressure head a l so  decreases as the  water moves through 

the  runner. The v e l o c i t y  head i s  converted t o  pressure i n  t h e  d r a f t  

tube. The t a i  1  water submergence e l e v a t i o n  i n f  1  uences the  degree t o  

which p o s i t i v e  pressures may be res to red  i n  the  d r a f t  tube. The 

t u r b i n e  s e t t i n g  i s  the  e l e v a t i o n  o f  t he  runner ' s  c e n t e r l i n e  w i t h  

respect  t o  t he  t a i l w a t e r  e leva t i on .  When the  s e t t i n g  corresponds t o  a  

negat ive v e r t i c a l  d is tance (runner center1 i ne be1 ow the  t a i  lwa te r  

e leva t ion) ,  d r a f t  tube pressure w i l l  be p o s i t i v e .  I f  the  t u r b i n e  

s e t t i n g  i s  above the  t a i l w a t e r  submergence e l e v a t i o n  and opera t ing  

cond i t ions  are suboptimal, negat ive pressures may r e s u l t  i n  

c a v i t a t i o n .  

*TUBE t u r b i n e  i s  A1 1  is-Chalmers trademark. 
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and tailwater elevations. Source: Redrawn from Long and Marquette 1967. 



C a v i t a t i o n  may be exp la i ned  as f o l l o w s .  A t  l o c a t i o n s  under t h e  

w i c k e t  gates,  on t h e  t h r o a t  r i n g ,  o r  on t h e  runner  b lades expe r i enc ing  

sudden changes i n  t h e  r e l a t i v e  v e l o c i t y  o f  water ,  t h e  f l o w  p a t t e r n  may 

be s u f f i c i e n t l y  d i s t u r b e d  t o  produce h i g h l y  l o c a l i z e d  shear ing  f o r ces  

i n  t h e  water .  I n  these reg ions ,  t h e  w a t e r ' s  v i s c o s i t y ,  o r  t h e  

r e s i s t a n c e  t o  shear ing  s t resses ,  produces v o r t i c e s  t h a t  have areas o f  

low p ressure  i n  t h e i r  cen te r s .  I f  t h e  f l o w  c o n d i t i o n s  a re  

p a r t i c u l a r l y  t u r b u l e n t ,  t h e  s t r e n g t h  o f  these v o r t i c e s  w i l l  i nc rease  

t o  a  p o i n t  where t h e  p ressure  i n s i d e  them decreases t o  t h e  vapor 

p ressure  o f  water.  V a p o r - f i l l e d  c a v i t i e s  form; when these  c a v i t i e s  

e n t e r  a  zone o f  h i ghe r  pressure,  t hey  v i o l e n t l y  c o l l a p s e  o r  implode, 

p roduc ing  an i n tense  p ressure  wave. C a v i t a t i o n  produces v i b r a t i o n  i n  

t h e  t u r b i n e  ' u n i t  and causes p i t t i n g  i n  t h e  meta l  su r faces  o f  t h e  u n i t .  

Areas o f  t h e  runner  s u b j e c t  t o  c a v i t a t i o n  a r e  shown i n  F igu re  5. 

The tendency toward c a v i t a t i o n  i s  descr ibed  by t h e  Thoma 

c r i t e r i o n  o r  t h e  c a v i t a t i o n  number, a. Sigma i s  a  p o s i t i v e ,  

d imension less number t h a t  i s  used t o  d e f i n e  t h e  r e q u i r e d  depth o f  t h e  

t u r b i n e  s e t t i n g  i n  r e l a t i o n  t o  t h e  p l a n t ' s  n e t  head. Th i s  parameter 

f o r  a  p a r t i c u l a r  h y d r o e l e c t r i c  i n s t a l l a t i o n  ( " p l a n t "  sigma, o ) may be 
P  

c a l c u l a t e d  by 

where 
NA = baromet r i c  p ressure  minus t h e  vapor p ressure  o f  wa te r  i n  

t h e  t u r b i n e ,  
HT = t u r b i n e  s e t t i n g ,  
Hp = n e t  head a t  t h e  h y d r o e l e c t r i c  i n s t a l l a t i o n .  

I f  t h e  t u r b i n e  s e t t i n g  i s  deep, t hen  sigma i s  h i ghe r ,  and a  lower  

p o t e n t i a l  f o r  c a v i t a t i o n  e x i s t s  f o r  a  g i ven  runner  des ign  (Montreal  

Eng ineer ing  Company, L td .  1980). C r i t i c a l  sigma i s  t h e  va lue  c f  sigma 

a t  which c a v i t a t i o n  a f f e c t s  t u r b i n e  performance. 

When a  t u r b i n e  i s  r unn ing  a t  maximum e f f i c i e n c y ,  t h e  gu ide vanes 

and w i c k e t  gates a r e  c l o s e l y  a l i gned ,  a'nd t h e  f l o w  th rough t h e  runner  



Figure 5. Runner of propeller-type.turbine with circular arrows showing potential cavita- 
tion areas. 



i s  r e l a t i v e l y  smooth. The water l eav ing  the  t u r b i n e  runner f lows i n t o  

the  d r a f t  tube i n  a  d i r e c t i o n  nea r l y  p a r a l l e l  t o  t he  sha f t .  A t  power 

loadings g rea te r ,  o r  l ess  than those e x i s t i n g  a t  maximum t u r b i n e  

e f f i c i e n c y ,  guide vanes and w icke t  gates do no t  form a  continuum, and 

the  r e s u l t i n g  a n g u l a r i t y  increases turbulence.  Dur ing t u r b i n e  

pa r t - l oad ,  water en te r i ng  the  d r a f t  tube tends t o  f l o w  i n  t h e  same 

d i r e c t i o n  as t h a t  o f  t he  r o t a t i n g  runner, whereas du r ing  f u l l - l o a d ,  

t he  water forms a  w h i r l  i n  t he  opposi te d i r e c t i o n  (Muir 1959). Dur ing 

these suboptimal opera t ing  cond i t ions ,  a  vo r tex  may form below the  

runner cone i n  some cases (F igure 5), and undesi rable c a v i t a t i o n  

tendencies may be increased. 

There are  many f a c t o r s  i n  an opera t ing  ' tu rb ine  t h a t  can i n j u r e  o r  

k i l l  f i s h  passing through the.  u n i t .  O f  these f a c t o r s ,  c a v i t a t i o n  i s  

be l ieved t o  be the  most ser ious ( B e l l  e t  a l .  1967, Lucas 1962, Muir  

1959). Forces s t rong enough t o  damage metal can c e r t a i n l y  be l e t h a l  

t o  f i s h .  Decap i ta t ion  and the  product ion  o f  "pulpy" t i ssues  and 

i n t e r n a l  hemorrh.ages are  examples o f  t he  types o f  severe i n  j u r i e s  

a t t r i b u t a b l e  t o  c a v i t a t i o n .  Pressure changes o f  a  magnitude l e s s  than 

those producing c a v i t a t i o n  can a l so  be harmful t o  f i s h .  I n  a d d i t i o n ,  

shear forces produced by r a p i d  changes i n  t he  d i r e c t i o n  o f  water 

f l o w i n g  through the  u n i t  and contac t  between f i s h  and the  t u r b i n e ' s  

mechanical fea tures  (runner hub, runner blades, w icke t  gates, e t c . )  

may a l so  cause m o r t a l i t y .  

2 . 3  Methods o f  Es t imat ing  'F ish  Morta l  i t y  

2 .3 .1  Model 

nrrr ing 1959 and 1960, model s tud ies  were conducted by t h e  U.S. 

Army Corps o f  Engineers, Wal l a  Wal l a  D i s t r i c t ,  a t  t he  ~ l l  i s - ~ h a l m e r s  

Hydrau l ic  Laboratory i n  York, Penn'sylvania (Cramer 1960, Cramer and 

O l i ghe r  1961a). Model t u rb ines  were designed t o  be sca le  vers ions o f  



pro to type  u n i t s  i n s t a l l e d  i n  var ious  p a r t s  o f  the  Un i ted  States. 

Nonsalmonid f i n g e r l i n g s  were in t roduced i n t o  the  model penstock v i a  a  

f i s h  l o c k  and were recovered i n  a  n e t  at tached t o  the  d r a f t  tube 

o u t l e t .  Cont ro l  f i s h  were subjected t o  the  same hand l ing  cond i t i ons ,  

b u t  were n o t  p laced i n  t he  model t u rb ines .  Both t e s t  and c o n t r o l  f i s h  

were observed f o r  5  d  a f t e r  t he  t e s t s  t o  assess delayed m o r t a l i t y .  

S u r v i v a l  was c a l c u l a t e d  by the  r a t i o  o f  t h e  f r a c t i o n  o f  l i v e  f i s h  i n  

t he  t e s t  group t o  t h e  f r a c t i o n  o f  l i v e  f i s h  i n  the  c o n t r o l  group. 

Mor ta l  i t v  was c a l c u l a t e d  by s u b t r a c t i n g  t,he f ract . inn n f  t . p c ; t .  f i s h  

s u r v i v a l  (cor rec ted  f o r  c o n t r o l  f i s h  s u r v i v a l  as descr ibed above) from 

1.00. I n  these experiments, di f fer-rr1L upe ra t i ng  cond i t i ons  

( v a r i a t i o n s  i n  h y d r a u l i c  head, runner speed, and t a i l w a t e r  e leva t i on ,  

o r  m o d i f i c a t i o n  o f  t he  runners) were t e s t e d  t o  e l u c i d a t e  thei r .  e f f e c t  

on t h e  m o r t a l i t y  o f  d i f f e r e n t  species o f  f i s h  i n  va ry ing  s i z e  classes. 

F i s h  k i l l e d  i n  t h e  experiments were examined by p a t h o l o g i s t s  t o  

determine the  probable cause o f  m o r t a l i t y .  

2.3.2 Prototype 

Deeausa o f  t h e  nunltrcr o f  p ~ ~ o l u l y p c  i ~ ~ v c s  1 i y d l  i u ~ ~ s  urldermlekerr arid 

t h e  e v o l u t i o n  o f  methods e f f e c t i v e  f o r  conduct ing these complex f i e l d  

operat.inns, o n l y  a  general d e s c r i p t i o n  o f  t he  methods w i l l  be 

presented. Mark, re lease,  and recapture methods were used i n  which 

marked t e s t  f i s h  were u s u a l l y  in t roduced i n t o  the  t u r b i n e  i n t a k e  and 

recovered a t  some p o i n t  a f t e r  passage through the  tu rb ine .  Cont ro l  

f i s h  were re leased a t  t h e  d r a f t  tube e x i t  i n t o  the  t a i l r a c e  and 

recovered by s i m i l a r  means. Recapture t imes may range from immediate 

(downstream f rom dams w i t h  nets) t o  l ong  term ( r c t u r n i n g  adu l t s )  

(01 son and Kaczynski 1980). 

I n  t h e  e a r l y  s tud ies  done a t  Bonnev i l l e  Dam (Holmes 1952, c i t e d  

i n  Davidson 1965), m o r t a l i t y  was est imated by comparing the  r a t i o  of 

r e t u r n i n g  a d u l t  t e s t  and c o n t r o l  f i s h .  Wi th  t h i s  procedure, t h e  

sample s i z e  o f  r e t u r n i n g  a d u l t s  i s  o f t e n  t o o  smal l  t o  y i e l d  meaningful 



r e s u l t s ,  and s tud ies  must be conducted f o r  severa l  years  t o  accumulate 

s u f f i c i e n t  da ta  f o r  e s t i m a t i n g  m o r t a l i t i e s  (Schoeneman e t  a l .  1961). 

Hami l ton and Andrew (1954a) and Schoeneman and Junge (1954) developed 

p a r t i a l  recovery  methods i n  which marked t e s t  and c o n t r o l  f i s h  were 

caught i n  t h e  t a i l r a c e  o r  areas o f  t h e  r i v e r  .downstream f rom t h e  

powerhouse. Fyke ne t s  equipped w i t h  l i v e  boxes were g e n e r a l l y  used 

f o r  these .purposes (F igu re  6). The t u r b i n e  i n t a k e  ga tewe l l s  o r  

t u r b i n e  bypass s t r u c t u r e s  o f  downstream dams have a l s o  been used t o  

recover  t e s t  and c o n t r o l  f i s h  (Olson and Kaczynski 1980). P a r t i a l  

recovery  techniques p e r m i t t e d  an a lmost  immediate assessment o f  

r e s u l t s  so t h a t  exper imenta l  procedures c o u l d  be r e a d i l y  d u p l i c a t e d  o r  

mod i f ied .  A lso,  a  much l a r g e r  sample- was a v a i l a b l e  f o r  s t a t i s t i c a l  

a n a l y s i s  so t h a t  narrower con f idence  i n t e r v a l s  f o r  f i s h  m o r t a l i t y  

cou ld  be c a l c u l a t e d .  S u r v i v a l  es t imates  were t hen  based on t h e  r a t i o  

o f  t h e  f r a c t i o n  o f  l i v e  t e s t  f i s h  ( immediate and delayed) i n  t h e  t o t a l  

number o f  t e s t  f i s h  recovered t o  t h e  f r a c t i o n  o f  l i v e  c o n t r o l  f i s h  

( immediate and delayed) i n  t h e  t o t a l  number o f  c o n t r o l  f i s h  recovered. 

M o r t a l i t y  was c a l c u 1 a t e d . b ~  s u b t r a c t i n g  t h e  f r a c t i o n  o f  c o r r e c t e d  t e s t  

f i s h  s u r v i v a l  f rom 1.00. Hami l ton and Andrew (1954a) compared 

m o r t a l i t y  c a l c u l a t e d  f rom p a r t i a l  recovery  methods w i t h  those  based on 

a d u l t  r e t u r n s  and found c l o s e  agreement. These researchers f u r t h e r  

r e f i n e d  mor ta l  i ty  es t imates  f rom p a r t i a l  recovery methods by p o i n t i n g  

o u t  t h e  fa lseness  o f  t h e  assumption t h a t  t h e  recovery  r a t e s  f o r  dead 

and 1  i v e  f i s h  were t h e  same. Because l i v e  f i s h  would e n t e r  t h e  ne ts  

more r e a d i l y  than  dead ones, t h c  au thors  suggested t h a t  marked dead 

f i s h  be re leased  w i t h  t h e  l i v e  ones i n  t h e  penstock so t h a t  a  t r u e  

recovery  r a t e  o f  dead f i s h  c o u l d  be determined. T h i s  procedure 

p e r m i t t e d  d e r i v a t i o n  o f  a  f a c t o r  f o r  c o r r e c t i n g  t h e  d i s p r o p o r t i o n a t e  

a v a i l a b i l i t y  o f  l i v e  and dead f i s h  i n  t h e  catch.  

Another method t h a t  was 'used f o r  p a r t i a l l y  r ecove r i ng  f i s h  passed 

th rough t h e  t u r b i n e  was t h e  gossamer bag and b a l l o o n  techn ique  (u.S. 

Army Corps o f  Engineers,  P o r t l a n d  D i s t r i c t  1960). F i n g e r l i n g s  were 

p l aced  i n s i d e  gossamer bags, which were a t tached  t o  ba l loons .  A f t e r  

passage through t h e  t u r b i n e  b lades,  t h e  b a l  l oon  i n f l a t e d  au tomat ica l  l y  



PONTOON-MOUNTED FYKE NET AND SURVIVAL BOX USED I N  THE RIVER. 

Figure 6. Examples of partial recovery net systems used in turbine-related mortality 
studies. Source: Hamilton and Andrew 1954a. 



by means o f  g e l a t i n  capsules o f  ca lc ium hydr ide  t imers .  F i sh  were 

then recovered i n  the t a i l r a c e  o r  a t  p o i n t s  f u r t h e r  downstream. This 

technique was discont inued.because i t  was unce r ta in  how the  gossamer 

bags may have helped o r  hindered s u r v i v a l  i n  t he  tu rb ine .  A somewhat 

s i m i l a r  method described by Johnson (1970) invo lved a t tach ing  a  

f l o a t - t a g  assembly t o  the  f i s h .  This  technique, however, was repor ted  

a f t e r  most o f  t h e  t u r b i n e  passage experiments had been completed. 

The use o f  f u l l  recovery nets o r  nets designed t o  s t r a i n  the  

water f l ow ing  through a  t u r b i n e  u n i t  (F igure 7) was w ide l y  endorsed by 

the U.S. Army Corps o f  Engineers. Use o f  these nets improved the  

recovery o f  t e s t  and c o n t r o l  f i s h  over p a r t i a l  recovery methods 

(Cramer and Donaldson 1964). These nets were fastened t o  a  r i g i d  

s tee l  frame placed f l u s h  aga ins t  the  d r a f t  tube opening (F igure  7). 

A f t e r  development o f  e f f i c i e n t  and r e l i a b l e  recovery methods, 

d i f f e rences  i n  m o r t a l i t y  w i t h  v a r i e d  opera t ing  cond i t i ons  cou ld  be 

assessed. As i n  t he  model s tud ies  (Sect. 2.3.1),  f i s h  k i l l e d  i n  the  

experiments were examined by pa tho log i s t s .  

2.3.3 Assessment o f  Study Type 

The model and pro to type experiments are  bo th  impor tan t  i n  

e l u c i d a t i n g  the  ex ten t  and cause o f  t u r b i n e  m o r t a l i t y .  I n i t i a l  

f i n d i n g s  i n  the  model experiments cou ld  suggest ope ra t i ng  cond i t i ons  

o r  runner mod i f i ca t i ons  t h a t  should be i n v e s t i g a t e d  f u r t h e r  i n  f i e l d  

s tud ies .  Recovery o f  turbine-passed f i s h  and complete c o n t r o l  o f  

experimental  cond i t i ons  were poss ib le  i n  t h e  model t u r b i n e  u n i t s ,  

making conclusions more d e f i n i t i v e  and the  s t a t i s t i c a l  bas i s  o f  

compari ng t e s t  s i t u a t i o n s  stronger-. However, i n  the  model 

experiments, i t  was impossib le t o  scale down the  s izes  o f  t e s t  f i s h  so 

t h a t  t he  r a t i o  o f '  f i s h  l eng th  t o  t u r b i n e  dimensions was the  same as 

t h a t  i n  p ro to type t u r b i n e  studies.  The f i s h  passing through the  

McNary pro to type would. have had t o  be 1.2 m i n  l eng th  t o  compare 

experimental cond i t i ons  w i t h  those i n  t he  McNary model (Cramer 1960). 
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Figure 7. Illustration of a full recovery'net system used in turbine-related mortality 
studies. Source: Cramer and Donaldson 1964. 



Th i s  t u r b i n e  s i z e  f a c t o r  may have s t r o n g l y  i n f l u e n c e d  t h e  magnitude o f  

mechanical- type i n j u r i e s  observed i n  t h e  d i f f e r e n t  s t ud ies .  A1 though 

s i m i l a r i t i e s  were noted i n  t h e  r e s u l t s  o f  model and p r o t o t y p e  

i n v e s t i g a t i o n s  i n i t i a l l y  conducted by  t h e  U.S. A r m y  Corps o f  

.Engineers, Wal la  Wal la  D i s t r i c t  (Cramer and O l i g h e r  1960), B e l l  e t  a l .  

(1967) contended t h a t .  p r e d i c t i  ng p r o t o t y p e  performance f rom t h e  model 

s t ud ies  was p robab ly  n o t  f e a s i b l e .  

2 .4  Resu l ts  and Conclusions o f  M o r t a l i t y  S tud ies  

2 .4 .1  Model S tud ies  w i t h  F ranc i s  Runners 

Head, speed, and t u r b i n e  s e t t i n g  were v a r i e d  i n  t h e  f i r s t  s e t  . o f  

exper iments conducted w i t h  t h e  model F ranc i s  runners (Cramer 1960, Von 

Gunten 1961). Resu l ts  i n d i c a t e d  t h a t  

1. M o r t a l i t y  inc reased  w i t h  h i ghe r  head and h ighe r  speed. 
Mechanical- type i n j u r i e s  (abras ion ,  con tus ion ,  l ace ra -  
t i o n )  inc reased  w i t h  runner  speed so t h a t ,  a t  
r e l a t i v e l y  h i g h  speeds, c o r r e l a t i o n  o f  p ressure  i n j u r y  
t o  t u r b i n e  ope ra t i ng  c o n d i t i o n s  was imposs ib le .  

2. M o r t a l i t y  increased as d r a f t  tube  pressures decreased 
f rom h ighe r  t u r b i n e  s e t t i n g s .  The i n j u r i e s  i n c u r r e d  by 
f i s h  t e s t e d  under these c o n d i t i o n s  cons i s ted  o f  
i n t e r n a l  hemorrhages, d e f l a t e d  air b ladders ,  p r o t r u d i  ny 
eyeba l l s ,  and hemorrhages v i s i b l e  i n  t h e  p e c t o r a l  
g i r d l e  area. 

3. . M o r t a l i t y  es t imates  as h i g h  as 100% c o u l d  be produced 
by combining h i g h  runner  speeds w i t h  low t a i l w a t e r .  

Resu l ts  o f  t h e  second s e t  o f  exper iments (Cramer and O l i g h e r  

1961a), i n  which s u b s t a n t i a l  m o d i f i c a t i o n s  were made i n  t h e  F ranc i s  

runner ,  demonstrated t h a t  



1. Small changes i n c r e a s i n g  t he  c l e a r  opening between t h e  
edge o f  r unne r  b lades and t h e  w i c k e t  gates cou ld  
decrease m o r t a l  i ty. 

2. T o t a l  m o r t a l i t y  inc reased  as t h e  t a i l w a t e r  l e v e l  was 
dropped i n  success ive stages from above t o  below t h e  
runner  c e n t e r l i n e ,  even though t he  p o i n t  o f  genera l  
c a v i t a t i o n  was not'  reached. 

3. Many o f  t h e  i n t e r n a l  hemorrhages may be caused by 
e x t e r n a l  mechanical pressures o r  b r u i s e s  because 
i n j u r i e s  c h a r a c t e r i s t i c  o f  p ressure  changes occur red  
o n l y  when t h e  t .u rb ine  s e t t i n g  was r e l a t i v e l y  h igh .  

4. I n  computer a n a l y s i s  of  t h e  exper imenta l   result.^, 
runner speed appeared t.n he t h e  s i n g l e  most i n f l u e n t i a l  
v a r i a b l e  a f f e c t i n g  m o r t a l i t y .  

On t h e  b a s i s  o f  these  two se t s  o f  exper iments,  t h e  researchers 

concluded t h a t  t h e  o p e r a t i n g  c o n d i t i o n s  t h a t  p rov ide  for maximum 

s u r v i v a l  o f  f i s h  pass ing  th rough F ranc i s  t u r b i n e s  were r e l a t i v e l y  low 

runner  speed, h i g h  t u r b i n e  e f f i c i e n c y  ( t h e  absence o f  p a r t - l o a d  o r  

f u l l - l o a d  c o n d i t i o n s ) ,  r e l a t i v e l y  deep t u r b i n e  s e t t i n g ,  maximum 

c learances  between w i c k e t  gates and t he  i n t a k e  edges o f  runner  b lades,  

maximum c learances between b lades,  and t u r b i n e  operation a t  relatively 
h i g h  sigma va lues  (Cramer and O l i g h e r  1961a). 

A1 though d i f f e r e n t  species o f  f i  nge r l  i ngs  ( f a thead  minnow, 

largemouth bass, and banded k i l l i f i s h ) ,  r ang ing  i n  s i z e  from 38 t o  

6 1  mm, were t e s t e d  i n  t h e  f i r s t  s e t  o f  exper iments,  no conc lus ions  

were drawn on t h e i r  d i f f e r e n t i a l  s u s c e p t i b i l i t y  t o  i n j u r y .  I n  t h e  

second s e t  of exper iments ,  t h e  r e l a t i o n s h i p  between s i z e  and m o r t a l i t y  

remained i n c o n c l u s i v e ,  p r i m a r i l y  because o f  hand l i ng  losses  i n  t h e  

sma l l -  and medium-size groups. 



2.4.2  Model S tud ies  w i t h  K a ~ l a n  Runners 

Model exper iments w i t h  Kaplan runners  were n o t  n e a r l y  as 

ex tens i ve  as those w i t h  F ranc i s  runners .  However, i t  was s t i l l  

p o s s i b l e  t o  r e l a t e  inc reased  m o r t a l i t y  t o  c e r t a i n  o p e r a t i n g  

c o n d i t i o n s ,  such as h i g h  runner  speed and h i g h  t u r b i n e  s e t t i n g  (Cramer 

1960, Von Gunten 1361). 

2.4.3 P ro to t ype  SLudies w i t h  F ranc i s  Runners 

Many p r o t o t y p e  s t u d i e s  have been per formed w i t h  F ranc i s  runners ,  

each s tudy  hav ing  i t s  own unique s e t  o f  exper imenta l  c o n d i t i o n s .  Data 

generated f rom these  s t u d i e s  a r e  b r i e f l y  presented.  Table  2  desc r i bes  

t h e  o p e r a t i n g  c o n d i t i o n s ,  o r  m o d i f i c a t i o n s  o f  those  c o n d i t i o n s ,  t h a t  

e x i s t e d  d u r i n g  t h e  exper iments.  Tab le  3  p resen t s  da ta  on t h e  t e s t  

spec ies and t h e i r  r e s p e c t i v e  s i zes .  The f i s h  m o r t a l i t y  es t imates  a re  

ex t reme ly  v a r i a b l e ,  r a n g i n g  f rom 0% m o r t a l i t y  c a l c u l a t e d  f o r  

i n v e s t i g a t i o n s  a t  t h e  Lower Elwha Dam (Schoeneman and Junge 1954) t o  

n e a r l y  100% m o r t a l i t y  i n  t h e  s t u d i e s  done a t  Crown Z e l l e r b a c h  (Oregon 

S t a t e  Game Commission 1961). C l e a r l y ,  t h e  r e s u l t s  l a r g e l y  depend on 

t e s t i n g  c o n d i t i o n s .  Because t h e  r e l a t i o n s h i p  between s t r u c t u r a l  o r  

o p e r a t i o n a l  aspects  o f  t u r b i n e  f u n c t i o n  and t h e  r e s u l t a n t  f i s h  

m o r t a l i t y  were more c l e a r l y  d e l i n e a t e d  i n  work done by  t h e  U.S. Army 

Corps o f  Engineers,  Wa l la  Wa l la  D i s t r i c t ,  these  s t u d i e s  a re  

emphasized. 

The f i r s t  F ranc i s  p r o t o t y p e  s t u d i e s  under taken by t h e  Wa l la  Wa l la  

D i s t r i c t  Corps were conducted a t  Cushman No. 2  H y d r o e l e c t r i c  P l a n t  on 

t h e  N o r t h  Fork  o f  t h e  Skokomish R i v e r  i n  Washington. The exper imenta l  

des ign  c o n c i c t c d  o f  t c s t i n g  a  s c r i c s  o f  h i gh ,  medium, and low 

t a i l w a t e r  e l e v a t i o n s  a t  f o u r  s p e c i f i c  ga te  openings (power l oad ings )  

(Cramer and O l i g h e r  1960, Von Gunten 1961). Resu l t s  o f  these  t e s t s  

i n d i c a t e d  t h a t  f o r  power heads up t o  143 m: 



Ta2le 2. Summary o f  protartype i n ~ e s t i g a t i o n s  o f  t u r b i n e - r e l a t e d  f i s h  ~ o r t a -  i :.d 

conductad a t  h y d r o e l e c t r i c  i n s t a l l a t i o n s  equipped w i t h  Franc is  runns-r. where 
experimental m o d i f i c a t i o n s  i n  opera t ing  cond i t ions  we-e esployed 

H y d r o e l e c t r i c  
i m s t a l  l a t i o n  

L'lant sioma 
P c s i t i o n  

Clear o f  -Lnner . - - -  a - 

opening i n  r ? l a t i o n  M o r t a l i t y  
Raked . Number 3 f  between t o  t a i l -  d - c k e t  
nwmal Runner Mi r,. Runner runner wat?r e le -  gate 
h ~ d  (m) speed (rpm) Ac:ual -eccmld. blades blades v z t i c n  (ml 2pening % Comments 

(cm) 

Baker Dam, a1 1 u n i t s  
Baker R iver  
dashington 
1950-1952 
(Hami 1 t o n  and Artdrew 1961a) 

L w e r  Elwha Dan. i!nl;ts 
nos. 3 and 4 
Elwha R iver  
Washington 
1953 
(Schoeneman a,id J ~ n g e  U 5 4 )  

C l i n e s  Canyon Dam 
Elwha R iver  
dashington 
1953 
(Schoeneman a i d  Junge I35411 

Ruskin Dam, u n i t  no. 3 
Stave R iver  
B r i t i s h  Colum"~ie,  Canae 
1953 
(Hami 1 t o n  and Andrew 1 5 4 b .  

c i t e d  i n  Lucas 19621 

Puntledge Oeve l~pnent ,  
or;e u n i t  
Punt ledge R iver  
B r i t i s h  Colum2ia 
1555 
(Cepartment o f  h i s h e r i e s ,  
Canada 1958) 

Setcn Creek S t a t i o n ,  
one u n i t  
Seton Creek 
B r i t i s h  C o l m 2 i a ,  Canaca 
12157 
(Andrew and Geen 1958) 

L ~ a b u r g  P lan t ,  un' t  no. E 
McKenzie R iver  
Oregon 
1958 
(Oregon S t a t e  Game Comnission, 
undated a) 

27 
(exper i -  
mental  ) 

28-34 Immediate 
recovery 

37 based on 
a d u l t  
r e t u r n  

3 Confidence i n t e r v a l  

o f  -7 t o  
+5% 

30-33 Range 
i n d i c a t e s  
t h a t  a l l  
f i s h  re -  
su l  t s  
were com- 
b ined 

f u l  I load  10 .5  

28-42 Inc luded 
48-h de- 
layed 
m o r t a l i t i e s  

-4.5 d u l l  load  9.2 

0. 711 4.8 Confidence 
i n t e r v a l  o f  
3 .6  t o  6.0% 



Table : (cont inued) 

H y d r o e l e c t r i c  
i n s t a l l a t i o n  

P lan t  sigma 
P o s i t i o n  

Clear o f  runner 
opening i n  r e l a t i o n  M o r t a l i t y  

F.ated Number o f  between t o  t a i l -  I i c k e t  
normal Runner M-n. Runner runner water e le -  pate 
kead (m) speed (rpm) Actual  recom'd. b lades ,  blades v a t i o n  (m) 3pe?ing % Comments 

(cm) 

Stabton P lan t .  
u r s p e c i f i e d  u n i t  4 .6  175 
Oregon 
15 59 
(C.regqn Sta te  Game Commission, 
undated b)  

Crovn Zel lerbach. 
u n i t  nos. 20 and 2 1  12-13 255-300 
Wi l l smet te  F a l l s  (exper i -  
Oregon mental)  
1960 and 1961 
(Oregon Sta te  Game CornmissSon 
1960 and 1961) 

Pubi i s h e r s '  Paper Company. 
u n i t  no. 2 13 300 
Wl l lamet te  F a l l s  (exper i -  
Oregon mental)  
1960 and 1961 
(Oregon Sta te  Game Commission 1960 and 1961) 

P o r t l a n d  General E l e c t r i c .  
u n i t  no. 9 13 240 
W' l lamette F a l l s  (exper i -  
Oregon mental)  
1960 
(Oregon Sta te  Game Commission 1960) 

Cushman No. 2:  
u e i t  no. 33 137 300 
Nor th  Fork o f  Skokomish R iver  
Washington 
1960 
(Cramer and Ol igher  1960) 

2.1- Range 
9 . 1  t h a t  i n d i c a t e s  a l l  

f i s h  r e -  
s u l t s  were 
combined 

+ 6 . 4 t o  0.90 18.e - Range 
+8.2 100.0 i n d i c a t e s  

t h a t  a l l  
1.0 28.4 - t e s t  f i s h  

99. e r e s u l t s  
a re  com- 
b ined 

+ 6 . 7 t o  1 . 0  12.1 - Range 
7.4 15.5 i n d i c a t e s  

t h a t  a l l  
t e s t  f i s h  
r e s u l t s  
a re  com- 
b ined 

0 . 8  14.2 - Range 
25.5 t h a t  i n d i c a t e s  a l l  

t e s t  f i s h  
r e s u l t s  
a re  com- 
b ined 



Table 2 (continued) 

P m i t i o n  
Clear o f  runner F l an t  sioma 

cpen i ic  i n  r e l a t i o n  M o r t a l i t y  
Rated Number o f  betwesn t~ t a i l -  Wicket 
normal Runner Min. Runner wnne- dater  e le -  gate 
head i m )  speed (rpm) Actual recom'd. blades blade; va t i on  (m) opening % Comments 

(cm) 

Hydroe lec t r is  
i n s t a l l a t i s n  

Cushman No. 2 ,  
u n i t  no. 33 13: 300 0.946 0.055 15 8- 9 
1961 0.973 
(Cramer and D l i ghe r  1961b: Range 

indicate.; 
t h a t  cobo 
and s tee l -  
head 
r e s u l t s  
are com- 
bined 

Shasta Dam.. LF-1 
Sacramentn Riber 
C a l i f o r n i a  
1962 
(U.S Army C o r ~ s  o f  Enginee-s, 
Walla Va l l a  D i s t r i c t  1963) 

138.5 0.078 0.067 15 14 
a t  ne t  
hetd 
o f  119 m 

Range 
ind ica tes  
t h a t  
a l l  t e s t  
f i s h  re-  
s u l t s  
are com- 
bined 

Malay F a l l s  Dam, 
unspec i f ied  uriizs Confidence 

i n t e r v a l  o f  ~ a s t  Rive- 
Nova Scot ia  
1975 
(Semple 1979) 

Source: qdapted from Lucas (19523 



Table 3. Summary o f  p ro to type i n v e s t i g a t i o n s ' o f  t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  
conducted a t  hydroe lec t - i c  i n s t a l l a t i o n s  equipped w i t h  Francis runners 
f o r  d i f f e r e n t  t e s t  f i s h  species and s i z e  ranges. 

Age and s i z e  M o r t a l i t y  

Hydroelectr 'c  
i n s t a l l a t i o n  

F i s h  Age Class Average l e n g t h  Range i n  
species t e s t e d  o f  f i s h  o f  f i s h  (mm) l e n g t h  (mm) % Comments 

Baker Dam, a l l  u n i t s  
Baker R iver  

Nat ive  sockeye Year l ings  97 78- 133 34 Immediate recovery 
37 based on a d u l t  r e t u r n  

Washington 
1950-1952 
(Hami 1 t o n  and Andrew 1954a) 

Nat ive  coho Year1 i n g s  98 Immediate recovery 

L.~wer Elwha Dam, u n i t s  no. 3 and 4 Hatchery F i n g e r l i n g s  70 
Elwha R iver  chinook 
Washington 
1953 
(Schoeneman and Junge 1954) 

Confidence i n t e r v a l  
o f  -7 t o  +5% 

Hatchery F i n g e r l  ings  70 
chinook 

W i n e s  Canyon Dam, one u n i t  
Elwha R iver  
Washi naton 

Confidence i n t e r v a l  
o f  23 t o  37% 

Hatchery coho Year l ings  104 1953 
(Schoenemn and Junge 1954) 

Hatchery Year1 ings  86 
sockeye 

Ruskin Dam, u n i t  no. 3 
Stave R iver  
B r i t i s h  Columbia 
1953 ' 

(Hamil ton and Andrew 1954b, 
' c i t e d  i c  Lucas. 1962) 

Funtledge Development, unspec i f ied  Hatchery Year1 ings  125 
u n i t  steelhead; 
Puntledge R iver  hatchery F i  nger l6 ngs 69 
B r i t i s h  Columbia rainbow 46 

Includes 48-h 
delayed m o r t a l i t i e s  

1955 
(Department o f  F isher ies ,  Nat ive  mixed Fry 
Canada 1958:l salmon 

Seton Creek S t a t i o n ,  one u n i t  Nat ive  sockeye Year l ings 86 
Seton Creek 
B r i t i s h  Columbia 
1957 
(Andrew and Geen 1958) 

-eaburg P l a n t ,  u n i t  no. 2 
McKenzie R iver  

R& nbow Year l ing  Confidence i n t e r v a l  
o f  3 .6  t o  5 . 0  

Oregon 
1958 
( O r e g ~ n  State Game Commission 
undated 3)  

Confidence i n t e r v a l  
of 7.5 t o  10.7% 

j t a y t o n  P l a n t ,  unspec i f ied  u n i t  Hatchery Finger1 ings  
Oreaon chinook 
1959 
(Oregon S t a t e  Game Commissim Hatchery 
undated b)  s t e e l  head 

Confidence i n t e r v a l  
o f  1.1 t o  3.1% 



i a b l e  3 (cont inued) 

Age and s i ze  M o r t a l i t y  

Hyd roe lec t r i c  
i i s t a l l a t i o n  

F i s h  Age C'ass Average l eng th  Range i r  
species t es ted  o f  f - s h  o f  f i s h  (mm) l eng th  (rm) % Comments 

Crown Ze l l e r t ach ,  u n i t  10s. 20 and 21  Hatchery Year1 - 
Wi l lamet te  F a l l s  s t e e l  head 
Oregon s 
1960 and 1961 
(Oregon S ta te  Game Conmission 
1960 and 1961) 

Y e a r l i  

Resu l ts  o f  two 
u n i t s  averaged f o r  
1960 
Resu l ts  o f  two 
u n i t s  averaged f c r  
1961 
Resu l ts  o f  two Hatchery 

chinook u n i t s  averaged f o r  
1960 
Resu l ts  o f  two u n i t s  
averaged f o r  1961 

Pub1 i s h e r s '  Pape- Corrpaoy, u n i t  no. 2 Ha tc te ry  
W i l l ame t te  F a l l s  s t e e l  head 
Oregon 
1960 and 1961 Hatchery 
(Oregon S ta te  G3me C3mmission chinook 
1960 and 1961) 

Yearl  ings 

Yearl  ings 

Average o f  1960 and 
1961 r e s u l t s  

Average o f  1960 and 
1961 r e s u l t s  

Po r t l and  General S i e d t r - c ,  u n i t  no. 9 Hatchery 
W i l l ame t te  Fa l - ;  s t e e l  head 
Oregon 
1960 Hatchery 
(Oregon S ta te  G3me Jonmission 1960) chinook 

Yearl  ings 

Yearl  ilngs 

F inger1 ings 

Confidence i n t e r v a l  
o f  20 .1  t o  31.7% 

A l l  species were combined i n  t e s t  r e -  
s u l t s ;  range i nd i ca tes  d i f f e r e n t  w i cke t  
gate  openings 

Cvshman No. 2, u n i t  no. j 3  Hatchery 
Nor th  Fork of S<okanizh R i ve r  chinook 
Washi'ngton 
1960 
(Cramer and O l i g h e r  1SEO) Hatchery coho Yearl  ings 

Yearl  ings 

57-10? 22.7-41.0 High t a i l w a t e r  

Hatchery 
s t e e l  head 

63- 152 26.3-55.4 Medium t a i l w a t e r  

34.5-47.8 Low t a i  lwa te r  

C~shman No. 2, u r ' t  n3. 33 Hatchery coho Yearl  ings 

Yearl  ings 

A l l  f i s h  graded 26.2-63.9 Range i nd i ca tes  
t o  app ro r i na t?  d i f f e r e n t  w icket  
average l e n g t i  38.1-53.0 gate  openings 

1961 
(Cramer and 01 i gke r  1461) Hatchery 

s t e e l  head 

Skasta Dam, U-1 Hatchpry 
Sacramento R i ve r  chinoak 
C a l i f o r n i a  
1962 Hatchsry 
(U.S. Army Engineer D i s t r i c t ,  steel.iead 
Wal la  Wal la  19E:) 

Hatchery 
rainbow 

Yearl  i i g s  A l l  f 'sh graded 27.3-45.2 Range i nd i ca tes  
t o  a~p rox :ea t~ t  d i f f e r e n t  w icket  
aver3ge l e i g t i  ga te  openings 

10. 7-24.6 Yearl  i i g s  

Confidence i n t e r v a l  
o f  8 .3  t o  12.9% 

Ma l t y  Fa1 1s Dam, iunspccSf i e d  u n i t s  Hatchery 
& s t  R iver  A t l a n t i c  
Nova Sco t i a  salmon 
1575 
(Semple 1979) 

Source: Adapted l r o m  L l ~ a s  (1962). 



1. Turb ine c h a r a c t e r i s t i c s  i n f l u e n c e d  f i s h  mor ta l  i ty. 

2. M o r t a l i t y  assoc ia ted  w i t h  mechanical e f f e c t s  was 
d i r e c t l y  r e l a t e d  t o  t h e  p h y s i c a l  f e a t u r e s  o f  t u r b i n e  
des ign such as b l ade  c l e a r  opening and runner  speed. 

3. Hyd rau l i c  head was n o t  a  s i g n i f i c a n t  f a c t o r  i n  t h e  
m o r t a l i t y  o f  f i n g e r l i n g s  pass ing  th rough t u r b i n e s ,  
except  as r e l a t e d  t o  accompanying prevalence of  
1  ow-pressure areas which may have been encountered i n  
t h e  h y d r a u l i c  passages. 

I n  these exper iments,  t h r e e  d i f f e r e n t  s i z e  c lasses  o f  f i s h  were 

eva lua ted  (Table 3). A l though comparison o f  t h e  e f f e c t s  o f  d i f f e r e n t  

ope ra t i ona l  m o d i f i c a t i o n s  ( t a i l w a t e r  l e v e l s  and w i c k e t  ga te  openings) 

on t h e  b a s i s  o f  s i z e  c lasses  was n o t  p o s s i b l e ,  some t r ends  were 

observed. The l a r g e r  f i s h  such as s t e e l  head ( rang ing  from 63 t o  152 

mm i n  l eng th )  s u f f e r e d  .somewhat g r e a t e r  m o r t a l i t y .  No spec ies o r  s i z e  

c l ass  showed a  s i g n i f i c a n t  d i f f e r e n c e  i n  t h e  types  o f  i n j u r i e s  

i n c u r r e d  d u r i n g  t u r b i n e  passage. 

I n  1961, a d d i t i o n a l  t e s t s  were undertaken a t  Cushman No. 2 t o  

c o n f i r m  t h e  f i n d i n g s  o f  t h e  p rev ious  t e s t s ,  t o  i n v e s t i g a t e  problems 

assoc ia ted  w i t h  t h e  s i z e  of  c l e a r  openings w i t h i n  t h e  t u r b i n e  u n i t  
. , 

more thorough ly ,  and t o  p r o v i d e  more i n f o r m a t i o n '  on t h e  s i g n i f i c a n c e  

o f  power load ings  and o p e r a t i n g  e f f i c i e n c i e s  t o  es t imates  o f  m o r t a l i t y  

(Cramer and O l i g h e r  1961b). The r e s u l t s  o f  these exper iments (Tables 

2 and 3) con f i rmed many of t h e  e a r l i e r  f i n d i n g s  and l e d  t o  f u r t h e r  

understanding o f  t h e  e f f e c t  o f  w i c k e t  gate/b lade and b l  ade/bl ade c l e a r  

openings on f i s h  s u r v i v a l .  Because two d i s t i n c t  s i z e  c lasses  o f  f i s h  

were used i n  these exper iments (Table 3), i t  was p o s s i b l e  t o  conclude 

t.hat b lade  c l e a r  openings become a more important.  f a c t o r  i n  f i s h  

s u r v i v a l  as f i s h  s i z e  increases.  The c l e a r  openings between t h e  

t r a i l i n g  edge o f  t h e  w i c k e t  gates and t h e  i n t a k e  edge o f  t h e  runner  

b lades appeared t o  be beyond t h e  c r i t i c a l  c l e a r  openings f o r  a  76-mm 

f i s h ,  b u t  n o t  f o r  a  152-mm f i s h .  These researchers a l s o  concluded 

t h a t ,  i f  b lade  c l e a r  openings were adequate f o r  f i s h  passage, t u r b i n e  



e f f i c i e n c y  alone f o r  a  g iven mean d r a f t  tube pressure may be an 

accurate bas is  f o r  eva lua t i ng  s u r v i v a l  i n  t u rb ines  o f  s i m i l a r  designs 

and performance c h a r a c t e r i s t i c s .  S t a t i s t i c a l  analyses o f  t he  data 

generated i n  t h i s  experiment i n d i c a t e d  t h a t  t he  i n t e r r e l a t i o n s h i p  o f  

f low cond i t i ons  causing i n e f f i c i e n t  t u r b i n e  opera t ion  and inadequate 

c l e a r  openings g r e a t l y  in f luences m o r t a l i t y .  

Fu r the r  s tud ies  o f  Francis  prototypes were conducted i n  1962 a t  

t he  Shasta Dam H y d r o e l e c t r i c  P l a n t  (U.S. Army Corps o f  Engineers, 

Wal l a  Wal l a  D i s t r i c t  1963). The Shasta p l a n t  was chosen because i t s  

runner had g rea te r  c l e a r  openings between blades and operated a t  a  

lower speed than t h a t  o f  the  Cushman No. 2 u n i t s .  I n  these 

i n v e s t i g a t i o n s ,  t a i l w a t e r  l e v e l s  were h e l d  constant ,  and f i v e  

d i f f e r e n t  w icke t  ga te  openings (and thus t h e i r  corresponding 

e f f i c i e n c i e s )  were t e s t e d  (Table 2). As i n  t he  second group o f  

experiments a t  t h e  Cushman No. 2  p l a n t ,  d i f f e r e n t  s i z e  classes o f  f i s h  

were t e s t e d  (Table 3). These experiments showed t h a t  g rea ter  blade 

c l e a r  openings, slower speed, and a  l e s s e r  degree o f  negat ive 

pressures i n  t h e  h y d r a u l i c  passageways produced lower m o r t a l i t i e s  than 

those repor ted  f o r  t he  Cushman No. 2  p l a n t .  The average m o r t a l i t y  o f  

chinook salmon j u v e n i l e s  (smal l -s ize  f . ish)  was 21.5%, ' t h a t  o f  

s teelhead (medium-size f i s h )  was 31.0%, and t.hat. nf  rainbow t r o u t  

. ( l a r g e - s i z e  f i s h )  was 33.4%, suggesl ing t h a t  the  smal ler-s ized t i s h  

may have h iqher  s u r v i v a l  du r ing  t . ~ ~ r h i n ~  pa<Gage. 

The th ree  se ts  o f  experiments conducted by the  U.S. Corps o f  

Engineers, Wal l a  Wal l a  D i s t r i c t ,  conf irmed what. m n r i ~ l  ~ x p ~ r i m e n t s  had 

suggested (U.S. Army Corps o f  Engineers, Wal la Wal la D i s t r i c t  1963). 

Turb ine c h a r a c t e r i s t i c s ,  p a r t i c u l  ar l ,y  those associated w i t h  part ,- load 

o r  o the r  ope ra t i ng  cond i t i ons  i n  which low e f f i c i e n c i e s  were 

experfenced, were o f  major s i g n i f i c a n c e  t o  morta l  i t y .  Surv iva l  . under , 

t h e  most e f f i c i e n t  ope ra t i ng  cond i t i ons  was h igh  enough t o  o f f e r  

encouragement t h a t ,  through proper p recaut ionary  measures i n  t u r b i n e  

.des ign  and opera t ion ,  successful  f i s h  passage through high-head 

t u r b i n e s  can be acl.i,ieved. 



Although t h e  p rev ious  d i scuss ion  addresses t h e  e x t e n t  o f  

m o r t a l i t y  t o  d i f f e r e n t  t e s t  organisms under d i f f e r e n t  o p e r a t i n g  

c o n d i t i o n s ,  i't does n o t  focus on t h e  types  o f  i n j u r y .  Mechanical 

types o f  i n j u r i e s  were t h e  predominant ones encountered i n  t h e  t h r e e  

groups o f  exper iments conducted on t h e  high-head F ranc i s  p ro to types .  

They c o n s t i t u t e d  76.8% o f  t h e  i n j u r i e s  i n c u r r e d  by f i s h  t e s t e d  a t  t h e  

Shasta p l a n t  (U.S. Army Corps o f  Engineers,  Wal la  Wal la  D i s t r i c t  

1963). The percentages o f  dead f i s h  recovered w i t h  d i f f e r e n t  types o f  

p ressure  and mechanical i n j u r i e s  a re  summarized i n  Table 4. 

Contusions and l a c e r a t i o n s  appeared t o  be r e l a t i v e l y  common types  o f  

i n j u r y  s u f f e r e d  by these exper imenta l  groups. Other researchers  who 

conducted p r o t o t y p e  s tud ies  on F ranc i s  runners noted h i g h  percentages 

o f  eye damage (Schoeneman and Junge 1954, Andrew and Geen 1958). Th i s  

t ype  o f  i n j u r y  may r e s u l t  f rom b o t h  .mechanical  (shear ing  f o r ces )  and 

p ressure  ( r a p i d  decrease i n  p ressure)  e f f e c t s .  When accompanied w i t h  

abras ions o r  l a c e r a t i o n s ,  eye damage was u s u a l l y  cons idered  t o  be a 

mechanical i n j u r y .  

The e x t e n t  and magnitude o f  p ressure  e f f e c t s  are more d i f f i c u l t  

t o  assess. I t  i s  g e n e r a l l y  agreed t h a t  h i g h  s t a t i c  heads a r e  n o t  

harmfu l  t o  j u v e n i l e  salmonids. A l though l a b o r a t o r y  i n v e s t i g a t i o n s  

have exper imented w i t h  r a p i d  p ressure  changes (Clausen 1934, Brawn 

1962, Mu i r  1959, and Tsvetkov e t  a l .  1971), t h e r e .  i s  s t i l l  

disagreement as t o  t h e  e f f e c t s  o f  ins tantaneous exposure t o  p ressure  

waves, such as those  o c c u r r i n g  across t h e  runner  and upon e n t e r i n g .  t h e  

d r a f t  tube. Salmonid f i s h e s  have open swim b ladders  and may be a b l e  

t o  r e l ease  o r  t ake  i n  a i r  t o  accommodate p ressure  changes. On t h e  

bas i s  o f  a s e r i e s  o f  l a b o r a t o r y  exper iments,  M u i r  (1959) contended 

t h a t ,  i n  F ranc i s  and p r o p e l l e r  t u r b i n e s . a t  low t o  i n te rmed ia te  heads, 

s i g n i f i c a n t  m o r t a l i t y  was n o t  l i k e l y  t o  r e s u l t  f rom t h e  exposure o f  

salmon f i n g e r l i n g s  t o  a p a r t i a l  vacuum i f  unaccompanied by c a v i t a t i o n .  



Table 4. Types o f  i n j u c y  experienced i n  t u rb ine - re la ted  f i s h  m ~ r t a ~ l  i t y  i n v e s t i g a t i o n s  
c o n d ~ c t z d  by U. 5 .  Army Corps o f  Engineers, Wal la Walla D i s t r i c t  

Occurrence o f  i n j u r y  (X) by typea 

Ncn- 
s p e c i f i c  Organ- 
i n t ~ r n a l  s p e c i f i c  Damaged No 

Con- D e c a i -  hemor- hemor- Ey? I n k r n a l  oper- Torn Mace- apparent 
I n d e s t i g a t i o n  .Abras ion t u s i c n  t a - . : ~n  rhage rhage Lacerat ion damage r u p t ~ ~ r e  culum isthmus r a t i o n  i n j u r y  

F ranc i s  runners 

Eujhman No. 2 
Hyd roe lec t r i c  l a n t  
(Cramer and O i i ghe r  1961b) 

Coho salmon 3 . 1  

Stee l  head t r o u t  1R 9 

Shasta Hyd roe lec t r i c  P l a n t  
(U.S. Army Engineer 
D i s t r i c t ,  Wal l  3 Wal l a  1963) 

Jan. '62  - 
Chinook salmon (smal l  ) 15.5 

Stee l  head t - o u t  (medim) 6.5 

Rainbow t r o g t  ( l a rge )  13.5 

140~. '62  - 
Chinook sainon :smal l)  9.0 

Steelhead i - o u t  [medium) 1 .3  

Rainbow :rout ( l a rge )  3.4 

E i g  C l i f f  H y d r o ~ , l e c t - i c  P lan t  
(Ol igher  and Lonaldson 1966; 

Head o f  28 n 0.0 

Head o f  25 n 0.7 

Head o f  22 m 2.3 

Kaplan runne- 

a ~ y p e s  o f  i n j u r i e s  a-e d e f i c e d  a; f o l l ows  (U.S. Army B r p s  o f  Engineers, Wal la Wal la D i s t r i c t  1963): 
Abras ion- - ru tb ing o r  s c n p t n g  o f f  o f  sk in .  
Contusion--braise 
Oecapitat ion--kead s e v e ~ d  from body. 
Nonspec i f ic  i n t e r n a l  hemr rhage - - i n te rna l  b-eed ing 'rom nonspec i f i c  organ. 
Organ-spec- f i c  h e n o r r h a q - - i  n:ernzl bleeding from s p e c i f i c  Jrgan. 
Lace ra t i on - - r -  pping. t e a r i c g ,  o r  c u t t i n g  s f  t i s sue .  
Eye damage--1-emorrhaged, missing, o r  otherw'se damaged eyes. 
I n t e r n a l  ruptare--body ' ' ~ ~ l p y '  as though bac l y  bea t rn  ( o c c a j i o n a l l y  observed o f  a s p e z i f i c  organ) 
Damaged o p e r c a l u m - - s e v e ~  oamage as from pressure f ~ r c e s  on a n t e r i o r  por t iob i  o f  operculum, generall:* acz~mpsnied by t o r n  g i l l  arches. 
Torn isthmus--severed o r  seve-e'y lacera ted,  gene ra i l y  acconpanied by  t o r n  g i l l  arches. 
Macerat ion--tody, o r  bo* par: severe ly  cneved up. 
No apparent i n j u r y - - & a t 1  probab ly  due t o  s tock  o r  con in ju r ]  cause. 



2.4.4 Prototype Studies w i t h  Kapl an Runners 

Experiments conducted on Kaplan prototypes are  summarized i n  

Tables 5  and 6. O f  these, t he  ones performed a t  McNary and B i g  C l i f f  

Dams are c i t e d  as key examples. Today, t he  work o f  Schoeneman e t  a l .  

(1961) i s  s t i l l  considered t o  be one o f  t he  bes t  est imates o f  f i s h  

m o r t a l i t y  r e s u l t i n g  from passage through Kaplan tu rb ines .  I n  t h e i r  

i n v e s t i g a t i o n s  o f  m o r t a l i t y  a t  these two f a c i l i t i e s ,  these researchers 

found no s i g n i f i c a n t  d i f f e rences  between f i s h  m o r t a l i t y  a t  B i g  C l i f f  

and McNary when tu rb ines  were operated a t  power loadings (75 and 80% 

wicket  gate opening) t h a t  s l i g h t l y  exceeded the  maximum e f f i c i e n c y  

loading.  When the  data were combined, m o r t a l i t y  from t u r b i n e  passage 

was est imated a t  11% w i t h  a  95% conf idence i n t e r v a l  o f  9  t o  13%. A t  

B i g  C l i f f ,  exper imentat ion w i t h  a  40% w icke t  gate opening (a  power 

l oad ing  considerably l ess  than the maximum e f f i c i e n c y  load ing)  us ing  

f i n g e r l i n g  chinook salmon y i e l d e d  an est imate o f  21% m o r t a l i t y ,  w i t h  a  

conf idence l i m i t  o f  17 t o  24%. Compared w i t h  r e s u l t s  obta ined du r ing  

t u r b i n e  opera t ion  a t  h igher  power Inad i  ngs, t.his d i f f e r e n c e  i s  

s i g n i f i c a n t .  Schoeneman e t  a1 . (1961) suggested t h a t  t he  d i f f e r e n c e  

may have a r i s e n  as a  r e s u l t  o f  increased c a v i t a t i o n ,  which u s u a l l y  

accompanies p a r t - l o a d  cond i t i ons  (Sect. 2.2). The authors po in ted  out  

t h a t  a  w icke t  gate s e t t i n g  o f  40% would be u n l i k e l y  du r ing  the  main 

p o r t i o n  o f  downstream salmon m ig ra t i on  because o f  t he  l a r g e  volume o f  

water a v a i l a b l e  f o r  generat ing. 

Work i n i t i a t e d  a t  B i g  C l i f f  i n  1957 was cont inued i n  1964 and 

1966 (Ol igher  and Donaldson 1966) and i n  1967 (U.S.  Army Corps o f  

Engineers, Wall a  Wall a  D i s t r i c t  1979), p r i m a r i l y  t o  p rov ide  

i n fo rma t ion  on Kaplan runners s i m i l a r  t o  t h a t  generated f o r  t he  

pro to type Franc is  un i t s .  This  was deemed p a r t i c u l a r l y  va luab le  i n  

view o f  t he  f a c t  t h a t  t he  low-head dams on the  Columbia and Snake 

Rivers contained, o r  were p ro jec ted  t o  conta in ,  on l y  Kaplan runners. 

Test cond i t i ons  i n  the  1964 experiments cons is ted  o f  va ry ing  w icke t  

gate openings so t h a t  power loadings would range from below the  

c a v i t a t i o n  p o i n t  t o  f u l l - l o a d  f o r  each o f  t h ree  d i f f e r e n t  hyd rau l i c  



Table C .  Summary o f  p ro tc type i nves t i ga t i ons  o f  t r r rb ine- re la te3 f i s h  mcr ta l  i t y  
conductrd a t  hyc roe lec t r i c  i n s t a i l a t i o n s  e q u i ~ p e d  w i t h  K a ~ l a n  ,runners 
where experimental mod i f i ca t ions  i n  opera t ing  cond i t ions  were ,employed. 

Hydroe lec t r ic  
i ns ta l l a t im r .  

P lant  Siama 
Clearance i n  r e l c t i o n  M o r t a l i t y  

Rated Number o f  between l o  t a i  1- Wicket 
normal Runner Min. runner runner w>ter ele- gate 
head (m) speed (--pm) Ac-ual recom'd. blades biades [on) vz.tion (m) opening % Comments 

Bonnevi l lr Clam: unspec i f ied  u;i t s  le 75 0 64 0.53 5 
Columbia River ( c s t i -  
Oregoti m.stea) 
1939- 19L-3 
(Holmes 1952, c i t e d  i n  Lwas 
1962) 

McNary Dan: un i t s  nos. 2 ar,d c 24 
Columbid. River 
Oregon 
1955-195 
(Sctoenwan e-. a l .  1961) 

B i g  C l i f f  Jam, one u n i t  27 
Nor th  Smt iam River  
Oregon 
1953 
(Schoen=an e t  a l .  1961) 

B ig  C l i f f  Dam, me u n i t  Experi - 
1964 anc 1966 mental 28 
(Ol'cher and Donalcsor. 196E) 

Experi-  
mei ta l  25 

Experi - 
mental 22 

11.5 Based on 
a d u l t  
r e t u rns  

Confidence 
i n t e r v a l  o f  
17 t o  24%; 
combined 
f i n g e r i i n g  
and year1 i n g  
r e s u l t s  



Table 5 (continued) 

i y d r o e l e c t r i c  
i n s t a l l r t i o n  

P o s i t i o n  '- 

P lan t  Sigma o f  runner 
Clearance i n  r e l a t i o n  M o r t a l i t y  

Rated Number o f  between t o  t a i l -  Wicket 
normal Runner M i r .  runner runner water e le -  gate 
head (m) speed (rpm) Actual reccm'd. blades blades (cm) v a t i o n  (m) opening % Comments 

J i g  C l i l f  Dam, one u n i t  Exper i -  
1967 mental 28 
(US.  Army Corps o f  Engineers 
1979) 

Experi- 
mental 27 

Experi- 
mental 25 

Experi- 
mental 23 

Experi- 
mental 22 

W a l t e r v i l l e  P lan t ,  unspec i f i ed  Experi- 
u n i t .  McKenzie River  mental 17 
Oregon 
1958 
(Oregar S-ate Game Commission 
undated a )  

l ob ique  Narrows. u n i t  no. 1 
Tobiqvg River  
New B ~ n s w i c k  
1959 
(MacEa~hern 1959) 

l ob ique  '(arrows, u n i t s  nos. 1 anc 2 
1960 
(MacEazhern 1960) 

l u s t e t  F s l l s .  u o i t s  nos. 1, 2. 6 
and 3 
Tusket River  
Nova Szotf a 
1960 
(Smith 1960) 

Tustet  F a l l s ,  u n i t s  'nos. 1. 2,  
and 3 
1961) 
(Smith 1961) 

8.7-17.1 Range i n d i -  
9.0-11.3 cates t h a t  
8.3-18.9 , t e s t  f i s h  

r e s u l t s  are 
3.6-4.0 combined 
6.4-15.0 
5.7 
10.0 

0 .61  2.5 Confidence 
i n t e r v a l  
o f  0 .6  t o  4.4 

0.77 7.5 Confidence 
i n t e r v a l  of 
4 .8  t o  10.2% 

17 Does no t  
inc lude 
delayed 
m o r t a l i t y  

16-24 Range i n -  
' d i c a t e  t h a t  

t e s t  f i s h  re-  
s u l t s  are 
combined; 
delayed 

k m o r t a l i t y  
inc luded 

225 0.92 0.70 4 Open-51; +1.5 t o  0.75 16.5-52.9 Range i n -  
closed-15 +2.1 d icates t h a t  

t e s t  f i s h  
r e s u l t s  are 
combined; 
delayed 
morta l  i t v  
included- 

va r iab le  0.75-0.80 50.3 Inc ludes 
delayed 
m o r t a l i t y  

b u r c e :  Adapted from Lucas (1962). 



Table 6. iummary c f  prototype inves t iga t ions  of tu rb iae- re la ted  f.sh m o r r a l i g  
:onductec a t  hydrce lec t r i c  i n s t a l l a t i o n s  equipped w i th  Kaplan PJnners 
'or d i f f ~ - e n t  t e s t  f i s h  species and s ize  ranges 

M o r t a l i t y  

Hydroe lec t r i c  
i n s t a l l a t i o n  

F i  ;h Age c l a s s  Average length Renge i n  
species tested of f i s h  o f  f i s h  (mm) length (mm) Y Comments 

Bonnevi l le  Dam, unspeci f ied u r i t ;  (:hi look 
Columbia River  

F inger l i ngs  Based on a d u l t  
returns 

Oregon 
1939-1548 
(Holmes 1952, c i t e d  i n  Lucas 1362) 

McNary Dam, u n i t s  nos. 2 and 4 katchery 
Columbia River  chinook 
Oregon 
1955-1556 
(Schoereman e t  a l .  1961) 

B i g  C l i f f  Dam, one u n i t  
North Santiaw River 
Oreaon 

katchery 
chioook 

F inger l i ngs  
Yearl ings 

195 i  
(Schoereman e t  a l .  196i)  

B i g  C l i f f  Dam, one u n i t  Eats hery 
1969 a rd  1965 ch i look  
(Ol ighsr  and Oonaldson 1966) 

'Range ind ica tes  t h a t  
r e s u l t s  from d i f f e r e n t  
experimental condi- 
t i ons  are combined 

B i g  C l i f f  Dam, one u n i t  Hatchery 
1967 chinook 
( U . S .  Prmy C.3rps of Engineers 1979) Hatchery 

stee 1 head 

Range ind ica tes  t h a t  
r e s u l t s  from d i f f e r e n t  
Experimental condi- 
t i o n s  are combined 

Wal t e r v i  1 l e  Plant ,  unspeci f -ed u n i t  Hatchery 
McKenzie ? i v e r  r a i ~ b o w  
Oregon 
1959 
(Oregon State Gane Commisrioi undated) 

F ingsr l i ngs  Range ind ica tes  t h a t  
r e s u l t s  from d i f f e r e n t  
experiments are 
combined 

Tobique Narrows, u n i t  no. 1 Hatchery 
Tobique Rive- A t l e n t i c  
new Brmswic:< salnon 
1953 
(MarEadrern 1959) 

Yearl ings Does not  inc lude 
delayed m o r t a l i t y  

T 0 3 i q ~ e  lhrrows,  u i i t s  nc. 3 a i d  2 Hatchery 
1960 A t l e n t i c  
(MarEadreen 19EO) salmon 

Yearl ings Includes delayed 
m o r t a l i t y  

Tu jke t  F a l l s ,  un i t ;  hos.  1, 2 and 3 Hatchery 
Tus<et R i .~er  A t l i n t i c  
Nova S a t i a  s a l m n  
1960 
[Smith 1960) Nat ive a lew i le  

Year l ings 
(pas:-smolt) 

Includes delayed 
m o r t a l i t y  

Finger1 ings Does no t  inc lude 
m o r t a l i t y  

Range indicates t h a t  
r e s u l t s  from d i f f e r e n t  
experimental condi- 
t i ons  are combined; 
delayed m o r t a l i t y  no t  
included 

Tuske-. FaJls,  u n i t s  nos. 1, 2, ard 3 Nst ive a l e w i k  
1961 
(Smith 8961) 

F inger l i ngs  Inc ludes delayed 
m o r t a l i t y  

Source: adapted from Lucas (1P6i). 



heads (22, 25, and 28 m).  The experiments conducted a t  B i g  C l i f f  i n  

-1966 and 1967 had b a s i c a l l y  t he  same type o f  experimental  design, 

except t h a t  i n  1967 t e s t s  were conducted a t  two a d d i t i o n a l  hyd rau l i c  

heads (Table 5), and both  chinook and steelhead were used as t e s t  

organisms (Table 6). 

I n  the  B i g  C l i f f  experiments, the  r e s u l t s  showed the  same general 

p a t t e r n  as i n  the  t e s t s  conducted w i t h  the  Francis  t u rb ines ;  t h a t  i s ,  

maximum s u r v i v a l  occurred i n  t he  range o f  h ighes t  opera t ing  

e f f i c i e n c y .  This  p a t t e r n  i s  i l l u s t r a t e d  i n  F igure 8, which shows the  

combined r e s u l t s  o f  the  1964 and 1966 t e s t s  conducted w i t h  a  head o f  

22 m. I n  these r e s u l t s ,  m o r t a l i t y  as low as 5% was observed a t  the  

g rea tes t  opera t ing  e f f i c i ency  (O l igher  and Donaldson 1966). 

Results o f  the  B i g  C l i f f  experiments were used as the  bas is  f o r  

designing a  Kaplan u n i t  f o r  Foster  Dam on. t he  South Santiam River .  

This  u n i t  was mod i f ied  t o  p rov ide  f o r  the  maximum s u r v i v a l  o f  f i s h .  

However, r e s u l t s  o f  experiments conducted the re  i n  1969 i n d i c a t e d  t h a t  

f i s h  m o r t a l i t y  d i d  no t  d i f f e r  s i g n i f i c a n t l y  from t h a t  o f  an unmodif ied 

u n i t  opera t ing  a t  maximum e f f i c i ency  (Raymond Ol igher ,  U.S. Army Corps 

o f  Engineers, Wal l a  Wal l a  D i s t r i c t ,  personal communication). 

According t o  B e l l  (1979), d e t a i l s  o f  the.  Foster  Dam experiments and 

more i n fo rma t ion  on the  1967 B i g  C l i f f  s tudy w i l l  be inc luded i n  

B e l l ' s  rev i sed  compendium on f i s h  passage through tu rb ines .  This  

document i s  as o f  y e t  unpubl ished (Ed Mains, U.S. A r m y  Corps o f  

Engineers, North P a c i f i c  D i v i s i o n ,  personal communication). 

One species, t . h ~  chinook. salmon, was used almost e x c l u s i v e l y  

throughout the  B i g  C l i f f  i nves t i ga t i ons .  Since d i f f e r e n t  s i z e  classes 

were n o t  tes ted ,  no conclusions about size-dependent m o r t a l i t y  can be 

drawn from the  Kaplan pro to type studies.  However, observat ions on the  

types of i n j u r i e s  i ncu r red  by t e s t  f i ' s h  were made; these a re . i nc luded  

w i t h  t h e  Francis  r e s u l t s  i n  Table 4. A h igher  p r o p o r t i o n  o f  

pressure-type i n j u r i e s ,  as evidenced by the  r e l a t i v e l y  h igh  

percentages o f  hemorrhages observed, were noted i n  t h e  Kaplan 

pro to type studies.  These may have r e s u l t e d  from the  product ion  o f  

cond i t i ons  l ead ing  t o  c a v i t a t i o n  du r ing  the  experimental  

mod i f i ca t i ons .  



Figure 8. Fish survival versus turbine efficiency. Source: Oligher and Donaldson 1966. 

. . . .  

. 

BIG CL:FF DAM TESTS 
. . FISH SURVIVAL YS. TURBINE EFFICIENCY . . .  

. . . . . . .  
. . . . . . . .  . . . . 

' 

SUMMARY DATA. 1964 AND 1966 
. . . . .  . . . . . .  21 METER HEAD 

. . . . . . . . . . .  . . . . 
. . .  . . . . . . . . .  . . .  . . . . 

. . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . .  
: 

SUMMARY C F  SURVIVSL VS. EFFICIENCY - BIG CLIFF DAM 1984 AND 1966 
22 METER HEAD 

. . . .  
. 

. . 



Many of t h e  i n j u r i e s  s u f f e r e d  by t he  t u rb i ne -passed  f i s h  appear 

t o  resemble those of gas bubble d isease.  Gas supe rsa tu ra t i on  o f ' w a t e r  

f l ow ing  through a  t u r b i n e  u s u a l l y  does n o t  e x i s t  (Ebel 1969), b u t  i t  

can occur .when t u r b i n e s  a r e  vented t o  reduce c a v i t a t i o n .  F i s h  k i l l s  

below t h e  Kaplan u n i t  a t  Mactaquac Dam on t h e  S a i n t  John R i v e r  i n  New 

Brunswick were a t t r i b u t e d  t o  t u r b i n e  v e n t i n g  d u r i n g  low gene ra t i ng  

l e v e l s  (MacDonald and H y a t t  1973). 

Blade/blade and gate/b lade c l e a r  openings were n o t  s t u d i e d  i n  t h e  

Kaplan p r o t o t y p e  exper iments as t hey  were i n  t h e  F ranc i s  s tud ies .  The 

a n a l y s i s  by Long and Marquet te  (1967) ; however, has p rov ided  some 

insSght  i n t o  p o t e n t i a l  l e t h a l  areas i n  Kaplan runners.  The p a t t e r n  o f  

wa te r  f l o w  i n  t u r b i n e  i n t a k e s  and s p i r a l  cases can be cons idered w e l l  

ordered. Stud ies o f  h y d r a u l i c  models i n d i c a t e  t h a t  f l ows  near t h e  

i n t a k e  c e i l i n g s  move th rough t he  tops  o f  t h e  openings between w i c k e t  

gates and t h a t  f l o w i n g  wate r  near t h e  i n t a k e  f l o o r s  passes th rough t h e  

bottom o f  these openings. Because t h e  runner  i s  p o s i t i o n e d  o n l y  a  

smal l  d i s t ance  downstream f rom t h e  w i c k e t  gates,  t h e  c e i l i n g  and f l o o r  

f l ows  p robab ly  ma in ta i n  t h e  same r e l a t i o n s h i p  as t hey  pass t h e  b lades 

(Long and Marquet te  1967). S tud ies  conducted by Na t i ona l  Marine 

F i s h e r i e s  Serv ice  personnel a t  t h e  Dal l e s  and McNary Dams found t h a t  

f i n g e r l i n g  salmon.ids concen t ra ted  near t h e  c e i l i n g s  o f  t u r b i n e  i n t a k e s  

(Long 1968a). Th i s  behav io ra l  c h a r a c t e r i s t i c  p robab l y  causes most o f  

t h e  m i g r a n t  f i s h  t o  pass t h e  t u r b i n e  runner  a t  o r  near t h e  hub i n  

v e r t i c a l - s h a f t  Kaplan u n i t s .  The c l e a r  openings between (1) t h e  gu ide 

vanes and t h e  w i c k e t  gates,  (2) t h e  w i c k e t  gates and t h e  runner  

b lades,  and (3) t h e  b lades and t h e  hub may be i n s u f f i c i e n t  f o r  

success fu l  f i s h  passage (Long and Marquet te  1967). P o t e n t i a l l y  unsafe 

areas a r e  shown i n  F igu re  9. 

The i n v e s t i g a t i o n s  undertaken a t  t h e  D a l l e s  Dam n o t  o n l y  

e s t a b l i s h e d  Lhe v e r t i c a l  d i s t r i b u t i o n  o f  j u v e n i l e  f i s h  i n  t h e  t u r b i n e  

i n takes ,  b u t  a1 so recorded t h e i r  d i e 1  movement (Long 1968a). 

Day-n ight  comparisons showed t h a t  most ch inook  salmon, s tee lhead  

t r o u t ,  and ammocoetes o f  t h e  P a c i f i c  lamprey were caught  a t  n i g h t .  

T h i s  f i n d i n g  suggested a  f o r t u n a t e  r e l a t i o n s h i p  between t h e  t i m i n g  o f  
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Figure 9. Top view of Kaplan runner showing clear openings between the hub and run- 
ner blade, the wicket gates and the blades, and the guide vanes and the 
wicket gates. Source: Long and Marquette 1967. 



f i s h  passage and t h e  normal schedule o f  t u r b i n e  load ing .  N i g h t  

movement th rough  t h e  t u r b i n e s  f a v o r  h i ghe r  s u r v i v a l  because reduced 

power demands may inc rease  t h e  f l e x i b i l i t y  f o r  a d j u s t i n g  t u r b i n e  loads 

t o  maximize f i s h  s u r v i v a l  ( t y p i c a l l y  near 70% o f  t h e  maximum r a t e d  

c a p a c i t y  ) . 
As i n  t h e  example c i t e d  above, s t u d i e s  conducted by t h e  Na t i ona l  

Marine F i s h e r i e s  Serv ice  on t h e  behav io r  o f  downstream m i g r a t i n g  

j u v e n i l e  salmonids have proven h e l p f u l  i n  .understanding f i s h  passage 

th rough Kaplan t u r b i n e s .  . F i e l d  research  a t  I c e  Harbor Dam on t h e  

Snake R i v e r  revea led  t h e  importance o f  p r e d a t i o n  t o  es t imates  o f  

t u r b i  ne-re1 a ted  f i s h  mor ta l  i ty  (Long 1968b). O f  t h e  t o t a l  es t imated  

32% l o s s  o f  t e s t  f i s h ,  o n l y  losses  o f  10  t o  19% w e r e  a t t r i b u t a b l e  t o  

t h e  e f f e c t s  o f  t u r b i n e  passage. The remain ing  13 t o  22% losses  

r e s u l t e d  from p r e d a t i o n  on y e a r l i n g  coho salmon by seagu l l s  and 

squawfish i n  " b a c k r o l l "  areas o f  t h e  t a i l r a c e .  

To p r o v i d e  a  bas i s  f o r  compensation o f  f i s h  losses  and t o  develop 

f i s h  p r o t e c t i o n  s t r a t e g i e s ,  r e c e n t  m o r t a l i t y  i n v e s t i g a t i o n s  have been 

conducted a t  two o f  t h e  p r i v a t e  u t i l i t y  dams on t h e  mid-Columbia 

R iver .  The s tudy done a t  Bu lb  U n i t  No. 5  o f  Rock I s l a n d  Dam i n  1979 

es t imated  t h e  m o r t a l i t y  o f  y e a r l i n g  coho salmon smol ts  t o  be 7.0% w i t h  

a  95% conf idence i n t e r v a l  o f  4.4 t o  9.6% (Olson and Kaczynski  1980). 

S tee l  head smol t m o r t a l i t y  was 3.1% w i t h  a  95% con f idence  i n t e r v a l  'of 

+9.0%. The e i g h t  b u l b  u n i t s  i n s t a l l e d  a t  Rock I s l a n d  Dam, equipped 

w i t h  h o r i z o n t a l - s h a f t  Kaplan runners,  a re  p r o j e c t e d  t o  be more 

e f f i c i e n t  than  t h e  more convent iona l ,  v e r t i c a l - s h a f t -  Kaplan u n i t s  

under t h e  low h y d r a u l i c  head c o n d i t i o n s  p r e v a i l i n g  a t  t h i s  dam. 

However, da ta  a r e  t o o  p r e l i m i n a r y  t o  e s t a b l i s h  whether t h e  s u r v i v a l  

r a t e  o f  f i s h  pass ing  th rough b u l b  u n i t s  i s  h i g h e r  t han  t h e  s u r v i v a l  

r a t e  o f  f i s h  t h a t  pass th rough o t h e r  Kaplan t u r b i n e s .  

Turb ine  passage was assessed a t  t h e  convent iona l  Kaplan ' un i t s  

:nstal led a t  Wel ls  Dam d u r i n g  t h e  s p r i n g  o f  1980 (Bern ie  Leman, Chelan 

County Pub1 i c  U t i  1  i t i e s  D i s t r i c t ,  personal  communication). ~ e s u l  t s  of 

these s t u d i e s  a re  n o t  c u r r e n t l y  a v a i l a b l e .  



2.4.5 P ro to t ype  S tud ies  w i t h  Other Runners 

Most o f  t h e . p r o t o t y p e  s tud ies  (and a l l  o f  t h e  model s t ud ies )  were 

per formed on F r a n c i s  o r  Kaplan runners.  One s e r i e s  o f  t u r b i n e - r e l a t e d  

f i s h  m o r t a l i t y  i n v e s t i g a t i o n s  was conducted w i t h  a  t ype  o f  impulse 

runner ,  t h e  P e l t o n  wheel (Oregon S ta te  Game Commission 1961), which * 

was i n s t a l  l e d  a t  U n i t s  7 and 8 o f  t h e  W i  1  l ame t te  Fa1 1  s  P l a n t  r un  by 

P o r t l a n d  General E l e c t r i c  Company. M o r t a l i t y  o f  ch inook j u v e n i l e s  

ranged f rom 10.5 t o  11.8%, and t h a t  o f  s tee lhead  ranged f rom 7.7 t o  

9.9%. The l i m i t e d  i n f o r m a t i o n  does n o t  p e r m i t  comparison w i t h  

r e a c t i o n  t u r b i n e  s t u d i e s .  

2; 5 Arralys-is u f  SLud i es  C.i.ted 

The i n v e s t i g a t i o n s  rev iewed i n  t h i s  document used a  wide v a r i e t y  

o f  methods and were conducted over  a  broad range o f  t u r b i n e  o p e r a t i n g  

. cond i t i ons .  The d i v e r s i t y  o f  methods and exper imenta l  c o n d i t i o n s  as 

w e l l  as f a c t o r s  such as h e a l t h  o f  f i s h ,  r e s i d u a l i s m  (a c o n d i t i o n  t h a t  

may occur  because o f  de lays  i n  m i g r a t i o n ) ,  p reda t i on ,  and hyd rn lng i c  

f l o w  regimes may account  f o r  tlie va ry i ng  es t imates  o f  m o r t a l i t y .  The 

compendium o f  B e l l  e t  a l .  (1967) presented analyses o f  d i f f e r e n t  

v a r i a b l e s  i n  f i s h  m o r t a l i t y  i n v e s t i g a t i o n s  conduct.ed th rough 1966 and 

rev iewed mathematical  models fo rmu la ted  f o r  t u r b i n e  passage. , I1nt.i 1 

t h e  r e v i s e d  compendium i s  a v a i l a h l ~ ,  t.hp 1967 doc1.1ment w i l l  con t i nue  ' . 

t o  be t h e  most comprehensive rev iew o f  m o r t a l i t y  r e s u l t i n g  f rom 

t u r b i n e  passage. I t s  analyses f o r  c e r t a i n  areas of  concern a re  

i n c l u d e d  i n  t h e  f o l l o w i n g  sec t ions .  



2.5 .1  Recovery Methods and Computation o f  M o r t a l i t y  

Recovery methods a r e  o f  paramount importance i n  t h e  computat ion 

o f  m o r t a l i t y .  T h e i r  e f f i c i e n c y  depends on t h e  recovery  gear used and 

t h e  l e v e l  o f  e f f o r t  employed i n  t h e  recovery  ope ra t i ons  (Olson and 

Kaczynski 1980). Be1 1  e t  a l .  (1967) compared t e s t  r e s u l t s  i n  which 

complete recovery  methods (ne ts  f i x e d  t o  d r a f t  tube  e x i t s )  were used 

w i t h  r e s u l t s  ob ta ined  by downstream recovery  methods ( p a r t i a l  recovery  

methods) o r  by r e t u r n s  o f  marked a d u l t  f i s h .  Th i s  comparison 

i n d i c a t e d  t h a t  immediate m o r t a l i t i e s ,  p l u s  3- t o  5-d h o l d i n g  

m o r t a l i t i e s ,  should g i v e  an accura te  es t ima te  o f  t o t a l  m o r t a l i t y  

r e s u l t i n g  f rom t u r b i n e  passage. 

The s u p e r i o r i t y  o f  complete recovery  methods over  p a r t i a l  ones, 

o r  v i c e  versa, depends on s i t e - s p e c i f i c  c o n d i t i o n s  and t h e  sources of  

i n d i r e c t  m o r t a l i t y .  Wi th  complete recap tu re  techniques,  n e a r l y  t o t a l  

p o r t i o n s  o f  t h e  re leased  f i s h  may b e '  immediate ly  recovered, and 

sma l l e r  sample s i z e s  can be used t o  o b t a i n  t h e  same degree of  

s t a t i s t i c a l  accuracy. I n  a d d i t i o n ,  t he  ne t s  t h e o r e t i c a l l y  p r o t e c t  

t e s t  and c o n t r o l  f i s h  f rom p reda t i on .  However, i f  i n d i r e c t  m o r t a l i t y  

f rom c o l l e c t i o n  i n  t h e  complete recovery  ne t s  i s  s i g n i f i c a n t ,  then  

downstream recap tu re  methods may be more e f f i c i e n t .  Downstream 

recovery  methods may e l i m i n a t e  t h e  s t r e s s  o f  f u l l  recovery  ne ts ,  b u t  

may recap tu re  fewer f i s h  because o f  sources o f  m o r t a l i t y  (e.g. ,  

p reda t i on )  n o t  d i r e c t l y  a t t r i b u t a b l e  t o  t u r b i n e  passage. 

2 .5 .2  Study Type 

Based on reg ress ion  a n a l y s i s  o f  model t u r b i n e  . da ta ,  Be1 1  e t  a l .  

(1967) concluded t h a t  p r e d i c t i o n  o f  p r o t o t y p e  performance f rom t h e  

model s t ud ies  d i d  n o t  appear f e a s i b l e  because o f  t h e  l a r g e  s i z e  o f  t h e  

f i s h  r e l a t i v e  t o  t h a t  o f  model runners  (Sect. 2.3.3). 



2.5.3 Francis  and Kaplan Runners 

Mu1 t i p l e  regress ion  analyses i n d i c a t e d  t.hat t he  causes f o r  f i s h  

losses i n  each type o f  runner were no t  the  same (Be1 1  e t  a l .  1967). 

Combined data from the  Franc is  p ro to type t e s t s  conducted by the  U.S.  

A r m y  Corps o f  Engineers, Wal la Wal la D i s t r i c t ,  i n d i c a t e d  t h a t  the  

percent  w icke t  gate opening i s  t he  most impor tan t  va r i ab le .  Sigma and 

f i s h  l e n g t h  were nex t  i n  importance. Important  va r i ab les  f o r  Kaplan 

t u r b i n e s  proved t o  be t h e  square r o o t  o f  the  head and sigma. These 

r e s u l t s  may be somewhat complicated by the  f a c t  t h a t  several f a c t o r s  

were be ing  v a r i e d  s imu i  taneously du r ing  the  f i e l d  t e s t s .  Despite 

these compl ica t ions ,  these f i n d i n g s  l o g i c a l l y  fo l lowed from the  

engineer ing design o f  t he  tu rb ines .  The e f f i c i e n c y  o f  Kaplan tu rb ines  

depends on b lade angle adjustments under c e r t a i n  heads and power 

loadings.  As discussed e a r l  i e r ,  t h e  magnitude o f  mechanical i n j u r i e s  

appeared t o  be a  f u n c t i o n  o f  clearance between w icke t  gates and runner 

b lades i n  the  Franc is  prototypes.  This  r e l a t i o n s h i p  was n o t  observed 

i n  t h e  Kaplan p ro to t ype  s tud ies .  I n  bo th  s tud ies ,  however, maximum' 

f i s h  s u r v i v a l  occurred a t  the  p o i n t  o f  h ighes t  t o t a l  opera t ing  

e f f i c i e n c y .  B e l l  (1980, c i t e d  i n  Olson and Kaczynski 1980) contends 

t h a t  f i s h  passage e f f i c i e n c y ,  a  d i r e c t  f unc t i on  o f  f i s h  s u r v i v a l ,  may 

vary from 1 t o  3% more than t h e  t u r b i n e  ope ra t i ng  e f f i c i e n c y .  

Morta1it .y est imates o f  5 t.n 11% appear i n e v i t a b l e ,  cvcn w i t h i n  the  

r e g i o n  o f  h ighes t  ope ra t i ng  e f f i c i e n c y .  

2.5.4 F i s h  Species and S ize  

F i s h  m o r t a l i t y  as a  r e s u l t  o f  passage through tu rb ines  has been 

s tud ied  p r i m a r i l y  w i t h  j u v e n i l e  salmonids. Larger-s ized f i s h  have 

i n c i d e n t a l l y  been recovered i n  t h e  sampling gear (U.S. Army Corps o f  

Engineers, Wal la Wal la D i s t r i c t  1979), b u t  they  have n o t  been 

sys temat icd l  l y  in t roduced l 'nto penstocks, recovered i n  t a i  1  races, and 

examined t o  determine the  cause and e x t e n t  o f  m o r t a l i t y .  Al though 



t h e r e  a r e  anadromous spec ies such as t h e  A t l a n t i c  salmon whose a d u l t s  

do n o t  d i e  a f t e r  spawning b u t  r e t u r n  t o  t h e  sea, i t  i ,s  assumed t h a t  

most l a r g e r  f i s h  would be p reven ted  f rom e n t e r i n g  t h e  t u r b i n e  i n t a k e s  

by  screens o r  o t h e r  s t r u c t u r e s .  No d i f f e r e n c e s  i n  m o r t a l i t y  among 

spec ies p e r  se were no ted  i n  t h e  exper iments  o f  t h e  U.S.  Army Corps o f  

Engineers,  Wal l a  Wal l a  D i s t r i c t ;  however, f i s h  s i z e  was an i m p o r t a n t  

v a r i a b l e  i n  t h e  exper iments  w i t h  F ranc i s  p ro to t ypes .  Because so many 

ove r l app ing  s i z e  groups have been used i n  turb ine-passage 

i n v e s t i g a t i o n s  and many recovered  f i s h  were n o t  measured t o  d e t e c t  

s i z e - s e l e c t i v e  recovery  d i f f e r e n c e s ,  h i g h e r  c o r r e l a t i o n s  o f  s i z e  w i t h  

mo r ta l  i ty  may be masked. 



3. PUMPED-STORAGE (REVERSIBLE) HYDROELECTRIC rACILITIES 

Although many areas o f  research on f i s h  m o r t a l i t y  r e s u l t i n g  from 

t u r b i n e  passage a t  convent ional  h y d r o e l e c t r i c  f a c i l i t i e s  have been 

addressed, l i m i t e d  research on f i s h  m o r t a l i t y  r e s u l t i n g  from t u r b i n e  

passage has been conducted a t  pumped-storage h y d r o e l e c t r i c  f a c i l i t i e s .  

The Ludi ngton Pumped Storage Power P lan t ,  ~ u d i  ngton, Michigan, i s  no t  

o n l y  t he  l a r g e s t  pumped-storage p r o j e c t  i n  ex is tence (maximum 

genera t ing  capac i ty ,  1872 MW), b u t  a l s o  the  sub jec t  o f  the  most. 

ex t e n s l v e l y  documented t u r b i n e  mort.al i t.y st.l.~dies. As such i t  w i  11 be 

used as a model f a c i l i t y  for- the purpose o f  desc r ib ing  a 

pumped-s burage opera t ion .  ' 

3 . 1  Background 

A pumped-storage f a c i l i t y  operates by pumping water t o  an upper 

r e s e r v o i r  du r ing  o f f -peak  hours and s t o r i n g  . i t  t he re  f o r  generat ing 

e l e c t r i c i t y  du r ing  per iods  o f  peak power demand. E l e c t r i c i t y  i s  

produced as the re leased water f lows through r e v e r s i b l e  pump-turbines. 

Pumping normal ly  occurs a t  n igh t  and over w~ekrlnds, w h i l e  generating 

0ccur.s du r ing  t h e  weekday mornings and evenings (Serchuk 1976). This  

" s to red  energy" approach t o  the energy problem r ~ t q ~ l i r ~ q  A ~ Q C I ~ C B  o f  

excess e l e c t r i c i t y  because 10.8 x l o 6  J (3 kwh) o f  pumping eriergy i s  

needed f o r  every 72 x l o 6  3 (2 kwh) o f  generated energy. Although an 

o v e r a l l  l o s s  o f  energy occurs, t h e  prncess i s  economical ly f e a c i b l e  

because energy used f o r  t he  pumping phase i s  nonpeak energy and thus 

i s  a v a i l a b l e  a t  reduced cos t  (Clugston 1.980). 

Lake Michigan serves as the  lower r e s e r v o i r  o f  t he  Ludington 

f a c i l i t y .  The upper bas in  i s  a man-made r e s e r v o i r  w i t h  a t o t a l  

surface area o f  340.7 hectares (ha) and a t o t a l  capac i t y  o f  102.2 

b i l l i o n  l i t e r s .  Maximum water depths range from 34 m a t  t he  no r th  end 



t o  30 m a t  the  south end. Dur ing p l a n t  operat ion,  the  v e r t i c a l  

f l u c t u a t i o n  can be as g rea t  as 20 m (Serchuk 1976). Water i s  pumped 

from the  lake  t o  the  r e s e r v o i r  (113 m above the  lake)  by means o f  s i x  

Hi t a c h i  r e v e r s i b l e  pump-turbi ne, motor-generator . u n i t s .  These 

pump-turbines are v e r t i c a l ,  s i ng le -sha f t ,  s p i r a l ,  Francis- type 

tu rb ines ,  each having a .  diameter o f  8.4 m and a  weight of 291,000 kg 

(Gerkowski and Del l a s  1978). Dur ing the  pumping phase of opera t ion ,  

the  generators f u n c t i o n  as motors, d r i v i n g  the  hyd rau l i c  t u rb ines  t h a t  

a c t  as pumps. As the  generat ing c y c l e  i s  i n i t i a t e d ,  re leas ing  water 

from the'  upper r e s e r v o i r  through the  tu rb ines ,  t he  t u r b i n e  d i r e c t i o n  

reverses, sp inn ing  the  generators, which i n t u r n  produce e l  e & r i c i t y .  

The pumping v e l o c i t y  per  pump-turbine i s  314 m3/s f o r  113.6 m 

e f f e c t i v e  head (Gerkowski and De l las  1978). When a l l  t u rb ines  are  

operable, water i s  t r a n s f e r r e d  a t  a  maximum f l o w  o f  2151 m3/s and 1886 

m3/s du r ing  the  generat ing and pumping phases, r e s p e c t i v e l y  (Serchuk 

1976). 

I n  general,  pumped-storage t u r b i n e  designs d i f f e r  on l y  s l i g h t l y  

from those o f  t he  Francis  wheel o f  convent ional h y d r o e l e c t r i c  p r o j e c t s  

g rea te r  than 30 m i n  height .  The wheels a re  submerged deeply enough 

i n  the  t a i l w a t e r  o f  pumped-storage p r o j e c t s  t o  avo id  c a v i t a t i o n  t h a t  

causes damage t o  the r e v e r s i b l e  pump-turbines, negat ive pressure 

areas, o r  pockets around runners and s p i r a l  cases (Hauck 'and Edson 

1976). 

P l a n t  opera t ion  e f f e c t s  on anadromous f i s h  may d i f f e r  accord ing 

t o  whether t he  pumping o r  generat ing c y c l e  i s  being used. When 

opera t ing  i n  t he  generat ing phase, t he  discharge ve' loci  t y  may a t t r a c t  

upstream migrants t h a t  cou ld  be b locked a t  t he  powerhouse. Dur ing the  

pumping mode, reverse o r  c i r c u l a r  cu r ren ts  may be c rea ted which cou ld  

i n h i b i t  the  normal migra tory  pa t te rns .  These cu r ren ts  may i n f l  uence 

the  pa th  fo l lowed by downstream migrants searching f o r  an o u t l e t .  By 

being a t t r a c t e d  t o  the  cur ren ts ,  they cou ld  be drawn through t h e  pumps 

t o  the  upper rese rvo i r .  I n  add i t i on ,  as the  upper r e s e r v o i r  begins t o  

f i l l ,  res iden t  f i s h  cou ld  be  drawn through t h e  pumps and i n t o  the  

upper l e v e l .  The impact o f  a  pumped-storage f a c i l i t y  on migra tory  



f i s h  may be n ~ i n i ~ n . i ~ e d  by a d j u s t i n g  the  opera t ion  schedule t o  

accommodate t h e  h a b i t s  o f  the  species involved.  This  can be ac- 

complished by mod i f y ing  t h e  i n take  s t r u c t u r e  t o  reduce c u r r e n t  f l o w  as 

we1 1 as schedul ing p l a n t  opera t ion  du r ing  t imes o f  t he  day o r  season 

when movement i s  minimal (Hauck and Edson 1976). 

I n  a 1973 survey o f  s t a t e  f i s h e r y  agencies by Schoumacher (1976), 

severa l  areas o f  concern were i d e n t i f i e d  as a r e s u l t  o f  t h e i r  

involvement w i t h  pumped-storage f a c i l i t i e s .  Topics most o f ten  c i t e d  

as p o t e n t i a l  areas f o r  research i nc lude  entrainment o f  f i s h  i n  the  

pump-turbines, water l e v e l  f l u c t u a t i o n s  i n  t he  rese rvo i r s ,  adverse 

changes i n  t he  q u a l i t y  o r  q u a n t i t y  crf dnwn<t.r~am r ~ l e a s e s  as thoy 

a f f e c t  t h e  m i g r a t i o n  o f  anadrclmol~s f i s h ,  and e f f e c t s  o f  operat ions on 

s t r a t i f i c a t i o n  i n  t he  r e s e r v o i r s  (Schoumacher 1976). 

Water withdrawn by pumped-storage s t a t i o n s  e n t r a i n s  organisms i n  

bo th  upper and lower pools.  Dur ing entrainment,  f i s h  m o r t a l i t y  i s  

a f f e c t e d  by abrasion and c o l l i s i o n .  pressure and v e l o c i t y  changes, and 

a c c e l e r a t i o n  e f f e c t s  (Mi rac le  and Gardner 1980). Abrasion and 

c o l l i s i o n  damages occur when organisms come i n t o  contac t  w i t h  f i x e d  o r  

moving ob jec ts ,  such as i n t a k e  p ipes,  t u r b i n e  blades, and suspended 

s o l i d s .  Pressure changes t h a t  a re  most l i k e l y  t o  occur a t  

pumped-storage p l a n t s  a re  1 ow pressures w i t h i n  t ,urhi  nes , p a r t i a l  

vacuums caused by c a v i t a t i o n ,  and h i g h  pressures caused by e l e v a t i o n  

d i  f ferences between upper and 1 ower rese rvo i r s .  Shearing fo rces  are  

encountered i n  areas o f  extreme turbulence o r  near t he  i nne r  

boundaries o f  i n t a k e  p ipes  and tu rb ines .  A1 though shear ing i n j u r i e s  

were n o t  s e r i o u s l y  considered i n  e a r l y  s tud ies ,  B e l l  (1973) describes 

i t  as a major cause o f  f i s h  m o r t a l i t y  du r ing  t u r b i n e  passage. 

Acce le ra t i on  e t t e c t s  occur w i t h i n  t h e  i n take  p ipes and discharge area, 

where t u r b u l e n t  eddies a re  c rea ted as a r e s u l t  o f  changing water* 

d i r e c t i o n  and v e l o c i t y .  M o r t a l i t y  f a c t o r s  a re  c l a s s i f i e d  i n t o  f o u r  

ca tegor ies  by B e l l  (1973): (1) mechanical damage (contac t  w i t h  f i x e d  

o r  moving equipment); (2) pressure-induced damage (exposure t o  

low-pressure cond i t i ons  w i t h i n  t h e  tu rb ine )  ; (3) shear ing a c t i o n  

(caused by passage through areas o f  extreme tu rbu lence o r  boundary 



c.ondi t i o n s )  ; and (4) c a v i t a t i o n  (exposure t o  regimes o f  p a r t i a l  

vacuum). 

3 .2  Methods o f  E s t i m a t i n g  F i s h  M o r t a l i t y  

As mon i t o r i ng  at tempts were undertaken w i t h i n  t h e  pumped-storage 

f a c i l i t i e s ,  sampl ing procedures were h indered  by c h a r a c t e r i s t i c s  

unique t o  pumped s torage.  The major  sampl ing impediments a r e  d a i l y  

water  l e v e l  f l u c t u a t i o n s  and h i g h  wate r  v e l o c i t i e s  a t  i n t a k e  and 

d ischarge  areas. I n  a d d i t i o n ,  each f a c i l i t y  poses i t s  own c o n s t r a i n t s  

r e s u l t i n g  f rom i t s  phys i ca l  des ign and o p e r a t i o n  schedule (Mathur and 

Heisey, i n  press) .  An e x c e l l e n t  summary o f  b i o m o n i t o r i n g  methods i n  

use a t  t h e  va r i ous  pumped-s.torage p r o j e c t s  (Table 7) has been 

t a b u l a t e d  by Mathur and Heisy ( i n  p ress) .  

Du r i ng  1974 and 1975, t h e  f i r s t  i n t e n s i v e  f i e l d  assessment o f  

f i s h  t u r b i n e  m o r t a l i t y  a t  a  pumped-storage f a c i l i t y  was conducted a t  

t h e  Ludington p l a n t .  I n  e a r l i e r  Ludington s t u d i e s ,  emphasis was 

p laced  on develop ing recovery  methods t h a t  would c o n t r i b u t e  t o  a  

r e l i a b l e  es t imate  o f  m o r t a l i t y  r a t e  (Tack and L i s t o n  1973). The 

method used f o r  recovery  was t h e  process developed by t h e  Mon tpe l i e r ,  

Vermont, Bureau o f  Spor t  F i s h e r i e s  and W i l d l i f e ,  as r e p o r t e d  by 

Johnson (1970). Styrofoam eggs, used as f l o t a t i o n  dev ices,  were 

a t tached  t o  . t h e  f i s h  behind t h e  do rsa l  f i n  j u s t  b e f o r e  t h e  f i s h  was 

re l eased  i n t o  t h e  t u r b i n e  i n l e t  system. Serchuk m o d i f i e d  t h i s  

procedure i n  h i s  1974 and 1975 experiments; p r e f e r r i n g  jaw attachment 

o f  s tyrofoam tags .  F i s h  i n t r o d u c t i o n  was accomplished w i t h  a  weighted 

paper sack i n  f r o n t  o f  t h e  d r a f t  tube  opening. The sack, 

c o n t a i n i n g  a  smal l  sandbag and a  g a l l o n  o f  water ,  was lowered i n t o  t h e  

water ;  when i t  was sa tu ra ted ,  i t  d i s i n t e g r a t e d ,  r e l e a s i n g  t h e  enc losed 

f i s h  i n t o  t h e  d r a f t  tube  (Serchuk 1976). Serchuk 's  f i n a l i z e d  procedure 

i nc l uded  (1) t h e  use o f  . commerc ia l l y  p rocured  ra inbow t r o u t  as t e s t  

specimens; (2) a n e s t h e t i z a t i o n  o f  f i s h ;  (3) t agg ing  w i t h  s tyrofoam 



Table 7. B iomor i t o r i ng  methods used t o  assess e f f e c t s  o f  var ious 
pumpec-storage p r o j e c t s  on f i s h  populat ions 

P r o j e c t  
E leva t i on  

Reservoi r f l u c t u a t i o n s  Methods 

M t .  E l b e r t ,  CO 

Ludington, HI 

Bear Swamp, MA 

Upper- Upper Reservoi r 
(under cor ts t ruct ion)  ? 

LowerTwin  Lakes ? 

Upper- Ludi 7gton1 
Reser ~ o i  r 

Lower-Lake Michigan 

G i l l  nets, c r e e l  census, 
scuba observat ion, under- 
water photography, 
s t r a i n i n g  nets 

Up t o  20 mid F i  sh t a g g i  ng , f 1 oat-  tagged 
f i s h ,  v i sua l  surveys f o r  
f i s h  m o r t a l i t i e s  ( t r a p  
net ,  seine, acoust ica l  
methods, rotenone used 
o n l y  du r ing  f i l l i n g ) ,  
experimental g i l l  nets, 
t r a w l ,  sonic  t r a c k i n g  

None 

Upper-Upper Reservoir  13 m/d 
(c losed t o  the  p u b l i c )  

Lower- Lower Reservoi r 12 m/d 
(c losed t o  the  p u b l i c )  

Visual  surveys f o r  f i s h  
m o r t a l i t i e s ,  experimental 
g i l l  nets, seine, scuba 
observat ions, t r a w l ,  
t r a p  n e t  

S i l l  net ,  beach seines, 
scoust ic  methods, boat  
shocker, g i l l  net ,  r o t e -  
none, c ree l  census on ly  
i n  r i v e r  below lower 
r e s e r v o i r  

Boat shocker, g i l l  nets 



Table 7 (continued) 

P r o j e c t  
E leva t i on  

Reservoir  f l u c t u a t i o n s  Methods 

Blenheim-Gilboa, NY Upper-Upper Blenheim- 
G i  1  boa Reservoir  

Lower-Lower Blenheim- 
Gi lboa Reservoir  

N o r t h f i e l d  Mountain, MA Upper-Northf ie ld 
Mountain Reservoir  
(c losed t o  the  p u b l i c )  

Lower-Turners Pool 

Smith Mountain, VA Upper-Smi t h  Mountain 
Lake 

Lower- Leesvi 1 1  e  Lake 

Experimental g i l l  nets,  
t r a p  net ,  b lock  net ,  
e lect roshocker ,  0.5-m 
towed p lank ton  net ,  push 
nets ( l a r v a l  f i s h ) ,  
v i sua l  surveys f o r  f i s h  
morta l  i t i e s  

G i  11 net ,  e lect roshocker ,  
v i sua l  surveys f o r  f i s h  
m o r t a l i t i e s ,  f l oa t - t agged  
f i s h  

Creel census, e l e c t r o -  
shocker, f i s h  tagging,  
te lemet ry  (sonic and 
r a d i o  t rack ing ) ,  v i s u a l  
surveys f o r  f i s h  morta- 
l i t i e s  

G i l l  net ,  cover .rotenone, 
c ree l  census 

Plankton nets,  e l  ec t ro - -  
shocker, cove rotenone, 
a r t i f i c i a l  spawning sub- 
s t r a t e ,  scuba observa- 
t i o n s ,  v i s u a l  observa- 
t i o n s  f o r  f i s h  nets,  
c ree l  census 



Table 7 (continued) 

P r o j e c t  
E leva t i on  

Reservoir  f 1 u c t u a t i  ons Methods 

Jocassee, SC: 

Mud* Run, PA 

Upper-Jocassee 
Reservoi r  

2 m/week Frame t r a w l  ( i ch thyo-  
p lank ton  sampling), cove 
rotenone, c ree l  census, 
g i  11 net ,  1 - m  p lank ton  
net ,  b io te lemet ry  

Lower-Keowee Res,ervoi r 1 m/week Frame t r a w l  ( ichthyo-  
p lank ton  sampling), 1 - m  
p lank ton  net,  g i l l  nets,  
e l  ectroshocker, cove 
rotenone 

Lower-Conowingo Pond 1 m/d Trap net ,  $- and 1-m 
p lank ton  nets, e l e c t r o -  
shocker, c r e e l  census, 
v i s u a l  observat ions f o r  
f i s h  m o r t a l i t i e s ,  g i l l  
nets,  seines 

Upperfluddy Run Pond 9 m/d; Creel census, meter p lank-  
15.6 m/ree k t o n  nets, v i s u a l  obser- 

va t i ons  f o r  f i s h  nests 
and f i s h  m o r t a l i t i e s ,  
t r a p  net ,  t r a w l  , seine, 
g i l l  net ,  trammel ne t ,  
r o d  and r e e l  , f l o a t -  
tagged f i s h ,  b lock  n e t  



Table 7 (continued) 

P r o j e c t  
E leva t i on  

Reservoir  f 1  u c t u a t i  ons Methods 

Banks Lake, WA Upper-Bank Lake 

Lower-Frank1 i n  D. 
Roosevelt Reservoir  

4.6 3 up t o  F i sh  tagging, underwater 
40 m c l o s e d - c i r c u i t  t e l e v i s i o n ,  

f r y  t raps ,  scuba obser- 
vat ions,  c ree l  census, 
acoust ica l  methods, 
s t r a i n i n g  nets, g i  11 
nets, v i sua l  surveys 
and boat equipped w i t h  
underwater v iewing 
window, hydraul i c 
samplers 

. G i l l  ne t ,  acoust ic  methods, 
tow ne t  

a  Drawdowns a re  due p r i m a r i l y  t o  water withdrawal f o r  i r r i g a t i o n  purposes o r  f l o o d  c o n t r o l .  

Source: Mathur and Heisey ( i n  press). 



f l o a t ;  (4) reco rd ing  of 1engt.h measurements; (5) i n t r o d u c t i o n  o f  f i s h  

i n  weighted paper sack i n t o  area o f  t u r b i n e  in take;  (6) recapture o f  

dead and l i v e  specimens near discharge area; (7) r e t e n t i o n  o f  l i v e  

specimens i n  a  h o l d i n g  f a c i l i t y  f o r  72 h  t o  assess delayed m o r t a l i t y ;  

and (8) examinat ion o f  bo th  dead and l i v e  f i s h  f o r  t u r b i n e  damage. 

The 1975 s tud ies  a l s o  inc luded a  c o n t r o l  group f o r  determin ing 

hand1 i n g  m o r t a l i t y  (Serchuk 1976). A board passage study i n  1974 

es tab l i shed  t h e  r e l a t i o n s h i p  between o b j e c t  s i z e  and mechanical 

damage. Pine and spruce boards w i t h  at tached sandbags were subjected 

t o  t h e  same t u r b i n e  passage i n t r o d u c t i o n  and r e t r i e v a l  procedure as 

wcrc t h e  f i s h  specimens. 

The descr ibed procedure a t  Ludi r ~ y  lor1 dealt. pr i rnar i  l y  w i t h  

salmonids because o f  t h e i r  importance t o  Lake Mich igan 's  t h r i v i n g  

s p o r t  f i s h e r y .  L i s t o n  (1379) bases annual salmonid m o r t a l i t y  

est imates on data  r e t r i e v e d  from mark and recapture s tud ies ,  weekly 

r e s e r v o i r  g i  11 ne t  samples , t u r b i  ne-re1 ated mor ta l  i t y  t e s t s ,  and 

r e s e r v o i r  res idence- t ime studies.  To o b t a i n  m o r t a l i t y  data on a l l  

species e n t e r i n g  the  t u r b i n e s  as w e l l  as t o  improve t h e  accuracy o f  

m o r t a l i t y  est imates,  s ieve net  sampling was i n i t i a t e d  i n  1978. The 

s ieve  n e t  sampling technique would d i r e c t l y  and immediately t a l l y  the  

f i s h  k i  1  led d i ~ r i n g  pump-turbine passage ( L i s t o n  e t  a l ,  1980). 

Although t h i s  technique considered on ly  pumping-mode, t u r b i n e - r e l a t e d  

morta I i ty, L i s t o n  a1 so conducted generating-mode m o r t a l i t y  s tud ies  

us ing  rainbow t r o u t  by f o l l o w i n g  Serchuk's prev ious method. Present 

Ludington b iomon i to r i ng  techniques, aimed a t  p r o v i d i n g  a  more accurate 

es t imate  o f  f i s h  popu la t i on  needed f o r  m o r t a l i t y  s tud ies ,  inc lude g i  11 

n e t t i n g ,  s iev ing ,  and t raw l i ng .  The data c o l l e c t e d  by these methods 

w i l l  p rov ide  an i n s i g h t  on seasonal and s p a t i a l  abundance and 

d i s t r i b u t i o n ,  which w i  11 serve as a base f o r  comparing ~ n t . r a i n m ~ n t .  

ra tes .  l h e  Ludington p r o j e c t  was the  on l y  i n v e s t i g a t i o n  i n  which g i l l  

n e t  catches were ad jus ted  fo r  gear e f f i c i e n c y  and used t o  asce r ta in  

f i s h  l o s s  du r ing  pump-turbine passage ( L i s t o n  1979). To b e t t e r  

understand the r o l e  o f  cu r ren ts  and eddies t h a t  occur a f t e r  pumping 



and generat ing i n  a t t r a c t i n g  salmonids, hydroacoust ic sampling i s  

being used t o  assess populat ions near i n take  s t ruc tu res .  

I n  a study o f  l a r v a l  f i s h  passage a t  t he  Jocassee Pumped Storage 

S t a t i o n  i n  South Carol ina,  Pr ince  and Mengel (1980) used p lank ton  nets 

f o r  c o l l e c t i o n  be fore  and a f t e r  t u r b i n e  passage du r ing  bo th  generat ing 

and pumping cyc les.  I n  1977, d i f f i c u l t i e s  i n  c o l l e c t i o n  were 

experienced because the  nets, which werbe p laced i n  the  t a i l r a c e ,  were 

turned sideways by the  turbulence and eddies a t  t h i s  l o c a t i o n .  To 

e l im ina te  t h i s  problem when the  s tud ies  cont inued i n  1978, nets were 

suspended From boats pos i t i oned  f u r t h e r  downstream i n  . 1  ess t u r b u l e n t  

water. Here, samples were obta ined a f t e r  t he  la rvae,passed through 

the generat ing mode, b u t  be fore  they entered the  pumping phase. 

Heisy and Mathur (1980) conducted t u r b i n e  m o r t a l i t y  experiments 

a t  t he  Muddy Run Pumped Storage Pond i n  southeastern Pennsylvania by 

us ing  methods s i m i l a r  t o  those descr ibed by Johnson (1970). F ish ,  

o u t f i t t e d  w i t h  f l o t a t i o n  devices, were in t roduced i n  t h e  i n t a k e  area 

and recovered i n  t he  in take-d ischarge canal du r ing  the  pumping phase. 

Percent m o r t a l i t y  was est imated f o r  a d u l t  channel c a t f i s h ,  brown 

bul lhead,  wh i te  crappie,  carp,  and smallmouth bass. 

Extensive mon i to r ing  a c t i v i t y  t o  assess f i s h  popu la t ions  i n  a 

pumped-storage f a c i l i t y  a t  Banks Lake, Washington, was conducted by 

the  U n i v e r s i t y  o f  Washington F i she r ies  Research I n s t i t u t e  (Stober e t  

a l .  1977). D e t a i l s  o f  the  sampling apparatus a re  shown i n  F igure  10. 

F igure  11 dep ic ts  t he  proposed sampling procedure t o  be used a t  M t .  

E l b e r t  Pumped Storage P lan t  on the  lower lake  o f  Twin Lakes near 

Leadv i l l e ,  Colorado. The devised n e t t i n g  system w i l l  a l l o w  c o l l e c t i o n  

, o f  en t ra ined f i s h  du r ing  bo th  pumping and generat ing phases. LaBounty 

and Ro l i ne ' s  apparatus (F igure 11) i s  unique because i t  i s  being 

incorpora ted  i n t o  the  in take-d ischarge area o f  the  s t a t i o n  du r ing  

p l a n t  cons t ruc t ion .  I n i t i a l  opera t ion  o f  t h e  f i r s t  o f  two u n i t s  i s  

planned f o r  June o r  J u l y  o f  1981 (LaBounty and Ro l ine  1980). Turbine 

m o r t a l i t y  s tud ies  undertaken by Layzer i n  1975 a t  t he  N o r t h f i e l d  

Mountain Pumped Storage P lan t  i n  Massachusetts u t i l i z e d  o r a l l y  

implanted sonic t r a n s m i t t e r s  f o r  mon i to r i ng  purposes (Layzer 1976). 
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Figure 10. Sampling apparatus for fish mortality studies at the Banks Lake, Washington, 
pumped-storage site. Source: Stober et al. 1977. 
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Figure 11. Proposed sampling apparatus for fish mortality studies in the (a) tailrace and 
(b) forebay of the Mt. Elbert Pumped Storage Powerplant. Source: LaBounty 
and Roline 1980. 



The s u b j e c t  o f  p ressure  e f f e c t s  on e n t r a i n e d  f i s h  species has 

been w e l l  documented i n  t h e  l i t e r a t u r e  f o r  s t eam-e lec t r i c  and 

convent iona l  h y d r o e l e c t r i c  power p l a n t s  (Marcy e t  a l .  1978, Cramer and 

O l i g h e r  1964, Brawn 1962). A l though l i t t l e  work has been descr ibed  

d e a l i n g  w i t h  p ressure  e f f e c t s  a t  pumped-storage f a c i l i t i e s ,  two such 

examples have been c i t e d .  I n  1965, Foye and S c o t t  r e p o r t e d  t h e i r  

i n v e s t i g a t i o n  a t  t h e  proposed P leasan t  Ridge pumping system i n  Maine. 

Water i n  t h e  P leasan t  Ridge s to rage  p r o j e c t  l i e s  a t  an e l e v a t i o n  211.2 

m h i g h e r  than  t h e  pumping s i t e  a t  Wyman Lake, r e s u l t i n g  i n  a  p ressure  

a t  t h e  pumping s i t e  of  about  0.088 kg/m2. 'I'o o b t a i n  sur.viva1 da ta ,  a  

p ressu re  chamber was designed t o  s imu la te  c o n d i t i o n s  o f  p ressure  

change d u r i n g  t h e  pumping cyc le .  Tes t  f i s h  i nc l uded  cha in  p i c k e r e l ,  

y e l l  ow perch,  f a l l  f i s h ,  common sh ine rs ,  Sake t r o u t ,  and l a k e  A t l a n t i c  

salmon. Pressure was decreased a t  a  cons tan t  r a t e  th roughout  t h e  

10-min t e s t  p e r i o d  f rom 2067.4 kPa (300 p s i )  t o  atmospheric p ressure  

C101.3 kPa (14.7 p s i ) ] .  A f t e r  p ressure  exposure, f i s h  were r e t u r n e d  

t o  h o l d i n g  t r oughs  f o r ,  observa t ion .  Dead f i s h  were examined f o r  

p ressure  e f f e c t s  immediate ly ,  whereas s u r v i v i n g  f i s h  were h e l d  f o r  7  d  

t o  assess e f f e c t s  p roduc ing  delayed m o r t a l i t y .  

Beck e t  a1 . (1975) a t t en~p ted  t u  detor . i i~ i~ l t !  L11e e r r e c l s  uii s l l - iped 

bass o f  h y d r o s t a t i c  p ressure  t h a t  were expected t o  e x i s t  i n  t h e  

proposed pump-storage f a c i l i t y  a t  Cornwal l ,  New York. A l though 

s p e c i f i c  p ressure  regimes exper ienced i n  t h e  pumping and gene ra t i ng  

c y c l e s  were t o  have been determined by f i n a l  p l a n t  des ign,  p r e l i m i n a r y  

s t u d i e s  on Hudson R i v e r  b i o t a  l e d  t o  t h e  des ign  o f  a  p ressure  chamber 

capable o f  reproduc ing  exposure p a t t e r n s  o f  13.8 t n  4833.8 kPa (7.n t.n 

700 p s i ) .  The apparatus was m o d i f i e d  t o  r ep resen t  a  more r e a l i s t i c  

s i m u l a t i o n  model as t h e  s tudy  progressed and as more i n f o r m a t i o n  on 

the p ressure  regimes became ava i  lab' le.  I n  t h e  i n i t i a l  phase o f  t h e  

exper iments,  no p ressure  l e s s  t han  atmospheric was expected t o  .be 

produced because t h e  t u r b i n e s  would be submerged 15 .2  m below t h e  

sur face .  However, i t  was l a t e r  learn'ed t h a t  some wate r  would pass 

th rough a  n e a r l y  ins tantaneous p ressure  drop i n  b o t h  pumping and 

g e n e r a t i n g  phases. Thus, nega t i ve  pressures would r e s u l t ,  as shown i n  



Figures  12 and 13. The p o i n t  a t  which nega t i ve  p ressure  occurs i s  

l a b e l e d  " A "  i n  t h e  pumping mode (F igu re  12) and "B" i n  t h e  gene ra t i ng  

mode (F igu re  13). Accord ing t o  t h e  i n t e r p r e t a t i o n  o f  Beck e t  a l .  

(1975), a  p ressure  g r a d i e n t  f rom subatmospheric t o  about 202,600 Pa (2 

atmospheres o f  pressure)  w i l l  occur  15.2 t o  20.3 cm below t h e  t u r b i n e  

b l a d e s .  I n  b o t h  pumping and gene ra t i ng  cyc les ,  t h e  changes i n  

h y d r o s t a t i c  . p ressu re  a r e  expected t o  occur a lmost  i ns tan taneous l y  i n  

any wate r  sample s tud ied .  Cons ider ing  t h e  extreme pressure  ranges 

' w i t h  which they  were dea l i ng ,  t h e  Cornwal l  team i n i t i a l l y  dev ised two 

p ressure  systems; one exposed organisms t o  pressures l e s s  than  

atmospheric,  and t h e  o t h e r  exposed organisms t o  a  maximum o f  

5512.9 kPa (800 p s i )  i n  l e s s  t han  1 s. 

3 .3  Resu l ts  and Conclus ions:  o f  Mo r ta l  i t y  Stud ies  

I n  Serchuk 's  1974 and 1975 s tud ies  a t  t h e  Ludington f a c i l i t y  

(Serchuk 1976), pumping m o r t a l i t y  was es t imated  by us ing  t h e  da ta  from 

f i v e  1974 exper iments and s i x  1975 exper iments (Tables 8  and 9).  

Pumping m o r t a l i t y  averaged 56.6% f o r  t h e  1974 t e s t s  and 65.1% (67.7% 

w i t h  salmon) d u r i n g  t h e  nex t  year .  O f  t h e  f i s h  t h a t  d i e d  d u r i n g  

passage, 37.2% e x h i b i t e d  p h y s i c a l  damage i n  1974 as compared w i t h  

61.5% i n  1975. Because most damages i n v o l v e d  l a c e r a t i o n s  o r  

d e c a p i t a t i o n s  (73.5% i n  1975), Serchuk concluded t h a t  mechanical 

c o n t a c t  and shear ing  f o r ces  were t h e  causa t i ve  f a c t o r s .  

S i z e - s e l e c t i v e  m o r t a l i t y  was a l s o  examined duri'ng t h e  pumping c y c l e  b y .  

us i ng  f i s h  rang ing  f rom 267 t o  331  mm i n  1974 and 316 t o  677 mm i n  

1975. I f  s i z e  s e l e c t i v i t y  d i d  e x i s t ,  t h e  1975 exper iments shou ld  have 

shown a  d i f f e r e n c e  i n  l e n g t h  between t h e  l i v e  and dead recap tu res  

f a l l o w i n g  t u r b i n e  passage. S t a t i s t i c a l l y ,  no s i g n i f i c a n t  d i f f e r e n c e  

was recorded i n  these t e s t s ,  a l t hough  a  passage r u n  conducted w i t h  

o n l y  t h e  l a r g e r  f i s h  r e s u l t e d  i n  t h e  h i ghes t  t u r b i n e  m o r t a l i t y .  



Figure 12. Schematic of pumping cycle pressure regime expected at the Cornwall 
pumped-storage facility at full power level. "A" is the point where negative 
pressJres ozcur. Source: Beck et al. 1975. 
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Tab1 e 8. Summ.3ry o f  1974 f i s h  passage experiments a t  t h e  Ludi'ngtor pumped-storage f a c i  1  i ty  

Recovered f i s h  Number o f  To ta l  % 
Number f l o a t s -  F i sh  recovery M o r t a l i t y  ra tea  

Operat ing ~f f i s h  Number Number on l y  re tove ry  f i s h  and 
Test date mode re1 eased a1 i i8e dead r ~ c o v e r e d  (%) f l o a t s  MI 

M2 M3 

28 Apr 

3 May 

19 May 

2 1  Jun 

12 J u l  

14 Aug 

28 Aug 

6 Oct 

Pump i ng 

-Pumping 

Pumpi ng 

Pumping 

Pumpi ng 

Generat ing 

Generat ing 

Pumping 

120 ( A ) ~  
24 (0) 

10 (A)  

127 (D) 

95 ( A )  

76 (A)  
25 (0) 

166 (A) 

75 (A) 
15 ( D l  

75 (A)  
15 ( D l  

M o r t a l i t y  r a t e  cannot be determined as 
i n  o ther  t e s t s  s ince more than 1 f i s h  
p ? r  bag (5/bag) 

81.0 67.2 68.2 73.3 ' c n  
73.3 - - - - - - P 

73.7 59.5 73.2 80.0 
911.0 - - - - - - 

20 Oct Pumpi ng 105 (A) 20 28 35 45.7 79.0 58.3 75.9 80.9 

3 Nov Pump i ng 94 (A) 17 2 7 42 46.8 91.5 61.4 80.2 81.9 

a ~ l  = Number o f  dead recaptures / to ta l  recaptured f i s h  X 100. 
M2 = Number o f  dead recaptures p l u s  recaptured f l o a t s / r e c a ~ t u r e d  f i s h  p l u s  f l o a t s  X 100. 
M3 = Number o f  dead recaptures p l u s  recaptured f l o a t s  p l u s  unrecovered f i s h / t o r a l  f i s h  re leased i n t o  t u r b i n e  X 100. 

b . ( ~ )  = A l i v e  upon turbine r e l e l s e .  
(D) = Dead upon t u r b i n e  release. 

Source: Serchuk 197'6. 



Table 9. Summary o f  1975 f i s h  passage experiments a t  the  Ludington pumped-storage f a c i l i t y  

Recovered f i s h  Number o f  To ta l  % 
Number f l o a t s -  F i sh  recovery Morta l  i t y  r a t e  

b 

Ope r a t  i ng o f  f i s h  Number Number on ly  recovery f i s h  and 
Test  date mode re1  easeda a1 i ve dead recovered (%) f l o a t s  M1 M2 M3 

15 Jun 

20 J u l  

Pumpi ng 

Pumping 

Generating 

5 1  (C) 
40 (A) 

105 (D) 

50 (C) 
148 (A) 
16 ( D l  

8 Aug 

25 Aug 

2 1  Sep 

4 Oct 

17 Oct 

19 Oct 

2 Nov 

Generating 30 (c) 18 
.79 (A)  11 
74 (D) - - 

Pumping 

Generat ing 

Generating 

Pumpi ng 

Pumpi ng 

40 (C) 3 5 
129 (A) 48 

2 ( D l  - - 
40 (C) 35 

114 (A)  2 9 
3 (Dl - - 

No c o n t r o l s  used 
49 (A)  2 

2 ( D l  - - 
46 (c) 42 

137 (A) 9 
3 ( D l  - - 



Table 9 (continued) 

La 

Recovered ' ish Number o f  To tc l  % 
Number f 1 oats- F i s h  recclvery Mor ta l  i ty  r a t e  b 

Operat ing o f  f i s h  a Numbem Number on l y  recovery f i s h  and 
Test date mode re: eased a1 i v e  dead recovered (%) f l o a t s  M1 M2 M3 

9 Nov Pumpi ng 46 (c) 43 3 - - 100.0, 100.0 6.5 
138 (A) 14 31 41 33.3 63.0 68.9 83.7 66.7 
5 (Dl - - 2 1 40.0 60.0 

a ( ~ )  = Contro l  f i s h .  
(A) = A l i v e  upon t u r b i n e  release. 
(D) = Dead upon tu rb , ine  re lease.  

b~ = Number o f  dead recaptures,'total recaptures X 100. 
M: = Number o f  dead recaptures and recaptured f 1 o a t s / t o t a l  recaptures and recaptured f 1 oats. 
M = Adjusted M1 (us ing c o n t r o l  l oss  raze). 3 

'includes 10 f i s h ,  reco\rered l a x ,  b u t  n o t  us12d i n  t h e  analys is .  

d ~ n c l u d e s  14 f i s h ,  r e c o b e ~ e d  l a x ,  b u t  n o t  u s t d  i n  t he  analys is .  

e ~ n c l u d e s  7 f i s h ,  recovered l a t e ,  b u t  no; use3 i n  t h e  analys is .  

f ~ x c l u d e s  4 f i s h ,  dead ~t re lease and subsequently recovered. 

g ~ a t a  based on f i s h ,  a1 i v e  a t  f i e l d  recapture, regardless o f  subsequmt m o r t a l i t y .  

h ~ n c l u d e s  2 f i s h ,  recovered ' la te,  b u t  no% used i n  the analys is .  

i ~ s t i n a t e  der ived by us ing  c o n t r o l  l oss  -ate o f  77.6. 

j l nc ludes  1 f i s h ,  recovered l a t e ,  b u t  n o t  used i n  the analys is .  

k ~ n c l u d e s  14 f i s h ,  recovered l a t e ,  b u t  n o t  used i n  t he  ana lys is .  

' ~ n c l u d e s  1 f i s h ,  recover+d l a t e ,  b u t  n o t  used i n  t he  analys is .  
m Inc ludes 1 f i s h ,  recover2d l a t e ,  b u t  n o t  used i n  t he  ana lys is .  

Source: Serchuk 1976. 



To assess t u r b i n e  m o r t a l i t y  d u r i n g  power genera t ion ,  Serchuk 

performed two exper iments i n  1974 us ing  ye1 low pe'rch and ch inook 

salmon and f o u r  t e s t s  i n  1975 u s i n g  rainbow t r o u t .  The r e s u l t a n t  

o v e r a l l  m o r t a l i t y  i n  t h e  1974 exper iments,  which was computed by us ing  

bo th  immediate and l a t e n t  m o r t a l i t i e s ,  was 67.2%. Phys ica l  damage was 

ev iden t  i n  o n l y  7.3% o f  dead recaptures'. Pooled m o r t a l i t y  da ta  on 

1975 runs (Tab le .9 )  r e s u l t e d  i n  a  mean unadjusted r a t e  o f  62.8% and an 

ad jus ted  r a t e  ( i n c o r p o r a t i n g  hand l i ng  losses  o f  c o n t r o l  groups) o f  

40.7%. Serchuk f e l t  t h e  d i s p a r i t y  i n  m o r t a l i t y  r a t e s  m igh t  be 

exp la i ned  by t h e  inc reased  summer s t r e s s  induced by h i ghe r  water  

temperature and pro longed hand l ing .  No d i s c e r n i b l e  r e l a t i o n s h i p  cou ld  

be e s t a b l i s h e d  between mean f i s h  l e n g t h  and m o r t a l i t y  r a t e .  

To f u r t h e r  examine t h e  s i z e - m o r t a l i t y  r e l a t i o n s h i p ,  Serchuk 

repeated h i s  runs i n  1974, us i ng  va r i ous -s i zed  p i n e  and spruce boards 

as organismal u n i t s  (Table 10). Dur ing  t h e  pumping mode, recovery  and 

damage r a t e  g e n e r a l l y  inc reased  w i t h  board s i z e .  The sma l l e r  boards 

exper ienced minimal damage, whereas n e a r l y  100% damage was r e p o r t e d  i n  

t h e  l a r g e r  (660-mm) boards. The same r e l a t i o n s h i p  between s i z e  and 

m o r t a l i t y  e x i s t e d  d u r i n g  t he  gene ra t i ng  cyc le .  However, a s . i n  t h e  f i s h  

passage t r i a l s ,  a  marked d i f f e r e n c e  i n  percentage o f  damage i s  noted 

f o r  t h e  two cyc les ,  w i t h  damage be ing  cons ide rab l y  h i ghe r  i n  t h e  

pumping phase (F igu re  14). 

I n  d i scuss ing  h i s  f i n d i n g s  i n  t h e  Ludington turb ine-passage 

s t u d i e s ,  Serchuk a t t r i b u t e d  t h e  d i s p a r i t y  between pumping and 

gene ra t i ng  m o r t a l i t i e s  t o  t h e  d i f f e r e n c e  i n  w i c k e t  ga te  s e t t i n g s ;  t h e  

gates were 82% open d u r i n g  gene ra t i on  as opposed t o  65% open d u r i n g  

pumping.. Th i s  l a r g e r  opening would p e r m i t  t h e  sa fe  passage o f  f i s h  

. over  a  wide s i z e  range and would, t h e r e f o r e ,  p e r m i t  a  h i ghe r  s u r v i v a l  

r a t e  d u r i n g  t h e  gene ra t i ng  mode. Resu l ts  o f  t h e  board-passage 

exper iments agreed w i  Lt1 r-esul  t s  ob ta ined  f rom t i  sh t e s t  runs,  f u r t h e r  

s u b s t a n t i a t i n g  t h e  r o l e  o f  t u r b i n e  des ign  and ope ra t i on ,  as descr ibed  

by B e l l  e t  a l .  (1967). A l though damage was shown t o  be d i r e c t l y  

p r o p o r t i o n a l  t o  s i z e  i n  t h e  board runs,  no comparable s ta tement  cou ld  

be supported by t h e  r e s u l t s  o f  t h e  f i s h  runs.  Serchuk concluded t h a t  



Table 10. Summary o f  board passage experiments a t  the Ludington pumped-storage f a c i l i t y  

Reco~~ered boards 
% Damaged 

Number of Number o f  Number Number o f '  the 
Test # and date, Board boarcs boards Recovery i ntact ,  h i t  o r  recovered 
operat ional  mode s ize (cm) i n t r o d ~ c e d  recovered (%I no damage cracked boards 

#3 - 10 May 74, 
pumpi ng 

#5 - 21 June 74, 
pumpi ng 

#8 - 12 Ju ly  74, 
pumping 

#10 - 14 Aug 74, 
generat ing 

#12 - 28 Aug 74, 
generat ing 

#13 - 3 Oct 74, 
pumping 

#14 - 6 Oct 74, 
pumping 



Table 10 (continued) 

Recovered boards 
% Damaged 

Number o f  Number o f  Number Number o f  the  
Test  # and date,  Board boards boards Recovery i n t a c t ,  h i t  o r  recovered 
operat ional  mode s i z e  (cm) introduced recovered (96) no damage cracked boards 

#17 - 20 Oct 74,  
pumpi ng 

#19 - 14 Nov 74, 

Tota l  s 

Pumpi ng. 

Source: Serchuk 1976. 
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Figure 14. Comparison of damage betwcen pumping and generating phases in the 1974 
board passage experinrents at the Ludinglon pumped-slorage facility. 
Source: Serchuk 1976. 



the  discrepancy between the  f i s h  and board r e s u l t s  cou ld  be expla ined 

by o the r  than mechanical f ac to rs .  The recapture o f  f i s h  w i t h  miss ing 

pieces suggested the  presence o f  shearing ac t i on ,  whereas metal 

p i t t i n g  o f  the  t u r b i n e  blades suggested c a v i t a t i o n .  I n  a d d i t i o n  t o  

mechanical i n j u r i e s  such as slashes, cu ts ,  o r  abrasions (43.4% i n  

pumping runs, 53.1% i n  generat ing runs),  weekly observat ions o f  dead . 

f i s h  i n  t he  r e s e r v o i r  showed many decapi tated f i s h  and f i s h  w i t h  

broken g i l l  arches, suggest ing shearing ac t ion .  D i r e c t l y  comparing 

f i s h  m o r t a l i t y  data w i t h  board r e s u l t s  o f  a s i m i l a r  s i z e  (305 mm) 

revealed t h a t  bo th  pumping and generat ing f i s h  m o r t a l i t i e s  were much 

h igher  than the  damage ra tes  o f  t he  board. This ,  again, would imply 

t h a t  f a c t o r s  o the r  than mechanical e f f e c t s  a re  i n f l u e n c i n g  f i s h  

mor ta l  i t y .  

L i s t o n  e t  a l .  (1980) ran  f o u r  m o r t a l i t y  t e s t s  a t  Ludington du r ing  

the  generat ing c y c l e  us ing  rainbow t r o u t .  Combining a l l  generat ing 

data o f  t he  1978 experiments, a  mean ad jus ted  m o r t a l i t y  r a t e  (based on 

c o n t r o l  l oss  r a t e )  o f  35.7% was computed (Table 11). Using a  one-week 

, ho ld ing  per iod ,  L i s t n n  repor ted  a  delayed morta l  i t y  o f  66.3% compared 

t o  the  70% delayed m o r t a l i t y  a f t e r  a  3-d ho ld ing  p e r i o d  repor ted  by 

Serchuk (1976). L i  s ton '  s  experimental  r e s u l t s  i n  h i s  1978 

i n v e s t i g a t i o n s  a l s o  i n d i c a t e d  t h a t  t u r b i n e  m o r t a l i t y  d i d  indeed e x i s t  

a t  t he  Ludington s i t e .  He concluded t h a t ,  because o f  t he  s i m i l a r i t y  

i n  procedure t o  the  1974 and 1975 t e s t s ,  t he  lower m o r t a l i t y  r a t e  

(35.7%) observed i n  1978 cou ld  be r e l a t e d  t o  lower water temperatures 

(Serchuk' s  mean adj i i s t ed  ' mor ta l  i t y  r a t e  o f  51.54: invo lved several 

August samplings). 

Heisy and Mathur (1980), repor ted  pumping phase m o r t a l i t y  o f  carp 

la rvae t o  be 17% i n  t h e i r  i n v e s t i g a t i o n s  a t  t h e  Muddy Run Pumped 

Storage F a c i l i t y .  I n  t h e i r  runs w i t h  a d u l t  channel c a t f i s h ,  brown 

bul lhead,  wh i te  crappie,  carp, and smallmouth bass du r ing  the  pumping 

cyc le ,  a  75% m o r t a l i t y  res111t.ed. However, i t  was concluded t h a t  the  

m o r t a l i t y  est imate might  have been i n f l uenced  by the  method o f  

: i n t r o d u c i n g  f i s h  i n t o  the  i n take  area and, t he re fo re ,  should n o t  be 

considered an accurate assessment. 



Table 11. Summary o f  f i s h  passage experiments a t  t he  Ludington Pumped Storage Power P lan t  conducted i n  1978 

Number 
Number Recover~2d f i s h  Number o f  To ta l  % 

.3 f o f  f l o a t s -  recovery M o r t a l i t y  r a t e s  b 

Operat ing f i s h  a N~mber Number l a t e n t  on ly  f i s h  and 
Test date mode re l2ased a l i v e  dead deaths recovered f l o a t s  M 1  M2 M3 H4 

26 Sept. Generating 40 (C) 40 0 - - - - 100. i2 - - - - - - - - 
68 (R) 2 6 2 6 50.C 7 . 1  23.5 - - - - - - 

10 Oct. Generating 20 (C) 20 0 0 - - 100. G 0 0 0 - - 
124 (R) 8 1 5 19 2 1  86.C 5.8 24.3 27.9 27.9 

17 Oct. Generating 20 (C) 2 0 0 1 - - 1 D O . C  0 0 0 - - 
111 (R) 5 0 13 12 2 1  76.C 20.6 40.5 39.7 37.7 2 

10 Nov. Generating 20 (C) 2 0 0 0 - - 1 D O . C  0 0 0 - - 
132 (R) 7 1  13 30 32 S?.E. 14.3 38.8 50.0 50.0 

To ta l  A1 1 100 (C) 130 0 1 - - 1D0.C 0 0 1.0 - - 
generat ing 435 (R)  228 3 3 6 1 80 78.4 12.6 33.1 36.1 35.7 

a (C) = Contro l  f i s h .  
(R)  = F i sh  re leased through tu rb ines .  

b~ = Number o f  dead recap tu res / to ta l  nunber f i s h  recaptured X 100. 
M1 = Number o f  dead recaptures and recaptured f l o a t s / t o t a l  recaptures and -ecaptured. f l o a t s  X 100. 
M: = Number o f  dead recaptures and number l c t e n t  d e a t h d t o t a l  number o f  f i s h  recaptured X 100. 
M4 = Adjusted M3 (based on con~ t ro l  l oss  rate).  

Source: L i s t o n  e t  a:. 1980. 



Al though n a t u r a l  m o r t a l i t i e s  have been observed a t  t h e  Muddy Run 

Pumped Storage P r o j e c t  s i nce  i t s  o p e r a t i o n  i n  1966, no i n d i c a t i o n  o f  

any power -p l an t - r e l a ted  causes were evidenced (Robbins and Mathur 

1976). Occas iona l l y ,  l i v e  channel c a t f i s h  and w h i t e  c rapp ie  were 

caught t h a t  had m iss ing  caudal f i n s  and o t h e r  i n j u r i e s .  Sampling 

procedures h indered  severa l  a t tempts  a t  assess ing m o r t a l i t y  es t imates ,  

and t h e  75% pumping mor ta l  i t ,y descr ibed  by He.isy and Mathur (1980) i s  

quest ioned by t he  i n v e s t i g a t o r s  because t h e  es t ima te  was i n f l u e n c e d  by 

m o r t a l i t i e s  assoc ia ted  w i t h  t h e  way i n  which f i s h  were i n t r oduced  i n t o  

. t he  p lant .  i n t a k e  area. 

I n  t h e  inves t iga t . ion  o f  p ressure  e f f e c t s  by Foye and S c o t t  (1965) 

a t  t h e  Pleasant  Ridge pumped-storage f a c i l i t y  (Table 12),  t e s t  f i s h  

grouped by species e x h i b i t e d  extreme and e r r a t i c  v i o l e n t  swimming 

a c t i v i t y  f o r  t h e  f i r s t  .3 o r  4  s  a f t e r  exposure t o  a  p ressure  o f  

2067 kPa (300 p s i ) .  Salmon, l a k e  t r o u t ,  and l a r g e r  p i c k e r e l  r eac ted  

l e s s  v i o l e n t l y  t o  t h e  p ressure  than  d i d  y e l l o w  perch,  f a l l f i s h ,  and 

common sh iners .  Between pressures o f  2067 kPa (300) and 689 kPa (100 

p s i ) ,  many f i s h  appeared t o  have s l i g h t l y  arched bodies and i nwa rd l y  

depressed b e l l i e s .  Most f i s h  s e t t l e d  t o  t h e  bot tom o f  t h e  t ank  u n t i l  

p ressure  was reduced t o  atmospheric.  Du r i ng  t h e  7-d obse rva t i on  t ime  

a f t e r  exposure, no m o r t a l i t y  occur red  i n  t h e  salmon, l a k e  t r o u t ,  o r  

f a l l f i s h .  . A f t e r  24 h, t h e  y e l l o w  perch  t e s t  groups recorded 

m o r t a l i t i e s  o f  20 and 40%. Th i s  va lue  rose  t o  60% a t  t h e  end o f  7  d. 

O f  t h e  two p i c k e r e l  groups, one group e x h i b i t e d  no m o r t a l i t y ,  and t h e  

o t h e r  e x h i b i t e d  20% m o r t a l i t y .  A f t e r  7  d, m o r t a l i t y  reached 20 and 

60% respect i -ve ly .  The h i g h e s t  m o r t a l i t y  occur red  w i t h i n  t h e  common 

sh ine rs ,  w i t h  t h e  two groups rang ing  f rom 26 t o  46% m o r t a l i t y  i n  t h e  

f i r s t  24-h per iod .  A week l a t e r ,  t h i s  percentage inc reased  t o  42 and 

80% r e s p e c t i v e l y .  A l though m o r t a l i t i e s  were evidenced i n  a l l  spec ies,  

and even reached as h i g h  as 80% i n  common sh ine rs ,  o n l y  ye1 low perch  

e x h i b i t e d  v i s i b l e  damage, w i t h  f o u r  hav ing  r u p t u r e d  a i r  b ladders  and 

t h r e e  hav ing  hemorrhagic k idneys. A l though t h e  i n v e s t i g a t o r s  

concluded t h a t  t h e  pressures encountered i n  t h e  pumping o p e r a t i o n  w i l l .  

p robab l y  n o t  comple te ly  e l i m i n a t e  any spec ies,  t h i s  evidence suggested 



Table 12. Mortality data of Pleasant Ridge pressure experiments 

% Mortal i t y  , % Mortali ty,  Visible 
Number by species 24 h 7 d physical damage 

Salmon 
1 

Group I (35) 0% 0% 

Group I1  (35) 0% 0% ' 

Lake t r o u t  

Group I (25) .  0% 0% 

Group I1 (25) 0% ' , 0% 

Fall f i s h  

Group I (17) 0% 
i 

0% 

Group I1 (17) 0% 0% 

Yellow perch 

Group I (5) 

Group I1 (5) . 

Chain pickerel 

Group I (5) 

Group I1  (5) 

Common shiner 

Group I (16) 

Grnllp I1 (16) 

4 ruptured 
a-i bl addcj'.s 

3 hemorrhagic 
k i  dneya 

Source: Foye and Scot t  1965. 



t h a t  t h e  pumping o p e r a t i o n  may i n f l u e n c e  t h e  f i s h  p o p u l a t i o n  o f  

P leasant  Ridge. 

Using va r i ous  l i f e - c y c l e  stages o f  s t r i p e d  bass and t h r e e  

s o p h i s t i c a t e d  p ressure  chambers, Beck e t  a l .  (1975) hoped t o  p resen t  

some evidence o f  p ressure  regime e f f e c t s  encountered d u r i n g  b o t h  

pumping and gene ra t i ng  cyc les .  For most runs,  t h e  s u r v i v a l  t imes  

d i f f e r e d  o n l y  s l i g h t l y ,  i f  a t  a l l ,  between exper imenta l  and c o n t r o l  

groups. For t h e  group observed immediate ly  a f t e r  exposure, o n l y  t h e  

. 4  d, 10 h  l a r v a e  showed a  s i g n i f i c a n t  d i f f e r e n c e  i n  s u r v i v a l  t ime  i n  

pressures l e s s  than  at.mospheric (Table 13). The o n l y  o t h e r  

s i g n i f i c a n t  d i f f e r e n c e  occur red  1 d  a f t e r  exposure f o r  t h e  7 d, 12 h  

1  arvae. 

A f t e r  i n t e n s i v e  t e s t i n g  f o r  h y d r o s t a t i c  p ressure  e f f e c t s ,  Beck e t  

a l .  (1975) proposed t h a t  a d d i t i o n a l  research  be conducted t o  cons ider  

t h e  r o l e  o f  o t h e r  f a c t o r s  i n f l u e n c i n g  s u r v i v a l .  O f  p a r t i c u l a r  concern 

i s  t h e  r e l a t i o n s h i p  between t h e  l i f e  c y c l e  s tage o f  t h e  e n t r a i n e d  

organism and i t s  a c c l i m a t i o n  pressure.  

3.4 Ana l ys i s  o f  S tud ies  C i t e d  

Whi le  a  comparison o f  r e s u l t s  o f  t h e  t u r b i n e  m o r t a l i t y  s t ud ies  

undertaken a t  va r i ous  pumped-storage s i t e s  would be d e s i r a b l e ,  t h i s  

would n o t  be comple te ly  p r a c t i c a l  because each s i t e  i s  unique. Such 

parameters as t h e  p h y s i c a l  des ign  and o p e r a t i o n  o f  t h e  f a c i l i t y ,  t h e  

spec ies composi t ion o f  t h e  r e s e r v o i r  f i s h e r i e s ,  and r e s e r v o i r  

hydro logy va ry  f rom s i t e  t o  s i t e  and make even genera l  comparisons 

d i f f i c u l t .  Cons idera t ion  must be g i v e n  t o  t h e  f l u c t u a t i n g  wate r  

l e v e l s  d u r i n g  p l a n t  o p e r a t i o n  as we1 1  as t h e  turbid it.^, t.emperature, 

and v e l o c i t y  o f  water  pass ing  th rough t h e  power s t a t i o n .  The 

r e l a t i o n s h i p  o f  p l a n t  o p e r a t i o n  t o  t h e  l i f e  c y c l e  s tage o f  t h e  

r e s i d e n t  species a1 so i n f  1  uences sampl i ng data.  Snyder (1975) 

r e p o r t e d  t h a t  6.5 t imes  as many l a r v a e  were pumped f rom Conowingo Pond 



Table 13. Results o f  exposure o f  s t r i p e d  bass eggs and la rvae t c  pressure l ess  than atmospheric 
i n  the  labora tory  

. Immediatea 1 da 3- d" 

Exposure Exposure C E - C E 
- 

C . 
Stage (ps i )  :ime % a1 % a1 Sig. % a1 % a1 S i g .  . % a1 % a1 . Sig. 

Larvae 
4 d , 8 h  
4 d, 10 h 
5 d 
5 d , 7 h  
7 d, 12 h 
8 d, 12 h 
17 d, 16 h 

'15 s 96.2 37.6 N. S. 92.0 82.4 
10 s 92.8 36.0 N.S. 

'10 s 100.0 1.30.0 N. S. 
5 s 100.0 SO. 0 A 67.2 33.2 
5 s 100.0 130.0 N.S. 44.8 43.0 N. S. 
5 s 100.0 190.0 N.S. 
3 s 99.2 99.2 N.S. 73.6 53.6 A 54.4 32.8 
5 s 99.2 100.0 N.S. 76.0 77.6 N. S. 

10 s ' 98.4 100.0 N.S. 88.0 94.0 N. S. 

Source: Beck e t  a l .  , 1375. 

a C = Contro l  groups. 
E = Experimental groups. 
% a1 = Sarv iva l  percentage. 

Sig. N. S1 = Not s ign i f i can t . .  
* = Experimental ly s i g n i f i c a n t ,  as determined by contingency tab le  ana lys is  (a = 0.05). 

b ~ h e r e  b lank exi!ts, data were n o t  provided i n  o r i g i n a l  paper. 



(Muddy Run Pumped Storage F a c i l i t y )  i n t o  t h e  upper r e s e r v o i r  than  were 

re tu rned  d u r i n g  genera t ion .  L ikewise,  P r i nce  and Mengel (1980) 

recorded t h a t  6  t imes as many e n t r a i n e d  f i s h  d u r i n g  t h e  pumping phase 

o f  t h e  Jocassee p l a n t  t han  were found d u r i n g  genera t ion .  Snyder 

(1975) suggested t h a t  t h e  Muddy Run pumping schedule be a l t e r e d  t o  

reduce ent ra inment .  By 1  i m i  t i n g  pumping t o  day1 i g h t  hours (mos t l y  

weekends, when excess e l e c t r i c i t y  i s  a v a i l a b l e ) ,  fewer young f i s h  

would be e n t r a i n e d  because t h e  young' o f  many species a r e  be1 i eved  t o  

congregate near t h e  bot tom o r  i n  p r o t e c t e d  areas d u r i n g  d a y l i g h t  

hours. Snyder 's  concern f o r  species v u l n e r a b i l i t y  d u r i n g  spawning 

seasons i s  shared by  Anderson (1977), who r e p o r t e d  t h a t  salmonids a re  

most suscep t i b l e  t o  ent ra inment  by a  pumped-storage system d u r i n g  

spawning runs. He a t t r i b u t e d  t h i s  s u s c e p t i b i l i t y  t o  t h e  a t t r a c t i o n  o f  

these anadromous species t o  eddies and c u r r e n t s  t h a t  emanate f rom t h e  

power p l a n t .  

The sampl ing procedure i t s e l f  c e r t a i n l y  i n f l u e n c e s  t h e  t e s t  

r e s u l t s .  By u s i n g  a  m o d i f i c a t i o n  o f  Johnson's (1970) t agg ing  

methodology, Serchuk (1976) ach ieved re1  a t i v e  succe,ss i n  t a g g i n g  and 

recover ing '  adequate numbers o f  f i s h  f o r  s t a t i s t i c a l  da ta  a n a l y s i s .  

However, he does show some concern f o r  t h e  e f f e c t  o f  b o t h  t h e  f l o a t  

at tachment and t h e  net-bag enc losure  on t h e  o r i e n t a t i o n  and s u r v i v a l  

o f  f i s h  undergoing pump-turbine passage. O f  p a r t i c u l a r  concern a re  

t h e  p o s s i b l e  adverse e f f e c t s  o f  bag conf inement,  which may l i m i t  f i s h  

movement. The f i n a l  r e s u l t s  were a l s o  a f f e c t e d  by l o c a t i o n  and number 

o f  r ecap tu re  crews because o n l y  recap tu red  f i s h  were used t o  compute 

m o r t a l i t y  r a tes .  A lso  c o n t r i b u t i n g  t o  t h e  o v e r a l l  r e s u l t s  i s  t h e  

percentage o f  f i s h  success fu l  l y  r e 1  eased t o  t h e  t u r b i n e s .  Serchuk 

(1976) found t h a t  t u r b i n e  e n t r y  was seldom complete; severa l  specimens 

were i d e n t i f i e d  t h a t  had been caught i n  t h e  t r a s h  s l o t s  o r  recap tu red  

many m i l e s  f rom t h e  p l a n t  because t hey  f a i l e d  t o  e n t e r  t h e  t u r b i n e .  

I n d i v i d u a l  s i t e  resu1t.s were a l s o  i n f l u e n c e d  by spec ies 

composi t ion and t h e  t ime  o f  t h e  yea r  i n  which c o l l e c t i o n s  were made. 

Serchuk (1976) r e p o r t e d  a  1974 gene ra t i ng  m o r t a l i t y  o f  67.2%, which 

was cons ide rab l y  h i ghe r  than  t h e  40.7% observed i n  1975. He exp la i ned  



t.his discrepancy by the  f a c t  t h a t  the 1974 s tud ies  inc luded y e l l o w  

perch, which a re  physoc l is tous  and more prone t o  p ressure- re la ted  

i n j u r y  than t h e  physostomous brook t r o u t  (Beck e t  a l .  1975). Although 

the  mean ad jus ted  m o r t a l i t y  values were ad jus ted  f o r  "handl ing 

m o r t a l i t i e s , "  t h e  hand l ing  e f fec ts  were probably more de t r imenta l  

du r ing  warm weather sampling and cou ld  have masked o the r  e f f e c t s .  

For  a l l  pumped-storage s i t e s ;  an assessment o f  f i s h  t u r b i n e  

m o r t a l i t y ' i s  meaningful  o n l y  when i n t e g r a t e d  w i t h  o the r  popu la t i on  and 

eco log i ca l  .parameters t h a t  together  c o n t r i b u t e  t o  an o v e r a l l  

understanding o f  the  e n t i r e  area. A more accurate p r e d i c t i o n  o f  t o t a l  

l ake  and r e s e r v o i r  popu la t ions  are  needed before  m o r t a l i t y  est imates 

can be o f  use. Serchuk (1976) suggests 'tha't, a l though popu la t i on  

f i g u r e s  are  d e f i n i t e l y  needed, t h e  t o t a l  impact must a l so  be r e l a t e d  

t o  the  s t ress  of t he  m o r t a l i t y  on the  s u r v i v i n g  popu la t ion .  Although 

many compensatory mechanisms are  i n  e f f e c t  t o  deal w i t h  popu la t i on  

f l u c t u a t i o n s ,  a  c l e a r  p i c t u r e  o f  species r e s i  1  icky i n  pumped-storage 

r e s e r v o i r s  i s  l ack ing .  
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4.0 SUMMARY AND CONCLUSIONS 

The t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  i n v e s t i g a t i o n s  t h a t  a re  

assoc ia ted  w i t h  conven t iona l  h y d r o e l e c t r i c  i n s t a l l a t i o n s  cons i s ted  o f  

model and p r o t o t y p e  s tud ies .  The model s t u d i e s  were performed 

p r i m a r i l y  on models o f  F r a n c i s  runners and s u c c e s s f u l l y  demonstrated 

t h e  e f f e c t  o f - .head,  runner  speed, t a i l w a t e r  e l e v a t i o n ,  and b lade/gate 

c learance  on f i s h  m o r t a l i t y .  . A l though model s t u d i e s  p rov ided  i n s i g h t  

i n t o  how f i s h  mor ta l  i t y  was i n f  1  uenced by d i  f f e rences  i n  t u r b i  ne. 

des ign and ope ra t i on ,  i t  d i d  n o t  appear fea 's ib le  t o  e x t r a p o l a t e  t h e  

s tudy r e s u l t s  t o  p r o t o t y p e  s tud ies .  
. . P ro to type  s t u d i e s  were performed p r i m a r i l y  a t  high-head 

i n s t a l l a t i o n s  equipped w i t h  F ranc i s  runners and a t  low-head p l a n t s  

where Kaplan runners were i n s t a l l e d .  The r e s u l t s '  o f  these s tud ies  

i n d i c a t e d  t h a t  t h e  na tu re  and e x t e n t  o f  f i s h  m o r t a l i t y  were r e l a t e d  t o  

t h e  eng inee r i ng  des ign c h a r a c t e r i s t i c s  o f  t h e  t u r b i n e .  A F ranc i s  

runner  has a  l a r g e r  number o f  b lades;  thus ,  t h e  degree o f  c learance  

(b lade /b l  ade and b l  ade/gate) s t r o n g l y  i n f  1  uences t h e  magnitude and 

t ype  o f  i n j u r y .  A Kaplan runner  has fewer b lades t o  p r o v i d e  h i ghe r  

speed and o u t p u t  f o r  a  g i ven  head and runner  s ize .  However, t h i s  

des ign r e s u l t s  i n  g r e a t e r  b l ade  l o a d i n g  and, thus,  more c r i t i c a l  

c a v i t a t i o n  c h a r a c t e r i s t i c s  (Mayo 1979). H y d r a u l i c  head and sigma (see 

p. 16) i n f l u e n c e d  t h e  na tu re  and e x t e n t  o f  i n j u r y  o f  f i s h  t e s t e d  on 

Kaplan p ro to t ypes .  

The o v e r a l l  conc lus ion  o f  d i f f e r e n t  types o f  s t u d i e s  undertaken 

us ing  b o t h  F ranc i s  and Kaplan runners i s  t h a t  h i g h e s t  s u r v i v a l  occurs 

d u r i n g  t imes when t h e  t u r b i n e  i s  o p e r a t i n g  a t  maximum e f f i c i e n c y .  

Power l oad ings  should be p r o p e r l y  ad jus ted  t o  ach ieve h i g h e s t  

e f f i c i e n c y ,  p a r t i c u l a r l y  d u r i n g  t imes  o f  downstream f i s h  m ig ra t i on .  

S tud ies  such as those c u r r e n t l y  be ing  conducted a t  some o f  t h e  

mid-Columbia R i v e r  dams may d e t e c t  t h e  peak m i g r a t i o n  t i m e s w i t h  sonar 

dev ices.  Th i s  t y p e  o f  i n f o r m a t i o n  can be passed t o  t h e  powerhouse 

opera to rs .  so t h a t  t h e  t u r b i n e  u n i t s  a r e  operated a t  h i g h  e f f i c i e n c i e s .  



Under normal ope ra t i ng  condit. ions, losses from tu rb ines  are  expected 

t o  range between 10 and 25%, b u t  may be decreased i f  loads are  reduced 

t o  around 70% o f  t he  t u r b i n e ' s  maximum r a t e d  capac i ty .  

I t  i s  impor tan t  t o  p u t  t u r b i n e - r e l a t e d  f i s h  m o r t a l i t y  a t  

convent ional  h y d r o e l e c t r i c  f a c i l i t i e s  i n t o  perspect ive.  

Tu rb ine - re la ted  m o r t a l i t y  i s  on l y  one o f  many causes o f  m o r t a l i t y  t o  

downstream m i g r a t i n g  j u v e n i l e s  as a  r e s u l t  o f  hydropower development; 

o the r  f a c t o r s  a f f e c t i n g  s u r v i v a l  a re  sp i l lways ,  downstream passage 

f a c i l i t i e s ,  p redat ion ,  and delay i n  migra t ion .  The Snake and Columbia 

R ive r  systems p rov ide  examples where impacts t o  downstream migrants 

may be p a r t i c u l a r l y  severe. Juven i le  stages may encounter as many as 

e i g h t  t o  t en  dams i n  t h e i r  passage t o  the sea. C o l l e c t i v e  losses have 

been examined by Raymond (1979) and B e l l  e t  a l .  (1976). Ongoing 

research a t  t he  p u b l i c  u t i l i t y  dams on t h e  mid-Columbia River  may 

p rov ide  some i n s i g h t  i n t o  passage through a  se r ies  o f  hydrau l ic  

s t r u c t u r e s .  As more powerhouses and storage p r o j e c t s  a re  completed, 

p r o p o r t i o n a t e l y  more water w i l l  be passed through generat ing u n i t s ,  

making t u r b i n e - r e l a t e d  m o r t a l i t y  an i nc reas ing  concern. M i  t i g a t i o n  o f  

t h i s  impact appears t o  l i e  w i t h  t h e  development and ref inement  o f  f i s h  

passage and t r a n s p o r t a t i o n  systems and w i t h  e f f i c i e n t  opera t ion  o f  the  

tu rb ines .  

There i s  very  l i t t l e  research described i n  t h e  l iLer-aLure on the  

e f f e c t s  o f  t u r b i n e  passaqe on f i s h  a t  pu~~~pt!J-sl .or ' l ru~ h y r i r n ~ l ~ r t r l c  

rdc i 1  i t i e s .  Personal communication w i t h  i n v e s t i g a t o r s  c u r r e n t l y  

i nvo l ved  i n  such work emphasizes the d i f f i c u l t y  i n  designing sampling 

techniques app l i cab le  t o  t h e  uniqueness of pumped-storage n p ~ r a t . i n n  

This has been the  major impediment t o  in-depth i n v e s t i g a t i o n s .  

However, ongoing research a t  several pumped-storage i n s t a l l a t i o n s  has 

shown t h a t  f i s h  t u r b i n e  m o r t a l i t y  does indeed occur du r ing  bo th  

punlpi~lg and generat! ng cyc les .  The t i s h  m o r t a l i t y  a h 5 ~ r v e d  du r ing  the  

pumping phase was always considerably h igher  than t h a t  recorded du r ing  

the  generat ing mode. A poss ib le  exp lanat ion  fo r  t h i s  d i s p a r i t y  i s  t he  

w idc r  w icke t  ga te  opening dur-iny t11e yerler'atlng cyc le ,  p e r m i t t i n g  

safer  passage. I n  a d d i t i o n ,  the  m a j o r i t y  o f  deaths were c l a s s i f i e d  as 



delayed because m o r t a l i t y  was recorded several  days a f t e r  passage 

occurred. ~ u p l i c a t e  passage experiments, s u b s t i t u t i n g  spruce and p ine  

b o a r d s . f o r  t he  f i s h ,  a l so  r e s u l t e d  i n  a  h igher  damage r a t e  du r ing  the  

pumping phase. A d d i t i o n a l l y ,  a  size-damage r e l a t i o n s h i p  was observed, 

w i t h  small e r  boards e x h i b i t i n g  minimal damage as compared w i t h  nea r l y  

100% damage i n  l a r g e r  board samples. Although t h i s  was n o t  

demonstrate'd i n  t h e  f i s h  runs, a  passage run  us ing  on l y  l a r g e r  f i s h  

r e s u l t e d  i n  a  considerably h igher  mor ta l  i t y  r a t e .  Comparing 

percentages o f  damaged specimens i n  f i s h  and board experiments, bo th  

generat ing and pumping f i s h  m o r t a l i t i e s  'were much h igher  than the  

damage r a t e s  f o r  boards. . This  cou ld  be exp la ined by t h e  i n f l uence  on 

f i s h  m o r t a l i t y  o f  f a c t o r s  o the r  than mechanical. , L i t t l e  has been done 

a t  pumped-storage s i t e s  t o  examine the  ex is tence o f  pressure e f fec ts .  

Pre l im inary  i n v e s t i g a t i o n  has shown bo th  immediate and delayed 

pressure- re la ted  m o r t a l i t i e s  occu r r i ng  du r ing  s imulated pumping 

cond i t ions ,  w i t h  rup tured a i r  b ladders occu r r i ng  i n  some specimens. 

The l i m i t e d  work done on tu rb ine- re ' la ted  m o r t a l i t y  i n  

pumped-storage operat ions precludes i t  from d e t a i l e d  comparison w i t h  

s tud ies  conducted a t  convent ional  h y d r o e l e c t r i c  p lan ts .  However, both 

mechanical and pressure-re1 a ted  f a c t o r s  appear t o  be impor tan t  i n  t he  

nature and ex ten t  o f  f i s h  m o r t a l i t y  a t  bo th  types o f  h y d r o e l e c t r i c  

f a c i l i t i e s .  The improvement o f  recovery methods f o r  f i s h  t e s t e d  i n  

pumped-storage operat ions may pe rm i t  t he  ex ten t  and causes o f  

t u r b i n e - r e l a t e d  m o r t a l i t y  t o  be b e t t e r  del ineated.  

The subs tant ive  f i nd ings  o f  t h i s  document and how they r e l a t e  t o  

the  renewed i n t e r e s t  i n  developing smal l -scale hydropower p r o j e c t s  can 

be b r i e f l y  summarized as fo l lows:  

1. Turbine passage i n  bo th  r e v e r s i b l e  and i r r e v e r s i b l e  
h y d r o e l e c t r i c  f a c i l i t i e s  can and w i l l ' k i l l  f i s h .  

2. The ex ten t  of f i s h  morta l  i t .y may be decreased by 
t u r b i n e  design considerat ions.  

3. The ex ten t  of f i s h  morta1it.y may be decreased by 
c e r t a i n  opera t ing  cond i t ions .  



4. A1 though t u r b i n e  design fea tures  and opera t ing  
cond i t i ons  are  s p e c i f i e d  by s tud ies  conducted t o  date, 
s i t e - s p e c i f i c  concerns should s t i  11 be evaluated. 

5. The r e l a t i o n s h i p  o f  s tud ies  conducted t o  date t o  the  
newer t u r b i n e  designs, which a re  c u r r e n t l y  being 
i n s t a l l e d  i n  smal l -scale hydropower operat ions,  i s  
unclear ;  more da ta  need t o  be obta ined on more modern 
smal l -scale prototypes.  
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APPENDIX A 

GLOSSARY 



ADJUSTABLE-BLADE PROPELLER TURBINE - A t u r b i n e  having a  runner w i t h  a 

smal l  number o f  blades, u s u a l l y  f o u r  t o  e i g h t ,  t o  which the  water 

i s  supp l ied  i n  a  w h i r l i n g  a x i a l  d i r e c t i o n ;  t he  blades are  

angu la r l y  ad jus tab le  i n  the  hub. 

A X I A L  FLOW - A f l o w  o f  water e s s e n t i a l l y  ' p a r a l l e l  t o  the  main a x i s  o f  

a  hydraul i c  t u r b i n e ,  pump, o r  water passage. 

BULB - The st reaml ined w a t e r t i g h t  housing f o r  a  generator.  

BULB UNIT  - A u n i t  c o n s i s t i n g  o f  a  h o r i z o n t a l  s h a f t  t u r b i n e  and 

c l  ose-coup1 ed generator ,  which are  bo th  enclosed i n  a  b i l l  b  

l oca ted  d i r e c t l y  i n  t h e  water passage. 

CAVITATION - The fo rmat ion  o f  p a r t i a l  vacuums i n  a  l i q u i d  by a  s w i f t l y  

moving s o l i d  body such as a  p r o p e l l e r .  

DRAFT TUBE - The s e c t i o n  o f  the  t u r b i n e  water passage t h a t  extends 

from the d ischarge s ide  o f  the  t u r b i n e  runner t o  the  downstream 

ex t rem i t y  o f  t he  powerhouse s t r u c t u r e .  

FIXED-BLADE PROPELLER TURBINE - A t u r b i n e  having a  runner w i t h  a  small 

number o f  blades, u s u a l l y  f o u r  t o  e i g h t ,  t o  which the  water i s  

supp l ied  i n  a  w h i r l i n g  a x i a l  d i r e c t i o n ;  t he  blades a re  r i g i d l y  

tastened t o  the  hub. 

FRANCIS TURBINE - A t u r b i n e  having a l a r g e  number o f  f i x e d  buckets, 

usua1l.y nine o r  more, t o  which the  water i s  supp l ied  i n  a 

w h i r l i n g  r a d i a l  d i r e c t i o n .  

IMPULSE TURBI.NE - A t u r b i n e  having one o r  more f r e e  j e t s  d ischarg ing  

i n t o  an aerated space and impinging on the  buckets o f  t h e  runner. 



KAPLAN TURBINE - An adjustable-b lade p r o p e l l e r  t u r b i n e  named f o r  t he  

Aust r ian  inventor  who developed the  o r i g i n a l  design. 

MODEL STUDY - A study conducted i n  a  hyd rau l i c  l abo ra to ry  us ing  scale 

models o f  tu rb ines .  

PELTON WHEEL - An impulse-type hyd rau l i c  t u r b i n e ,  which i s  shaped l i k e  

a  whee.1 and has a  se r ies  o f  cas t  s t e e l  buckets at tached t o  i t s  

per iphery.  

PENSTOCK - A l a r g e  water condu i t ,  which i s  subjected t o  h igh  i n t e r n a l  

pressures and i s  f u l l y  se l f -suppor t ing .  

PROTOTYPE STUDY - A f i e l d  i n v e s t i g a t i o n  a t  a  s p e c i f i c  u n i t  w i t h i n  a  

powerhouse. 

PUMPED-STORAGE PLANT - A h y d r o e l e c t r i c  p l a n t  t h a t  uses o f f -peak  power 

from an ex terna l  source t o  pump water from a  lower r e s e r v o i r  t o  

an upper storage r e s e r v o i r ;  t h i s  w a t e r  i s  then used t o  generate 

power du r ing  per iods o f  h igh  load demand. by reve rs ing  the  

d i r e c t i o n  o f  f low.  

REACTION TURBINE - A t u r b i n e  having a  water supply case, a  mechanism 

f o r  c o n t r o l l i n g  the  q u a n t i t y  o f  water and f o r  d i s t r i b u t i n g  i t  

equa l l y  over t he  e n t i r e  runner in take,  and a  d r a f t  tube. 

REVERSIBLE PUMP/TURBINE - A Francis- type t u r b i n e  designed t o  operate 

as a  pump i n  one d i r e c t i o n  o f  r o t a t i o n  and as a  t u r b i n e  i n  the  

opposi te d i r e c t i o n  o f  r o t a t i o n .  

RUNNER - The r o t a t i n g  element o f  t he  tu rb ine ,  which conver ts  hyd rau l i c  

energy i n t o  mechanical enevyy. 



TUBULAR TURBINE - An a x i  a1 - f  low, prope'l I e r - t y p e  t u r b i n e ,  which may 

have e i t h e r  a  v e r t i c a l ,  h o r i z o n t a l ,  o r  i n c l i n e d  sha f t .  

WICKET GATES - The angu la r l y  ad jus tab le ,  s t reaml ined elements t h a t  

c o n t r o l  t h e  f l o w  o f  water t o  t h e  t u r b i n e  or  c o n t r o l  t he  discharge 

f rom the  pump. 

a ~ e c h n i c a l  terms r e f e r r i n g  t o  t u r b i n e  design and opera t ion  taken 

from Al l is-Chalmers Corporat ion (undated). 





SOURCES OF INFORMATION ON FISH I ' U H B l N t  MUKlALllY 

Coctact  Agency and Address Area o f  Exper t i se  

F. J. Andrew I n t e r n a t i o n a l  P a c i f i c  Sa1mo.n Mor ta l  i t y  s tud ies  o f  
F i s h e r i e s  Commission sockeye p i n k  salmon 

New Westminster a t  hydro e l e c t r i c  
B r i t i s h  Columbia, Canada s i t e s  
V3L 4x9 
604-521-3771 

Car l  F. Baren USFWS , 'F i shery Ass i stance L imnologica l  s tud ies  
Federal  B u i l d i n g  . a t  pumped-storage- 
B ,  0. Box 1140 facilities 
M n n t p l  i ~ r ,  VT fl5fifl7 
802- 220-9476 

R. M. Bax ter  App l ied  Kesearch D i v i s i o n  Review/envi ronmental 
Canada Centre f o r  I n l a n d  e f f e c t s  o f  dams and 

Waters impoundments 
Bu r l i ng ton ,  On ta r i o  
Canada L7R 4A6 
416-637-4506 

M i l o  C.  B e l l  Col lege o f  F i she r i es  A u t h o r i t y  on Columbia 
U n i v e r s i t y  o f  Washington R ive r  f i s h  passage- 
S e a t t l e ,  WA 98195 t u r b i n e  s tud ies  
206-543-4287 
(Home) 206-355-4471 

David B r i s t o l  Niagara Mohawk Power U t i l i t y  development 
Corpora t ion  o f  hydropower 

Syracuse, NY 13210 
315-474-1511 

J. P. Clugston USFWS F ishery  research/ 
206 Highway 123 By-Pass pumped storage 
Clemson, SC 29631 
803-651-1340 

W i l l i a m  Crean ". Holyoke Water Power Co. U t i l i t y  r o l e  i n  hydro- 
One Canal S t r e e t  power research 
Holyoke, MA 0104.0 
413-536-5520 ' 

Mike D e l l  Grant  County P u b l i c  Role o f  p u b l i c  
U t i l i t i e s  D iv4s lon  u t i l i t i e s '  s tud ies  

P. 0. Box 878 i n  Grant,  Douglas, 
Ephrata, WA 98823 and Chelan count ies  
509-754- 3541 



Contact 

Tom Doyle 

SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Continued) 

Wesley Ebel 

Q u e n t i n  Edson 

Rex E lde r  

Robert  Ferguson 

D. H. F i c k e i s i n  

James F o l l a i n ,  J r .  

Agency and Address 

Department o f  Na tu ra l  
Resources 

F i s h e r i e s  D i v i s i o n  
Box 30028 
Lansing, M I  48909 
417- 373-1280 

Northwest and Alaska 
F i s h e r i e s  Center 

Na t i ona l  Mar ine F i s h e r i e s  
Serv ice ,  NOAA 

2725 Mont lake Boulevard East  
S e a t t l e ,  WA 98112 
206-442-4445 

Federal  Energy Regulatory  
Commission 

825 No r th  C a p i t o l  S t .  , N. E. 
Washington, D.C. 20426 
202-376-1768 

Bechte l  Corpora t ion  
P. 0. Box 3965 
San Franc isco,  CA 94119 
415-768-6562 

B.C. Hydro 
Harbor Center 
P. 0. Box 12121 
555 W. Hast ings S t r e e t  
Vancouver, B. C.  VCB 4T6 
604-663-3757 

P a c i f i c  Northwest Labora to ry  
Rich land,  WA 99352 
509-375-2749 

Johns Hopkins U n i v e r s i t y  
Ba l t imore ,  MD 21218 
301-732-7145 

Area o f  E x p e r t i s e  

Invo lved .  i n  t u r b i n e  
s tud ies / I nd iana  and 
Mich igan  

Gas s a t u r a t i o n  

Permi t  i n f o r m a t i o n  
f o r  l i c e n s e d  hydro 
p r o j e c t s  

Spa t ia l - tempora l  
d i s t r i b u t i o n  o f  down- 
stream migran ts  i n  
Col umbi a  R i ve r  

Turb ine  m o r t a l i t y  
s tud ies /Bennet t  Dam 

Hydro e f f e c t s  - non- 
t u r b i n e  re1  a ted  

Oxygenat ion i n v e s t i -  
gat ions/smal 1  - s c a l e  
hydro 

James Gardner Georgia Power Company L i t e r a t u r e  search (w/ 
791  DeKal b  M i r a c l e )  on pumped 
Decatur,  GA 30300 s to rage  
404-522-6060; Ext .  2169 



SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Continued) 

Contact  , Agency and Address Area o f  Exper t i se  

Glen H. Geen Department o f  B i o l o g i c a l  Reviewed h y d r o e l e c t r i c  
Sci  ences power/Canada 

Simon Fraser  U n i v e r s i t y  
Burnaby, B r i t i s h  Columbia 
Canada V5A 1S6 
604-291-3536 

E .  P. Gould U.S. Army Corps o f  Engineers General i n fo rma t ion  
Northeast  D i v i s i o n  
424 T r - d p ~ l u  Rudd 
Waltham, MA UZ154 
617-894-2400; Ext.  313 

Marsha l l  Goulding Ch ie f  Engineer, Susquehanna Instream f l o w  data  
R ive r  Basin Commission 

1721 N. F ron t  S t r e e t  
Har r isburg ,  PA 17102 
717-238-0424 

John Gregg Ch ie f  Engineer, Douglas U t i l i t i e s '  r o l e  i n '  
County Pub l ic  U t i l i t i e s  h y d r o e l e c t r i c  research 
D i v i s i o n  

1151 Val l e y  Ma1 1 Parkway 
E. Wenatchee, WA 98801 
509-884- 7191 

Richard W. Gregory U n i v e r s i t y  o f  F l o r i d a  
Cooperat ive F ishery  

Research U n i t  
G a i n e s v i l l e ,  FL 32611 
904-392-1861 

Provided innumerable 
contac ts  

John Gulvas 

Jim llaas 

Consumers Power Company Species composit?on 
1945 W. Pa rna l l  Road o f  Ludington Reservoi r  
Jackson, M I  49201 
517-788-0550 

Depaitment sF FSsh and Ice t r a s h  91 ulceway/ 
W i ' l d l i f e  guidance s t r u c t u r e s  

P. 0. Box 3503 
Portland,,OR 97208 
503-229-5433 



SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Cont inued) 

Contact  Agency and Address Area o f  Expe r t i se  

Bernard Hal 1 a D i r e c t o r ,  Department o f  General i n f o r m a t i o n  
Na tu ra l  Resources 

Wi ld1 i f e  A d m i n i s t r a t i o n  
Anapo l i s ,  MD 21401 
301-269-2752 

Joseph T. Johnson Environmental  .Assessment Prov ided  e x c e l l e n t  
and Support  S t a f f  contacts/pumped 

Energy Demonstrat ions s to rage  
and Techno1 ogy 

1110 Chestnut S t r e e t  Tower I 1  
Chattanooga, TN 37401 
615-755-6531 

John Kelso Department o f  F i s h e r i e s  
and Oceans 

875 Queen S t r e e t ,  E. 
S a u l t  Ste.  Mar ie  
Ottawa, On ta r i o ,  Canada 
P6A 2B3 
705-942-2848 

Entrainment/ impinge- 
ment/Great Lakes 

W i l l i a m  Knapp USFWS Suggested Rizzo and 
1Gateway  Center - S u i t e  700 Kynard con tac t s  
Newton Corner,  MA 02158 
617-965-5100 

Robert  Lackey USFWS - Eastern Energy and Water resources group 
Land Use Team leader /genera l  i n f o r -  

Kea rneysv i l l e ,  WV 25430 ma t i  on 
304-725-2061 

Boyd Kynard Massachusetts Cooperat ive P r o j e c t  1 eader/ 
F i s h e r i e s  U n i t  Connec t i cu t  R i v e r  

U n i v e r s i t y  o f  Massachusetts p r o j e c t  
Amherst, MA 01003 
413-545-2011 

Be rn ie  Leman Chelan County P u b l i c  U t i l i t y  Bu lb  t u r b i n e  
D i s t r i c t  mo r ta l  i t y  r e p o r t s  

Wenatchee, WA 98801 
509-663-8121 



Contact 

SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Continued) 

Agency and Address Area o f  Exper t i se  

Char1 es L i  s ton Department o f  F i she r ies  and Pumped-storage t u r b i n e  
Wild1 i f e  mor ta l  i t y  ,work a t  

Michigan Sta te  U n i v e r s i t y  Ludi ngton, M I  
East Lansing, M I  48824 
517- 355-4477 

Edward Mains U. S .  A r m y  Engineer D i v i s i o n  Turbine morta l  i t y / f i s h  
Nor th  P a c i f i c  D i v i s i o n  passage contacts and 
P. 0. Box 2870 i n fo rma t ion  
Por t land,  Oregon 97208 
503-221-3828 

D i l i p  Mathur RMC - Eco log ica l  D i v i s i o n  Review o f  sampling 
Muddy Run Ecological  techniques used i n  

Laboratory mon i to r ing  pumped- 
P. 0. Box 10 storage f a c i l i t i e s  
Drumore, PA 17518 
717-548-2121 

Howard Mayo, J r .  A l l is -Chalmers Corporat ion Hydroe lec t r i c  t u rb ines /  
East B e r l i n  Road engineer ing aspects 
Box 712 
Ynrk,  PA 17405 
717-792-3511 

A l f r e d  L. Me is te r  A t 1 a n t . i ~  Sea Run Salmon General i ntormat ion 
Commission 

B u i l d i n g  31, Idaho Avenue 
Bangor, ME 04401 
207-947-8627 

James Northrup Appal achi  an Power Company Knowledge o f  u t i l i t y  
Koanoke, VA 24015 research r o l e  
703- 344- 1411 

Raymond C. O l i ghe r  Wal la Wal la D i s t r i c t  F i  nge r l  i ng mor ta l  i t y /  
Corps o f  Engineers t u r b i n e  e f f i c i e n c y  
Bu ld ing  G02, 
City-County A i r p o r t  
Wal la Walla, WA 99362 
509-525-5500; Ext  340 



SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Cont inued) 

Contact Agency and Address 

James O l i v e r  USFWS 
,500 N.E. Multaomah S t r e e t  
Por t1  and, Oregon 97232 
503-221-3859 

Tony Pacheco Na t i ona l  Marine F i s h e r i e s  
Serv ice  

Midd le  A t l a n t i c  Coastal  
F ish .  Cn t r .  

Sandy Hook Labora to ry  
High lands,  NJ 07732 
201-872-0200 

Area o f  E x p e r t i s e  

Col umbi a R i v e r  
P r o j e c t  f i s h e r i e s  
research  

Mon i to r ing /Cornwa l l  
Pro j . 

Russ P o r t e r  P a c i f i c  Mar ine F i s h e r i e s  General i n f o r m a t i o n  
Commission 

528 S.W. M i l  1s S t r e e t  
Por t land ,  OR 97201 
503-229-5840 

Steve R i  deout U.S. F i s h  and W i l d l i f e  Coord ina to r  f o r  t h e  
Serv ice  Connec t i cu t  R i ve r  

4 Whalley S t r e e t  P r o j e c t  
Hadley, M A '  01035 
413-586-4416 

Ben Rizzo Bureau o f  Spor t  F i s h e r i e s  F i s h  passage work 
and W i l d l i f e  

USFWS 
1 Gateway Center - S u i t e  700 
Newton Corner,  MA 02158 
617-965-5100; Ext .  287 

Gary Rush 

C.  P. Ruggles Execut ive B i o l o g i s t  Exper t  i n  o v e r a l l  
Montrea l  Engi n e e r i  ng , L td .  t u r b i n e  mor ta l  i ty  
Gar r i son  Place work i n  Canada/Salmon 
1526 Dresden Row - downstream passage 
Hal i fax ,  Nova S c o t i  a 
B3J 351  . 

902-426-3594 

Envi  ronmental Engineers General i n f o r m a t i o n  
P h i l a d e l p h i a  E l e c t r i c  Company c o n t a c t  
2301 Market S t r e e t  
Ph i l ade lph ia ,  PA 19101 
215-841-4000 



Contact 

SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Conti  nued) 

Agency and Address Area o f  Exper t i se  

D. S c a r r e t t  S t .  Andrews B i o l o g i c a l  F i she r ies  b i o l o g i s t  
S t a t i o n  
New Brunswick, Canada 
EOG 2x0 
506-529-8854 

K. E. H. Smith Freshwater and Anadromous M o r t a l i t y  t e s t s  on 
D i v i s i o n ,  Resource Branch j u v e n i l e  salmon a t  

Department o f  F i she r ies  Canadian dam s i t e s  
and Oceans 

P. 0. Bux 550 
Hal i fax, Nova Sco t i a  R3J 2S7 
902-426- 3594 

0. Sproul C i v i l  Engineering Department E f f e c t s  o f  super- 
Ohio S ta te  U n i v e r s i t y  sa tura ted  gases 
Columbus, Ohio 43210 below 60' dam 
614-422-2771 

Q. J. Stober F i s h e r i e s  Research I n s t i t u t e  Devised nets t o  i m -  
Col lege o f  F i she r ies  prove sampling a t  
U n i v e r s i t y  o f  Washington pumped storage 
S e a t t l e ,  WA 981.95 f a c i l i t y  (Ranks Lake, 
206-543-9041 WA) 

Andrew V. S tou t  I n t e r n a t i o n a l  A t l a n t i c  Salmon General i n fo rma t ion  
9 South S t r e e t  
Hanover, NH 03755 
603-643-6525 

Lewis Vogel USFWS Ta i  1 water s tud ies /  
Reservoi r  Study Team non- hydro s i t e s  
F a y e t t e v i l l e ,  AR 72701 
501-521-3063 

Charles Wallburg USFWS General i n fo rma t ion  
East Cent ra l  Reservoi r  

Study Team 
Lexington, KY 
502-843-4376 



SOURCES OF INFORMATION ON FISH TURBINE MORTALITY 
(Cont inued) 

Con tac t  Agency and Address Area o f  E x p e r t i s e  

1  t o n  Wat t  He 
F r 

Don Weitkamp 

ad, F i s h  H a b i t a t  ' P r o t e c t i o n  Tu rb i ne  s t u d i e s  o f  
eshwater and Anadromous salmon m o r t a l i t y /  
D i v i s i o n  p r e p a r i n g  l i t e r a t u r e  
source Branch r e v i  ew 
par tment  o f  F i s h e r i e s  
and Oceans 
0. Box 550 

l i f a x ,  Nova S c o t i a  
J 2S7 
2-426-3606 

Paramet r i cs  L i t e r a t u r e  rev iew/  
13020 Northup Way, S u i t e  8  t u r b i n e  m o r t a l  i ty  
Be l levue ,  WA 98005 work 
206-455-2550 
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