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A b s t r a c t

A m agnetic  induc tion  techn ique  for  m e asu r in g  pro jec ti le  velocities has  been im ple­
m ented  on S a n d ia ’s tw o-stage l ight gas  gun .  T h e  sy s tem  has  been des igned  to  
allow for projectile  velocity m e a su re m e n ts  to  a n  a c cu rac y  of  — 0.2 pe rcen t .  T h e  
velocity system  has been successfully tested  in a velocity range o f  3 .5  k m / s  to  6 5 
k m /s .
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1 Introduction

The purpose of developing a new velocity system for the two-stage light gas gun is 
to provide an accurate and reliable technique for measuring projectile velocities. To meet 
this objective, it is necessary to replace the coaxial pins which are presently used. Coaxial 
pins are generally not accurate for two-stage gun applications, due to the small transit 
time over which the time-interval measurements can be made. Uncertainties arising from 
tilt and pin gaps become a significant fraction of the transit time, increasing the errors 
in velocity measurements. In addition, blow-by preceding the projectile can also pre­
trigger the coaxial pins, reducing reliability. Both of these limitations can be overcome by 
replacing the coaxial pins with a velocity measuring system utilizing a magnetic induction 
technique. An adaptation of a similar system, that is currently in use at Los Alamos 
National Laboratory, has been implemented,^ and is discussed in this paper.

In the following sections, the design and operation of the magnetic induction system 
is described. Typical records obtained over a range of velocities are included along with a 
discussion of errors (including the procedure that is involved in achieving measurements 
to an accuracy of ~  0.2 percent).

2 Physical Set-Up of the Magnetic Velocity Induction System

There are three considerations to the physical set-up of the Magnetic Velocity Induc­
tion System (MAVIS). First, the technical basis for MAVIS is described. Second, the 
procedure for integrating MAVIS with the two-stage catcher tank and target-holder 
assembly is discussed. Third, the alignment of the entire system prior to actual testing is 
discussed. These topics will be addressed in the order listed.

From Figures 1 and 2, it can be seen that MAVIS consists of several separate parts. 
We will discuss the magnets first. They are Ceramic-5 permanent magnets obtained from 
Permag, Inc. Torroidal in shape, the magnets have a residual flux density of 3,800 gauss, 
and a coercive force of 2,400. Nylon forms the cylindrical base upon which all the system 
pieces are mounted. Tolerances are held to ±.025 mm on all dimensions and are closely 
inspected prior to assembly to ensure accurate coil and magnet spacing. Total system 
accuracy is discussed later in this report.

The coils consist of six turns of AWG #32 coated copper wire. All coils are wound 
in the same direction, and connected according to the circuit diagram shown in Figure 
3. A 250 pF capacitor is connected across each of the coil outputs for noise reduction; a 
51 ohm resistor on the output side of the coil is necessary for impedance matching.
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An aluminum cylinder is used to confine the coils, magnets, circuits, and nylon base 
assembly; and also for mounting the system into the two-stage catcher tank. Concentricity 
of all parts is held to ±  .025 mm. A gas stripper is installed at the muzzle-facing end 
of the cylinder. Though it does not prevent gases from flowing through MAVIS, it does 
divert most of the excess gases away from the target and instrumentation. BNC bulkhead 
connectors are currently used in MAVIS, but others may be adapted.

As shown in Figure 4, MAVIS is mounted within the two-stage catcher tank. Concen­
tricity of MAVIS with the bore of the gun is the prime concern in mounting. The target 
assembly is located approximately 175 mm behind MAVIS. Direct mounting of the target 
to MAVIS was attempted at first, but proved to be highly detrimental, due to the effects 
of shock coupling from the target to MAVIS.

In this section, the alignment of MAVIS concentric to the bore of the two-stage gun 
is discussed. Using a small HeNe laser mounted in a four-axis translation mount, the 
beam is first aligned to be concentric and coaxial with the bore of the launch tube. After 
achieving this, the beam is “fine-tuned” to the launch tube bore axis by inserting a small 
lexan cylinder plug, with a .250 mm hole on its axis into the breech end of the launch 
tube. Following alignment of the laser beam to this plug, a similar plug is inserted into the 
muzzle end of the launch tube, providing a small diameter (2 mm) beam in the catcher 
tank. A plug with a 2 mm center hole is inserted into the gas stripper end of MAVIS. 
Adjustments are made to the mounting assembly to which the system is attached until 
the beam is concentric and coaxial with the center hole of the plug. Next, a similar plug 
is inserted into the back end of MAVIS and using a three-point hex-bolt ring, the MAVIS 
housing is adjusted to bring the beam concentric and coaxial through the center hole of 
the rear plug. This assures that the axis of MAVIS and the axis of the launch tube are 
colinear.

Tilt alignment of the target assembly is performed after the concentric and coaxial 
alignment procedures have been completed. An optically flat Dynasil 1000 fused silica 
sample with a spectral mirror scribed with center cross hairs is mounted in a target 
plate, which is then attached to the target holding assembly. The alignment plugs from 
both ends of MAVIS are then removed, providing more light for a larger centering X 
on the cross hairs. First, the target mirror assembly is mounted so that the laser beam 
is at the center of the cross hairs; tilt adjustment screws of the target mount are then 
used to adjust the mirror to reflect a cross-hatch pattern centered on the face of the 
muzzle plug. This assures coaxial alignment of the reflected beam with respect to the 
incoming beam. When the cross-hatch pattern is sufficiently centered on the muzzle plug, 
that plug is removed along with the breech end plug. The same procedure for centering 
the cross-hatch pattern is repeated at the face of the laser tube (using a 3x5 card with 
a 2 mm hole held in front of the laser). Usually, only a minor adjustment is necessary 
for centering. Both the primary and reflected beams are now colinear with the axis of 
MAVIS and the axis of the launch tube. Nominal tilt using this method is 10 milliradians 
or less. Repetition of the above procedures is necessary after each test to ensure coaxial 
alignment of MAVIS, the launch tube and center of the target.
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Currently, oscilloscope records and time-interval counters are used to measure the 
time interval between the coils, and thus projectile velocity. Typical output from the coils 
is about 3-6 volts depending upon projectile velocity. Sweep speeds are set, based upon 
expected projectile velocity, with allowance for approximately 10% variation in projected 
velocity. A positive or negative trigger mode is determined by the north-south orientation 
of the magnets and the direction of the coil windings. Calibration time marks are pre­
photographed prior to the shot to compensate for nonlinearity of the scope horizontal 
time base. After the test, measurements are taken at or near the zero (DC level) crossover 
points of the oscilloscope records to obtain the time interval needed to calculate the 
velocity.

A more direct method involves the use of time-interval counters. Here, a direct 
reading is taken from the indicated time interval, and a velocity is calculated. Nominal 
trigger levels for the time interval counters are 0.3 to 1 volt in magnitude. No difference 
in velocity has been observed in this 0.3 to 1 volt range providing the start and stop 
voltage levels are identical.

3 Theory of Operation

Eddy currents are induced in the metallic impactor as the projectile enters the field 
of the permanent magnet as indicated in Figure 3. The currents flowing in the impactor 
set up their own magnetic field which interacts with the field of the permanent magnet. A 
current is therefore induced in the stationary pick-up coil due to the approaching impactor 
field.^ Figure 5 shows a typical output signal from the three coils. When the impactor 
approaches the pick-up coil, the coil current and therefore the voltage displayed on the 
oscilloscopes increases in the positive direction. The polarity of these signals is arbitrary 
in the sense that it depends upon the direction in which the magnets were installed.

Induced currents in the pick-up coil continue to increase until the center of the 
impactor field is centered in the coil. At this time, the impactor field is crossing the 
pick-up coil winding at a constant rate; therefore, the flux change drops to zero. When 
the above sequence is completed, the induced field of the pick-up coil collapses trying 
to maintain its current, thus driving the output signal rapidly in the negative direction. 
As the pick-up coil output crosses the zero voltage point, the impactor field and hence 
the impactor is centered in the coil. As the impactor passes the coil, its field will again 
cut the pick-up coil windings, but in the opposite direction and with diminishing field 
strength. This drives the pick-up coil output to its maximum negative excursion. As the 
impactor exits the field of the permanent magnet and its distance from the pick-up coil 
increases, the coil output decreases to zero. This process is repeated with each of the 
three magnet/pick-up coil stations.

13
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4 Error Analysis

There are several inherent error components within MAVIS. Probable sources of error 
are physical measurement of coil position, thermal expansion of the nylon components, 
change in magnet or coil position with use, and voltage settings of the time-interval 
counters.

Coil position is known to within ±  0.05 mm prior to assembly, and has subsequently 
been rechecked after use without indication of change. Using the shortest distance between 
coils of 152.4 mm, a 0.05 mm measurement error produces a ±  0.03% error in velocity.

It is not possible for the magnets or the coils to change position without serious 
and obvious damage to MAVIS. Either visible physical damage or deformation of the 
oscilloscope record waveform will indicate such a position change. The magnets may 
fracture after some time; a problem which will usually be indicated by a reduction in 
oscilloscope record voltage amplitudes, as shown in the middle waveform in Figure 5. This 
will be a source of error as it will change the slope of the cross over. A single crack will 
not cause this effect; the magnet must be considerably fragmented to effect an amplitude 
change. This problem necessitates a change in magnets to correct the error.

Using the quoted units for linear thermal expansion^ of nylon (pure 66) of 83 X 
1 0 - 8 / 0  gives a probable error of 0.04% with a ±  5“C temperature change. However, the 
probability of a ±  5®C change in temperature in an environmentally controlled building 
is unlikely; thus, this is a maximum expected error. A final argument against this error is 
the use of Nylatron GS versus nylon. Nylatron GS has a far lower coefficent of thermal 
expansion (Nylatron GS, 9 x 10“ ®/C).‘* All future MAVIS systems will be constructed 
from Nylatron GS material.

Time-interval counter voltage settings give the greatest single source of probable 
error. As can be seen from Figure 5, the slope from peak to peak may cover a time 
interval of approximately 80-200 nanoseconds depending upon projectile velocity. The 
trigger level voltage settings are set to start and stop the counter near the zero crossing 
point (i.e. -0.3 volts). Due to the voltage slope of the signal (200 ns/volts slope) the counter 
trigger level settings are very important. If the input levels are set at ±  100 mv around the 
desired 0.3 volt point and assuming a peak to peak amplitude of 6 volts which is nominal 
for a 4.5 km/s projectile velocity, the error associated with the trigger level would be 
40 ns error over 152.4 mm distance. Over the 152.4 mm distance or 33.9 /is time interval, 
a 40 ns reading error would yield a 0.12% error in velocity. Of course, this error drops 
by a factor of 2 over the 304.8 mm reading, to ~  0.06%.

Totaling these errors we have 0.04% from thermal changes, 0.03% from coil to coil 
measurement errors, and 0.12% from trigger voltage levels; giving 0.19% as a maximum 
error for interval measurements over 152.4 mm. A total over a 304.8 mm distance would 
approach ~  0.13% error. With no temperature change and accurate setting of trigger 
levels, even lower errors should result.

15
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