LEGIBILITY NOTICE

A major purpose of the Technl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
'DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and iocal governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

YONF - BRI

LA-UR-58-190

Los Alamos Natonal Laboralory 8 operated by the Univarsity of Caiifornia tor the United Siates Department of Energy under contract W-7405-ENG-36

LA-UR--88-890
DE88 007834

TITLE DESIGN AND IMPLEMENTATION OF A SUPERCOMPUTER FRAME BUFFER SYSTEM

AUTHOR(3) John D. Fowler, Jr., X-7
Michael McGowen, C-5

SUBMITTED TO Supercomputing '88 Conferenca, Orlando, Florida

DISCLAIMER

This repart was prepared as an 4 court of work sponsored hy an agency of the United States
Cuvernment Neither the United States Gove rnnent nor any agency thereoi. nor any of ther
cmplovees, Makes any wattanty, express or imphed. or assumes any leg ' hahility or respons
bty for the accurany, sompleteness, or usefulness of any information, apparatus, product, or
rrovess disched. ur represents (hat ity use would not infringe privately owned nights Refer
ence herein 1 any specific commeroal pronluct, pru.ess, ut service by trade name, trademark,
manulacturer, or otherwise dues nit necessanly constitute or imply its endorement, recom
mendution, ur favoring by the {Imited States CGovernment or any agency thereol The views
and opiniomy of authors expressed herein do not necewanly state or reflect those ol the
U'nited States Government ur any agency thereof

By ACCADIAnce €' 1™y ariic1g 1he Dybligher recogrizes \hat the U S Qavernme) relains g noneaciutive royaily-r@@ hcensd 10 pubiish or r@produce
the DuBLERAA ' Y IRy CoPIBULOR 1 Yo MIOW Othere 10 d0 80 Int 4 S Governmen) [-0°4-1-11 1)

™w .
P L8 Alamay NSTONA! | aboratary #quests INg! 1he DubLERgr (dentily INig arlicle 8u wOrk performed under the auspices of tNg U § Department ot § nergy

IR
|
L@S A SINNO)S LosAlamos National Laboratory
Los Alamos.New Mexico 87545

TORM NG J18 Bg

I PITY INNTRIRG R O THS Sk N R IMITR

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Design and Implementation of a Supercomputer Frame Buffer System
by
John D. Fowler, Jr., Computational Physics Group
and
Michael McGowen, Computer Network Engineering Group

Los Alamos National Laboratory

ABSTRACT
A 512 by 512 pixel by 8 bits per pixel frame buffer has been
designed, constructed, and installed on a 48 Mbit/s I/0 channel
of a Cray X-MP 4/16 supercomputer. This project was undertaken
to test whether such a system would be useful and, if so, how
it would be used. Supporting roftware providas the ability to
cornvert vector graphics description tiles into raster format,
to show raster movies interactively, ard to show vector files
by real-time converzion from vector to raster formats. We have
shown that real-time animations in an interactive supercomputer

environment are feasible and useful with this system.

Keywords: Supercomputer, Graphics, Frame bhuffevr, Rasterization,
Animation, User lnterface, Scientific Visualization
Fquipment needed: ANverhead projector, VHS viden player

w/color monitor

I. Introduction

Frame buffers came into use in the mid-seventies as an
integral part of raster display systems.[1])[2] The frame buffer,
also called refresh buffer, is the link between the raster
processor and video hardware. It is a memory array that holds a
digital representation of the current picture to be displayed on
the viewing device. Typicaliy, this display memory corresponds
directly to pixels on the screen, with the requisite number of bits
per pixel stcred sequentially in display memory or in separate
physical planes, one plane for each bit per pixel. The key to
frame buffer viability is fast, cheap memory, and a relatively fast
bus for accessing it.

In practice, frame buffers, being near the end of the graphics
chain, have been located in the end-user graphics terminal or
workstation, far away from the main computer which was the source
of the graphical data. With the introduction and increasing
popvlarity of local area networks and graphics workstations, this
distance from the source has both decreased and lengthzned: the
former for calculations for which the workstation has sufficient
power, and the latter for applications which still require
supercomputer power, but the results of which are viewed on the
user's workstation.

For supercomputer applications we have attempted the approach
of putting the frame buffer as close as possib'es to the application
itself, for a number of reasons:

. We are interested in real-time user control of data whileo
his program is running on the supercomputer. The closer the
graphics gets to the main application, the easier it is to build

-2-

system to do this in a highly interactive fashion. The data are
already there, so putting the graphics on the supercomputer
eliminates the burden oI shipping huge amounts of data through the
network.

2. Suitable bandwidths between supercomputers and frame
buffers are becoming available. All Cray supercomputers have a 48
Mbit/s channel, and X-MP models allow the use of an 800 Mbit/s HSX
channel. Updating a 512 by 512 pixel by eight bits per pixel frame
buffer at 24 frames per second requires a channel bandwidth of 50
Mbit/s. 1000 by 1000 by 24 bits at the same rate requires 525
Mbit/s.

3. Given the existence of a supercomputer with an available
channel and interface, such a system is ccst-effective. The only
hardware expense is for the frame buffer itself.

4. Our users show a certain reluctance to learn a new system
of interaction, as would be required with a workstation. They are
already familiar with the operating system on the supercomputer,
Cray Time Sharing System (CTSS), and appear willing to learn a few
simple utilities on this system in order to get the graphics to the
frame buffer.

5. As higher speed channels and switchers beccme available,
along with more and faster CPUs per mainframe, the simple concept
of frame buffers becomes supportable for many users simultaneously
at many locations from a given supercomputer.

Th order to accomplish our objeccive, we had to answer
satisfactorily several questions:

1. Can a time-shared machine in a demanding, multi-user
environment support real)-time graphics? There are at least two

-3=-

issues here: a) Will the operating system allow enough sequential
time-slots to show continuous motion? b) Can graphics algorithms,
which are mainly integer and sequential in nature, be programmed to
run efficiently on a supercomputer optimized for vectorized
floating-point operations?

2. Will the computing cost of such graphics swamp the system
and/or bankrupt the user?

3. Will users have a use for such a system if it can be
developed?

4. What are the required spatial and color resolutions for
typical applications? In particular, what are the tradeoffs
between resolution and frame rate? How well does temporal
antialiasing overcome the effects of jaggies in animations?

5. What sort of real-time control do users need? Is
interaction over a serial network using a dumnb torminal sufficient?

In order to answer these questions, we built and wrote
supporting software for a simple 512 by 512 by eight bits per pixel
frame buffer and attached it to a 48 Mbit/s Cray channel.

II. The User Environment

The user environment at Los Alamos National Laboratory
includes about 30 Cray-1 equivalents, in the form of Cray-1ls and
Cray X-MPs, tied to a common file system and a common user
interface through keyboard corntrol concentrators (kcc's). The
network allows sarial communications at up to 38 kbaud fror the
supercomputer to the user, and a few hundred baud in the other
iirection. In addition, we have a number of Tektronix 4125
terminals supported through the Tektronix DA interface at
effectiva rates »f about 225 kbit/s. Most of our serious users have

-4-

this capability, and this is the standard by which we are judged.
Additionally, a growing number of local area networks and
workstations (mostly Sun 3's) is supported by Ethernet
communication links at peak sustained rates of about 100 kbit/s.

The supercomputers run the Cray Time-Sharing System (CTSS) in
a highly interactive user environment. Most of our users' graphics
are created by programs running on the Crays. Some of the
graphical output is intended to be viewed interactively as the data
are being created, but most of the graphics is written to files or
drawn on film for later viewing.

Most of the graphics consists of vector descriptions
containing frames with 5,000 to 50,000 vectors per frame, but we
see an increasing number of raster images, mainly solid
modeler-based frames and animations from calculations that lend
themselves to raster dispiay, such as fluid flow instabilities.(3)
The advent of a significant amount of 3-dimensional calculations is
starting to have an impact on our graphics systems, due to the
increased amounts of data in 3-D des-:riptions and the need to
manipulate (rotate) and illuminate images in order to perceive them
properly. Nevertheless, our current environmant is predominantly
2-D vector in natire.

IITI. Hardware

In order to demonstrate that our approach was viable in a
larger context then direct Cray connections, the frame huffer was
designed to connect to a kigh Speed Parallel Interface (HSPI)
device, whick is our standard network connaction. Each host in the
Central Computing Facility haes such a device, which converts its
unique I/0 interface to a coumon format. The connection to the

-5

HSPI was done to demonstrate two things: first, that full access
to all the bandwidth available in existing equipment would enable
extreme simplification of the hardware architecture, which in turn
allows enormous gains over current sclution methods; and second,
that the hardware architecture used in image capture systems could
be employed in network processor design, enabling the devices to
sustain full bandwidth transfers of real-time digital video across
a network. This second issue is detailed in another
publication.[4]

The HSPI definition was developed when Los Alamos installed
its first Cray supercomputer and is similar to the I/O channel
definitions of the Cray (the DN/DO and DA/DB channels).

These channels share a fundamental feature: They transmit
exactly that data which is of interest, with no command structure
or format specification imbedded in the data stream. We use this
feature to make the frame buffer system simple and afficient. The
host maintains an array in memory which represents the image to be
displayed. When a frame is complete, the whole array is output to
the frame buffer. By continuously outputting data, the display
achieves animation.

The frame buffer display is organized as an array of 512 by
512 pixels. This corresponds to the memory organization of the
device, which is an array of 512 by 512 bytes. Each byte is an
index to one of 256 colorn from a palette of 262,144. The Cray
channels run at 48 Mbits per second, which allows the transmission
of 24 complete image {rames per second.

The frame buffer consist. of four main sections: The HSPI
front-end, video refresh memory, a micro-program engine, and a

-6=-

video interface. Figure III-1 contains a block diagram of the
frame kuffer. Its architecture addresses the primary function,
which is the movement of data into and cut of memory.
HSPI Front End

The HSPI front end manages the flow control on input from the
HSPI channel ané notifies the micro-program engine when the input
shift register buffers are full. The front end is also responsible
for delineating the data in a fashion that is acceptable by the
memory array. The memory buffers provide a depth of 256 words that
can be strobed in without any other action being taken. The front
end counts 256 strobes and asserts a signal to the micro-controller
notifying it that the buffer is full. This memory is double
buffered so that input can immediately proceed with data being
directed to a second buffer while the first is beina processed.
The HSPI channel also contains a RESET line, asserted by the
transmitter, which is used to signal an abnormal termination or to
provide a resynchronizing event. On RESET, the frame buffer reads
the color table, as described in Part IV.
Video Refresh Memory

Video refresh memory consists of 64k video DRAMs which provide
an independent shift ragister for the input and output of
sequential data. The shift registers are 256 locations deep.
After they are full, the 256 data values can be moved in parallel
into the memory array with one random access memory cycle.
High-speed output is accomplished by loading the shift register
with the 256 memory locations in parallel and then sequentially
shifting the data out. Display memory is single-buffered. Two
separate and independent shift registers with separate clocks allow

-7 -

reading and writing without sparkles of random data being displayed
on the screen.
Video Interface

The video interface convarts the sequential stream of digital
data from refresh memory into analog red, green and blue (RGB)
signals which drive the display monitor. The display is treated as
a 1024 by 1024 image that is updated at 60 frames per second. Each
pixel and each row are displayed twice to convert the 512 by 512
memory organization into display format. The video signal is
RS-343A compatible.
Micro-Prngram Engine

The micro-program engine is responsible for maintaining the
proper sequencing of events such as video timing and generation of
addresses for the next destination of input or the source of the
video output. All timing parameters are programmable so that
adjustments can be made for different display formats. Tnput is a
completely asynchronous event, yet the output timing must Dde
synchronous and the same every time. The micro-program engine cocde
coordinates all activities and in fact generates the control
signals of every function. It is this micro-code that actually
defines the behavirr of the frame buffer.
Connection to Supercompute.

The frame buffer at Los Alamos is connected to a Cray X-MP
4/16 supercomputer having four processors, 16 million 64-bit words
of memory, and a 512 million word solid-state storage device (SSD).
A switch on the frame buffer output directs the video signals to
either a nearby monitor or to a fiber-optic modem “or transmission
to a monitor in a user's office about 150 meters away. The picture

-8 -

quality in the user's office is actually better than that from the

local monitor because of the amount of radio-frequency interference
in the central computing facility. Normally output from the frame

buffer is directed to the user's office.

Users access the frame buffer software by logging onto the
Cray X-MP 4/16 in the usual manner through our standard network,
using any terminal.

IV. Software

The purpose for writing the sofiware was dual: to find
answers to the questions posed in Part I, and, if the answers were
sufficiently encouraging, to provide a basic set of programs for
our users. Therefore, we tried to make the programs useful both
for testing the system and for showing graphics under realistic
situations.

We wrote three programs and one utility. The software was
written using the FORTRAN 77 compiler provided by Cray Research,
Inc., CFT77. Although we have multitasking support on our machines,
we have not used it. We have also used traditional graphics
algorithms (See below for descriptions). We are confident that by
programming in Cray Assembly Language, using multitasking, and/or
using more advanced algorithms, we could substantially better the
performance reported here.

Software support for the frame buffer consists of three
prograﬁs and one library of subroutines. These programs are
concerned with converting vector descriptiors to raster and showing
the results. The Common Graphics System (CGS), supported at Los
Alamo3, uses a vector graphics description embedded in a
system-inde,endent graphics metafile.[5] Consequently, our raster

-Q -

programs were written to read graphics files created with this
system.

Brief descriptions follow of the programs we have written for
this project.

MR (Metafile-to-Raster)

The program MR accepts as input a CGS metafile and creates a
raster movie file, with a minimum of user interaction. The program
prompts the user first for the name of the metafile, then for the
name of the raster file. The program then processes the metafile,
frame-by-frame, into raster frames, placing each frame sequentially
in the raster movie file. At the end of the program, the first
frame of the movie file is created, containing the color lookup
table definition and the number of frames in the file. This
information is needed by VCR, the program that reads and displays
the raster movie file.

The number of different colors in the CGS metafile determines
the color lookup table, which is not known until the metafile has
been processed. Each time a unique color is requested, it is added
to the lookup table. If the maximum of 255 colors is reacheaq,
subsequent colors are drawn in white. The first color index, index
Zero, is reserved for the background color, usually black, and the
next index is alwavs defined as white. The color lookup table is
packed into the rightmost word of each of the first 256 scan lines.
The contents of these words are not displayed.

MR supports the following CGS metaf.le codes:[6] move, draw,
draw marker, set rgb color, hardware text string, set aspect ratio,

new page, and end of data.

_10-

VCR (Video Cassette Recorder)

This program reads raster movie files generated by MR or any
other program that creates a raster file with the proper format,
and sends the output to the frame buffer. Its name comes from its
ability to emulate many of the functions of a video cassette
recorder.

VCR lets the user interactively show a movie in forward or
reverse directions, at normal, fast, or slow speeds, and pause on
any given frame. The movie can also be shown as an endless loop.
PZIP

PZIP reads a CGS metafile, converting it to raster and showing
it under interactive user control. It converts the same CGS
opcodes and transforms at the same vector rates as the program MR,
above. Interactively, it acts much the same as VCR, except for the
fast and reverse commands, with additional commands described
below.

PZIP lets the user zoom and/or pan while in single-frame
(pause) mode or while in slow-motion or forward mode. At any time,
the user can write raster frames from PZIP into a file for
subsequent showing with VCR. Whatever the user secs on the screen
goes into the raster file. One reason for writing a movie file
from PZIP is that VCR is less CPU-intensive than PZIP and has
additional commands.

FBLIB

FBLIR is a library that lets the CGS user create a CGS view
surface which is the frame buffer. Any CGS program can initialize
this view surface at graphics initialization time with a single
subroutire call. Subsequently, CGS commands can go to any

-11-

CGS-supported device and/or to the frame buffer. This is
accomplished by using the CGS GON and GOFF view-surface commands
and by writing the frame-buffer driver as a so-called CGS "XX"
driver.

FBLIB uses run-time memory management to run-time allocate the
262,144-word raster array. Thus, this library adds very little to
the executing program's field length until FBINI'f is actually
called.

Data Structures
The important data structures used by the software reported
here are:
the raster array
the packed raster array
the color index array
The Raster Array

The raster for the frame buffer contains 512 lines of 512
pixels, of which 475 lines of 495 pixals are viewable on the
screen. Each pixel is defined by a six-bit color index.

A time-efficient but space-consuning method of retaining the
raster data is to dedicate a 64-bit Cray word for each pixel, using
a 312-by-512 word array (262,144 words) to hold the raster. This
affords quick access by the program to any pixel, since esch pixel
is just a pair of indices into the array.

A more space-efficient approach would involve packing the
raster into a smaller-sized array. A natural size would be a
22,768-word array containing the pixels packed intn bytes, since
this is the form of the packed raster array required by the
hardware. This approach would require expending shifts, masking,

-12-

and logical operations to add a pixel to the array. This was tried
and found to be too time consuming. The temporal overhead to such
an approach varies with the complexity of the picture, but
typically a 20 percent run-time overhead was imposed by this
approach. Thus it was dropped in favor of the more space-consuming
method, which requires vectorizable packing only at the end of each
frame.

The Packed Raster Array

This array contains 32,768 64-bit words for a 512-by-512 pixel
raster, allowing eight bits per pixel.

At the end of each frame, the raster array is packed into the
packed raster array, an eight-into-one packing. Swapping of
adjacent even and odd bytes is necessary to undo what the network
does to the data between leaving the Cray and arriving at the frame

buffer.
The Color Index Array

This array contains the color index to red, green, and blue
intensity definitions. Each color has a range of 64 shades and
takes six bits of data. Each index, starting with zero and going
to 255, is packed into word 64+*(index + 1) of tha packed raster
array. This informaticn is read by the frame buffer only when a
channel reset occurs, which is sent by VCR on the first frame, and
by PZIP whenever a new index has been added since the previous
franme.
Algorithms

MR, PZIP, and the library FBLIB use Bresenham's line
algorithm(l) for vector~to-rastaer conversions and the
Cohen=-Sutherland clipping algorithm({1l] for clipping.

-13-

Rasterizaticn

Converting vector information to raster typically takes about
half of the time in MR and PZIP. Because most of the vectors are
short in tha CGS metafiles we have used (typically, 90 to 99
percent of the vectors in a given file will be fewer than 10 pixels
long), vectorizing approaches to rasterization such as the
incremental slope method(1l]) have not been very successful. We have
found thual Bresenham's algorithm, although it is not vectorizable,
converts typical) frames faster.
Clipping

The Cohen-Sutherland clipping algorithm was chosen because it
provides for trivial acceptance or rejection uof most vectors
without further testing, when vectnrs ars short.. The required
testing and further clipping when necessary uses about ten percent
of the time in PZIP.
Hardware Characters

We provide hardware character emulation by inserting
five-by-seven bit-map representations of characters directly into
the raster array. Characters at this size are larger than users
expect, based on experience with their terminals, but they are
legible. Most CGS metafiles contain at most only a Zew dozen
hardware characters per frame. We have not attemptad to evaluate
the efficiency of this technique.
V. Results and Discussion

Bscause the showing of raster movies —consists of simply
reading a frame, writing a frame, and checking for user input, it
places very little demand on the CPU resources of the
supercomputer. Showing a movie from a vector description file, on

-14~

the other hand, can be quite CPU intensive. The operations for
showing a vector frame include reading from the CGS metafile,
unpacking and decoding op codes and data, performing the indicated
operations (such as setting color index, hardware text,
accumulating vectors and rasterizing), packing the output array,
and sending it. Because of these differences, we consider the two
processes separately.

Two other timing issues arise. We found using the SSD for
file storage to be much more satisfactory than using a physical
disk unit. In the timings below, we give results for files which
were on a "real" disk and for files on the SSD. The SSD on our
machine is large enough to hold about 15 minutes of raster
information at one time. The other timing issue is the number of
users competing for the four CPUs on a Cray X-MP 4/1€6. We
considered thre: environments: Single-user, where we were the oniy
ones on the machine, Moderate interactivity, involving aboul 15
users in the execution queuve (ready for a CPU), and Heavy, with
about 30 users in the execution queue.

In the tests that follow, our timings indicate throughput as
measurad by timing actions on the Adisplay with a stopwatch. Data
obtained in this manner are more indicative of usefulness than are
data obtained by calculating theoretical performance, by using
system timings, or by timing individual loops in the coude. The
data we measured indicate throughput from reading a file to showing
the image on a monitor.

Raster Movies

Showing raster movies with VCR uses about four percent of a

single CPU, or about two and a half minutes of CPU time per

-15=-

wallclock hour of movie. Because of this low rate of CPU usage and
the presence of four CPUs on an X-MP 4/16, fairly continuous movie

rates are perceived in all but the Heavy environment, where pauses

of about a second occasionally occuir. Table V-1 shows the frame

rates we observad in our tests.

Disk
Environment Real SSD
Single-User 19.3 23.3
Moderate (15 Uswurs) 13.1 20.2
) _
Ratio (Single/Moderate) 1.47 1.15

Table V-1. Frame rates (frames/seécond) for raster movies shown

with VCR under various circumstances.

We have found that in a heavy environment, the ratios shown
above would approximately double.

For SSD files, the performance in a moderate environment is
perceived to be quite satisfactory. Even in a heavy environment,
useful animations can occur. The performance using a real disk is
much more sporadic, depending on who alse is using the disk unit on
which the file resides. The average frame rates quoted above are
far from uniform, and long pauses can occur in an interactive

-16=-

environment using a real disk. Our measurements in the single-user
environment indicate that the disks themselves are capable of
supplying data fast enough for animations. We believe that if we
had a dedicated physical disk unit, performance from it would be
satisfactory even in an interactive environment. Operating system
constraints prevent us from testing this hypothesis.

Vector Movies

Performance issues concerning vector movies are more
complicated because of nonuniformity in frame sizes and in the
information to be converted and displayed. Considerations such as
the number and length distribution of vectors, number of color
changes, and hardware characters complicate the issue.

We have tested the system for a range of vector files covering
most of the spectrum our users typically encounter. The results
for Single-user tests are shown in Fig. V-1. For a moderately
loaded system, the data in Fig. V-1 will shift to the left by about
30 percent. For a heavily loaded system, the shift will be akout
60 percent.

One would expect that the simplest predictor of perZormance
might use an inverse relationship between numher of vectors per
frame and frame rate. The constant of proportionality is the
vector conversion rate (vactors per sacond). The solid line in
Fig. V=1 is such a curve with the constant equal to 170,000 vectors
per second. This appears to fit our observations fairly well over
a wide range cf files. It is reasonable that, if the curve is
normalized near the niddle of the range, frames with few vectors
would fall to the left of the curve due to the frame-constant
overhead of packing arrays, sending data, and waiting for I/O

-17-

completion. For the same reason, large frames, which have low
frame rates, should excead the curve and have higher than average
vector conversion rates.

All other cecnsiderations being equal, the average vector
throughput should increase with frame size. This is true for the
data in Fig. V-1, except for the file with the most data per frame.
This file contained unusually large vectors and also a larger than
average number of coler changes.

Figure V-2 shows a typical frame from the file that had a
frame rate of 17 frames per second in Fig. V-1. This file has
about 7,500 vectors and a few dozen hardware characters per frame.

Qualitatively, users fird the current performance in a
moderate environment to be adequate over the range of frame sizes
considered here. Obviously, performance improvements for frames
with more than abou%t 20,000 vectors would be welcomed. Many of the
large-data frames are zoomed on, to examine details. Wwhen most of
the vectors are removed by clipping, some performance is restored.
Resoluticn and Color Capability

Our observations on resoiut‘on are that 512 by 512 pixels is
gatisfactory in animations because of temporal antialiasing.
caggies can be seen but are not obtrusive. For viewing still
frames, this resolution is marginal, especially for users who are
accustomed to seeing images at about twice this linear resolution.
The ability to zoom and pan interactively to magrify fine detail in
vector images partially alleviates this problem.

Most of our users' vector description files contain just a few
colors, so limitations on color selection are not an issue. For
purely raster images, howaver, 256 colors is often not 2anough.

-18-

Sometimes useful information can be conveyed within these color
limitations, but realistic image rendering is difficult or
impossilile.

Cost of Use

Our user accounts are sufficient that no one has trouble
paying for time to show raster movies with VCR. Running PZIP, on
the other hand, can be costly. A wallclock minute with PZIP
typically is almost a full CPU minute. Nevertheless, we do show
frames from CGS metafiles about f fteen times more efficiently (in
CPU utilization) than does CGS it:c:lf when sending the same frames
to a Tektronix 4115 terminal. Users with limited accounts can limit
their charges by running MR or PZIP only once to create a raster
file for subsequent extended viewing with VCR.

V.. Conclusions

Based on over six months' uxperience using the system
Jdescribed here, we offer the following conclusions:

1. A Cray X-MP 4/16 running CTSS in moderate to heavy
intaractive environment can support real-time anim.tion from raster
graphics files. Animations using interactive zoom and pan from
vector description files are useful, buct the graphics algorithms
and coding we currently use for rasterization and clipping needa to
be improved in order to make rendering of large vector framei more
interactive and less costly.

2. The computing costs of such graphics are not beyond the
means of most of our users, nor does the CPU load in driving a
single frame buffer overtax the supercomputer. We believe that
future supercomputers, witn more processors and power, will be able
to support many such users simultaneously.

~19-

3. Users will be quick to take advantage of the animation
capabilities of the system described here, if it is located
sufficiently nearby. We have found that most of our users work on
the same hallway where the frame buffer's output monitor is
located. Some users who generate raster animations and have no
viewing alternative except film come from large distances (up to
several miles) to use the frame buffer. The kev to user support is
getting the capability into their cffices.

4. Spatial and color limitations in the curreat system
res* ict its use to animations of wire-frame images, line drawings,
and raster images with fewer than 256 colors. Almost all of our
users' graphics fall within these limits.

5. User interaction with the frame buffer system over a 9600
baud line is sufficient. Although network limitations prevent use
of a mouse or other locator cevice, we find that interactive
features such as zoom and pan can be accomplished by having the
user initiate the action with a single keystroke, and having the
action continue until another keystroke is issued. A more natural
interface £hould be developed when the network allows it.

6. Although enthusiasm has been high for the current system,
users would like higher resolution, support for eight bits of red,
graen, and blue, higher speed, and more interactivity. We also
believe that thrae-dimensional polygon rendering suppuort would be
found useful by those involved in three-dimensional calculaticns.

We view this system as a step closer to the goal of scientific
visualization, which is to provide the user with real-time

visualization and zontrol of his calculations.

-20-

Acknowledgements

“he authors wish to thank Joseph Rieken, of Los Alamos

National Laboratory, for providing the CTSS channel driver, Steve

Poole, of the Center for Scientific Computer Visualization, Houston,

TX, for supplying an efficient packing subroutine, and Digital

Equipment Corporation for providing hardware support for the

prototype frame buffer board.

References

1.

Foley, J. D. and A. "an Dar ‘spantals of Interactive Computer
Graphics, Addison-Wesley, ». “g, Mass., 1983.

Newman, W. M. and R. F. Sproull, Principles of Interactive
computer Ggraphics, McGraw-~Hill, New York, 1973.

Winkler, K-H. A., J. W. Chalmers, S. W. anodson, P. R. Woodward,
ar? N, J. Zabusky, "A Numerical Laboratory," Physics Today 40(10),
October 1987, pp. 28-37.

Winkler, K-H. A., S. W. Bodson, J. W. Chalmers, M. McGowen, and D.
E. Tolmie, "Ultra-Speed Grapnics for Computational Science," Cray
Channels 9(2), Summer 1987, pp. 4-9.

Reed, T. N., "Experiences in the Design and Support of a Graphics
Devicae Driver Interface," Eurographics'S81 Proceedings, September
1931, pp. 281-289.

Reed, T. N., "A Metafile for Efficient Sequential and Random

Display of Graphics," Computer Graphics 16(3), July 1982, pp.
39-43.

-21-

[, .t
T 2] ORENS
Leadll B P
Fig. ITI-1. Block Diagram of Frame Buffer

40 -
30 -

k vectors/

frame

20

10

0 T T T T
0 5 10 1 20 25
Frame Rate (frames/sec)
Fig. V-1. Frame rates for five CGS metafiles using PZIP in a

single-user environment. Numbers in parentheses are
average vactor rates per frame for the indicated
metafiles. Solid line represents the equat:i-n:
vectors/frame = 170,000/ (frames/sec). In a moderate;y
interactive environment, frame rates would be reduced

hy about 30 percent.

PRESSURE

[
1 | i
il
0.00 l I |
33.00 : ﬁ..._
36.03 - ! il
x39.06 0 0 %!r "~-w~
42.09 - i
45.12 - nill
48.15 - “JJ T
51.18 - h J !
. {
54.21 - U i
57.24 - UJM*JJ
§0.27 - “JJJJJ

63.30 . N N N NN

.00 4‘ 0 ,

Fig. V=-2. A frame from an animation Sequence containing aico,~

7,500 vectors and 8o hardware characters,

