
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Nthough a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

Los Alamos Nallonal LaIJomOO’ IS opamad W tn. Unlvmlw of Callfofm ~Or !~. Unll@ slam ~wlmn~ of EnetgY under comfacl W-7405 -ENG-3S

LA-UR--88-89O

DE88 007834

TITLE DEsI~ AND IMPLEMENTATION OF A SUPERCOMPUTERFRAM BUFFERSYSTEM

AuTHOR43) John D. Fowler, Jr., X-7
MichaelMcGoven,C-5

‘88 Cm famnca, Orlando,FloridaSUBMITTED TO Suparcoqmt ins

D1!N’I.AIMER

Los
n m

AuamilosLos Alamos Natiorlal Laboratory
Los Alamos,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Design and Implementation of a Supercomputer Frame Buffer System

by

John D. Fowl@r, Jr., Computational Physics Group

and

Michael McGowen, Computer Network Engineering Group

Los Alamos National Laboratory

ABSTWCT

A 512 by 512 pixel by 8 bits per pixel frame buffer has been

designed, constructed, and installed on a 48 Mbit/s 1/0 channel

of a Cray X-MP 4/16 supercomputer. This project was undertaken

to test whether such a system would be useful and, if so, how

it would be used. Supporting noftwaro providos the ability to

cor,vertvector graphics description tiles into raster format,

to show raster movies interactively, ard to show vector files

by real-time conversion f?-omvector to raster formats, We have

shown that real-time animations in an interactive supercomputer

environment are feasible and useful with this system.

Keywords: Supercomputer, Graphics, Frame buffet’,Rasterization,

Animation, User Interface, Scientific Visualization

Fquipmont needed: Overhead projector, VHS video player

w/color monitor

I. Introduction

Frame buffers came into use in the mid-seventies as an

integral part of raster display systems.[1][2] The frame buffer,

also called refresh buffer, is the link between the raster

processor and video hardware. It is a memory array that holds a

digital representation of the current picture to be displayed on

the viewing device. Typicaliy, this display memory corresponds

directly to pixels on the screen, with the requisite number of bits

per pixel stc,redsequentially in display memory or in separate

physical planes, one plane for each bit per pixel. The key to

frame buffer viability is fast, cheap memory, and a relatively fast

bus for accessing it.

In practice, frame buffers, being near the end of the graphics

chain, have been located in the end-user graphics terminal or

workstation, far away from the main computer which was the sousce

of the graphical data. With the introduction and increasing

popularity of local area networks and graphics workstations, this

distance from the source has both decreased and lengthened: the

former for calculations for which tho workstation has sufficient

power, and tha latter for applications which still require

supercomputer power, but the results of which are viawmi on the

user’s workstation,

For supercornputerapplications w. have attempted the appl:oach

of putting the framo buffer as close as possib?e to the application

itself, f-r a nu~er of r~a~ons:

!,.● We are interet$turlin r@al-t;Lme user control of data whilo

his program is running on t..hesupercomputer. The closer the

graphics qets to the main application, the easier it is to buill I

-2-

L system to do this in a highly interactive fashion. The data are

already there, so putting the graphics on the supercomputer

eliminates the burden 01 shipping huge amounts of data through the

network.

2. Suitable bandwidths between supercomputers and frame

buffers are becoming available. All Cray supercomputers have a 48

Mbit\s channel, and X-MP models allow the use of an 800 Mbit/s HSX

channel. Updating a 512 by 512 pixel by eight bits per pixel frame

buffer at 24 trames per second requires a channel bandwidth of 50

Mbit/s. 1000 by 1000 by 24 bits at the same rate requires 625

Mbit,/so

:3. Given the existence of a supercomputer with an available

channel and interface, such a system is cost-effective. The only

hardware expense is for the frame buffer itself.

4. Our users show a certain reluctance to learn a new system

of interaction, as would be required with a workstation. They are

already familiar with the operating system on the supercomputer,

Cray Time Sharing System (CTSS), and appear willing to learn a few

sim’plautilities on this system in order to get the graphics to the

frame buffer.

5, As higher speed channels and switchers become available,

along with more and faster CPUS per mainframe, the simple concept

of framo bufforrnbecomes supportable for many users simultaneously

at many locations from a given supercomputer.

1:1order to accomplish our objeccive, we had to answur

satisfactorily several questions:

1. Can a time-shared machine in a demanding, multi-user

#environmentsupport rea?-time graphics? There are at least two

-3-

issues here: a; Will the operating system allow enough sequential

time-slots to show continuous motion? b) Can graphics algorithms,

which are mainly integer and sequential in nature, be programmed to

run efficiently on a supercomputer optimized for vectorized

floating-point operations?

2. Will the computing cost of such graphics swamp the system

and/or ba~lkruptthe user?

3. Will users have a use for such a system if it can be

developed?

4. What are the required spatial and color resolutions for

typical,applications? In particular, what are the tradeoffs

between resolution and frame rate? How well does temporal

antialiasing overcome the effects of jaggies in animations?

5. What sort of real-time control do users need? Is

interaction over a serial network using a dumb tarminal sufficient?

In order to answer these questions, we built and wrote

supporting software for a simple 512 by 512 by eight bits per pixel

frame buffer and attached it to a 48 Mbit/s Cray channel.

11. The User Environment

The user environment at Los Alamos National Laboratory

includes about 30 Cray-1 equivalents, in the form of Cray-ls and

Cray X-MP8, tied to a common file system and a common user

interface through keyboard coritrolconcentrators (kcc’s). The

network allows surial communications at up to 38 kbaud fror the

supercomputer to tha user, and a few hundred baud in the other

iirectioni In addition, we have a number of Tektronix 4125

terminals supported through the Tektronix D’”Ainterface at

effective rates ~f about 225 kbit/s. Most of our serious users have

-4-

this capability, and this is the standard by which we are judged.

Additionally, a growing number of local area networks and

workstations (mostly Sun 3’s) is supported by Ethernet

communication links at peak sustained rates of about 100 kbit/s.

The supercomputers run the Cray Time-Sharing System (CTSS) in

a highly interactive user environment. Most of our users! graphics

are created by programs running on the Crays. Some of the

graphical output is intended to be viewed interactively as the data

are being created, but most of the graphics is written to files or

drawn on film for later viewing.

Most of the graphics consists of vector descriptions

containing frames with 5,000 to 50,000 vectors per frame, but we

see an increasing number of raster images, mainly solid

modeler-based frames and animations from calculations that lend

themselves to raster display, such as fluid flow instabilities.[3]

The advent of a significant amount of 3-dj.mensionalcalculations is

starting to have an impact on our graphics systems, due to the

increased amounts of data in 3-D dest?riptionsand the need to

manipulate (rotate) and illuminate im.~gesin order to perceive them

properly. Neverthelesst our current environment is predominantly

2-D vectar in nat~kre.

III. Hardware

In order to den~onstratethat our approach was viable in a

larger context then direct Cray connections, the frame buffer was

designed to connect ‘to a High Speed Parallel Interfaca (HSPI)

device, which is our standard network connation. Each host in the

Central Computing Facility has such a device, which converts its

unique 1/0 interface to a coumon format. The connection to the

-5-

HSPI was done to demonstrate two things: first, that full access

to all the bandwidth available in existing equipment would enable

extreme simplification of the hardware architecture, which in turn

allows enormous gains over current .sGlutionmethods; and second,

that the hardware architecture used in image capture systems could

be employed in network processor

sustain full bandwidth transfers

a network. This second issue is

publication.[4]

design, enabling the

of real-time digital

detailed in another

devices to

video across

The HSPI definition was developed when Los Alamos installed

its first Cray supercomputer and is similar to the 1/0 channel

definitions of the Cray (the DN/DO and DA/DB channels).

These channels share a fundamental

exactly that data which is of interest,

or format specification imbedded in the

feature to make the frame buffer system

host maintains an array in memory which

feature: They transmit

with no command structure

data stream. We use this

simple and sfficient. The

represents the image to

displayed. When a fram~ is complete, the whole array is output

the frame buffer. By continuously outputting data, the display

achieves animation.

be

co

The frame buffer dirnplayis organized as an array of 512 by

512 pixels. This corresponds to the memory organization of the

device, which is an array of 512 by 512 bytas. Each byte is an

index to one of 256 colorn from a palette of 262,144. The Cray

channels run at 48 Mbits par second, which allows the transmission

of 24 complete image frames per second.

The frame buffer cons.~st.of four main sections: The HSP1

front-end, video refresh memory, a micro-program eriqine,and a

-6-

video ~.nterface. Figure III-1 contains a block diagram of the

frame buffer. Its architecture addresses the primary function,

which is the movement of data into and ct~tof memory.

HSPI Front End

The HSPI front end manages the flow control on input from the

HSPI channel and notifies the micro-program engine when the input

shift register buffers are full. The front end is also responsible

for delineating the data in a fashion that is acceptable by the

memory array. The memory buffers provide a depth of 256 words that

can be strobed in without any other action being taken. The front

end counts 256 strobes and asserts a signal to the micro-controller

notifying it that the buffer is full. This memory is double

buffered so that input can immediately proceed with data being

directed to a second buffer while the first is being processed.

The HSPI channel also contains a RESET line, asserted by the

transmitter, which is usstdto signal an abnormal termination or to

provide a desynchronizing event. On RESET, the frame buffer reads

the color table, as described in Part IV.

Video Refresh Memory

Video refresh memory consists of 64k videa DRAMs vhich provide

an indapandemt shift ragister for the input and output of

sequential data. The shift registers are 256 locations deep.

After they are full, tho 256 data values can be moved in parallel

into the memory array with one random accass memory cycle.

Higl~-speed output is accomplished by loading the shift register

with the 256 memory locations in parallel and then sequentially

s+~fting the data out. Display memory is single-buffered. Two

separate and independent shift registers with separate clocks alI(;J

-7-

reading and writing without sparkles of random data being displayed

on the screen.

Video Interface

The video interface converts the sequential stream of digital

data from refresh memory into analog red, green and blue (RGB)

signals which drive the display monitor. The display is treated as

a 1024 by 1024 image that is updated at 60 frames per second. Each

pixel and each row are displayed twice to convert the 512 by 512

memory organization into display format. The video signal is

Rs-343A compatible.

Micro-Program Engine

The micro-program engine is responsible for maintaining the

proper sequencing of events such as video timing and generation of

addresses for the next destination of input or the source of the

video output. All timing parameters are programmable so that

adjustments can be made for different display formats. Tnput is a

completely asynchrono~usevent, yet the output timing must be

synchronous an~ the same every time. The micro-program engine code

coordinates all activities and in fact generates the control

signals of every function. It is this micro-code that actually

defines the behavirr of the frame buffer.

Connection to Supercomputel

The frame buffer at Los Alamos is connected to a Cray X-MP

4/16 supercomputer having four processors, 16 million 64-bit words

of memory, and a 512 million word solid-state storage device (SSD).

A switch on the frame buffer output directs the video signals to

either a nearby monitor or to a fiber-optic modem ‘:ortransmission

to a monitor in a user’s office about 150 meters away. The picture

-8-

quality in the user‘s office is actually better than that from the

local monitor because of the amount of radio-frequency interference

in the central computing facility. Normally o~tput from the frame

buffer is directed to the user’s office.

Users access the frame buffer software by logging onto the

Cray X-MP 4/16 in the usual manner throuqh our standard network,

using any terminal.

Iv. Software

The purpose for writing the soft.ware~was dual: to find

answers to the questions posed in Part I, and, if the answers ‘were

sufficiently encouraging, to provide a basic set of programs for

our users. Therefore, we tried to make the programs useful both

for testing the system and for showing graphics under realistic

situations.

We wrote three programs and one utility. The software was

written using the FORTRAN 77 compiler provided by Cray Research,

Inc., cFT77. Although we have multitasking support o.nour machines,

we have not used it. We have also used traditional graphics

algorithms (See below for descriptions). We are confident that by

programming in Cray Assembly Language, using multitasking, and/or

using more advanced algorithms, we could substantially better the

performance reported here.

Software support for the frame buffer consists of three

progra& and one library of subroutines. These programs are

concerned with converting vector descriptio~s to ranter and showing

the results. The Common Graphics System (CGS), supported at Los

Alamos, uses a vector graphics description embedded in a

system-inde~endent graphics metafile.[5] Consequently, our raster

-9-

programs were written to read graphics files created with this

system.

Brief descriptions follow of the programs we have written for

this project.

MR (Metafile-to-Raster)

The program MR accepts as input a CGS metafile and creates a

raster movie file, with a minimum of user interaction. The program

prompts the user first for the name of the metafile, then for the

name of the raster file. The program then processes the metafile,

frame-by-frame, into raster frames, placing each frame sequentially

in the raster movie file. At the end of the program, the first

frame of the movie file is created, containing the color lookup

table definition and the number of frames in the file. This

information is needed by VCR, the program that reads and displays

the raster movie file.

The number of different colors in the CGS metafile determines

the color lookup table, which is not known until the metafile has

been processed. Each time a unique color is requested, it is added

to the lookup table. If the maximum of 255 colors is reache~,

subsequent colors are drawn in white. The first color index, index

zero, is reserved for the background color, usually black, and the

next index is always defined as white. The color lookup table is

packed into the rightmost word of each of the first 256 scan lines.

The contents of these words are not displayed.

MR supports the following CGS metaf;.lecodes:[6] move, draw,

draw marker, set rgb color, hardware text string, set aspect ratio,

new page, and end of data.

-1o-

VCR (Video Cassette Recorder)

This program reads raster movie files generated by MR or any

other program that creates a raster file with the p~-operformat,

and sends the output to the frame buffer. Its name comes from its

ability to emulate many of the functions of a video cassette

recorder.

VCR lets the user interactively show a movie in forward or

reverse directions, at normal, fast, or slow speeds, and pause on

any given frame. The movie can also be shown as an endless loop.

PZIP

PZIP reads a CGS metafile, converting it to raster and showing

it under interactive user control. It converts the same CGS

opcodes and transforms at the same vector rates as the program Ml?,

above. Interactively, it acts much the same as VCR, except for the

fast and reverse commands, with additional commands described

below.

PZIP lets the user zoom and/or pan while in single-frame

(pause) mode or while in slow-motion or forward mode. At any time,

the user can write raster frames from PZIP into a file for

subsequent showing with VCR. Whatever the user sees on the screen

goes into the raster file. One reason for writing a movie file

from PZIP is that VCR is less CPU-intensive than PZIP and has

additional commands.

FBLIB

FBLIB is a library that lets the CGS user create a CGS view

surface which ~s the frame buffer. Any cGS program can initialize

this view surface at graphics initialization time with a slnqle

subroutir,ecall. Subsequently, CGS commands can go to any

-11-

CGS-supported device and/or to the frame buffer. This is

accomplished by using the CGS GON and GOFF view-surface commands

and by writing the frame-buffer driver as a so-called CGS “XX”

driver.

FBLIB uses run-time memory management to run-time allocate the

262,144-word raster array. Thus, this library adds very little to

the executing programfs field length until FBINI’fis actually

called.

Data Structures

The important data structures used by the software reported

here are:

the raster array

the packed raster array

the color index array

The Raster Array

The raster for the frame b~ffer contains 512 lines of 512

pixels, of which 475 lines of 495 pixmls are viewable on the

screen. Each pixel is defined by a six-bit color index.

A time-efficient but space-consuuinq method of retaining the

raster data is to dadic:ate a 64-bit Cray word for each pixel, using

a .512-by-512word array (262,144 words) to hold the raster. This

affords quick access by the program to any pixel, since e~ch pixel

is just a pair of indices into the array.

A more space-efficient approach would involve packing the

raster into a smaller-sized array. A natural size would be a

22,768-word array containing the pixels packed into bytes, since

this is the form of the packed raster array requ~red by the

hardware. This approach would require expending shifts, masklnq,

-12-

and logical operations to add a pixel to the array. This was tried

and found to be too time consuming. The temporal overhead to such

an approach varies with ;he complexity of the pictme, but

typically a 20 percent run-time overhead was imposed by this

approach. Thus it was dropped in favor of the more space-consuming

method, which requires vectorizable packing only at the end of each

frame.

The Packed Raster Array

This array contains 32,768 64-bit words for a 512-by-512 pixel

raster, allowing eiqht bits per pixel.

At the end of each frame, the raster array is packed into the

packed raster array, an eight-into-one packing. Swapping of

adjacent even and odd bytes is necessary to undo what the network

does to the data between leaving the Cray and arriving at the frame

buffer.

The Color Index Array

This array contains tho color index to red, green, and blue

intensity definitions. Each color has a ra~ge of 64 shades and

takes six bits of data. Each index, starting with zero and goil]g

to 255, is packed into word 64*(index + 1) of tha packed ranter

array. This information is read by the frame buffer only when a

channel reset occurs, which in sent by VCR on the first frame, and

by PZIP whenever a new index has been added since the previous

frame.

Algorithms

MR, PZIP, and the library FBLIB use Bresenham’s line

algorithm[l] for vector-to-raster conversions and the

Cohen-Sutherland clipping algorithm(l] for clipping.

-13-

Rasterizaticn

Converting vector information to raster typically takes about

half of the time in MR and PZIP. Because most of the vectors are

short in the CGS metafiles we have used (typically, 90 to 99

percent of the vectors in a given file will be fewer than 10 pixels

long), vectorizing approaches to rasterization such as the

incremental slope method[l] have not been very successful. We have

found that Bresenham’s algorithm, although it is not vectorizable,

converts typical frames faster.

Clipping

The Cohen-Sutherland clipping algorithm was chosen because it

provides for trivial acceptance or rejection of most vectors

without further testing, when vectors are short. The required

testing and further clipping when necessary uses about ten percent

of the time in PZIP.

Hardware Characters

We provide hardware character emulation by inserting

five-by-seven bit-map representations of characters directly into

the raster array. Characters at this size are larger than users

expect, based on ●xperionca with their terminals, but they are

legible. Most CGS matafiles contain at most only a few dozen

hardware characters por frame, W. have not attsmpted to evaluate

the efficiency of this technique,

v. Reaultm and Discussion

Bacauso the showing of raster movies consists of simply

reading a frame, writing a frame, and checking for user input, it

places very little demand on the CPU resources of the

supercomputer. Showing a movie from a vector description file, 011

-14-

the other hand, can be quite CPU intensive. The operations for

showing a vector frame include reading from the CGS metafile,

unpacking and decoding op codes and data, performing the indicated

operations (such as setting color index, hardware text,

accumulating vectors and rasterizing), packing the output array,

and sending it. Because of these differences, we consider the two

processes separately.

Two other timing issues arise. We found using the SSD for

file storage to be much more satisfactory than using a physical

disk unit. In the timings below, we give results for files which

were on a “real” disk and for files on the SSD. The SSD on our

machine is large enough to hold about 15 minutes of raster

information at one time. The other timing issue is the number of

users compatlng for the four CPUS on a Cray X-MP 4/26. We

considorad thra~ ●nvironments: Single-usar, whara wa were the oniy

onas on tha machina, Moderate interactivity, involving about 15

usars in tho ●xocution qua~l~(ready for a CPU), and Haavy, with

about 30 users in the execution quauo.

In the tests that follow, our timings indicata throughput as

measurad by timing actions on tha display with a stopwatch. Data

obtained in this manner are more indicative of usefulness than are

data obtainod by calculating theoretical performance, by using

aystom timings, or by timing individual l,oops in the coda, The

data w. maaourod indicats throughput from reading a fila to showing

th- imago on a monitor.

Raster Moviao

Showing raster movi~s with VCR USQB about four percent of a

single CPU, or about two and a half minutes of CPU time per

-15-

wallclock hour of movie. Because of this low rate of CPU usage and

the presence of four CPUS on an X-MP 4/16, fairly continuous movie

rates are perceived in all but the Heavy environment, where pauses

of about a second occasionally Occui.. Table V-1 shows the frame

rates we obsenwd in our tests.

Environment
*

Single-Usur 19.3 23.3

Moderate (15 UA&rs) I 13.1 I 20.2

t

Ratio (Single/Moderate) II1.47 1.15

Tabla V-1. Frame rat-s (frames/sacond) for raster movies shown

with VCR under various circumstances.

Wa h,avofound that in R heavy ●nv~ronmant, the ratjos shown

above would approximately double.

For SSD files, tho performance in a moderato environment is

perceived to b. quite satisfactory. Even in a heavy environment,

useful animation can occur. The performance usiflga real disk is

much more sporadic, depending on who else is using the disk unit on

which the file resides. Tha average frame rates quoted above are

far from uniform, and lonq pauses can occur in an interactive

-16-

environ~fientusing a real disk. Our measurements in the single-user

environment indicate that the disks themselves are capable of

supplying data fast enough for animations. We believe that if we

had a dedicated physical disk unit, performance from it would be

satisfactory even in an interactive environment. Operating system

constraints prevent us from testing this hypothesis.

Vector Movies

Performance issues concerning vector movies are more

complicated because of nonuniformity in frame sizes and in the

information to be convertad and displayed. Considerations such as

the number and length distribution of vectors, number of color

changes, and hardware characters complicate the issue.

We have tested the wystem for a range of vector files covering

most of the spectrum our users typically encounter. The results

for Single-user tests are shown in Fig. V-1. For a moderately

loaded system, the data in Fig. V-1 will shift to the left by about

30 percent. For a heavily loaded system, the shift will be about

60 percent.

One would exp~ct that the simplest predictor of performance

might use an inverse relationship between n~’rnharof vectors per

frame and frame rate. The constant of proportionality is the

vector conversion rata (vectors per second). The solid line in

Fig. V-1 is such a curve with tho constant equal to 170,000 vectors

per second. This appears to fit our observations fairly well over

a wide range cf files. It is reasonable that, if the curve is

normalized near the middle of the range, frameu with few vectors

would fall to the left of the curve due to the frame-constant

overhead of packing arrays, sending data, and waiting for 1,/0

-17-

completion. For the same reason, large frames, which have low

frame rates, should exceed the curve and have higher than average

vector conversion rates.

All other considerations being equal, the average vector

throughput should increase with frame size. This is true for the

data in Fig. V-1, except for the file with the most data per frame.

This file conkained unusually large vectors and also a larger than

average number of coior changes.

Figure V-2 shows a typical frame from the file that had a

frame rate of 17 frames per second in Fig. V-1. This file has

about 7,500 vectors and a few dozen hardware characters per frame.

Qualitatively, users find the current performance in a

moderate environment to be adoquats over the range of frame sizes

considered here. Obviously, performance improvements for frames

with more than abou% 20,000 vectors would be welcomed. Many of the

large-data frames are zoomed on, to examine details. When most of

the vectors are removed by clipping, some performance is restared.

Resolution and Color Capability

Our observations on rasolut~.onare that 512 by 512 pixels is

satisfactory in animations bocauae of temporal antialiasing.

;aggi@s can be %eon but ars not obtrusive. For viewing still

frames, this re~~olutionis marginal, ●spatially for use~s who are

accustomed to seeing images at about twice this linear resolution.

The ability to zoom and pan interact~v-ly to magnify fine detmil in

vector images partially alleviates this problem.

Most of our users’ vector description files contain just a few

colors, so limitations on color selection are not an issde. For

purely raster imaqes, howaver, 256 colors is often not anough.

-18-

Sometimes useful information can be conveyed within these color

limitations, but realistic image rendering is difficult or

impossible.

Cost of Use

Our user accounts are sufficient that no one has trouble

paying for time to show raster movies with VCR. Running PZIP, on

the other hand, can be costly. A wallclock minute with PZIP

typically is almost a full CPU minute. Nevertheless, we do show

frames from CGS metafiles abo’~tf fteen times more efficiently (in

CPU utilization) than does CGS itself when sending the same frames

to a Tektronix 4115 tgnninal. Users with limited accounts can limit

their charges by running MR or PZIP only once to create a raster

file for subsequent extended viewing with VCR.

v:”. Conclusions

Based on over six monthst experience using tha system

:Iescribedhere, wc offer th~ following conclusions:

1. A Cray X-MP 4/16 running CTSS in moderate to heavy

interactive environment can support real-timo anim..tionfrom raster

graphics files. Animations using interactive zoom and pan from

vector description files are useful, but the graphics algorithms

and coding wa currently use for rasterlzation and clipping need to

be improvad in ordar to make renderlnq of large vector framea more

interactive and less costly.

2. The computing coats of such graphics are not beyond the

means of most of our users, nor doos the CPU load in driving a

single frame buffer overtax the supercomputer. We believe that

futura supercomput,rs, with more processors and power, will be able

to support many such users simultaneously.

-19-

3. Users will.be quick to take advantage of the animation

capabilities of the system described here, if it is located

sufficiently nearby. We have found that most of our users work on

the same hallway where the frame buffer’s output monitor is

located. Some users who generate raster animations and have no

viewing alternative except film come from large distances (up to

several miles) to use the frame buffer. The key to user support is

getting the capability into their cffices.

4. Spatial and color limitations in the current system

rep+ ict its use to animations of wire-frame images? line drawings,

and raster images with fewnr than 256 colors. Almost all of our

users’ graphics fall within these limits.

5. Usar interaction with tha frama buffer system over a 9600

baud line is sufficient. Although network limitations prevent use

of a mouse or other locator device, we find that interactive

features such as zoom and pan can be accomplished by having the

user initiate the action with a s?.nglekaystroke, and having the

action continuo until another keystroka is issued. A mora natural

interface chould b. davalopad when tha network allows it.

6. Although ●nthusiasm has bom high for the current system,

users would liko higher resolution, support for eight bits of red,

gresn, and blue, higher sp,ed, and more interactivity. We a190

boliova that thraa-dimmsional polygon randering support would be

found usaful by those involved in threa-dimensional calculations,

W. view this systam as a step closer to the goal of scientific

visualization, which is to provida the user with real-time

visualization and ~ontrol of his calculations.

“20-

Acknowledgements

The authors wish to thank Joseph Rieken, of Los Alamos

National Laboratory, for providing the CTSS channel driver, Steve

Poole, of the Center for Scientific Computer Visualizatiotl, Houston,

TX, for supplying an ●fficient packing subroutine, and Digital

Equipment Corporation for providing hardware support for the

prototype frame buffar board.

References

1.

2.

3.

4.

5.

6.

Folsy, J. D. and A. ‘ranDay a~~ ‘U2QU&&x

t Addison-Woaloy, kb xj, Mass., 1983.

Newman, W. M. and R. F. Sproull,

~, McGraw-H~~l, Naw ~ork, 1973.

Winklor, K-H. A., J. W. Chalmerm, S. W. ~odscm, P. R. Woodward,

anflN. J. Zabusky, ‘A Numerical Laboratory,W Physics Today 4O(10),

October 1987, pp. 28-37.

Winkler, K-H. A., S. W. Eodson, J. W. Chalmers, M. McGowen, and D.

E. Tolmie, “Ultra-Speed Graphics for Computational Science,t’ Cray

Channels 9(2), Summr 1987, pp. 4-9.

Re@d, T. N., “Experiences in the Design and Support of a Graphics

Devico Driver Interface,~~Eurographicsi91 Proceedings, September

1931, pp. 281-289.

Re@d, T. N., ‘~A Metafile for Efficient Sequential and Random

Display of Graphics,‘tComputer Graphics 16(3), July 1982, pp.

39-43.

-21-

I (2==-=
“F

$!mnm

i L
&&il--

Fig. 111-1. Block Diagram of Frame Buffer

40

30

k VOCtOfS/

20

10

bctomhd

● ●

o
0 5 10 15 20 26

FrameRate (framedwc)

Fig. V-1. Frame rates for five CGS metafiles using PZIP in a

single-user environment, Numbers in parentheses are

average vactor rates per frame for the indicated

metafiles. Solid line represents the equat~;n:

vectors/frame = 170,000/(frames/see). In a moderately

interactive environment, frame rates would be reduced

by about 30 percent.

PRESSURE

0.00
33.00

36

54,21 .

57.24 .

60.27 -

63.30 \\\\\Y

5.004 .003, 002, 001.00C Co
Y

F~g, ‘:-2, A frame from an animation sequence containing ~~~i~

7,500 vectors arid 80 hardware characters.

