
^ NOTICE ^ MNONI4!

ruwriows OF THIS REPORT ARE ILLEGIBLE It
"a* b#®n rwi*ciilSiTHSTSrtavi^^
■kflity8 P#rmH 0,6 lr-a,,wt ^ossibl> avail.

K/CSD/TM-20

Contract No. W-7405 eng 26

COMPUTER SCIENCES DIVISION

A COLLECTION OF FORTRAN SUPPORT ROUTINES

Steven B. Cliff
Computing Applications Department

JANUARY 1978

----------------------------------- NOTICE------------------------------------
This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

UNION CARBIDE CORPORATION, NUCLEAR DIVISION
operating the

Oak Ridge Gaseous Diffusion Plant . Oak Ridge National Laboratory
Oak Ridge Y-12 Plant . Paducah Gaseous Diffusion Plant

for the
DEPARTMENT OF ENERGY

DISTRIBUTION Oi ITilS DOCUiLhiNT IS UNLIMIT

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

5

TABLE OF CONTENTS

Abstract .. 7

Acknowledgments .. 9

PART I. TRIDIG - A TRIDIAGONAL EQUATION SOLVER 11

Appendix 1, Source Listing of TRIDIG 21

PART II. CADTIMER - TASK TIMING ROUTINES........................ 29

Appendix 1, Additional Comments on the Usage of CADTIMER 35
Appendix 2, Source Listing of CADTIMER 43

PART III. CONVERT - FREE-FORM INPUT ROUTINES.................... 53

Introduction .. 55
User Characteristics.. 56
Programming Characteristics 60
Appendix 1, Examples of CONVERT Usage 67
Appendix 2, Source Listing of the CONVERT Routines 75

PART IV. PARMETER - PARAMETER FIELD ACCESSING ROUTINES 85

Appendix 1, Source Listing of PARMETER 89

PART V. ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES 95

Appendix 1, Source Listing of ABSADRES 105

PART VI. VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE Ill

Appendix 1, Source Listing of VARIN 115

PART VII. ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE ... 119

Appendix 1, Source Listing of ABEND 123

PART VIII. SET - ARRAY-SETTING ROUTINES 127

Appendix 1, Source Listing of SET 131

7

ABSTRACT

Descriptions of several routines designed to support and extend

FORTRAN programs used on the IBM 360/370 series computers are included

in this document. These routines, which have been used in a variety of

programs, run the gamut from input processors to timers, to absolute

address accessors, to mathematical analysis routines. Most of the rou­

tines are written in IBM 360/370 Assembler Language.

9

ACKNOWLEDGMENTS

The work of B. D. Dingus in preparing some of the graphs in this

report is acknowledged.

Fiscal support for the development came from a variety of sources,

including the Computing Applications Department of the Computer Sciences

Division, the Engineering Technology Division, and the Operations Analysis

and Planning Division of Union Carbide Corporation and by National Science

Foundation Grant GK-37434 and the National Institutes of Health Grant

HL-15564 administered by Dr. J. H. Forrester of the University of

Tennessee. This support was essential to the development of these routines.

Discussions with E. D. Drennen, J. E. Park, L. I. Schlemper, and

B. D. Dingus contributed to the concepts for some of these routines.

11

PART I

TRIDIG - A TRIDIAGONAL EQUATION SOLVER

13

PART I

TRIDIG - A TRIDIAGONAL EQUATION SOLVER

An Assembler Language equivalent to the tridiagonal equation solver,

TRIDIG, as developed by J. E. Park [1], has been developed for use on

IBM 360/370 computers. Particular attention was given to fully optimizing

the use of the pipeline/parallel processing capabilities on the Model 195

at ORGDP, as described in IBM documentation [2].

TRIDIG is invoked by

CALL TRIDIG (A,B,NA,NB,MIL,NDIM)

where

NA is the number of the node with which the first equation
is associated,

A is the tridiagonal matrix A(NDIM,3),

A(N,J) with J=l,2,3, are the -, 0, + elements for equation for the
Nth node,

B is the constant vector in the matrix equation on entry and
solution vector on exit,

MIL is ignored, but must be present to maintain compatibility
with FORTRAN TRIDIG,

A & B are double precision.

CONSTRAINTS:

A must be "well conditioned." (See Ref. [1].)

1 <_ NA, NB, NDIM _< 100

■ NA < NB < NDIM.

14

The assembler version is faster than the FORTRAN-H, 0PT=2, by 52%

for a system of three equations, falling asymptotically to 30% for 93

equations. Savings of 10% or more in the total CPU time of some applica­

tions programs have already been observed, making the investment of writ­

ing this version justified with a reasonable date of cost recovery

expected.

In testing TRIDIG, it became desirable to compare it with not only

FORTRAN-H, 0PT=2, but also the other available compilers and at other

optimization levels. Thus the local ORNL FORTRAN (FTN63), IBM FORTRAN-H,

OPT=0 (HO), IBM FORTRAN-H, 0PT=1 (HI), IBM FORTRAN-H, 0PT=2 (H2),

IBM FORTRAN-G (FORT-G), and the IBM FORTRAN-H, extended plus, 0PT=3

(FORT X), compilers were all tested along with the assembler version

of TRIDIG. In all cases, the overhead was constant with only the compiler

of the test routine varying. All runs were made on the IBM 360/195 at

ORGDP, with the same system of equations for the same number of samples.

The results of these tests are given in the following graphs.

Figure 1 shows the time required to perform 5000 solutions as a

function of the number of equations. In each case, the relationship is

linear, as expected, since the time of the solution technique is known to

be proportional to the number of equations. The overhead is a constant

0.61 seconds for all cases and is included in the time for all plots.

Figure 2 is of the same data, but with different scaling to ease dis­

criminations of H2, FORT X, and Assembler.

15

Figures 3 and 4 have the data of Figures 1 and 2 normalized relative

to H0PT2. Thus H0PT2 is displayed as a straight line with faster compilers

below it and slower ones above. Figure 3 especially accents the poor

performance of the G, FTN63, HOPTO, and H0PT1 which are steadily diverging

from the H0PT2 efficiency level. The X0PT3 and Assembler routines are

continually getting better as the number of equations increase as is clearly

visible in Figure 4.
Thus, TRIDIG is a good example of a CPU intensive routine which can

be coded in Assembly Language with considerable CPU savings. The

appendix is a complete source listing of TRIDIG.

REFERENCES

1. James E. Park, Utility Routines for Tridiagonal Matrices,
UCCND/CSD/INF-74, November, 1975, pp. 13-14.

2. IBM System/360 Model 195 Functional Characteristics, GA22-6943-4,
October, 1975.

o °
% o n

o
to

O LT) ■ i <N8—' az r)
s°

LJQ_
CjJ o
S 1/5-

O
o -

o
in ‘

COMPILER COMPRRI SON

LEGEND
□ - ASM
o — X 0PT3
a - H 0PT2
- = h 0PT1
x = h OPTO

FTN63

o _.
0

Figure 1

i------------- r-------------1------------- 1 r
20 30 40 50 60NO. EQUATIONS

—i r i : i
70 60 90 10

TI
ME
 P
ER
 E
QU
nT
IO
N

*1
0

2.
0

4.
0 S.O

S.
O

 10.0
12

.0

14
.0

16

.0

13
.0

20

.0

22
.0

F]R C0MpRR I SON

LEGEND
□ - ASM
o - X 0PT3

----------j. — ----|——■—-— |--------- 1--------- r r r r ■ i i
0 10 20 30 40 50 60 70 30 90

NO. EQUATIONS
Figure 2

TI
ME
 P
ER
 E
QU
AT
IO
N

*1
0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

14
.0

16
.0

18
.0

20
.0

COMPILER COMPRRISON

LEGEND
□ - ASM o - X OPTS
a-H 0PT2 + -H 0PT1 x-H OPTO
o - Gv - FTN63

-------- 1------- 1------- 1------- 1------- 1 i i i i i
0 10 20 30 40 50 60 70 60 90 100

NO. EQUATIONS
Figure 3

TI
ME
 P
ER
 E
QU
AT
IO
N

*1
0

36
.0

39
.0

40
.0

42
.0

44
.0

46
.0

48
.0

50
.0

52
.0

COMPILER COMPARISON
A-----------A-----------A-----------A-----------A-----------A-----------A-----------A-----------A-----------A

LEGEND

-------- 1------- \------- 1------- 1------- 1------- 1------- 1------- \------- 1------- 1
0 10 20 30 40 50 60 70 80 90 100

NO. EQUATIONS
Figure 4

21

PART I, Appendix 1

Source Listing of TRIDIG

23

TRIOIANr, CSFCT 0

* TRI-DI AGONAL EOUATION SOLVER

* RASED ON FORTRAN SUBROUTINE TRIDK, BY J.E. PARK
* AND IS OP FRAT IONALLY EQUIVALENT EXCEPT NO OEBIK, TYPE WRITES ARE
* AVAILABLE. HOWEVER, THE SAME ARGUMENT LIST IS USED.
* DEVELOPED BY STEVEN B. CLIFF JUNE 8,1977
* USAGE:&
* CALL TRIDIG (A, B, NA, NB, MIL, NDIM)
*
* NA IS NUMBER OF NODE WITH WHICH THE FIRST EQUATION IS ASSOCIATED.
* NB IS NUMBER OF NODE WITH WHICH THE LAST EQUATION IS ASSOCIATED.
* A IS TRI DIAGONAL MATRIX A(NDIM,3). A(N,J) WITH J = l,2,3 ARE -,0,+
* ELEMENTS FOR EQUATION FOR NTH NODE.
* B IS CONSTANT VECTOR IN MATRIX EOUATION ON ENTRY AND SOLUTION
* VECTOR ON EXIT
* MIL IS IGNORED
*NDIM IS FIRST DIMENSION OF A, ONLY DIMENSION OF B
$
* CONSTRAINTS:*
* A MUST BE WELL CONDITIONED.
* NA,MB,NDIM MUST BE BETWEEN 0 AND 101

* THIS ROUTINE IS OPTIMIZED PER SUGGESTIONS IN
* IBM SYSTEM/360 MODEL 195 FUNCTIONAL CHARACTERISTICS
* GA 22-6943-3

TRIDOOI 0
TRI 00020
TRI 00030
TR1D0040
TR I 00050
TRID0060
TRIDOO70
IK IDOOHO
TKID0090
TRI DO 100
TRI DO 110
TRI DO 120
TRI DO 130
TRI DO 140
TRIO0150
TRI DO 16 0
TRI DO 170
TRI00180
TRI DO 190
TRID0200
TRID0210
TRI00220
TRID0230
TRID0240
TRI00250
TRI00260
TR I 002 70
TRID0280
TKID0290

* TRID 0 3 0 0
* 56 EXECUTABLE INSTRUCTIONS ARE HERE VS. ALMOST 200 BY FORTH,0PT=2 TRID0310
* FORWARD LOOP HAS 11 VS. 23 TRID0320
* BACKWARD LOOP HAS 6 VS. 16 TRID0330
* TRID0340
* TRI00350
$
* REGISTER USAGE AND ASSIGNMENTS*

TRI00360
TRID0370
TRID0380

* GENERAL: TRID0390
* TRID0400
ARG EOU 1 POINTER TO ARGUMENT LIST TRID0410
A 1 EQU 2 BASE FDR A(X , 1) THUS A(22,1) = A1(22) TK I D042 0
A2 EOU 11 BASE FOR A(X ,2) THUS A(22,2) = A2(22) TRI00430
A3 EQU 12 BASE FOR A(X , 3) THUS A(22,3) = A3(22) TRI00440
B EOU 3 BASE FOR R(X) TRID0450
Z EOU 14 BASE FOR Z(X) TRI00460
U EQU 10 BASE FOR U(X) TRID0470
NA EOU 4 ADDRESS OF NA , THEN NA TRI00480
NB EOU 5 ADDRESS OF NB, THEN NB TRI 00490
NDIM EOU 7 ADDRESS OF NDIM , THEN DIM TRID0500
BASE EOU 13 RASE REGISTER FOR LOCAL ADDRESSING TRI005 10
SAVE FOU 13 SAVE REGISTER FOR SYSTEM LINKAGE TRID0520
EP EOU 15 HAS ADDR OF ENTRY POINT TRI00530
LINK FOU 14 RETURN ADDRESS IS HERE TKI00540
X FOU 6 INDEX REGISTER TRID0550
C MB EOU 8 CONSTANT -B - MUST BE EVEN; USES REG+1 (BXLE,BXH) TRI00560

24

Cfl Kill 8 CMNSTAMT H - MUST Hf- EVEN; USES KEG + l (8XLE.HXH) TKIUOSYO

* III $ PLACEMENTS :

K EMU 8 B(K)=K(X,K>
KP 1 FOU 1b R(K + l) =KP] (X,R)
KM1 FOU 0 R<K-l)=KM1 (X,R)

* ELUATIMO, POIMT:

TKIUOSHU
TKI00590
TKI DOR00
TKI DOR 10
TKIDORZO
TK inOR3f)
TK 11)0640
TRI DOR50
TKI 0066 0
TK100670
TK100680

R 7 FOU 6 REGISTER STORAGE FOR 7. TR 11)0690
FL FOU ? INTERMEDIATE CHIANTI TV EL TRI00700
RU FOU 4 REGISTER STORAGE EUR II TKI00710
C 1 FOU 0 CONSTANT 1 .ODD TKI DO72 0
KR FOU R REGISTER STORAGE FOR R TRI007 30

ENTRY TR I DIG TKI00740
USING TRIDIG, FP TRI00750

T R I D I 0 R GO SKIP OVER ID AND STORAGE AREA TKI00760
DC XL1'7' SEVEN CHARACTERS IN NAME TKI007 70
DC CL 7'TRIDIG '1 NAME = TR 11) 1 G WITH PAD TKI00780

RFGS DS 90 SAVE AREA FOR LINKAGE TK I 00790
DRLF 1 DC 10'1.0* F.P. CONSTANT 1 TKI00800
C M 1 DC IF'-l• INTEGER CONSTANT -1 TRI008 10
AUVFCT DC AtUVECT--1R) TRI00820
* TKI DOS 30
* TKID0840
* TKI 008 50

TKID0860
TR 11)08 7 0

STM LINK,LINK-?,12ISAVE) SAVE CALLER'S REGS TKID0880
LK X , SAVE HOLD USER SAVE AREA ADDRESS 1R 100890
LA BASE,REGS SET MY SAVE AREA (ALSO BASF REG) TKID0900
DROP FP 00 NOT NEED EP AS RASE TKI00910
USING REGS ,BASE BECAUSE SAVE IS READY TKID0920
ST X,4(, SAVE) PUT CALLER'S ADDRESS IN MINE TKID0930
ST SAVE,81 ,X) PUT MY SAVE AREA IN CALLER'S TKID0940
LM A 1,N0IM,0(ARG) GET ADDRESES FUR ALL ARGUMENTS TKI00950
LA C8,16 SET CONSTANT 8(16 FIRST) (IGNORE MIL) TKI00960
L NA,0(,NA) GET NA TRI 009 7 0
SR A1 ,C8 SET A1 (MUST ALLOW FOR K) TRI0098 0
L NB,0(,NB) GET MR TRI00990
SR B ,C8 TKI01000
L NDIM,n(,N0IM) GET NO IM TRI01010
SRL C8,l NOW ITS 8 TRI0102 0
LR A? , A1 SET A? T R I 010 3 0
SLL NO IM , 3 MULTIPLY NOIM BY R TRI01040
L U, AUVECT SET U: (AOCON INSURES ADDRESSABILITY) TRID1050
SLL NA ,3 MULTIPLY NA BY 8 TRI01060
AR A?,NO IM AS REQUIRED TRID1070
SLL NR ,3 MULTIPLY NB BY 8 TKI01080
LA Z,2VECT-I6 SET Z TRID1090
LR X , NA SET X TKI01100
LR A3, A? SET A3 TRI 01110
LD Cl ,DBLE1 GET f, KEEP CONSTANT 1.000 TRID1120

25

AR A t,MDIM AS REQUIRED TRID1130
LR CH + 1t NB SET LIMIT FDR X TRID1140

TRID1150
HA VH ALL PR FL IMINARY STUFF, NOW BEGIN CALCULATIONS TRI01160

TRID1170
: 7(NA) = R (NA) TRI01180

LD RZ,K(X,H) SAVE ZINA) FOR LATER TR101190
STD RZ ,K t X ,Z) TRID1200

: * TRID1210
: # II (NA) = l.ODO / A(NA ,2) TRI01220

LD Cl ,DBLE1 GET S KEEP CONSTANT l.ODO TRID12 30
L DR R U , C 1 DO TRID1240
DD RU,K(X,A?) INVERSION TRI01250
STD RU ,K (X ,11) TRID1260
AR X , C R INCREMENT X FOR LOOP TRID1270

FL=A(K ,1)*U(K-1) TRID1280
:Fnnw4Rn LC DR Gl,RU GET U(K-l), COMPLEMENTING IN PROCESS TR 101290

MO EL,K{X ,A1) MPY BY A (K , 1) TRIO 1300
TRID1310

Z(K>=K(K)-FL*Z(K-l) TRID1320
MDR RZ,FL -EL*Z(K-1) TRI01330
AD RZ ,K(X ,8) ADD B(K) TRID1340
STD RZ , K(X,Z) STORE Z(K), KEEP IT IN RZ FOR NEXT LOOP TRID1350

:
D (K) = 1 .ODO/(A(K,21-EL *A(K-l ,3 1)

TRID1360
TRI 01370

MD EL,KM1(X,A3) -EL*A(K-1,3) DISCARD EL TRID1380
AD EL,K(X,A2) ADD A(K ,2) TRID1390
LDR RU , C1 GET l.ODO TRI01400
DDR RU, EL DO INVERSION TRID14 10
STD RU ,K (X ,11) STORE IKK), RZ WILL HAVE ZIK-l) TRID1420

TRID1430
DD 51 K = N A T1,NB TRI01440

: * b l CUNT I NIJF TRI01450
B XI. F X,C8,FORWARD TRID1460

TRI01470
TRID148 0

LR X,NH SET X TO LAST ELEMENT T R I 014 9 0
LR CM8+1,NA SET LIMIT TO NA TRID1500
A CM8 + 1 ,C Ml BUMP LIMIT ONE BECAUSE OF BXH TRID1510
LCR CMR ,C.« SET INCREMENT TO -8 TRID1520

TRID15 30
R(NR) = ZINBl-UINB) TRI01540

TRID1550
MDR RZ ,RU Z(NR) #U(NH) TRID1560
STD RB ,K(X,B) SET BINB) TRI01570

TRID1580
: %

AR X ,CMR DECREMENT X FOR LOOP
TR I 01590
TRID1600

: ^ TRID1610
: * B(J) = m J)-A(J,3)*R(J + 1))*U(J) TRID1620
:BACKWARD MD RB,K(X,A3) B(J+1)*A(J,3): BIJ+l) IS IN RB TR1016 30

LCDR RB,RK COMPLEMENT RB TRID1640
AD RB ,K(X , Z 1 ADD ZIJ) TRID16 50
MD RB,K(X,U) MPY BY U(J) TRID1660

• %
STD RB,K(X , B 1 STORE B(J) ; BIJ + l 1 IS IN RB TRID1670

TRI01680

26

nn 42 K=MC,MR
CriNT INIIF

HXH X,CMfl,BACKWARD

7 (N A) = R (N A)

TRIO 1690
TRI 1)1700
TRI 01710
TRI01720
TRID1730
TRID1740
TRID1750
TRI 01760

n(NA>=i.nno / a<na,2> TRID1770
LD R 7,K (X , B) SAVE ZINA) FOR LATER TRI01780
LDR RU, C1 DO TRID1790
STD R Z , K (X , Z) TRID1800
DD R U,K(X , A2) INVERSION TRID1810
STD RU,K(X,U) TRID1820
AR X ,C8 INCREMENT X FOR LOOP TRID1830
CMOP 0,8 TRI01840

* DO STMT GFNERATS SOME OF THF INTRODUCTORY CODE AND MORE LATER; BUT TRID18 50
* NONE HERF TRID1860
* TRID1870
* WHILE IN FORWARD LOOP, THE PRECEEDING Z f, U ARE IN RU C RZ TRID1880
* INTERMEDIATE QUANTITY EL, IS NEVER STORED AND THE TWO SUBTRACTS TRID1890
* USING EL ARE MADE ADDS BY COMPLEMENTING EL FIRST TRI01900
* TRID1910
❖ F L = A (K , 1) *11 (K— 1) TRID1920

TRID1930
❖ 7(K)=B(K) -EL*Z<K-1) TR1019^0
* TRI01950
* U(K)=1.0D0/<A(K,2)-EL*A(K-1,3)) TRID1960
FORWARD LCDR EL ,RU GET U(K-l), COMPLEMENTING IN PROCESS TRID1970

MD EL ,K (X , A 1) MPY BY A 1 K , 1) TRID1980
MDR R Z , EL -EL*Z(K-l) TRID1990
MD EL,KM1(X , A 3) -EL*A(K-l ,3) DISCARD EL TRID2000
LDR R U, C1 GET l.ODO TRID2010
AD RZ,K(X ,B) ADD B(K) TR102020
AD EL,K(X,A2) ADD AIK,2) TRID2030
STD R Z , K (X , Z.) STORE Z(K) , KEEP IT IN RZ FOR NEXT LOOP TRID2040
DDR RU, EL DO INVERSION TRID2050
STD RU ,K(X,U) STORE U(K) , RZ WILL HAVE Z(K-l) NEXT LOOP TRID2060

on 51 K=NAT1,NB
51 CDMTINUE

RXLE X,C8»FnRWAR0

FORWARD LOOP IS 9 WORDS LONG AND WILL BE CONTAINED FULLY IN THE
16 WORD INSTRUCTION STACK AND WILL RE EXECUTED IN LOOP MODE

THF BACKWARD LOOP IS ESTABLISHED AS
nn 52 K=NB-l,NAf-l (ALL MULTIPLIED BY THE WORD LENGTH-8)

* B(NB)=Z(NR)*U(NB)
* RECALL: MB WAS LIMIT OF FORWARD LOOP, THEREFORE RU=U(NB); RZ=Z(NB)
* NOTE : NO LONGER MEED RZ, SO USE IT FOR RB

J+=NB+NC-1

TRID2070
TRID2080
TRID2090
TRID2100
TRID2110
TRID2120
TR102130
TRID2140
TRID2150
TRID2160
TRID2170
TR1D2180
TRID2190
TRID2200
TRID2210
TRID2220
TRID2230
TR I D2 2 A-0

27

* MOT MFRIF-n TKin??5n
trIn??bo

1 R CMH+1,NA SET LIMIT TO NA TKID??70
MOR R 7 »RU 7 (NB) *ll(NB) TRI02280
LR X * NB SET X TO LAST FLEMFNT TRID2290
LCR C M 8 , C 8 SET INCREMENT TO -8 TRI02300
A CMR+1,CM1 BUMP limit ONE BECAUSE OF BXH, NUT BXHE TK 11)23 10
STO RB ,K(X,B) SET B(NB) TRI0? 32 0
AR X ,CM8 DECREMENT X FOR LOOP TRI02330
CMOP 0,8 TKI 02 3AO

* no 5? K =NC,NB T R I 0 ? 3 5 0
* NO CODE NOW « BUT HAS EARLIER, ANO WILL LATER TRI02 360
* TRI02370

B (.1) = m J) - A (J , 8) *B (.1 +1)) *1M .1) TRI02380
BACKWARD MD RB,K(X , A3) BIJ + l ISAM,3): BIJ + l) IS IN RB TRID2390

LC OR RB ,RB COMPLEMENT RB TRIO2AO0
AO R B , K (X , 7) A00 7IJ) TRID2A10
MD RB,K(X,U) MPY BY UIJ) TRID2A20
STO R B , K (X , B) STORE B(J): BIJ + l) IS IN RB TRID2A30

TRI02AA0
no S? K = NC ,MB TR ID2A50

5? CONTINUE TRID2A60
BXH X,CM8,BACKWARD TRID2A70

5|j TRID2A80
'I' BACKHARO LOOP IS 5 AND ONE HALF WORDS LONG: IT WILL BE EXECUTED TR ID2A90
* FULLY IN THF STACK IN LOOP MOOF TRI02500
* TRI025 10
❖ RETURN T R I 0 2 5 2 0

L SA V E,A(.SAVE) UNLINK SAVE AREAS TRI025 30
LM LINK,LINK-? , 12(SAVE) RESET THE REGISTERS TRID25AO
MV I 12(13) ,X'FF1 T R I 0 2 5 5 0
BR LINK BYE TRI02560

* THF

7VFC T
(IV Ff. T

II F, 7. VFCTORS PER HIRASAKI'S FORMULATION ARE HERE. THEIR
niMEMSIOM OF 101 IMPOSES THE LIMITS ON NA,NB,NOIM LISTED ABOVE

OS
ns
Fwn

101 D
1011)

Tkin2S70
TRI 02580
TRID2590
TRI02600
TRI 026 10
TRI02620

29

PART II

CADTIMER - TASK TIMING ROUTINES

31

PART II

CADTIMER - TASK TIMING ROUTINES

One of the tools most needed in analyzing and improving software is

accurate, precise measurement of the time spent in the various sections

of a program. This information is essential not only to finding the CPU

intensive portions but also to evaluating the effectiveness of modifica­

tions made in efforts to improve sections under scrutiny.

Prior to the present development, the best tools apparently available

for use at ORGDP were the routines ICLOCK, ITIME, JSTIME [1] or similar

routines developed at ORNL with precisions of one/one-hundredth (0.01)

of a second. This level of precision is unacceptable to a computer

as fast as the 360/195 with over 185,000 machine cycles (about 50,000

machine instructions) between clock "ticks". Frequently, programs have

sections which are much shorter than one/one-hundredths of a second but

which are executed thousands of times per use of the program.

Obviously, a set of better timing routines was needed. It is to fill

this need that the CADTIMER routines were written. These routines use

(via STIMER and TTIMER supervisor calls [2]) the 26.04166 microsecond

clock available on the 360/195, allowing only 482 machine cycles (about

120 machine instructions) within a clock interval. It must be noted that,

although the clock intervals are 26.04166 microseconds, the time is up­

dated only every fourth tick. Thus, the CADTIMER routines have a limit

of 104.16664 microseconds as the true time between ticks.

32

The CADTIMER general-purpose timing routines have a total of 21

entry points, 20 of which return an indicator of the time used by the

task. The 20 time-evaluating entry points are named in the following

manner:

I S
R M
D H

126

TOT
INT

The first letter indicates the type and length of the timer value returned

with I, R, D referring to four-byte integer, four-byte real and eight-byte

real, respectively. The second letter indicates the units of measurement

with S, M, H referring to seconds, minutes, and hundredths of seconds,

respectively. The single three-letter group, 126, refers to four-byte

integers with timer units as units. The last pair of three-letter options

select the interval over which measurement is to be made, INT representing

the interval since the last call to an "INT" routine, while TOT represents

the total time of the interval since the first call to any CADTIMER

routine. Thus, to get the time in seconds as a single-precision real

number since the last call to an "INT" routine, the entry point RSINT

is used. (See Appendix 1 for more examples and details of the calling

conventions.)

The 21st routine, NTIMC, returns as a four-byte integer, the number

of times any of the CADTIMER routines have been called.

33

The first call to any of the routines (except NTIMC) is used as the

setup call and a zero (of the appropriate type) is returned. Thereafter,

each routine responds as its name implies. A maximum of 12 hours CPU

time is allowed by any program which uses CADTIMER. Since CADTIMER uses

STIMER and TTIMER, no other use of them should be made. Further, CADTIMER

is not overlayable—it must be in the root segment of any overlay program.

These timer routines have already been used in situations where the

precision afforded by the predecessor timers would have been totally

unsatisfactory. Intervals as short as the previous clock's ticks can now

be measured accurately allowing much finer study of the characteristics of

programs than was previously available.

The complete source listing for CADTIMER is contained in

Appendix 2.

REFERENCES

1. CSD Programmer's Notebook, November 10, 1975, pp. 20-7, 20-9, and
20-10.

2. Supervisory Services and Macro Instructions, IBM Manual GC28-6646-7,
Sections 77 and 82.

35

PART II, Appendix 1

ADDITIONAL COMMENTS ON THE USAGE OF CADTIMER

37

Each of the 21 entry points has one argument and, because of FORTRAN

conventions, may be invoked either as a FUNCTION or SUBROUTINE. For

example, the sequence

1. IMPLICIT DOUBLE PRECISION (D)

2. CALL IMTOT (ISET)

3. (1.4E-2 Seconds of Computation)

4. R1V = RSTOT (R1A)

5. R2V = RSINT (R2A)

6. R3V = SNGL (DSTOT (D3A))

7. (2.4E-2 Seconds of Computation)

8. R4V = RSTOT (R4A)

9. R5V = RSINT (R5A)

10. R6V = RSINT (R6A)

11. CALL IHTOT (I7A)

12. (4.2 Seconds of Computation)

13. R8V = RSTOT (R8A)

14. D9V = DHINT (D9A)/100.0

15. R10V = R8V - SNGL (D9A)

16. RllV = I26T0T(I11A)*26.01466E-06

17. CALL ITIMC (I12A)

18. CALL RMTOT (R13A)

would result in the following values for the indicated variables. (The

times for all statements except the three times explicitly noted are

assumed to be zero.)

38

Variable Value Comment

ISET 0 The first call to CADTIMER always
returns 0.

R1V.R1A 1.4E-2 Both the argument and functional value
are REAL*4

R2V.R2A 1.4E-2 Since no previous TUINT routine has
been called, the total time is returned

R3V,D3A 1.4E-2, 1.4D-2 Total time is still 1.4E-2. This shows
relationship between all RUYYY* and
DUYYY routines.

R4V,R4A 3.8E-2 Total time since first call.

R5V,R5A 2.4E-2 Time since last TUINT routine (last
call was Line 5).

R6V, R6A 0.0 Time since last TUINT routine (last
call was Line 9).

I7A 3 Three-hundredths of a second has
elapsed. Note that ISTOT would have
returned zero.

R8V,R8A 4.238 Total time since Line 2.

D9A 420.E-2 420.E-2 seconds since Line 10.

D9V 4.2 D9V could have been set to DSINT. This
shows relationship between TSYYY and
THYYY routines.

R10V 3.8E-2 Total time before beginning of current
interval.

RllV 4.238 Total elapsed time (same as RSTOT).

I26TOT 162739 Number of timer increments since Line 1
This line shows relationship between
I26YYY and RSYYY routines.

*The nomenclature TUYYY is interpreted as follows. The T is the type
of routine: I, R, or D. The U is the unit of the routine: S, M, or H.
The YYY is the interval of measure next: TOT or INT. Thus RUYYY refers
to all the routines that return real values, TUINT to any interval measur­
ing routine, and TSYYY to any second returning routine.

39

Variable Value Commen t

I12A 11 Number of calls to CADTIMER
This does not include calls

routines.
to NTIMC.

R13A 7.06E-2 Total number of minutes since first
call (Line 2).

Note again that the first call to any CADTIMER routine (except NTIMC)

returns zero and initializes both the total and interval timers. Each

successive call to TUTOT routine returns total CPU time since this first

call. Each call to TUINT routine resets the interval time and returns

the length of the interval. The type and length of the argument are the

same as the functional value (if used) and the appropriate argument must

be present. The length and type of the value returned depend on the

first letter of the routine name; I is always four-byte integer, D is

always eight-byte real, and R is always four-byted. These routines are

related by

IUYYY=IFIX(RUYYY)=IFIX(SNGL(DUYYY))

RUYYY=SNGL(DUYYY).

Note that the IFIX function causes truncation and loss of significance

for IUYYY routines. The SNGL function will cause loss of significance

after about four seconds.

The second letter of each routine name determines the units of the

value returned; M is minutes, S is seconds, and H is hundredths of seconds.

These are related by

THYYY=TSYYY/100=TMYYY/6000.

Some loss of significance can occur with the divisions, but except for

integer types, loss should be negligible as implemented in CADTIMER.

40

The exception to this two-letter typing and units rule is the I26YYY

routines, which return the actual number of timer increments as a four-

byte integer. Thus, these routines are related to RSYYY by

RSYYY=FLOAT(I26YYY)*26.04166E-6

and the earlier relationships can be used to derive correspondences

between I26YYY and any TUYYY routine. No roundoff or truncation can occur

with the I26YYY routines which afford maximum precision and accuracy,

but in a less convenient form. CADTIMER carefully minimizes the errors

in these conversions; hence, the user should get the correct type, length

and unit by invoking the appropriate routine.

The last three letters of the routine name determine the interval

over which the time is measured; TOT being the total CPU time since the

first call to a CADTIMER routine, and INT being the interval since the

last call to a TUINT routine unless no TUINT has been previously called,

then it is equivalent to a call to TUTOT.

The exception to all of these naming conventions is the special

routine, NTIMC, which returns the number of times any of the other

CADTIMER routines have been called. NTIMC does not set the clocks,

either total or interval, nor does it increment the number of calls

counter. The value returned is a four-byte integer number of times

called.

The 21 entry points and their use is described in Table 1. The

type column refers to both the argument and functional value which are

always the same. The naming conventions are clearly evident in all

applicable routines.

41

Table 1

CADTIMER

ENTRY VALUE

Type Unit Interval

IHTOT 1*4
RHTOT R*4
DHT0T R*8
ISTOT 1*4
RSTOT R*4
DSTOT R*8
IMTOT 1*4
RMTOT R*4
DMTOT R*8
IHINT 1*4
RHINT R*4
DHINT R*8
ISINT 1*4
RSINT R*4
DSINT R*8
IMINT 1*4
RMINT R*4
DMINT R*8
126TOT 1*4
I26INT 1*4
NTIME 1*4

.01 Sec

.01 Sec

.01 Sec
Seconds
Seconds
Seconds
Minutes
Minutes
Minutes
.01 Sec
.01 Sec
.01 Sec
Seconds
Seconds
Seconds
Minutes
Minutes
Minutes

26.04166E-6 Sec
26.04166E-6 Sec
Number of calls

Total since first call
Total since first call
Total since first call
Total since first call
Total since first call
Total since first call
Total since first call
Total since first call
Total since first call
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Interval since last INT
Total since first call
Interval since last INT
Since first call

call
call
call
call
call
call
call
call
call

call

43

PART II, Appendix 2

SOURCE LISTING OF CADTIMER

45

MACRO CADT0003
BEGIN CEP1,GEP2,CEP3,COTIME CADT 0004
DROP SAVE CADT 0005
USING CEPl.EP SET TEMPARY BASE CADT 0006
ENTRY KEPI PUT EP1 IN ESD CA0T0007

EBP 1 B KEPI.GO SKIP ID CADT0008
DC X'OS' LEN OF ID CADT0009
DC CL 51KEP 11 ID CADT0010

EEPl.GD STM LINK,LINK-2,12(SAVE) SAVE THE REGS CADT001I
LR OLDS,SAVE SAVE OLD SAVE AREA POINTER CADT0012
L SAVE,ADREGS GET NEW POINTER CADT0013
MV I SETARG,X'50' SET EP OPCODE = SINGLE INTEGER STORE CADT0014
B GOKSYSNDX GO JOIN OTHER EP ROUTINES CADT0015
USING KEP2 »EP CADT 0016
ENTRY KEP2 CADT0017

6EP2 B KEP2.G0 CADT0018
DC X ' 06' CADT 0019
DC CL6'KEP2' CADT 0020

6EP2.G0 STM LINK,LINK-2,12(SAVE) CADT0021
LR OLDS,SAVE CADT0022
L SAVE,ADREGS CADT0023
MV I SETARG ,X1701 SINGLE FLOAT STORE CADT0024
B GOKSYSNDX CADT0025
USING K E P 3 , E P CADT 0026
ENTRY KEP3 CADT 0027

EEP3 B KEP3.G0 CADT0028
DC X '06 * CADT0029
DC CL6'KEP3' CADT0030

6EP3.G0 STM LINK,LINK-2,12(SAVE) CADT 0031
LR OLDS ,SAVE CADT 0032
L SAVE,ADREGS CADT 0033
MV I SETARG ,X'60' DOUBLE FLOAT STORE CADT0034
DROP EP CADT 0035
USING REGS,BASE CADT 0036

GOESYSNDX: LA TEMP,KOTIME CADT 0037
BAL LINK ,GETIT CADT0038
MEND CADT 0039
SPACE 3 CADTOOAO

CADTIMER C SECT 0 CADT0041
PRINT GEN CADT0042

CADT 0043
* VERSION 1.0 7- 1-77 STEVEN B. CLIFF CADT0044
* CADT 0045
* THESE ROUTINES ALL ACCESS THE TTIMER & STIMER MACROS AND NO CADT00A6
* OTHER ACCESS TO THEM SHOULD BE MADE. CADT 0047
* CADT 004-8

EJECT CADT 0049
* GENERAL PURPOSE TIMING ROUTINES DEVELOPED IN THE CADT0050
* ENGINEERING. SUB-DEPARTMENT OF THE COMPUTING APPLICATIONS CADT 0051
* DEPARTMENT OF THE COMPUTER SCIENCES DIVISION OF THE CADT0052
* NUCLEAR DIVISION OF UNION CARBIDE CORPORATION AT THE CADT0053
* OAK RIDGE GASEOUS DIFFUSION PLANT ON THE IBM 360/195 CADT0054
* CADT0055
* 21 ENTRY POINTS ARE PROVIDED. ALL HAVE ONE ARGUMENT WHOSE CADT0056
* TYPE AND RETURNED VALUE IS THE SAME AS THE FUNCTIONAL CADT 0057
* VALUE RETURNED. CADT0058

20 OF THF ROUTINES RETURN THE CRU TIME AS THEIR FUNCTION VALUE
AND WILL DESCRIBED TOGETHER. THE NAMES OF THE ROUTINES DETERMINE
THF TYPEt LENGTH, UNIT, AND MEASUREMENT INTERVAL BY THE FOLLOWING
FORMULA:

III ISI I TOT|
I RI IM| IINTI
I D I | H |

I 1261

WHERF: THE FIRST CHARACTER DETERMINES THE TYPE AND LENGTH:
I IS INTEGER (NORMAL LENGTH = A BYTES)
R IS REAL (SINGLE PRECISION = 6 BYTES)
D IS DOUBLE (DOUBLE PRECISION = 8 BYTES)

THE SECOND CHARACTER DETERMINES THE UNITS OF RETURNED VALUE
S IS SECONDS
M IS MINUTES
H IS HUNDRETHS OF SECONDS, I.E., S/100

THE THREE CHARACTER GROUP RETURNS THE ACTUAL NUMBER
OF TIMER UNITS, EACH UN IT = 26.01466E-06 SEC

THE LAST THREE CHARACTERS DETERMINE MEASUREMENT INTERVAL:
TOT IS FOR THE INTERVAL CONSISTING OF THE TOTAL TIME

SINCE THE FIRST CALL TO ANY OF THESE CADTIMERS
INT IS FOR THE INTERVAL SINCE THE LAST CALL TO AN ''INT"

ROUTINE OR SINCE THE FIRST CALL IF NO "INT" HAS
BEEN CALLED.

THUS ISTOT RETURNS THE TOTAL NUMBER OF SECONDS SINCE THE FIRST
CALL TO ANY CADTIMER ROUTINE IN AS AN INTEGER.
DUE TO TRUNCATION ALL TIME LESS THAN 1 SECOND IS LOST.

RMINT RETURNS THE NUMBER OF MINUTES SINCE THE LAST CALL TO
AN INT ROUTINE AS A SINGLE PRECISION REAL NUMBER,
NO TIME NECESARILY LOST DUE TO TRUNCATION
OR ROUND OFF

1261 NT RETURNS THE NUMBER OF TIMER UNITS SINCE THE LAST
CALL TO AN 'INT* ROUTINE AS AN INTEGER

FIRST CALL AS AN INTEGER NUMBER. THIS IS EQUILVALENT

TO THE CSD ROUTINE ICLOCK
IDENTITIES: (ONLY A FEW OF THE MANY THAT EXSIST)

IMTOT = IST0T/60 ISTOT = IHTOT/IOO = IFIX(RSTOT)
RMINT ,= SNGLE(DMINT) = RSINT/60.0 = RHI NT/60.0/100.0
ISTOT = IFIX(FLOAT(I26T0T)*26.04166E-06)

EJECT

USAGE: PICK THE DESIRED ROUTINE USING THE FORMULA ABOVE.
(FOR EXAMPLE OHTOT)

INVOKE IT IN EITHER OF TWO WAYS:
AS A FUNCTION - DBLTIM = DHTOT (DT)
AS A SUBROUTINE - CALL DHTOT (DT)

RESULT FROM BOTH IS THAT DT IS SET AS THE
TOTAL TIME AND THE VARIABLE DBLTIM IS

DOUBLE PRECISION
THE SAME AS DT

CADT 0059
CADT0060
CADT 0061
CADT0062
CADT0063
CADT0064
CADT0065
CADT 0066
CADT 0067
CADT0068
CADT 0069
CADT0070
CADT0071
CADT0072
CADT0073
CADT0076
CADT 0075
CADT0076
CADT 0077
CADT0078
CADT0079
CADT0080
CADT0081
CADT0082
CADT 0083
CADT0084
CADT0085
CADT0086
CADT 0087
CADT0088
CADT 0089
CADT0090
CADT0091
CADT0092
CADT0093
CADT0096
CADT0095
CADT0096
CADT 0097
CADT0098
CADT 0099
CADT0100
CA0T0101
CADT0102
CADT0103
CA0T0104
CADT0105
CADT0106
CADT0107
CADT0108
CADT0109
CADT0110
CADT0111
CADT0112
CADT0113
CADT0114
CADT0115
CADT0116
CADT0117
CADT0118

47

THF TWFNTY-FIRST ROUTINE NTIMC RETURNS THE NUMBER OF TIMES ANY OF
THF TIME ROUTINES HAVE KEEN CALLED. THIS COUNTER IS INCREMENTED
HY ONE WITH FACH CALL TO THE CADTIMER ROUTINES

USAGE: IC NT = NTIMC! IC) OR CALL NTIMC (IC)
RESULTS IN IC AND ICNT BEING SET TO THIS COUNT$

*
* THF
* RF
* NF

FIRST CALL TO ANY
TURNS A ZERO AS A
FD FOR A SPECIAL,

CADTIMER ROUTINE INITIALIZES THE CLOCK AND
TIME VALUE. GENERALLY THIS WILL ELIMINATE THE
SET-UP CALL.

* REGISTER ASSIGNMENTS:

CADTOl19
CADT0120
CADT 0121
CADT0122
CADTOl23
CADT0124
CADTOl25
CADT0126
CADTOl27
CADT0128
CADTOl29
CADT0130
CADTOl31
CADT0132

BASE FOU 13 NORMAL BASE REG CADTOl33
SAVE FOU 13 SAVE AREA POINTER CADT0134
FP FOU 15 ENTRY POINT ADDRESS CADTOl35
LINK EOU 14 RETURN ADDRESS CADT0136
ARGADR EOU 1 ADDRESS OF ARGUMENT'S ADDRESS CADT 0137
FUNC T FOU 0 FUNCTIONAL VALUE REG CADT0138
TEMP EOU 2 SCRATCH REG CADTOl39
ARG FOU 12 ADDRESS OF ARGUMENT CADT 0140
TIME EOU 11 CURRENT TIME CADT0141
OLDS EOU 9 OLD SAVEAREA POINTTER CADT0142
TMP FOU ft SCRATCH REGISTER CADT0143
CADT0144
* MASK FOR TEST UNDER MASK CADT0145
ON FOU X 1 FF 1 CADT0146* CADT0147
* STORAGE F. CONSTANTS CADT0148
« CADT0149
REGS DS 9D REG SAVE AREA CADT0150
LONGTIME DC IF*1658880042 ' 12HR MAX CPU TIME ALLOWED CADT0151
F I R S T I M E DC 1F'0' VALUE OF TIMER AT FIRST CALL CADT0152
LAS TIME DC 1F10' VALUE OF TIMER AT LAST CALL CADTOl53
CALC NT DC 1F'0' COUNT OF NUMBER OF TIMES CALLED CADT0154
* CONVERSION CONSTANTS: CADTOl55
I I NT OH DC 1F'384' FR INTERVALS TO HUNDRETHS (FIXED) CADT0156
I INTOS DC IF*38400' FR INTERVALS TO SECONDS (FIXED) CADT0157
IINTOM DC 1F'2304000' FR INTERVALS TO MINUTES (FIXED) CADT0158
RINTOH DC ID'26.04166E-04 ' FR INTERVALS TO HUNDRETHS (FLOAT) CADT0159
RINTOS DC lD'26.04166E-06 ' FR INTERVALS TO SECONDS (FLOAT) CADT0160
RINTOM DC lD'43.40277E-08 • FR INTERVALS TO MINUTES (FLOAT) CADT0161$ CADT0162

EJECT CADT0163
* SUBROUTINE TO LINK THE SAVE AREAS AND GET CURRENT TIME CADT0164
* IN REGISTER TIME, AND INTERVAL IN REG FUNCT CADT0165
* IN INTERVALS (BOTH FIXED £ FLOATING PT) CADT0166
* TEMP HAS ADDRESS OF LASTTIME FOR THIS TYPE CALL CADT0167$ CADT0168

USING REGS,SAVE CADT0169
GETI T ST OLDS,4(,SAVE) LINK CADT0170ST SAVE,ft!,OLDS) SAVE AREAS CADTOl71

L ARG,0(.ARGADR) GET ADDR. OF ARGS CADT0172
TM CALLED,ON HAS TIMER BEEN SET? CADT0173
BO SET Y E S = BRANCH CADT0174
STIMER TASK,BINTV| =LONGfIME CADT0175
MV I CALLED,ON SET CALLED FLAG CADT0176
TTIMER CADT0177
ST FUNCT,FIRS 1IME SET FIRSTIME CADT0178
ST FUNCT,L STIME SET TIME OF LAST CALL CADT0179
LR TIME,FINCT CADT0180

48

SR FUNCT,FUNCT GET ZERO FOR TIME AT FIRST CALL CADTOl81
B GOTIME SKIP TTIMER CADT0182

SET TTIMER CADT 0183
LR TIME,FUNCT SAVE CURRENT TIME CADTO18A
S FUNCT,0(,TEMP) GET CORRECT INTERVAL CADT0185
LCR FUNCT,FUNCT CADT0186

GOTIME EOU $ HAVE INTERVAL IN FUNCT CADT0187
ST FUNCT,FLOAT+A FLOAT INTERVAL CADT0188
L TMP,CALCNT INCREMENT CALLED COUNTER CADT 0189
LD FUNCT,FLOAT CADT0190
LA TMP,1(,TMP) CADT0191
ST tmp,calcnt CADTO192
BR 1A CA0T0193

CALLED DC X'OO' CADT019A
DS OD CADTOl95

FLOAT DC X•AEOOOOOO' CADTO 196
DC 1 F ' 0 1 CADTOl97
EJECT CADTO198

♦ CADTOl99
* BEGIN EXECUTABLE CODE CADT0200
* CADT 0201
* THF XHINT ROUTINES CADT0202

CADT0203
BEGIN IHINT ,RHINT,OH I NT,LAST I ME CADT020A
ST TIME,LASTIME CADT0205
MD FUNCT,RINTOH CONVERT INTERFVALS TO CA0T0206
SRDA FUNCT,32 HUNDRETHS, BOTH FIX £ FLO CADT 0207
D FUNCT,IINTOH CADT0208
LR FUNCT,FUNCT+1 CADT0209
B RETURN CADT0210
EJECT CADT0211# CADT0212

* THF XSINT ROUTINES CADT 0213
♦ CADT021A

BEGIN ISINT,RSINT,DSINT,LAST IME CADT 0215
ST TIME,LASTIME SET TIME OF THIS CALL CADT 0216
SRDA FUNCT,32 CONVERT HUNDRETHS TO SECONDS CADT0217
D FUNCT,IINTOS FIXED CADT0218
MD FUNCT,RINTOS AND FLOATING CADT0219
LR FUNCT,FUNCT+1 DISCARD REMANDER CADT0220
B RETURN CADT0221
EJECT CADT0222* CADT0223

* THE XMINT ROUTINES CADT022A
* CADT0225

BEGIN IMINT,RMI NT,DM I NT,LAST I ME CADT0226
ST T IME,LASTIME CADT0227
SRDA FUNCT,32 CONVERT TO MINUTES CADT0228
D FUNCT,I INTOM CADT0229
MD FUNCT,RINTOM CADT0230
LR FUNCT,FUNCT+1 CADT0231
B RETURN CA0T0232
EJECT CADT 02 33

* CADT023A
* THE XHTOT ROUTINES CADT0235
* CADT0236

49

BEGIN IHTOT,RHTOT,DHTOT,FIRSTIME CADT0237
MD FUNCT,RINTOH CADT0238
SRDA FUNCT,32 CADT 02 39
D FUNCT,IINTOH CADT02A0
LR FUNCT,FUNCT+1 CADT02M
B RETURN CADT 0242
EJECT CADT 0243

CADT 0244
* THF XST(IT ROUTINES CADT 02^5
$ CADT0246

BEGIN ISTOT,RSTOT,DSTOT,FIRST I ME CADT 02^7
SRDA FUNCT,32 CADT 0248
D FUNCT,IINTOS CADT 0249
MD FUNCT,RINTOS CADT 0250
LR FUNCT,FUNCT+1 CADT0251
B RETURN CADT0252
EJECT CADT02 6 3

$ CADT 0254
* THF XMTOT ROUTINES CADT0255
« CADT0256

BEGIN IMTOT,RMTOT,DMTOT,FIRSTIME CADT 0257
SRDA FUNCT,32 CADT0258
0 FUNCT,IINTOM CADT0259
MD FUNCT,RINTOM CADT0260
LR FUNCT,FUNCT+1 CADT0261
B RETURN CADT0262
EJECT CADT0263

* CADT 0266
* THF NTIMC ROUTINE CADT 0265
s CADT 0266

USING NTIMC,EP CADT 0267
ENTRY NTIMC CADT0268

NTIMC B NTIMCGO CADT 0269
DC X'06 ' CADT 0270
DC CL6'NTIMC ' CADT0271

NTIMCGO STM LINK,LINK-2,12(SAVE) CADT0272
LR OLDS,SAVE CADT0273
L SAVE,ADREGS CADT0274
DROP EP CADT0275
USING REGS,SAVE CADT0276
MV I SETARG,X'50' CADT 0277
ST OLDS,M,SAVE) CADT0278
ST SAVE,8(,OLDS) CADT 0279
L ARG,0(,ARGADR) CADT0280
L FUNCT,CALCNT CADT0281
B RETURN CADT028 2
DROP SAVE CADT0283

CA0T0284
EJECT CADT0285

* CADT0286
=!< CADT0287
* THF I26XXX ROUTINES: CADT0288
if CADT0289

USING 1261 NT,EP CADT0290
ENTRY I26I NT CADT 0291

1261 NT B I26INTG0 CADT0292

50

nc X' 06 1 CADT 0293
DC CL6 1 I2MNT' CADT029A

I NTGO STM LINK,LINK-2,12ISAVE) CADT 0295
LR OLDS,SAVE CADT0296
L SAVE,ADREGS CADT0297
US I NR REGS,SAVE CADT0298
DROP EP CADT 0299
LA TEMP ,LAST I ME CADT0300
RAL LINK,GET IT CADT 0301
ST TIME,LASTIME CADT0302
MV I SETARG,X'50' CADT0303
R RETURN CADT030A

s CADT0305
if CADT0306

DROP SAVE CADT0307
USING I26T0T,EP CADT0308
ENTRY I26TOT CADT0309

I26T0T B I2BT0TG0 CADT0310
DC X 1 06 1 CADT031I
DC CL6•I26T0T1 CADT0312

I26T0TG0 STM LINK,LINK-2,12ISAVE) CADT0313
LR OLDS,SAVE CADT031A
L SAVE,ADREGS CADT 0315
USING REGS,SAVE CA0T0316
DROP EP CADT 0317
LA TEMP,FIRSTIME CADT0318
BAL LINK,GET IT CADT 0319
MV I SETARG,X'50' CADT0320
B RETURN CADT 0321
DROP SAVE CADT0322

V CADT 0323
EJECT CADT032A

* CADT 0325
* RETURN REQUIRES BOTH FUNCT REGS TO BE SET CADT0326
* AND THAT THE OPCODE FOR THE STORE AT SETARG BE SET FOR THE CADT0327
* CORRECT TYPE AND LENGTH FOR THE TYPE OF ARGUMENT FOR CADT0328
* THIS CALL. CADT0329
RETURN EOU * ’ CADT0330
* CADT033I

CADT033 2
❖ CADT 03 33
* SETARG IS ONLY A SKELETION TO GET THE BASE ♦ CADT033A
* INDEX, DISPLACEMENT, AND OPERAND REGISTER CADT0335
* CORRECT . THE OPCODE MUST BE SET BEFORE EACH CADT0336
* EXECUTION. CADT0337
❖ CADT0338
**************^015 IS SELF MODIFYING CODE********** CADT0339
Jr CADT03A0
**********$***^WARNING***************** CADT03A1
* CADT03A2
SETARG ST FUNCT,O(ARG) STORE ARGUMENT-TYPE 6 LEN FIXED CADT03A3

ST FUNCT,20I0LDS) SET INTEGER FUNCTIONAL VALUE CADT03AA
LR SAVE,OLDS RESET SAVE AREA POINTER CADT03A5
LM LINK,LINK-2,12(SAVE) RESTORE REGS CADT0346
MV I 12(SAVE),ON SET SUCCESSFUL RETURN FLAG CADT03A7
BR LINK CADT03A8

51

SPACE 5 CA0T0349
ADREGS DC A(REGS) CADT0350

END CADT0351

53

PART III

CONVERT- FREE-FORM INPUT ROUTINES

55

PART III

CONVERT - FREE-FORM INPUT ROUTINES

INTRODUCTION

Most FORTRAN programs use fixed format input requiring considerable

effort on the part of the user to follow the format requirements. Further,

several runs are usually required to resolve input errors. Additionally,

several constraints are placed upon both the programmer and the user which

can substantially increase the complexity of the input process. The CONVERT

free-form input package alleviates the following FORTRAN constraints. A

variable number of input items is easily handled with CONVERT, not the

user, counting the number of input items. Any number of scalers and arrays

of any mix of types is allowed with the arrays loaded in parallel, rather

than sequentially. To allow these flexibilities, CONVERT alters the

familiar concept of cards by using special characters, rather than card

boundaries, to delimit groups of input.

CONVERT is a group of seven entry points which allow a free-form in­

put to IBM FORTRAN programs. Items are separated by commas and may be real,

integer, logical, or alphanumeric in nature. CONVERT uses a "logical

record" concept whereby a given group of data may span any number of physi­

cal input cards. CONVERT was originally used in an earlier form described

in [1].

56

USER CHARACTERISTICS

Each input group, or "logical record," will have as many input values

as specified in the documentation for the program of which CONVERT is a

part. Each logical record may be composed of any number of input cards,

with as many used as needed to input all the required data. (The amount

of data within a given block may be variable—check the overall program

documentation.) The end of data on each logical record is noted by a

semicolon (;) as the last character to be scanned on a card. All charac­

ters after the semicolon are treated as comments. A card may have only

a semicolon if previous cards in this logical record have defined all the

required data, if any. All intermediate cards, that is, all cards in

a logical record except the last, have the end of data on each card noted

by a colon (:), indicating more data follows on additional cards. All

characters after the colon are treated as comments, and a card whose first

nonblank character is a colon is a comment only card.

Card boundaries are irrelevant for all processing except as just

described, where colons and semicolons are used to demark the end of cards.

All the data in one logical record is treated as one continuous stream

during conversion. (Indeed the key benefits of the colon-semicolon con­

ventions lie in this variable, unlimited length record format, since all

the data does not have to appear on one card.)

This continuous stream is interpreted by either of two basic

techniques, alphanumeric and numeric, as specified by the programmer

of the program using CONVERT. A logical record may be either alphanumeric

or numeric, but never mixed.

57

Alphanumeric data is any continuous string of characters except

colons or semicolons terminated by a semicolon. The logical record may

span any number of cards, each ending with a colon. The length used by

CONVERT will be that specified by the original programmer and should be

specified by the program documentation. If more characters are supplied

in the input than the program requested, only the number requested will

be transferred; the remainder will be ignored. If too few characters

are provided, CONVERT will pad with blank characters as needed.

Numeric data is any mixture of integer, logical, or real variables,

separated by commas and ending with a semicolon. Items may be any number

of arrays or scalars, but all scalar items must precede the array items

on each logical record with the number of items and their types specified

in the documentation for the program which uses CONVERT. The valid forms

of numeric items are displayed in Figure 1, where they are divided by

variable type. CONVERT uses only the syntax of the input, interpreted

as in Figure 1, to determine the type of input. The user must follow

the documentation for the program which uses CONVERT and ensure that

correct types are used in all places. The most common error is the

absence of a decimal point in a real whole number specification

(i.e., 42 instead of 42.).

The scanning of each field begins at the end of the previous field

or the beginning of the logical record and proceeds left to right,

ignoring all extraneous characters, including blanks, until a sign,

58

TyPe
Integer

Real

Logical

Where:

Valid Forms Example

S#, 1, -123, +4562, 421,

S#. , 1., +42., -61.,s#.#, 6.41, -1296.82, 69.4221,
S//ES#, 6E3, 64E-12, 194E+36,
S.#ES#, 6.E4,-.942E-6, .IE 01
S#.#ES#, +84.9420E+10, -89.4E1,80.1E4

CTC, T,.True.,All is True Today,
CFG, F,False,All is False Today,

S is an optional sign, any of or blank.
If absent or blank, a "+" is assumed.

is any number of digits 0-9.

, is the item separator.

. is the decimal locator.

E is the exponent (power of 10) indicator.

C is an optional string of characters except T or F.

T is the FORTRAN .TRUE, indicator.

F is the FORTRAN .FALSE, indicator.

Figure 1

CONVERT Numeric Input Forms

59

digit, a "T" or an "F" is found. If a "T" or an "F" is found, even

after finding a sign, a digit, or an "E", CONVERT stores the appropriate

logical value and then skips all characters until a comma or semicolon

is found. If a sign or a digit is found, scanning continues until a

decimal point, a comma, or an "E" is found. If a comma is found, the

sign-digit pair is converted to an integer and stored. If a decimal point

is found, a flag indicating that this item is real is set and the scan

continues through any digits that follow to the decimal point until a

comma or an "E" is found. If an "E" is found, the real flag is set and

the exponent is scanned in the following manner. If the character after

the "E" is a sign (+, -, blank), it is appropriately noted and the next

two characters are interpreted as digits of the exponent, unless the

second is the comma ending the field. If the character after the "E"

is not a sign, the next two characters are interpreted as the exponent,

unless the second is a comma. When a comma is found in the item, it is

converted to real, since the real flag was set, and stored. Any charac­

ters between the exponent and the comma terminating the item are ignored.

Thus, CONVERT accepts items in standard FORTRAN format except that

extraneous characters including blanks are always ignored (except in the

exponent field of a real value) and the values are separated by commas

rather than fixed columns.

Data in a logical record are always arranged with scalar quantities

first, if any, followed by the array items, if any. The number of scalars

and arrays and the number of items in the arrays are determined by the

60

program using CONVERT, and its documentation must be consulted to enter

the correct number of data items. After all the scalars have been entered,

the arrays are entered in parallel (that is, element 1 of array 1,

element 1 of array 2, ... , element 1 of array N, element 2 of array 1,

element 2 of array 2, ... , element 2 of array N, element 3 of array 1,

etc.) until all the data is in. While the number of arrays is constant,

the number of items in each array is not necessarily constant. Indeed,

this parallel loading of arrays with a variable number of elements is

one of the reasons for using CONVERT. Since CONVERT counts the number of

items stored and passes the number back to the calling program, the user

is generally spared the task of counting the number of items in the input

stream.

PROGRAMMING CHARACTERISTICS

The preceding section described the information needed to prepare

data for a program which uses CONVERT. This section describes the calling

sequences and conventions needed to incorporate CONVERT into a larger

program.

CONVERT assumes the existence of a common block named ALFAIN with

a length of at least 88 bytes. The first four bytes is a logical variable

set to .FALSE, if no end of file in the input data was found or .TRUE,

if the end of file was found. The second four bytes are an integer

variable with the FORTRAN unit number to be used in reading the input

61

data. The next 80 bytes are the card image currently being converted.

A typical statement establishing this common block is

COMMON/ALFAIN/LEOF,IUNIT,RECORD(20)

which must be included in the calling routine.

CONVERT consists of two CSECTs, one Assembler and the other FORTRAN.

The FORTRAN CSECT, a subroutine named REREAD, has no arguments and is

responsible for actually reading the data into the record field in ALFAIN

and calls entry EOFRR upon reaching end of file in the input data. As

listed here, it reads from the FORTRAN unit specified in word 2 of

ALFAIN and lists each record without change on FORTRAN Unit 6 as it is

read. It is a simple routine and may easily be modified to suit particu­

lar requirements. The Assembler CSECT is named CONVERT# and has six entry

points, one of which must be called only by the REREAD routine.

Entry point CNVRTA has two integer arguments specifying the number of

scalars and arrays in subsequent logical record that CONVERT will

interpret. Entry point CNVRTT is CNVRTA's complement. It, too, has two

integer arguments, but CNVRTT sets them to the current values of the

number of scalars and arrays, respectively.

The EOFRR entry sets the end of file flag in ALFAIN to TRUE and

returns to the caller of CONVERT, not to the routine which called EOFRR.

This nonstandard linkage requires that a REREAD be called only by CONVERT

and that only REREAD call EOFRR.

62

Entry point CNVRTC has two arguments, an array and an integer

variable. CNVRTC reads the next logical record from the input and con­

verts it as a character or alphanumeric data, filling the array with the

data. The integer specifies the number of characters to be returned with

CNVRTC truncating or padding the input as required.

The most-used entry point is CONVERT, which reads the next logical

record, converts it as numeric data, and stores it in appropriate scalar

and array locations as defined in the last call to CNVRTA. The argument

list is of variable length and type also, depending on the last call to

CNVRTA. The argument list first has as many scalars as specified by

CNVRTA, then the correct number of arrays and, finally, an integer which

returns the number of items placed in each array. The types of all the

arguments except the last must match the type indicated by the syntax

of the input data as CONVERT will return items of the type specified by

the syntax, not as specified in the calling sequence. If the user inputs

data such that all of the arrays do not get the same number of items, the

count will ignore the extra and they will be lost. The USER CHARACTERISTICS

segment has substantial information on the way data is input and stored

which will not be repeated here.

The entry point LIGNOR is a logical function (all the others are

subroutines) which returns a .TRUE, value if the character after the

semicolon ending the last logical record was an ampersand (&). LIGNOR

must be called only after CONVRT has been called. It can be used to flag

the logical record in some way. For instance, if the ampersand is present,

the record could be ignored by the calling program or two types of inter-

dispersed data could be distinguished by this ampersand. The use of

63

this routine and warnings about the indiscriminate inclusion of ampersands

after semicolons are up to the programmer using this package.

Figure 2 is a list of possible calling sequences for CONVERT and some

comments on them. Appendix 1 has a typical input deck.

Thus CONVERT is a usable alternative to the fixed column input of

standard FORTRAN,and it provides some options on input that FORTRAN does

not easily support such as a variable amount of input. A complete source

listing is found in Appendix 2.

REFERENCE

1. Cliff, S. B., "A Method for the Study of Experimental Pulsative Flow
Through a Converging-Diverging Tube," unpublished Master's thesis.
The University of Tennessee, Knoxville, June, 1976.

64

CALL CNVRTA (4,7)

Sets CONVRT for four scalars and seven arrays, setting its
argument list to 12 variables long.

CALL CNVRTT (NSCAL,NARR)

Sets NSCAL to 4 and NARR to 7 since 4,7 were used in the last
call to CNVRTA.

CALL CNVRTC (CHARAC,14)

Reads next logical record and defines the first 14 characters
of CHARAC from the input.

CALL EOFRR
CALL REREAD

Both of these calls are illegal by user programs and must not
be used.

CALL CONVRT (N1,N2,R1,L1,N3,N4,R2,R3,L2,L3,N5,NEL)

Reads next logical record and stores the first four items in
scalars Nl, N2, Rl, LI and then loads the remainder in the
arrays N3, N4, R2, R3, L2, L3, N5. Finally it sets the integer
NEL to the number of elements placed in each of the arrays.
The use of four scalars and seven arrays was determined by the
last call to CNVRTA. Thus the number of arguments is the sum
of the two arguments of CNVRTA plus 1, for NEL. The types of
the variables must agree with those on the input data. If a
total of 25 items was on the logical record, NEL will have a
value of 3 (((25-4)/7)=3; (//Items - //Scalars)///Arrays)=NEL) .

LOGICAL LIGNOR

IF (LIGNOR(0)) GO TO 42

If the character after the semicolon was an ampersand, LIGNOR(O)
will be TRUE and execution will pass to statement 42. If the
character is not an ampersand, LIGNOR will be FALSE and the
branch will not be taken.

Figure 2

Possible Calling Sequences for CONVRT

65

COMMON/ALFAIN/LEOF,IUNIT,RECORD(20)

IF (LEOF) GO TO 94

Tests LEOF for end of file on the last call to CNVRTC or CONVRT
and goes to 94 only if end of file was found.

NOTES: Both arguments for CNVRTA and the second for CNVRTC are inputs
to CONVRT and are not changed. The argument to LIGNOR is ignored.
All other arguments are meaningless on entry and are defined by
CONVRT.

The input variables must have been previously set.

The dimensions of all arrays in the call to CONVRT must be
greater than the value of NEL on return.

The user should check for array overflows.

Figure 2 (Contd.)

67

PART III, Appendix 1

EXAMPLES OF CONVERT USAGE

2

3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

69

Statement

IMPLICIT INTEGER (I,N)
IMPLICIT REAL ((D,R,T,P)
LOGICAL LEOF LI, L2, LNOPRM
DIMENSION IA1(30), RA2(30), HEADER(10), TIME (30,20)
PRES(30,20), IREFNO(20, ITABLN(20)
COMMON /ALFAIN/ LEOF, IUNIT, RECORD(20)
EQUIVALENCE (IA1,RA2)
IUNIT=5
CALL CONVRTC(HEADER,40)
CALL CNVRTA(0,1)
DEFLT1=42.6
DEFLT2=3.1415
DEFLT3=32.2
IDFLT1=6
IDFLT2=12
CALL CONVRT(IA1,NINPUT)
IF (NINPUT .GT. 30) CALL ABEND(1)
IF (LEOF) CALL ABEND(2)
IF (NINPUT .LT. 3) CALL ABEND(3)
IVAR1=IAI(1)
IVAR2=IA1(2)
RVAR3=RA2(3)
IF (NINPUT .GE. 4) IDFLT1=IA1(4)
IF (NINPUT .GE. 5) DEFLT1=RA2(5)
IF (NINPUT .GE. 6) DEFLT2=RA2(6)
IF (NINPUT .GE. 7) IDFLT2=IA1(7)
IF (NINPUT .GE. 8) DEFLT3=ra2(8)
IF (NI1TPUT .GE. 9) WRITE(6,101)

101 FORMAT (10X,'TOO MANY ITEMS ON CARD #2, REST IGNORED')

Figure 1-1
Sample Use of CONVERT

29
30
31
32

33
34
35
36
37
38
39
40

70

Statement

IE (IDFLT1 .GT. 20) CALL ABEND (4)
CALL CNVRTA (1,2)
DO 200 1=1, IDFLT1
CALL CONVRT (IREFNO(I), TIME(1,I), PRES(1,1),
ITABLN(I))
IF (LEOF) CALL ABEND(5)
IF (ITABLN(I) .GT. 30) CALL ABEND(6)

200 CONTINUE
LNOPRM= .FALSE.
CALL CNVRTA(4,1)
CALL CONVRT (L1,R1,R2,I3,IA1,NINPUT)
IF (NINPUT .GT. 30) CALL ABEND (7)
IF (LEOF) LNOPRM= .TRUE.

Figure 1-1 (Contd.)

1
2

3
3
5
6
7
8

9
10
11
12
13
14

15
16

17

18
19
20
21
22

23

71

Card

THIS IS A SAMPLE DECK FOR CONVERT: HEADER
14, 16, 62.443,: ALWAYS SPECIFY 3 VALUES
3, : THREE TIME VS. PRESSURE TABLES
647, 1.4E-03, : IDFLT1, DEFLT1
; END OF CONTROL RECORD
: BEGIN TIME VS. PRESSURE TABLES
1 : TABLE #1
0.0, 10.0, 1.0,20.2, 2.0, 31.0, : BEGIN SPIKE

o ho 00 o 3.5, 25.2, 3.75, 26.8 : NOTE HUMP
4.0, 22.0, 5.0, 15.0, 6.0, 12.5 : END OF' SPIKE
7.0, 10.0, 1E10, 10.0 ; STEADY AT 10
3 : TABLE #3
0.0, 1E3, 3.0, 7.0E2, : SLOW FALL FOR 3 SEC.
3.1, 6.32E2, 3.2, 6.04E2, 3.3, 5.5E2, 3.4, 5E2,

3.5, 4.00 : RAPID DEPRESSURIZATION
3.6, 4.00, : SHORT STABILITY
3.8, 5E2, 4.0, 6E2, 5.0, 7E2 : SLOW PRESSURIZATION TO

STEADY
: THE FOLLOWING CARDS DESCRIBE THE LIQUID SLUG AT 6.0

SEC
: THEY HAVE BEEN DELETED FOR THIS TEST
: 5.5, 8E2, 6.0, 8.62E2 : UP TO PEAK PRESSURE
: 6.3, 7.84E2, 6.7, 6.9E2, 7.25, 7.E2 : BACK TO STEADY
1E10, 7E2; STEADY STATE AT 700
2 : TABLE //2
0.0, 100.0, 10.0, 200.0, 20.0, 100.0, 1E10, 1E2 ;

Figure 1-2

Sample Data Deck

72

Assume that the executable statements of Figure 1-1 are in the program

using CONVERT and that Figure 1-2 is the data deck to be read. This

example defines a header array with statements 4 and 8 which read card 1.

Note the use of comments after the data on this record and throughout the

input deck. Then a control record, cards 2 to 5, is read into a scratch

array area by statements 9 and 15. Statement 16 terminates the program if

the scratch area has been exceeded, while statement 17 terminates upon early

end of file. Statement 18 ensures that the three required quantities are

present and statements 19, 20, and 21 move them from the scratch area into

usage area. Statements 10 to 14 set defaults for the optional variables

on the control record.

Then, using the number of items placed in the scratch area as a key,

statements 22 to 26 change the default values if the user has inputi

them. In this case, six items were specified on data cards 2 through 5,

changing three of the optional values. The spreading over multiple cards

allows the data to be changed easily; here data cards 3 and 4 could be

removed returning them to their default values without generating invalid

syntax. Statements 27 and 28 issue a warning message if too many items

were in the control record. Statement 29 then ensures that array bound­

aries will not be exceeded in the next loop. Data card 6 is strictly a

comment which is ignored as the next logical record, cards 6 to 11, is

read in the first execution of the loop in statements 31 to 35. Statement

30 sets CONVERT for one scaler (a reference number for each table) and two

arrays (a time versus pressure curves). Statement 32 invokes CONVRT with

the appropriate arrays. Note that the length of each table (ITABLN) is

automatically set by CONVRT. Statements 33 and 34 ensure that sufficient

73

data is supplied, but that the table arrays are not exceeded. Table //I

is spread over cards 7 to 11 and specifies a table with 11 pairs of

values. The table stored next has a reference number of 3 and is specified

in data cards 12 to 21. The table was originally 17 pairs of values long,

but the pressure hump due to the slug of liquid noted in cards 16 to 20

has been commented out and will be ignored. Thus this table is nine pairs

of points long. The third table has a reference number of 2 and is cards

22 and 23. Only four pairs of values comprise this table. Next, an

optional parameter table is assumed to be present in statement 36. State­

ment 37 defines the next record to have four scalers and one array, and

statement 38 attempts to read it. Statement 39 ensures the integrity of

storage areas, and statement 40 checks to see if any data was present.

Since all the data had already been read, the flag of no parameter is set

to TRUE indicating it was not input.

Thus this example illustrates several of CONVERT's features and some

of the coding techniques that can be used with it. Records 16, 17, 18,

27, 28, 29, 33, 34, and 39 are needed only to check the data, providing

more user security in input preparation than is normally found in most

programs.

I

75

PART III, Appendix 2

SOURCE LISTING OF THE CONVERT ROUTINES

77

SAVE
AREA

LINKAGES

MAC RO
LINK
LA 2 » SVEOOl
ST 13,4(0,2)
ST 2,8(0,13)
LR 13,2
MEND

CONVERT# CSECT 0
ENTRY CNVRTT

*>C ALL CNVRT (NOSCAL,NOARRAY)
^CONVERT TEST E.P. - TO GET CURRENT VALUES OF CONSTANTS
*NOSCAL IS NUMBER OF SCALERS - A POSITIVE INTEGER
*NOARRY IS NUMBER OF ARRAYS -

USING CNVRTT,15
CNVRTT SAVE (14,12),,*

BEGIN ASSEMBLE

A POSITIVE INTEGER

LINK
LM
LA
MVC
MVC
L
RETURN

2,3,0(1)
9,NOSCAL
0(4,2),0(9)
0(4,3) ,4(9)
13,4(0,13)

(14,12) , T
ENTRY CNVRTA

*C ALL CNVRTAt---SAME ARGUMENTS AS CNVRTT---)
^CONVERT ALTER E.P. - USED TO CHANGE THE CONSTANTS OF THIS PROG

USING CNVRTA,15
SAVE (14,12),,*CNVRTA
LINK
LM
LA
MVC
MVC
L
RETURN

2,3,0(1)
9,NOSCAL
0(4,9),0(2)
4(4,9),0(3)
13,4(0,13)

(14,12),T
ENTRY EOFRR

* IF END OF FILE IS FOUND IN REREAD, EOFRR IS CALLED AND IT RETURNS
* CONTROL TO THE PROGRAM THAT CALLED CONVRT AND SETS EOF FLAG

USING *,15
EOFRR L 13 , SVE001+4

L 7 , AL FA I NAD
LA 5,1(0,0)
ST 5,0(0,7)
WTL 'END OF FILE IN REREAD'
ABEND 65
RETURN (14,12),T
ENTRY .CONVRT DECLARE ENTRY POINT TO BE AT CONVRT

*THIS ROUTINE CONVERTS THE ALPHAMERIC INPUT FROM THE TELETYPE TO
* APPROPRIATE NUMERIC FORM
*USAGE- CALL CONVRT (RECORD,A,B,C,D.....G,S,T,....Z)
* WHERE RECORD IS A CHARACTOR STRING TO BE DECODED, OF ANY LENGTH,
* OF THE FORMS,$,$,$...$,C WHERE S IS A REAL OR INTEGER
* NUMBER IN CHAR FORM, SEPARATED BY COMMAS, AND C IS
* EITHER A COLON OR SEMICOLON IT IS IN "ALFAIN"
*ANY NUMBER OF SCALORS AND/OR ARRAYS ARE PERMITTED AS SET BY CNVRTA
*A CARD OF FORM : COMMON /ALFAIN/ LEOF,I NR,RECORD MUST APPERA IN
*A CARD OF FORM : COMMON /ALFAIN/ LEOF, I NR.RECORD MUST APPEAR IN

CNV10000
CNV10001
CNV10002
CNV10003
CNV10004
CNV10005
CNV10006
CNV10007
CNV10008
CNV10009
CNV10010
CNV10011
CNV10012
CNV10013
CNV10014
CNV10015
CNV10016
CNV10017
CNV10018
CNV10019
CNV10020
CNV10021
CNV10022
CNV10023
CNV10024
CNV10025
CNV10026
CNV1002 7
CNV10028
CNV10029
CNV10030
CNV10031
CNV10032
CNV10033
CNV10034
CNV10035
CNV10036
CNV10037
CNV10038
CNV10039
CNV10040
CNV10041
CNV10042
CNV10043
CNV10044
CNV10045
CNV10046
CNV10047
CNV10048
CNV10049
CNV10050
CNV10051
CNV10052
CNV10053
CNV10054
CNV10055

78

ABDTH THE CALLING AND REREAD PROGRAMS. RECORD IS AS DESCRIBED ABOVE
*LEOF IS LOGICAL END OF FILE IN REREAD—SET TO .TRUE. VALUE BY THIS
♦PROGRAM IF END OF FILE IS FOUND: IT IS SETTO .FALSE. IF NO EOF FOUND
♦ INR IS NOT TOUCHED BY THIS PROGRAM BUT CAN BE USED TO TRANSMIT
♦ INPUT UNIT NUMBER TO REREAD
♦IF INPUT IS REAL, REGUALR REAL VALUES ARE RETURNED
♦AN INTEGER IS ANY CONSISTING ONLY OF NUMBERS
♦A REAL INPUT IS ANY THAT HAS EITHER A DECIMAL OF AN E TO DENOTE A
♦ POWER OF TEN
♦ALL BLANKS AND ILLEGAL CHAR REGUARDLESS OF LOCATION ARE IGNORED
♦ EXCEPT AS NOTED
♦ A,B,C,....F,G, ARE VARIABLES OF LENGTH FOUR BYTES, EITHER
♦ REAL OR INTEGER, THAT CORRESPOND TO EACH $ IN RECORD
♦ S,T...., ARE LINEAR ARRAYS OF ANY LENGTH , WITH EACH ELEMENT
♦ OF LENGTH FOUR BYTES TO RELIEVE DATA VALUES IN PARRELL
♦NOTE LOGICAL VALUES CAN BE RETURNED TO ANY ARGUMENT IF THAT IS TYPE
♦♦♦ NOTE ♦♦♦ THE USER MUST KEEP TYPES CORRECT; THIS ROUTINE
♦ CHECKS THE SYNTAX IF THE INPUT RECORD TO DETERMINE TYPE
♦ Z IS THE NUMBER OF VALUES PLACED IN EACH ARRAY ON RETURN TO
♦ CALLING PROGRAM
♦IF INPUT IS INTEGER, REGULAR INTEGER VALUES ARE RETURNED
♦A COMMA »," DELIMITS EACH VALUE OR WORD
♦A PERIOD DENOTES DECIMAL LOCATION, IF NEEDED
♦ALL BLANKS, REGUARDLESS OF LOCATION, ARE IGNORED
♦ A COLON DENOTES END OF A RECORD THAT IS CONTINUED - IT MUST BE
♦ PRECEEDED BY A COMMA
♦A SEMICOLON »;» DENOTES THE END OF A RECORD THAT IS NOT CONTINUED, IT
♦ MUST BE PRECEEDED BY A COMMA
♦IF INPUT IS CHARACTOR "T", A FORTRAN LOGICAL .TRUE. VALUE IS RETURNED
♦IF INPUT IS CHARACTOR "F», A FORTRAN LOGIACL .FALSE. IS RETURNED
♦AN E DENOTES A REAL VALUE WITH THE POWER OF TEN FOLLOWING TH E
♦ONCE A T OR F IS ENCOUNTERED, ALL CHAR ARE SKIPPED UNTIL A COMMA
♦ONCE AN E IS FOUND, THE OPTIONAL SIGN CHAR IS CHECKED FOR, THEN AT
♦ MOST TWO DIGITS OF EXPONENT, THEN ALL CHAR ARE SKIPPED UNTIL A
♦ COMMA IS FOUND.THIS IS THE ONLY REGION THAT EXTRANOUS CHAR
♦ (EXCEPT BLANKS) ARE NOT IGNORED
*INPUT
£

FORMS:
INTEGER: S#, 1,-123,+4521,1245,
REAL: S#. , 2.,-541.,+5874.,

$ S#.#, 3.2,12.456,+257.14,-12.006,
S#ES#, 7E5,+1452E-12,-4E 5,

* S.#ES#, +.20345E28-.00234E-42,
S#.#ES#, +12.542E-16,-142.563E3,8.452E-458

$ EACH S IS AN OPTIOMAL SIGN CHAR, +0R-, + IF OMMITED

♦REGISTER
♦ GENERAL
*
♦
♦
♦
*
♦

IS ONE OR MORE DIGITS OF SET 0-9
. IS THE DECIMAL LOCATOR
E IS THE EXPONENT INDICARATOR
, IS THE REQUIRED SEPARATOR BETWEEN VALUES

ASSIGNMENTS:
0,1 USED AS WORK REGISTER PAIR
2 COUNTS THE ARGUMENTS
3 COUNTS THE ARRAYS
A-5 PAIR, THE NUMBER IS ASSEMBLED HERE
6 COUNTS NO OF DIGITS AFTER A . OR E; IF

NEGATIVE, THE NUMBER IS AN INTEGER
7 FOLLOWS DOWN THE INPUT RECORD POINTING TO THE

CNV10056
CNV10057
CNV10058
CNV10059
CNV10060
CNV10061
CNV10062
CNV10063
CNV10064
CNV10065
CNV10066
CNV10067
CNV10068
CNV10069
CNV10070
CNV10071
CNV10072
CNV10073
CNV10074
CNV10075
CNV10076
CNV10077
CNV10078
CNV10079
CNV10080
CNV10081
CNV10082
CNV10083
CNV10084
CNV10085
CNV10086
CNV10087
CNV10088
CNV10089
CNV10090
CNV10091
CNV10092
CNV10093
CNV1009A
CNV10095
CNV10096
CNV10097
CNV10098
CNV10099
CNV10100
CNV10101
CNV10102
CNV10103
CNV10104
CNV10105
CNV10106
CNV10107
CNV10108
CNV10109
CNV10110
CNV101117

o
 *

79

* CHAR TO BE DECDOEr)
*
*
*
*
*
*
*
*
*
*
*
#
*
*
*
*

fl
9

10
11
12
IB
14-15

FLOATING POINTS
0
2
4
6

THE EXPONENT IS ASSEMBLED HERE, IF 2ER0-
THERE IS NO EXPONENT
INCREMENTS DOWN THE LIST OF ADDRESSES TO

INDICATE WHICH ARGUMENT IS NEXT
FIXED POINT CONSTANT 10
INDEXES THROUGH ARRAYS
FIXED POINT CONSTANT 4 KEPT HERE
BASE REGISTER, SAVE AREA ADDRESS
SUBROUTINE LINKAGE

FLOATING POINT (REAL) NUMBER ASSEMBLED AND
CONVERTED HERE
FLOATING POINT CONSTANT 10.0

FLOATING POINT ZERO
NOT USED

USING
CONVRT SAVE

LINK
B
USING
DROP

SVE001 DS
SR
LR
LR

LA
LA
SDR
LD
LR
L
A
MR
L
ST
L
LA

*BEGIN LOOP TO
WORDLOOP SR

SR
STH
L
B

♦BEGIN LOOP TO
HARLOOP LA

CLI
BE
CLI
BE
CLI
BE
CLI
BNE

CONVRT,15
(14,12),,* SAVE THE REGISTERS

SVE001+72
SVE001,13

15
IRE
11,11
2,11
3,11
12.4
10,10
4.4
2,DIO
9,1
1»NOARRY
1»NOSCAL
0,12
1,0(1,9)
1,ADTNPT
7 ,ALFAINAD
7,8(0,7)
DECODE A WORD
5.5
8,8

DROP 15 AS BASE REG

SET INDEX REGISTER TO ZERO
SET ARGUMENT COUNTER TO INITIAL VALUE
SET ARRAY COUNTER TO ZERO
GET CONSTANT "FOUR"
GET CONSTANT "TEN"
GET FLOATING POINT ZERO CONST
GET FLOATING POINT 10.0
PUT ADR OF ARG IN REG 9

OF LAST ARGUMENT
SET REG7 TO BEGINNING OF INPUT RECORD

CLEAR REGS 5 S 6

5, FLAG SET FLAGS TO ZERO
6, CM 1000 MAKE REG6 VERY NEGATIVE AS A FLAG
CHARL00P+4 SKIP THE INCREMENTING OF REG1
DECODE A CHARACTOR
7,1(0,7) ADO 1 TO REG7-IT POINTS TO THE CHAR

BE DECODED
0(7) ,X1401 IS THIS CHAR A BLANK?
CHARLOOP BRANCH BACK IF IT IS -
0(7) ,X'6B' IS IT A COMMA?
COMMA BR TO DECODE A COMMA IF
0(7) , X14E1 IS THIS CHAR A • + '?
CHARLOOP BR IF IT IS - I.E. SKIP
0(7) , X160• IS THIS CHAR A '-•?
*+12 SKIP FLAG SETTING IF IT

TO

I.E. SKIP IT

IT IS

IT

IS

CNV10112
CNV10113
CNV10114
CNV10115
CNV10116
CNV10117
CNV10118
CNV10119
CNV10120
CNV10121
CNV10122
CNV10123
CNV10124
CNV10125
CNV10126
CNV10127
CNV10128
CNV10129
CNV10130
CNV10131
CNV10132
CNV10133
CNV10134
CNV10135
CNV10136
CNV10137
CNV10138
CNV10139
CNV10140
CNV10141
CNV10142
CNV10143
CNV10144
CNV10145
CNV10146
CNV10147
CNV10148
CNV10149
CNVI0150
CNV10151
CNV10152
CNV10153
CNV10154
CNV10155
CNV10156
CNV10157
CNV10158
CNV10159
CNV10160
CNV10161
CNV10162
CNV10163
CNV10164
CNV10165
CNV10166
CNV10167

80

MV I FLAG.X'FF' SET FLAG BITS TO ONE CNV10168
B CHARLOOP RETURN FOR NEXT CHAR CNV10169
CLI 0(7)» X1AB' IS IT A DECIMAL? CNV10170
BNF *+10 BR IF NOT A DECIMAL CNV10171
SR 6,6 SET 6 TO 7ERO AS FLAG CNV10172
B CHARLOOP RETURN FOR NEST CHAR CNV10173
SR 1,1 CLEAR REG1 TO RFCIEVE THIS CHAR CNV10174
IC 1,0(0,7) GET THIS CHARACTOR CNV10175
S 1 ,F0 TRY TO CONVERT IT TO A NUMBER CNV10176
BM LOGICAL BR TO LOGICAL VARIABLE IF CHAR IS NOT A # CNV10177
A 6,Cl INCREMENT DIGIT COUNTER BY OMR CNV10178
MR A,10 SHIFT PREVIOUS DIGITS IN THIS WORD BY 10 CNV10179
AR 5,1 ADD LOW ORDER DIGIT TO HIGH ORDER ONES CNV101R0
B CHARLOOP GO TO NEXT CHAR CNV10181

LOGICAL CLI 0(7) ,X'F3' IS IT A "T"? CNV10182
BF true BR IF IT IS CNV10183
CLI 0(7) ,X'C5' IS THIS CHAR AN "F"? CNV10184
BF REAL# BR TO TAKE CARE OF EXP CNV10186
CLI 0(7) ,X'C6' IS this CHAR A f? CNV10186
BF FALSE BR IF IT IS CNV10187
B CHARLOOP SKIP UNKNOWN CHAR CNV10188

TRUF LA 6,1(0,0) GET TRUE VALUE CNV10189
B * + 6 SKIP NEXT INSTRUCTION CNV10190

FALSF SR 5,5 GET FORTRAN .FALSE. VALUE CNV10191
LA 7,1(0,7) SKIP TO NEXT CHAR CNV10192
CLI 0(7),X16B' IS IT A COMMA? CNV10193
BNF FALSE+2 SKIP CHAR CNV10196
B READY BR TO STORE WORD IF CHAR IS COMMA CNV10195

RFAL# LA 7,1 (0,7) SKIP THE ''E'' CNV10196
CLI 0(7),X'AO' IS THIS CHAR A BLANK? CNV10197
BF REAL# BR IF IT IS A BLANK CNV10198
LTR 6,6 CHECK- HAS A DECIMAL BEEN FOUND? CNV10199
BNM * + 6 BR IF ONE HAS CNV10200
SR 6,6 FORCE DECIMAL RECORDING IF ONE HAS NOT CNV10201
CLI 0(7) ,X'AE' IS the EXP POS? CNV10202
BE *+16 SKIP NGS SIGN PROCESSING IF IT IS CNV10203
CLI 0(7),X•601 IS THE EXP NEGATIVE? CNV10206
BNF *+20 SKIP SIGN BIT SETTING IF NO SIGN GIVEN CNV10205
MV I FLAG+1,X'FF' SET NEGATIVE EXP BITS TO ONES CNV10206
LA 7,110,7) SKIP SIGN CHAR CNV10207
CLI 0(7),X'A0' IS THIS CHAR A BLANK CNV10208
BF *—B SKIP IF IT IS CNV10209
IC 8,0(0,7) GET THIS CHAR CNV10210
s 8, FO CHANGE TO NUMERIC FORM CNV10211
BM COMMALOK GO LOOK FOR COMMA CNV10212
LA 7,1(0,7) SKIP FIRST CHAR CNV10213
CLI 0 (7),X•AO * IS THIS CHAR A BLANK? CNV10214
BF *-8 SKIP IT IF IT IS CNV10215
SR 1 ,1 CLEAR REG1 TO RECIFVE THIS CHAR CNV10216
IC 1,0(0,7) GET NEXT CHAR CNV10217
S 1 ,F0 CONVERT TO NUMERIC FORM CNV10218
BM COMMALOK GO LOOK FOR COMMA CNV10219
ST 1,WORK SAVE SECOND DIGIT CNV10220
LR 1,8 PUT FIRST DIGIT IN REG1 CNV10221
MR 0,10 SHIFT FIRST DIGIT OVER CNV10222
A 1,WORK ADD SECOND DIGIT CNV10223

81

LR B 11 PUT TOTAL EXP IN 8 CNV10224
B COMMALOK GO LOOK FOR COMMA CNV10225
LA 7,1(0,71 SKIP THIS CHAR CNV10226

COMMAUIK CLI 0(7),X'6B' IS THIS CHAR A COMMA? CNV10227
BNF COMMALOK-4 GO LOOK FOR COMMA CNV10228

COMMA LTR 6,6 IS this WORD AN INTEGER? CNV10229
BM INTEGER BR IF IT IS CNV10230
MVC WORK,FLOA TC GET CONSTANT FOR FLOATING REAL NO. CNV10231
ST 5,WORK+4 ST THE INTEGER CNV10232
LD 0 ,WORK LOAD FLOATED, UNNORMALIZED NO TO FPRO CNV10233
ADR 0,4 ADD '0.0' TO NORMALIZE NO. CNV10234
TM FLAG.X'FF' CHECK FOR SIGN OF INTEGER CNV10235
BNO * + 6 BR IF POSITIVE CNV10236
LNOR 0,0 COMPLEMENT FPRO - MAKE IT NEGATIVE CNV10237
LTR 6,6 CHECK NO OF DIGITS IN FRACTIONAL PART CNV10238
BNP *+10 BR IF NO DIGI&O F£5I-4ECCD-G CNV10239
DDR 0,2 DIVIDE BY '10.0' CNV10240
BCT 6 , *—2 BR UNTIL EXP IS EXHAUSTED CNV10241
LTR fl ,8 CHECK FOR EXPONENT CNV10242
BNP FLOATED BR IF EXP IS NOT POS-NO OR ZERO EXP CNV10243
TM FLAG+1,X'FF' CHECK EXP SIGN CNV10244
BO *+14 BR IF EXP SIGN IS NEG CNV10245
MDR 0,2 MULTIPLY BY 10.0 CNV10246
BCT R,*-2 BR UNTIL EXP IS EXHAUSTED CNV10247
B FLOATED SKIP NEG EXP CALC CNV10248
DDR 0,2 DIVIDE BY 10.0 CNV10249
BCT fl, *-2 BR UNTIL EXPONENT IS EXHAUSTED CNV10250

FLOATFD STD 0,WORK STORE FLOATED WORD CNV10251
L 5,WORK GET WORD FOR STORAGE IN CALLING PROG CNV10252
B READY SKIP SIGN CHECK CNV10253

INTEOEk TM FLAG.X'FF' CHECK SIGN OF INTEGER CNV10254
BNO READY SKIP IF POS CNV10255
LNR 5,5 MAKE NEG IF NEEDED CNV10256

RFADY LA 2,1(0,21 INCREMENT ARG COUNTER CNV10257
C 2 .NOSCAL CHECK FOR THE ARRAYS AS CNV10258
BP ARRAYS ARGUMENTS AND BR IF NECESSARY CNV10259
L 1,0(0,91 PUT ADR OF ARGUMENT IN 1 CNV10260
ST 5,0(0,11 STORE THIS WORD IN CORRECT ARGUMENT CNV10261
AR 9,12 SKIP TO NEXT ARGUMENT CNV10262
LA 7,1(0,71 SKIP COMMA CNV10263

LI TIE LOP CLI 0(7) ,X'7A' IS THE NEXT CHAR A COLON? CNV10264
BF COLON BR IF IT IS CNV10265
CLI 0(7),X'5E* IS IT A SEMICOLON? CNV10266
BE SEMICOLN BR TO DECODE A SEMICOLON IF IT IS CNV10267
CLI 0 (71,X'40 ' IS IT A BLANK? CNV10268
BNE WORDLOOP IF NOT BLANK, RETURN TO DO NEXT WORD CNV10269
B LITLELOP-4 CHECK NEXT CHAR CNV10270

♦THERE ARE 4 ARRAYS THAT RECIEVE VALUES AND THEY RECIVE VALUES IN CNV10271
♦ PARALLEL . HENCE COUNTERS MUST BE SET AND CHECKED TO PUT VALUES CNV10272
♦ IN CORRECTLY CNV10273
ARRAYS L 1,0(0,91 PUT ADR OF ARGUMENT IN 1 CNV10274

ST 5,0(11,1) STORE WORD IN CORRECT ARRAY WITH PROPER CNV10275
♦ INDEX VALUES CNV10276

AR 9,12 SKIP TO NEXT ARGUMENT CNV10277
LA 3,1(0,31 INCREMENT ARRAY COUNTER CNV10278
C 3,NOARRY CHECK-1F LAST ARRAY- DO NOT BRANCH CNV10279

82

BNE LITLELOP-4 OTHERWISE BR TO CHECK FOR COLONS CNV10280
♦IF AT FOURTH ARRAY, MUST RESET COUNTERS CNV10281

AR 11,12 INCREMENT ARRAY INDEX TO NEXT WORD CNV10282
LR 1,3 GET. NO OF ARRAYS CNV10283
MR 0,12 CNV10284
SR 9,1 BACK ARGUMENT POINTER TO FIRST ARRAY CNV10285
SR 3,3 RESET ARRAY COUNTER CNV10286
B LITLELOP-4 CHECK FOR COLONS CNV1028 7

♦DECODE COLON BY READING I N THE NEXT RECORD AND RESETING REG7 TO CNV10288
♦ THE BEGI NNING OF THE NEW RECORD CNV10289
♦REREAD HAS NO ARGUMENTS AND IS CALLED FROM THIS POINT CNV10290
COLON L 15,RERADD REG 15 IS ADR OF REREAD ROUTINE CNV1029 1

BALR 1 A, 15 CALL REREAD ROUTINE CNV10292
L 7,ALFAINAD SET REG7 TO BEGINNING OF INPUT RECORD CNV1029 3
LA 7,810,7) CNV10294
SDR A,4 GET FLOATING POINT ZERO CONST CNV10295
LD 2,010 GET FLOATING POINT 10.0 CNV10296
B LITLELOP GO TO NEXT WORD LOOP VIA COLON CHECK CNV10297

♦DECODE SEMICOLON BY DETERIMINING THE TOTAL NO. OF POINTS AND CNV10298
♦ STOREING ITAND RETURING TO THE CALLING PROGRAM CNV10299
SEMICOLN LTR 11,11 HAS THE ARRAYS BEEN REACHED? CNV10300

BNP RETURNS BR IF NO ARRAYS USED CNV10301
M 10,Cl PREPARE ARRAY INDEX REG FOR DIVISION CNV10302
DR 10,12 REG11 HAS TOTAL NO. OF POINTS CNV10303
L 1.ADTNPT REG 1 HAS ADR OF LAST ARGUMENT CNV10304
ST 11,0(0,1) STORE TOTAL NO. OF POINTS CNV10305

RETURNS SR 5,5 SET EOF VALUE TO .FALSE.- CNV10306
ST 7 ,SEMI ADD SAVE ADDRESS OF END OF RECORD CNV10307
L 7,ALFAINAD CNV10308
ST 5,010,7) CNV10309
L 13,4(0,13) UNLINK SAVE AREAS CNV103 10
RETURN <14,12)'T RETURN TO CALLING PROGRAM CNV10311
ENTRY LIGNOR CNV10312

♦LOGICAL FUNCTION TO DETERMINE IF THIS RECORD SHOULD BE IGNORED CNV10313
♦LRSULT = LIGNOR (RECOED) CNVI0314
♦LRSULT = .RRUE. IF £ FOLLOWS 5 CNV10315
♦LRSULT = .FALSE. IF NO f. FOLLOWS ; CNV10316

USING LIGNOR,15 CNV10 317
LIGNOR SR 0,0 CNV10318

L 1,SEMIADD CNV10319
CLI 1(1),X150 i CNV10320
BE AMPER CNV10321
BR 14 CNV10322

AMPER L 0,C1 CNV10323
BR 14 CNV10324

FLAG DS 1H FLAGS FOR SIGN BITS AS NEEDED CNV10325
CMIOOO DC IF'-IOOO* LARGE NEGATIVE NUMBER FOR FLAG IN REG 6 CNV10326
DIO DC ID•10.0• FLOATING POINT TEN CNV10327
WORK DS ID A DOUBLE WORD OF WORKING SPACE IN CORE CNV10328
FLOATC DC X'AEOOOOOOOOOOOOOO* FLOATING CONV CONSTANT CNV10329
Cl DC 1F • 1' CONSTANT 1 CNV10330
FO DC X'OOOOOOFO' CONVERSION CONSTANT-ALPHAMERIC TO NUMERIC CNV1033 1
ADTNPT DS IF ADR OF LAST ARGUMENT CNV10332
ALFAINAD DC V(ALFAIN) CNV1033 3
RERADD DC V(REREAD) ADR OF REREAD ROUTINE CNV10334
NOSCAL DC 1F'7' CNV1033 5

83

NDARRY DC IF*A' CNV1033f>
SFMJADn ns IF CNV10337

FNO CNV10338
StIBRntIT INF REREAO CNV10339
LOGICAL LFOF CNV10340
COMMON /ALFAIN/ LEOF , INR,RECORO (20) CNV10341
DATA IC/O/ CNV10342
RFAOIINR,1,END=10) RECORD CNV10343

1 FORMAT(20A4) CNV10344
IC = IC + 1 CNV10345
WRITF (ft,?) IC,RECORD CNV10346

P FORMAT(15X,I6,' = ' ,T25 ,20A4) CNV10347
LFOF = .FALSE. CNV10348
RETURN CNV10349

10 LEOF=.TRUF. CNV10350
CALL EOFRR CNV10351
RFTURN CNV10352
FND CNV10353

85

PART IV

PARMETER - PARAMETER FIELD ACCESSING ROUTINES

87

PART IV

PARMETER - PARAMETER FIELD ACCESSING ROUTINES

Most FORTRAN programs are controlled from data read through the

FORTRAN library from various unit numbers. This control suffices for

most programs, but there are occasions where control from another source

is desired. The parameter field of the EXEC Job Control Language

Statement [1]

//STEPNAME EXEC FORTHCLG,FARM.G0='PARAMETER FIELD'

provides such an extra input. A good example of the use of this field

is the FORTRAN-H compiler itself. The compiler uses the SYSIN file as

source input, which has no control specifications built in. All compiler

options are provided through the parameter field of the FORT step, e.g.,

(FARM.FORT='XREF,MAP'). Although the compiler is written primarily in

standard FORTRAN, it has assembler language code similar to the two

routines discussed below to access the parameter field.

The first routine, ALPARM, is an INTEGER FUNCTION which has one

argument:

INTEGER ALPARM
ILEN = ALPARM (FARM)

The functional value (ILEN) is the number of characters in the FARM field,

with zero returned if no field was specified. If ILEN is positive, the

characters from the FARM field are copied (A4 FORMAT) into the argument,

FARM, which must be dimensioned to accept the entire FARM field which may

be 100 characters (25 words) long. Only the first ILEN characters are

transferred; the rest remain as before the invocation of ALPARM.

88

The second routine, FARM, is also an INTEGER FUNCTION with one

argument:

INTEGER*2 FARM, 12
I = FARM (12).

This routine provides for a typical use of the FARM field since it scans

the total field looking for the value of the keyword "MODEL" which is

assigned a value by a field such as "M0DEL=2D". Thus, the functional

value FARM and the argument 12 are both returned with the value of MODEL,

here "2D", in an INTEGER*2 format. The value returned consists of the

two characters (not binary numbers) of MODEL. Thus, MODEL can have the

value of any two characters available for use in the FARM field, whether

numeric or not. If no FARM field was specified or the string "MODEL="

was not found, or both characters were not specified, a binary zero is

returned. Because of FORTRAN conventions, FARM may also be invoked by

CALL FARM (12)

where the functional value is ignored. The phrase "MODEL=" may occur

anywhere in the FARM field, intermixed with other characters as desired.

Both of these routines may be invoked repeatedly in the same program

without harm, and they may be invoked in an intermixed fashion if desired.

Appendix 1 is a complete source listing.

REFERENCE

1. Job Control Language Reference, IBM Manual GC28-6704-3, pp. 89-90.

89

PART IV, Appendix 1

SOURCE LISTING OF PARMETER

91

PARMAMTR CSECT 0 PRM10000
* VERSION 1.0 JUNE 20,1977 STEVEN H. CLIFF PRM10001
* PRM10002
* THFSE ROUTINES ACCESS THE PARM FIELD OF THE EXEC STATMENT PRM10003
* PRM10004
* USAGE FOR PARM: PRM10005
* I=PARPKI2) PR M10006
♦ PRM10007
* WHERE 12 REC IVES THE FIRST TWO CHARACTERS AFTER THE STRING PRM10008

"MODEL=". IF NO PARM FIELD OR NO "MODEL=" PRM10009
* A NUMERIC ZERO IS RETURNED . 12 IS TYPED FKM10010
* INTEGER *2 PRM10011
♦ I REC IEVES THE SAME AS 12 EXCEPT, BECAUSE OF PRM10012

STANDARD FORTRAN LINKAGES, IT MAY BE TYPED AS PRM10013
* I*2,I*4,L*4 OR L*1 WITH APPROPRIATE RESULTS. PRM10014
* IF TYPED AS L*1 ONLY ONE CHARACTER (THE SECOND) PRM10015
* WILL BE AVAILABLE, OTHERWISE THE TYPES ARE THE SAME PRM10016
* PRM10017
$ PR M10018
PRM10019
* USAGE FOR ALPARM: PRM10020
* J=ALPARM(IA) PRM10021
* WHERE IA IS AN ARRAY WHICH RECIVES ALL OF THE PARM FIELD PRM10022
* THAT IS PRESENT. SINCE THE FIELD MAY BE PRM10023
* UPTO 100 CHARACTERS LONG, IT SHOULD BE DIMENSIONED PRM10024
$ TO AT LEAST 100 CHARCTERS, 25 WORDS. PRM1002 5
* J RECI VES THE NUMBER OF CHARACTERS PLACED IN IA, PRM10026
* AMD IS TYPED EITHER INTEGERS OR INTEGERS. PRM 10027
* IF NO PARM FIELD IS PRESENT, J WI LL BE ZERO. PRM10028
* NOTE: ONLY THE FIRST J CHARACTERS OF IA W ILL BE INTIALIZED. PRM10029
SAVE EQU 13 PRM10030
BASE EQU 13 PRM10031
X EOU 2 PRM10032
TEMP EQU 1 PRM 10033
EUNT EQU 0 PRM10034
LINK EOU 14 PRM 10035
EP EOU 15 PRM10036

USING PARM ,EP PRM 10037
ENTRY PARM PRM10038

PARM B GO PRM 10039
DC XL 1106' PRM10040
X CL6'PARM ' PRM10041

REGS DS 9D PRM10042
C 7 DC 1 F 1 7 1 PRM10043
C 8 DC IF '8' PRM10044
CIOO DC IF'100' PRM10045
MODEL DC CL6'MODEL=' PRM10046
GO STM 14,12,121 SAVE) PRM10047

LR X,SAVE PRM10048
LA BASE,REGS PRM10049
DROP EP PRM10050
USING REGS,BASE PRM10051
ST X»4(.SAVE) PRM10052
ST SAVE,8(,X) PRM 10053
L 11,0(,1) PRM10054

KEEP LR 3,2 PRM10055

92

L 2 * 4(,3) GET FIRST SAVE
LTR 2,2 FIRST IF NO BACK CHAIM
BN 7 KEEP
L 3 ,24(,3)
L 3,0(,3)
LTR 3,3
BNM RETURN
LH 5,0(,3)
C 5, C8
BL RFTURN
C 5,CIOO
BH RFTURN
LA 10,1
LA 3,2(,3) SKIP OVER COUNTmnpM CLI 0(3) ,CM* LOOK FOR M
BF GOTM

innpMon AR 3,10
BCT 5,L0nPM

R E T UR M SR 0,0
B BYEBYE

onTM CLC MODEL,0(3)
BNF LOOPMGO
C 5 ,C7
BL RFTURN
IC 0,6(3)
SLL 0,8
IC 0,7(3)
SLL 0,16
SR A 0,16

HYFBYF STH 0,0<,11)
BYEHYFOn L 13,4(,13)

ST 0 ,20(,13)
LM 14,12,12(13)
MV I 12(13) ,X'FF »
BR 14
ENTRY ALPARM
USING ALPARM,EP

ALPARM B G02
DC XL1'06'
DC CL6•ALPARM •

ADR FO DC A(REGS)
MDVI T MVC 0(0,11>,2(3)
002 STM 14,12,12(SAVE)

LR X ,SAVE
L BASE,ADREG
DROP EP
USING REGS,BASE
ST X,4(,SAVE)
ST SAVE ,8(,X)
L 11,0(,1)

KFFP2 LR 3,2
L 2 ,4(,3) GET FIRST SAVE ALTR 2,2 FIRST IF NO BACK CHAIN
BNZ KFEP2
L 3,24(,3)
L 3 ,0(,3)

PRM10056
PRMl0057
PRM1005R
PRM10059
PRMl 006 0
PRMlOOfcl
PRM10062
PRM10063
PRM10064
PRM1006 5
PRM10066
PRM10067
PRM10068
PRM10069
PRM10070
PRM10071
PRM1 007 ?.
PRM10073
PRM10074-
PRM1007 5
PRM10076
PKM10077
PRM10078
PRM10079
PRM10080
PRM10081
PKM10082
PRM1008 3
PRM10084
PRM1008 5
PRM10086
PRM1008 7
PRM10088
PRM10089
PRM10090
PRM10091
PRM10092
PRM1009 3
PRM10094
PRM1009 5
PRM10096
PRM1009 7
PRM10098
PRMl0099
PRM10100
PRM10101
PRM10102
PRM10103
PRM10104
PKM10105
PRM10106
PKM10107
PRM10108
PRM10109
PRM10110
PRM10111

93

LTR 3,3 PRM10112
BNM RFTURN PRM10113
LH 5,0<,3 > PRM10114
LTR 3,5 PRM10115
BNP RETURN PRM10116
C 5,CIOO PRM10117
RH RETURN PRM10118
FX 5 ,MOVIT PRM10119
LR 0,5 PRM10120
B BYEBYEOO PRM10121
FND PRM10122

95

PART V

ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES

97

PART V

ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES

Access to absolute memory addresses is not available in FORTRAN, yet

occasions do arise where complex coding can be dramatically simplified

if variables can be accessed not by name, but by absolute address. It

was to fill this need that the ABSADRES routines were written. Several

additional routines were added to ease other situations.

There are eight classes of routines in the ABSADRES group. The first

class returns the absolute address of its argument as its functional

value. The second class returns as its functional value the value of the

variable whose absolute address is given as an argument. The third class

returns the address of its argument list as a functional value. The

fourth calls the routine given as the second argument with the argument

list address given as the first argument. The fifth clears an array to

zeroes, and the sixth sets an array to blanks. The seventh class provides

the complement of the second class by storing a value in a location

referenced by its absolute address. The eighth class provides a null

subroutine.

The first class of routines consists of seven entry points which

return the address of their first argument as a functional value. The

entry names are DADRES, RADRES, IADRES, LADRES, ADORES, LOCFN, and LOCATN;

and, due to FORTRAN conventions, they are all alike in that their func­

tional values may be any type desired. However, the intention is that

they would be types REAL*8, REAL*4, INTEGER*4, L0GICAL*4, REAL*4, INTEGER*4,

and INTEGER*4, respectively. The multiple names were given to ease inter­

facing with FORTRAN coding conventions. Figure 1 is a table of Class 1

routines.

98

The second class of routines consists of nine entry points which

return the value of a location in memory referenced by its absolute

address given as an argument. All nine have this one argument, but the

alignment and length of the value returned vary depending upon the

routine called. One byte length with any alignment is assumed by entry

BVALUE, while entry RVALUE assumes a length of two bytes and halfword

alignment. LOGICAL*! and INTEGER*2 are the suggested types for BVALUE

and RVALUE, respectively, but INTEGER*4 may also be successfully used.

Entries LVALUE, IVALUE, RVALUE, and VALUE are alike since all fetch four

bytes aligned on full-word boundaries. Their suggested types are

L0GICAL*4, INTEGER*4, REAL*4, and REAL*4, respectively. The DVALUE entry

returns eight bytes with doubleword alignment as a double precision value.

The two complex entries, CVALUE and CDVALU, set both real and imaginary

parts from consecutive words and doublewords, respectively, and their sug­

gested types are C0MPLEX*8 and C0MPLEX*16. Figure 2 is a table of the

second class of routines.

The third class of routines consists of the single entry ARGADR

which is an integer function returning the address of the argument list

itself. The fourth class has two entries, ARGCAL and CONFUS, which are

the same. They expect two arguments, both addresses. The first is the

address of a routine name, which must appear in an EXTERNAL statement and

to which control is transferred with an argument list whose address is the

second argument. The latter address may be established by ARGADR.

The fifth and sixth classes have entries ZEROUT and BLANKS,

respectively. They expect two arguments—the first is an array and the

second is a word count of the length of the array. ZEROUT will then set

to numeric zero (floating point and fixed point are the same) the array

99

for as many four-byte words as specified. (Note: Word alignment is

assumed and the user must adjust the word count to reflect element lengths

other than four bytes.) BLANKS is the same as ZEROUT except four blank

characters fill the four-byte words instead of numeric zeroes. These

blanks are compatible with any standard FORTRAN A-type format.

The seventh class consists of nine subroutine entries which provide

the complement of the second class of routines, since they store values

into locations referenced by absolute address. All entries have two

arguments—the absolute address of the location to be changed and the

value it is to receive. The length of the value and the length of storage

to be changed are determined by the entry point used. In all cases, the

value is placed in the location specified one byte at a time without

inspection, with no assumed alignment. Entry BSTORE moves one byte, while

entry HSTORE moves two bytes. LOGICAL*! for characters and INTEGER*2

would be typical data types for these routines. Entries RSTORE, LSTORE,

ISTORE, and STORE all move four bytes (one word) with possible types of

REAL*4, L0GICAL*4, INTEGER*4, and INTEGER, respectively. Each of CSTORE

and DSTORE moves eight bytes with typical types of complex and double

precision. The last entry, CDSTOR, moves 16 bytes and is used for the

C0MPLEX*16 data type. Figure 3 is a table of this class of routines.

The last class has one entry, ABSADR, which is a null routine con­

sisting of only a RETURN statement. It may be invoked as a function or

subroutine with or without an argument list of any sort.

These eight classes of routines can be used in some program­

ming situations for simpler and faster programs. For example, many pro­

grams consist logically of two phases, an input and set-up phase and the

100

transient or calculation phase. Two such programs are RELAP and PINSIM,

both used by the ORNL-BDHT program [1]. They both allow the user to

specify up to nine specific quantities to be printed in a "minor edit"

with a very high frequency, with each minor edit producing one line with

all nine variables and the transient time listed. In both cases the

specific variable can be any of several dozen quantities (temperatures,

pressures, densities, flow rates, etc.) which are defined for several

positions (volumes, slabs, junctions, etc.). Both programs have input

routines which decode the user input (which may appear as "AP 32" or

"PHIW(1;6)") into an internal code which will allow the minor editing

routine in the calculation phase to select the specific quantity to be

printed. However, a dramatic difference in the two programs arises from

PINSIM's use of ABSADRES and RELAP's use of normal FORTRAN techniques.

PINSIM stores the absolute memory address of the specific quantity to be

printed, while RELAP stores flags and pointers. Then, in the calculation

phase, PINSIM, with an extremely simple, short loop (3 FORTRAN statements),

obtains and prints the nine variables. RELAP, on the other hand, must

decode the flags and pointers in a long, more complex loop (230 statements)

to fetch the same nine variables. Indeed PINSIM's entire minor edit rou­

tine is only 39 statements, while RELAP's corresponding routine is 514

statements! The same technique could be used in the handling of trips,

even to the point of resetting them when required.

A null subroutine is occasionally useful when an external routine

can be specified. For example, ERRSET in the FORTRAN library allows the

specification of user error-handling exit. The most used example of a

null program segment is IEFBR14, which is a null routine.

101

Routine

DVALUE
RVALUE
LVALUE
IVALUE
VALUE
BVALUE
RVALUE
CVALUE
CDVALU

Routine Suggested Type

DADRES DOUBLE PRECISION, REAL*8
RADRES REAL, REAL*4
LADRES LOGICAL, L0GICAL*4
IADRES INTEGER, INTEGER*4
LOCFN INTEGER, LOGICAL, OR REAL
LOCATN INTEGER, LOGICAL, OR REAL

Figure 1

Class 1 Routines

Length Alignment Suggested Type

8 Bytes Double Word DOUBLE PRECISION, REAL*8
4 Bytes Full Word REAL, REAL*4
4 Bytes Full Word LOGICAL, LOGICAL*4
4 Bytes Full Word INTEGER, INTEGER*4
4 Bytes Full Word REAL, INTEGER, OR LOGICAL
1 Byte Byte LOGICAL*!
2 Bytes Halfword INTEGER*2
8 Bytes Full Word COMPLEX, COMPLEX*8

16 Bytes Double Word COMPLEX*16

Figure 2

Class 2 Routines

102

Routine Length Suggested Type

BSTORE 1 Byte
HSTORE 2 Bytes
RSTORE 4 Bytes
LSTORE 4 Bytes
ISTORE 4 Bytes
STORE 4 Bytes
CSTORE 8 Bytes
DSTORE 8 Bytes
CDSTOR. 16 Bytes

LOGICAL*!
INTEGER*2
REAL*4
LOGICAL*4
INTEGER*4
INTEGER, REAL OR LOGICAL
COMPLEX*8
REAL*8
COMPLEX*16

Figure 3

Class 7 Routines

103

The argument list addressing routines have yet to be applied in an

actual applications program, but an array of addresses of routines and

a corresponding array of addresses of arguments lists could be passed to

a routine which invoked the various routines in the array "blindly,"

without knowing which routine was being invoked. Possible uses include

the dynamic specification of the execution path of a program. Also, since

an argument list is simply an array of addresses, the user can build an

argument list dynamically.

Appendix 1 is a complete source listing.

105

PART V, Appendix 1

SOURCE LISTING OF ABSADRES

106

ARSAflKKS CSFCT 0 AORIOOOO
* ADR 10001
* THFSE RdUTIMES ARE DESIGNED TO GIVE FORTRAN PROGRAMS ACCESS AURI0002
* TO ABSOLUTE ADDRESSING SCHEMES AND OTHER GOODIES ADR 10003
* ADR10004
* THE FIRST ROUTINE RETURNS THE ABSOLUTE ADDRESS OF ITS ARGUMENT AS ITS ADR10005
* FUNCTIONAL VALUE ADR10006
* ADR 10007
* THE SECOND ROUTINE RETURNS THE VALUE STORED IN THE ABSOLUTE ADDRESS
* GIVEN BY ITS ARGUMEN AS ITS FUNCTIONAL VALUE.
$
* BOTH ROUTINES RETURN INTEGER, SINGLE PRECISION FLOATING POINT,
* DOUBLE PRESCISION FLOATING POINT, AND LOGICAL VALUES, HENCE THE
* SEVERAL ENTRY POINTS. 1*2 AND L*1 ARE NOT SUPPORTED FOR THE FIRST
* FUNCTION. EXTENDED PRECISION IS NOT SUPPORTED.
*
* STANDARD FORTRAN FUNCTION LINKAGE IS ASSUMED, BUT THESE ROUTINES DO
* NUT APPEAR IN TRACEBACKS IF ADDRESSING, PROTECTION, OR ALIGNMENT
* ERRORS OCCUR.

* GENERAL PURPOSE REGISTER ZERO IS USED FOR VALUE RETURN AS IS FP REGO
*
* THE THIRD ROUTINE RETURNS THE ADDRESS OF THE ARGUMENT LIST ITSELF
#
* THE FOURTH CALLS THE ROUTINE GIVEN AS THE SECOND ARGUMENT WITH THE
* ARGLIST GIVEN AS THE FIRST ARGUMENT

* THE FIFTH CLEARS AN ARRAY TO ZEROS
* THE SIXTH CLEARS AN ARRAY TO BLANKS

* VERSION 1.0, APRIL 10,1977 STEVEN B. CLIFF

*

A0R1000R
ADR 10009
ADR 10010
ADR 10011
ADR 10012
ADR 10013
ADR 1001^
ADR 10015
ADR 10016
ADR 10017
ADR 100 IB
ADR 10019
ADR 10020
ADR 10021
ADR 10022
ADR 10023
ADR 10024
ADR 1002 5
ADR 10026
ADR 10027
ADR10028
ADR 10029
ADR 10030
ADR 10031
ADR 10032
ADR 10033
ADR 10034

ALL UF THE ENTRIES IN THE FIRST, SECOND, AND THIRD ROUTINES ARE
FUNCTIONS AND ALL USE THE FIRST ARGUMENT. IF MORE ARGS ARE PRESENT,
THEY ARE IGNORED.

THE FUNCTION TYPE FOR ROUTINE IS ENTIRELY UP TO THE CALLING PROGRAM
AS INTEGER*4,REAL*4, AND REAL*8 VALUES ARE RETURNED. THE ARGUMENT
MAY BE OF ANY DESIRED.

THE FUNCTION TYPE FOR ROUTINE 2 IS SOMEWHAT ENTRY DEPENDANT:
IENT TYPES (AS USED TO ROUTINED
(ANY AUGMENT)

[FULL WORD AUGMENT)

So FNTRY FUNCTION TYPE ARGI
£ RVALUE 14,L4,LI,12 ANY
• HVALUE 14,L4,LI,12 ANY
❖ RVALUE I4,L4,R4 ,R8 » LI,12 ANY

LVALUE F4,L4,R4»RR,L1,12 ANY
I VALUE I4,L4,R4,R8,L1,12 ANY

& VALUE I4,L4,R4,R8»L1,I2 ANY
❖ DVALUE I4,L4,R4,R8,L1,12 R8,l
V CVALUE I4,L4,R4,R8,C8,I2, LI ,12
* C DVALU 14,L4 R4,R8,C8,C16 ,L1,12

C8 (TWO FULL WORD ALIGNMENTS)
C16 (TWO DBLE WORD ALIGNMENTS)

ADR 10035
ADR 10036
ADR 10037
ADR10038
ADR 10039
ADR 10040
ADR 10041
ADR 10042
ADR 10043
ADR10044
ADR 10045
ADR 10046
ADR 10047
ADR 10048
ADR 10049
ADR 10050
ADR 10051
ADR10052
ADR 10053
ADR 10054
ADR 10055

107

❖ WHILF ALL THE ABOVE TYPE MIXES ARE LEAGAL, THE FOLLOWING IS DESIGNED: ADR 10056
*
* RVALUE 14 CHARACTORS »L1

ADR 10057
ADR 10058

* NVALUE 14 CHARACTORS,12 ADR 10059
$ RVALUE R4 R4 ADR10060
❖ LVALUE L4 L4 ADR 10061
£ I VALUE 14 14 ADR10062
* VALUE R4,14 R4,1 4 ADR 10063
& DVALUE R8 R8 ADR10064

CVALUE C8 C8 ADR 10065
C DVALU C 16 C16 ADR10066

*
(IF COURSE LOTS OF GAMES CAN BE PLAY WITH UNUSUAL RESULTS WITH

ADR 10067
ADR 10068

* ALL THESE ENTRIES ADR 10069

* RDUTINF 3 COULD NOT CARELESS ABOUT THE TYPE AND OR LENGTH OF THE
* ARGUMENT IT IS LANDED

* ROUTINE A EXPECTS ADDRESSES AS BOTH ARGUMENTS (AS DOES ALL OF
* ROUTINE 2, FOR THAT MATER), THE FIRST EITHER FROM ROUTINE 3
* OR SOME SIMILAR TRICK, THE SECOND CAN BE FROM ROUTINE 1 OR
* AN EXTERNAL ROUTINE IN FORTRAN

*
*

A
A
A

ROUTINES 5 AND
SFCOND. FULL

f> EXPECT ARRAYS AS THE FIRST ARG AND
WORD ALIGNMENT IS ASSUMED

INTEGERS AS THE

SOME FQUILVALFNT ACTIONS BASED IN FORTRAN
IMPLICT I4(I-K),L*4(L),RA(R-2),R8<D),C8(C),C1MCD),I 4(B,LOCFN)
I=I A ORES(J) I=ADDRES(J) (ADORES AS 14)
R = RADRES(S) R=ADDRES(S) (ADORES AS R4)

ALL THE ADDRESS ROUTINES ARE EOULLVALENT

I = IVA LUE(IADRES(J)) I=J
R=RVALUE(RADRES(S)) R=S
L=LVALUE(LADRES(L1)) L=L1
K = I A DR F S (.J) ! I = IVALUE(K) I =J
I=BVALUF<LOCFN(J)) SET BOTTOM BYTE OF I TO TOP BYTE OF J
I=BVALUF(LOCFN(J)+2) SET BOTTOM BYTE OF I TO THIRD BYTE OF
R = RVALUE(RADRES(C)+4) R = AI MAG(C)

AND MUCH MORE STRANGE POSSIBLITIES

* V=ARGCAL(ARGADRIX) ,SIN) V = SIN(X)
* CALL COMFUS(ARGADRII,J,0),PDUMP) CALL
* V=ARGCAL(ARGADRIX) ,ADDRES(SIN) V = SIN(X)

PDUMP(I,J,0)

THE POSSIBLITIES BY SETTING VARIABLES AND LATER USEING THEM ARE
QUITE NUMEROUS

ROUTINE 1: RETURN THE ADDRESS

ENTRY DADRES,RADRES,LADRES,IADRES,ADORES,ABSADR,LOCFN,LOCATN
ALL OF THESE ENTRY POINTS ARE IDENTICAL, DIFFERENT NAMES ARE

ADR10070
ADR 10071
ADR10072
ADR 10073
ADR10074
ADR 10075
ADR10076
ADR 10077
ADR10078
ADR 10079
ADR10080
ADR 10081
ADR10082
ADR 1008 3
ADR10084
ADR 1008 5
ADR10086
ADR 10087
ADR10088
ADR 10089
ADR10090
ADR 10091
ADR10092
ADR 10093
ADR 10094
ADR 10095
ADR 10096
ADR 10097
ADR10098
ADR 10099
ADR10100
ADR 10101
ADR 10102
ADR 10103
ADR10104
ADR 10105
ADR 10106
ADR 10107
ADR 10108
ADR 10109
ADR 10110
ADR 10111

108

* GIVEN TO EASE FOOLING THE COMPILER ADR10112
* ADR 10113
DADRES EQU * ADR 1011A
RADRES EQU * ADR 10115
LADRES EQU * ADR 10116
I ADRES EQU * ADR 10117
ADORES EQU * ADR 10118
LOCFN EQU # ADR 10119
LOCATN EQU * ADR 10120

MV I OdJfX'OO* CLEAR HIGH ORDER BIT ADR 10121
SDR 0,0 CLEAR FP REG 0 TO RECI EVE ADDRESS IN TOP ADR 10122
LE 0,0(,1) GET ADDRESS FOR FLOATING RETURNS ADR 10123
L 0,0< ,1) GET ADDRESS FOR FIXED POINT RETURNS ADR 1012A
BR 1A RETURN ADR 10125

*
*
*

*
*
*
*

ROUTINE 2: RETURN THE VALUE
ENTRY DVALUE tRVALUE.LVALUE,I VALUE,VALUE,BVALUE.CVALUE,HVALUE

DIFFERENCES IN ROUTINES ARE DUE TO ALIGNMENT ASSUMTIONS

BYTE ALIGNMENT (FP NOT ALLOWED)

ADR 10126
ADR 10127
ADR 10128
ADR 10129
ADR 10130
ADR 10131
ADR 10132
ADR 10133

BVALUE EQU * ADR 1013A
SR 0,0 CLEAR REG FOR FIXED POINT RETURN ADR 10135
L l.OC.l) ADR 10136
L 1,0(,1) GET ARG. ADR 10137
IC 0,01 ,1) GET BYTE ADR10138
BR 1A RETURN ADR 10139

* ADR101A0
* HALFWORD ALIGNMENT (FP NOT ALLOWED) ADR101A1
HVALUE EQU * ADR101A2

L 1,01 ,1) GET ADDRESS ADR101A3
L 1,0(,1) GET ARG. ADR 101AA
LH 0,0(,1) GET HALFWORD ADR101A5
BR 1A RETURN ADR 101A6

* FULLWORD ALIGNMENT ADR101A7
RVALUE EQU * ADR101A8
LVALUE EQU * ADR101A9
I VALUE EQU * ADR 10150
VALUE EQU * ADR 10151

SDR 0,0 CLEAR FP REG 0 ADR 10152
L 1,0(,1) ADR 10153
L 1,0(,1) GET ADDRESS OF FULL WORD ADR 1015A
LE 0,0<,1) GET FP VALUE ADR10155
L 0,0(,1) GET FIXED POINT VALUES ADR 10156
BR 1A RETURN ADR 10157

* ADR 10158
* ADR 10159
* DOUBLE WORD ALIGNMENT ADR10160
DVALUE EQU * ADR 10161

L 1,0(,1) ADR 10162
L 1,0< ,1) GET ADDRESS ADR 10163
LD 0,0(,1) GET DOUBLE WORD ADR1016A
L 0,0(,1) ALSO GET BINARY VALUE(TOP HALF ONLY) ADR 10165
BR 1A RETURN ADR 10166

ADR 10167

109

* SINKLF PRECISION COMPLEX ADR10168
CVALUE EQU * ADR 10169

SDR 0,0 CLEAR EP REG 062 SO VALUE IS ALSO PRECISION ADR 1017 0
SDR 2,2 INCREASED FROM SINGLE TO DOUBLE IF DESIRED ADR 10171
L 1,01,1) GET ADDRESS ADR 10172
L 1,0(,1) ADR 1017 3
LE 0,01,1) GET REAL PART ADR 10174
LE 2,4(,1) GET IMAGINARY PART ADR 10175
L 0,0(,1) GET BINARY PART? ADR 10176

£
BR 14 RETURN ADR 10177

ADR 10178
* DOUBLE PRECISION COMPLEX ADR 10179

ENTRY' CDVALU ADR 10180
COVALD EQU $ ADR 1018 1

L 1,0(,1) GETADDRESS ADR 10182
L 1,0< ,1> ADR 1018 3
LD 0,0<,1) GET REAL PART ADR 10184
LD 2 ,fl (, 1) GET IMAGINARY PART ADR 10185
L 0,0< ,1) GET BINARY PART? ADR 10186
BR 14 RETURN ADR 10187

ADR10188
* ROUTINE 3: RETURN ADDRESS OF ARGUMENT LIST ADR 10189

ENTRY ARGAOR ADR 10190
ARGAOR EQU * ADR 10191

LR 0,1 GET ADORES OF ARG LIST ADR 10192
ABSADR EQU * ADR 10193
*

BR 14 RETURN ADR 10194
ADR 1019 5

* ROUTINE 4: CALL SECOND ARG WITH FIRST AS ARGLIST ADR 10196
ENTRY CONFUS,ARGCAL ADR 10197

ARGC A L EQU ADR10198
CONFUS EQU * ADR 10199

L 15,41,1) GET ADDRESS OF SECOND ARGUMENT ADR 102 00
L 1,01 ,1) SET NEW ARG LIST ADR 10201
L 1,01,1) ADR 10202

*
BR 15 CONTINUE ONWARD ADR 10203

ADR 10204
* ROUTINE 5: ZERO THE ARRAY THAT IS THE FIRST ARG, WHICH SEOND ADR 10205
* ARGUMENT WOROS LONG ADRI0206

ENTRY ZEROUT,BLANKS ADR 10207
US ING BLANKS,15 ADR 10208

ZFRCIUT SR 0,0 GET ZERO ADR 10209
LA 15,101 ,15) FIX BASE REG ADR 10210
B ZANDB ADR 10211

* ADR10212
* ROUTINE 6: BLANKS THE ARRAY LIKE ZEROUT ADR 10213
BLANKS L 0,BLANK GET BLLANKS ADR 10214
ZANDB ST 14,SAVE14 SAVE 14 ADR 10215

L 14,4(,1) ADR10216
L 14,01,14) GET ARG # 2-THE COUNT ADR 10217
L 1 ,0<,1) GET ARG # 1-THE ARRAY ADR 10218

LOOPIT ST 0,0(,1) SET NEXT WORD ADR 10219
LA 1,4(,1) BUMP POINTER ADR10220
BCT 14,LOOPIT SKIP BACK COUNT TIMES ADR 10221
L 14,SAVE 14 RESTORE 14 ADR10222
BR 14 RETURN ADR 10223

110

* RniJTINE 7 STORES IN ABSOLUTE LOCATIONS -THE EXACT OPPOSITE
* OF ROUTINE 2 EXCEPT 7 IS SUBROUTINE WHILE 2 IS FUNCTION

* USAGE: (ALL E.P. SIMILAR)
* CALL STORE (LOCA fVALUE)
$
* WHERE LOCA IS ABSOLUTE ADDRESS TO RELIEVE VALUE VALUE.
* VALUE HAS LENGTH IMPLIED BY CHOICE OF E.P.

SAVE14
BLANK

L
BR
DS
DC
END

14,SAVE14 RESET 14
14 RETURN, NOTE: REG 0
IF
X«40404040*

HAS # OF BYTES MOVED

ADR10224
ADR 10225
ADR10226
ADR 10227
ADR10228
ADR 10229
ADR10230
ADR 10231
ADR10232
ADR 10233

USING *,15 ADR10234
ENTRY DSTORE,RSTORE,LSTORE,I STORE,STORE,BSTORE,CSTORE,HSTORE ADR 10235
ENTRY CDSTOR ADR10236

BS TOR E ECU 3 ADR 10237
LA 0,0 MOVE 1 BYTE (ZERO SINCE CNT IS 1 LOW) ADR10238
LA 15,DOIT ADR 10239

s
BR 15 ADR 10240

ADR 10241
USING *,15 ADR 10242

HSTORE EQU * ADR 10243
LA 0,1 MOVE 2 BYTES ADR 10244
LA 15,DOIT ADR 10245
BR 15 ADR 10246

ADR 10247
US I NG *,15 ADR 10248

RSTORE EQU =|s ADR 10249
LSTORE EQU * ADR10250
ISTORE EQU * ADR10251
STORE EQU s ADR10252

LA 0,3 MOVE 4 BYTES ADR 10253
LA 15,DOIT ADR10254
BR 15 ADR 10255

CSTORE EQU * ADR10256
USING *,15 ADR 10257

DSTORE EQU $ ADR 10258
LA 0,7 MOVE 8 BYTES ADR 10259
LA 15,DO IT ADR10260

*
BR 15 ADR 10261

ADR10262
USING *,15 ADR 10263

C DS TOR LA 0,15 MOVE 16 BYTES ADR10264
LA 15,DOIT ADR 10265
USING DOIT,15 ADR10266

DOIT EQU # ADR 10267
ST 14,SAVE14 SAVE 14 ADR10268
L 14,4(,1) GET AODRS OF VALUE ADR 10269
L 1 ,0(,1) GET ADDRS OF ARG ADR10270
L 1,0(,1> GET ARG= ADDRS TO RELIEVE VALUE ADR 10271
STC 0,MVIT + l SET NUMBER OF CHARACTOR TO USE ADR10272

M V I T M VC 0(0,1),0(14) MOVE IT ADR 10273
ADR 10274
ADR 10275
ADR10276
ADR 10277
ADR10278

Ill

PART VI

VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE

113

PART VI

VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE

Normal IBM FORTRAN cannot read variable length records with format

control. These variable length records include not only those from run

time FORTRAN but also the compiler SYSPRINT and other common systems

programs. The subroutine VARIN allows these records to be successfully

read by run time FORTRAN under A1 format.

The Queued Sequential Access Method (QSAM) is used to read records

of length not greater than 137 bytes and in the variable blocked format

with ASA carriage control characters. The DDNAME is SYSIN and the file must

be physical sequential.

VARIN internally fixes the DGB as follows:

//SYSIN DD DCB=(DSORG=PS,LRECL=137,RECFM=VBA,OPTCD=C).

Normally only the blocksize (BLKSIZE) subparameter needs to be specified

in the DGB parameter. Of course, unit, dataset name, volume, etc.,

information must be supplied as needed.

The calling sequence to VARIN is

CALL VARIN (LEN,REC)

where LEN is the number of characters in the input record (-1 on the

end of file) and REC is the storage area (133 words) which receives

the input record in an A1 format (A1 format has one character per word

in the high-order byte with blank characters in the low-order three

bytes).

While all 133 words of REC are initialized to blanks, only the

first LEN words will have data from the record. LEN is exactly the

114

LRECL for the current record. LEN is minus 1 (-1) and REC is all blanks

upon end of file. VARIN opens DDNAME SYSIN on the first call and leaves

it open until end of file when it is closed.

VARIN may also be invoked as an integer function with value the

same as LEN. For example, after

INTEGER VARIN

LEN1=VARIN(LEN2,REC)

LEN1 and LEN2 will have identical values.

VARIN has been used to process FORTRAN compiler SYSPRINT output for

the microfiche indexing routine FFIN [1].

Appendix 1 is a complete source listing.

REFERENCE

1. Steven B. Cliff and Brenda D. Dingus, FFIN - FORTRAN Microfiahe
Indexer, K/CSD/INF-78/10, March 1978.

115

PART VI, Appendix 1

SOURCE LISTING OF VARIN

117

VABIN001' CSECT 0 VA R N0100
ENTRY VARIN VARN0110* VARNO 120

* CALL VAHIN(LEN,REC) VARN0130
» TO RECEIVE LEN BORDS (A1 FORHAT) IN REC VARN0140
■ LEf1=0 CN ECF. ALSO, VARIN MAY BE USED AS INTEGER FUNCTION = LEN V ARNO 150

USING IHADCE,10 VARN0160* VARN0170* VARN0180
USING SAVEA,13 VARN0190

SAVEA DS 1 8F VARN0200
VARIN SAVE (14,12),,* VARN0210

USING VARIN, 15 VARN0220
LR 3,13 LINK V ARN0230
L 13,ADSAV SAVE V ARN0240
DROP 15 AREA VARN0250
ST 13,8(3) AS VARN0260
ST 3,4(13) REQUIRED VARN0270
LM 11.12,0(1) GET ARGS 11=LEN,12=REC VARNC280
LA 1 0 , DC BIN SET BASE FOB DCB VARNC290
TM DCBCFLGS,DCEOFCPN IS SYSIN OPEN? V AR NO 300
BNZ INOPEN YFS VARN0310+ BTL •OPEN SYSIN* VARN0320
CPEN (DCEIN,INPUT) V AR NO 330

INOPEN EQU m SYSIN IS OPEN,CLEAR REC VARNC340
HVI 0(12) , X *40 * VARNC350
HVC 1 (200,12),0 (12) CLEAR 50 BORDS VARN0360
MVC 201 (200,12),200 (12) CLEAR 51 TO 100 BORDS VARN0370
HVC 401 (131,12) ,400 (12) CLEAR 101 TO 133 BORDS V A R NO 380
GET DCEIN,RDB GET NEXT RECORD VARN0390
LH 9,DCBLRECL GET CHAR IN BUF VARN0400
S 9 ,C4 VARN0410
ST 9,0(,11) SET ZEN VARN0420
ST 9,20 (, 13) SET FUNCTIONAL VALUE VARN0430
LA 8 , BUF VARN0440

LCE HVC 0 (1 ,12) ,0 (8) HOVE 1 CHARACTOR VABN0450
LA 12,4 (, 12) SKIP THROUGH REC (A1) VARN0460
LA 8,1 (, 8) SKIP THROUGH BUF (A4) V ARN0470
ECT 9 ,LOP MOVE RDB CHARACTORS VARN0480
L 13,4 (, 13) UNIINK VARN0490
RETURN (14,12),T RETURN VARN0500a VAR NO 5 10

♦END OF FILE VARN0520
ENDSYSIN EQU * V ARN0530* BTL •END OF SYSIN* VARN0540

CLOSE (DCBIN) VARN0550
L 0 , M1 VARN0560
ST 0,0(,11) VABN0570
ST 0,20(,13) VARN0580
I 13.4 (,13) VARN0590
RETURN (14,12),T VARN0600

HI DC IF1 ' VARN0610C4 DC IF' 4 ' VARN0620
RIB ES IF RECORD DESCRIPTOR BORD VARN0630

118

BUf CS 40P THE INPUT RECORD VARN0640
»rsAv CC k (SAVEA) VABN0650
DCBIN DCB DCNAHB=SYSIN,ESORG=PS,EODAD=ENDSYSIN,LRECL=137,

RECFH=VBA,CPTCD=C,HACBP=GM
XVABN0660
VARN0670

DCBD
END

DSORG=QS,DEVD=RD V ARN0680
VARN0690

119

PART VII

ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE

121

PART VII

ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE

Nearly all programs encounter abnormal conditions which are best

handled by program terminations. The FORTRAN STOP n statement could be

used in such situations, but, since the traceback capabilities of the

FORTRAN extended error handling feature are not invoked, no record of the

routine with control when the error was recognized or of its calling

history is made available to the user. While the error code (assignable

with the number n on the STOP n statement) is very useful, often it alone

does not provide sufficient information. To meet this need, this ABEND

routine was written. It not only allows a numeric code, but it also in­

vokes the traceback feature.

The calling sequence for ABEND is

CALL ABEND (ERRCOD)

where ERRCOD is a four-byte integer with value between 0 and 4095,

inclusive.

ABEND saves the caller's registers in a standard system SAVE area

at entry point ABENDREG, making their location in any dump easier to

find. Then ABEND calls ERRTRA, a standard entry in the FORTRAN library

to produce a traceback. From this traceback, the full calling sequence

up to the call to ABEND can be determined, including the statement number

of the call to ABEND itself. Further, Register 0 in the traceback is the

hexadecimal representation of the ERRCOD specified in the argument. Three

WRITE TO LOG (WTL) macros are then issued, putting the lines

122

USER ABEND

PROGRAM ABNORMAL TERMINATION REQUEST

USER ABEND

in the system log listing of the program. Finally, a supervisor request

for an abend is issued. This abend will have the user-completion code

specified by the ERRCOD argument. The supervisor then terminates the

program writing a dump to any SYSUDUMP or SYSABEND datasets present.

ABEND does not return to the calling routine.
Appendix 1 is a complete source listing.

123

PART VII, Appendix 1

SOURCE LISTING OF ABEND

125

ARFND CSFCT 0 ABD20000
FNTRY ABENDREG ABD20001
FXTRN ERRTRA ABD20002
PRINT GEN ABD20003
USING *,15 ABD20004
SAVE <14,12),,* SAVE ALLTHE REGS AND SET LINKAGES ABD20005
LA 2 ,ABENDREG ABD20006
ST 13,4(0,2) ABD20007
ST 2,8(0,13) ABD20008
LR 13,2 ABD20009
B BEGIN ABD20010

ABENDREG DS IRE SAVE AREA ABD20011
USING ABENDREG,13 ABD20012
DROP 15 ABD20013

BEGIN L 3,0(0,1) GET ADDR OF ARG ABD20014
L 0,0(0,3) GET ARGUMENT INTO REG 0 FOR TRACEBACK AB020015
L 2,192(0,0) GET DUMP, STEP CODES ABD20016
LR 3,0 ABD20017
SLL 3,4 ABD20018
SRDL 2,4 ABD20019
L 15,ERRT GET THE TRACE BACK ABD20020
BALR 14,15 ABD20021
WTL •USER ABEND'i A6D20022

WTI. ' PROGRAM ABNORMAL TERMINATION REDDEST' ABD20023
WTL •USER ABEND1i ABD20024
LA 15,0(0,3) GET ABEND CODF ABD20025
LR 1,3 GET ARGS FOR ABEND CALL ABD20026
SVC 13 DO ABEND ABD20027

ERRT DC A(ERRTRA) ADRES OF TRACE BACK ROUTINE ABD20028
END ABD20029

127

PART VIII

SET - ARRAY-SETTING ROUTINES

129

PART VIII

SET - ARRAY-SETTING ROUTINES

One of the most common actions a FORTRAN program takes is the setting

of an array to constant values, typically requiring a complete DO loop.

These three routines were written to simplify this task.

The primary routine is the general array setting routine SET with

calling sequence:

CALL SET (LEN, SKIP, ARRAY, WORD)

where

LEN is a four-byte INTEGER specifying the number of full

words to be assigned a value,

SKIP is a four-byte INTEGER specifying the number of full words

to be skipped between each assigned word,

ARRAY is a four-byte array to be assigned with total length

at least LEN times SKIP,

WORD is the four-byte value to be used in setting ARRAY.

WORD (which may contain an INTEGER, LOGICAL, or CHARACTER value)

is placed in the first word of ARRAY, then in FIRST + SKIP, then

FIRST + 2 * SKIP,..., then FIRST + LEN * SKIP. If SKIP is 1, consecutive

memory locations will be set, as would be desired in a single-dimensional

array or when setting all of a multidimensional array. If SKIP is not 1,

parts of a multidimensioned array may be set, allowing columns or planes

of two- or three-dimensional arrays to be defined without altering the

remainder.

130

The two most common uses of SET would be to define all of an array

to either a numeric zero or to blank characters. To ease this operation,

two additional entries are defined with calling sequences:

CALL SETBLK(LEN,ARRAY)

CALL SETZER(LEN,ARRAY)

where the arguments are the same as for SET. The missing arguments,

SKIP and W0RD>are fixed. SKIP is set to 1, for consecutive location

assignment. WORD is set to blanks (Hex '40404040') for SETBLK and to

numeric zero (Hex '00000000') for SETZER. Note that integer and floating­

point zero are identical and that even DOUBLE PRECISION variables can be

initialized by SETZER or SETBLK if the LEN variable is adjusted to account

for the extra length of the variable ARRAY.

Appendix 1 is a complete source listing.

131

PART VIII, Appendix 1

SOURCE LISTING OF SET

133

SFT C SECT 0 SET 10000
USING *,15 SET!0001

* CALL SET (LEN,SKIP,ARRAY,WORD) SET 10002
* TAKES ''Wn«n'' AND PUTS IT IN LEN LOCATIONS OF ARRAY , STARTI MG SE T10003
* WITH THE FIRST THEN FIRST+SKIP,FIRST+2*SKIP.... SET10004
$ FIRST+LEN*SKIP SE T10005
*LEN = A*B*C WHERE DIMENSION ARRAY(A ,B ,C) SET 10006
♦EXAMPLE CALL SETZER!10*20,NUM) WHERE DIMENSION NUM (10*20) SE T10007
♦ IF THE LENGTH OF THE VARIABLE IS OTHER THAN 4 BYTES, LEN MUST SET 10008
♦ RE ADJUSTED ACCORDINGLY SE T10009
♦ IN ALL CASES ARRARY SHOULD BE ALIGNED ON A FULL WORD BOUNDARY SET 10010
♦ (THIS IS AUTOMATIC FOR ALL BUT INTEGER*2 £ LOGICAL*!) SE T10011
♦THIS IS A TRUE SUBROUTINE-WILL APPEAR IN TRACE BACK SE T10012

SE T10013
♦ CALL SETBLK (LEN,ARRAY) SE T10014

SAME AS SET EXCEPT WORD IS 4 BLANK CHARACTORS, SKIPS = 1 SET10015
♦ CALL SETZER (LEN,ARRAY) SAME AS SET EXCEPT WORD IS NUMERIC SET 10016
£ ZERO, SKIP = 1 SE T10017
♦SETZER iWORKS FOR BOTH REAL AND INTEGERS AS DESCRIBED ABOVE SET 10018

ENTRY SETZER SE T10019
ENTRY SETBLK SET 10020
SAVE (14,12),,* SAVE REGS G LINK SAVE AREA SE T10021
LM 2,5,0(1) GET ADDRESS OF ARGUMENTS SET 10022

♦ REG 2 HAS THE LENGTH OF THE ARRAY SE T10023
♦ R EG 3 HAS THE NUMBER OF WORDS TO B SKIPPED BETWEEN INSERTIONS SET 10024
♦ REG 4 HAS FIRST ELEMENT TO RECIECE A CHAR SE T10025
♦ REG 5 HAS THE WORD TO BE STORED SET 10026

L 9,0(3) GET SKIPS SET 10027
LA 6,4 GET CONSTANT FOUR SET 10028
MR 8,6 MAKE SKIPS SUOTABLE FOR BYTEADD SE T10029
LR 3,9 3 NOW HAS THE BYTE FORM OFSKIP SET 10030
L 10,0(5) SE T10031
LR 12,15 SET 10032
B ALLTOGTH SET10033
DS OD SET 10034
USING *,15 SE T10035

SETBLK SAVE (14,12),,* S ET10036
L 10,BLANKS ' SET10037
L 12 ,ASF SET 10038
B TOGETHER SE T10039
DS OD SET 10040
USING *,15 SE T10041

SETZER SAVE (14,12), ,* SET 10042
L 10,ZERO SET10043
L 12 ,ASF SET 10044

TOGETHER L 2,0(1) SET10045
L 4,4(1) S ET10046
LA 3,4 SET10047
USING SET,12 SET 10048
DROP 15 SET10049

ALLTOGTH LA 8 ,SAREA SET 10050
ST 13,4(8) SE T10051
ST 8,8(13) SET 1005 2
LR 13,8 SET10053
L 11,0(2) GET LENGTH SET10054
LPR 11,11 INSURE THAT IT IS POSITIVE SET10055

134

BZ *+16 SET10056
STORE ST 10,0(0,A) STORE WORD SET10057

LA 4,0(3,*) INCREMENT 4 BY SKIPS SET 10058
BCT 11,STORE RETURN TO DO NEXT WORD SET10059
L 13,M13) SET10060
RETURN m,12),T SET10061

ASF DC A(SET) SET 1006 2
SAREA DS 9D SET10063
BLANKS DC X'40404040' SET 10064
ZERO DC 1 F' 0 • SET10065

END SET10066

*

135

K/CSD/TM-20

INTERNAL DISTRIBUTION

Computer Sciences Operations Analysis and Planning

1. L. L. Anthony 58. E. Von Halle
2. D. E. Arnurius 59. H. G. Wood
3. B. Beard
4. A. A. Brooks
5. H. P. Carter/

ORNL CSD Library
Separation Systems

6-25. S. B. Cliff 60.. A. J. Szady
26. R. L. Cox
27. K. E. Cross
28. J. S. Crowell Engineering
29. B. D. Dingus
30. E. D. Drennen 61. W. C. Stoddart
31. R. H. Fowler
32. R. E. Funderlic
33. P. Gaffney Engineering Technology
34. G. E. Giles
35. R. W. Henderson 62. R. C. Hager
36. H. R. Hicks 63. R. A. Hedrick
37. J. T. Holdeman 64. D. G. Thomas
38. S. K. Iskander
39. R. D. McCulloch
40. J. E. Park ORGDP Information Services
41. C. E. Price
42. L. I. Schlemper 65-67. D. S. Napolitan
43. J. G. Sullivan

44-47. R. E. Textor
48. J. A. Tindall ORGDP Library
49. J. N. Tunstall
50. W. D. Turner Copies 68-71
51. G. W. Westley
52. G. E. Whitesides
53. J. W. Wooten ORGDP Records - RC
54. J. H. Zeigler
55. ORGDP CSD Library Copy 72

Gaseous Diffusion

56. G. J. Kidd
57. G. F. Mailing

136

EXTERNAL DISTRIBUTION

73. J. H. Forrester, The University of Tennessee, Knoxville, TN
37916
Technical Information Center, Department of Energy, Post Office
Box 62, Oak Ridge, TN 37830

74-100.

