« NOTICE o MNONLE -

PORTIONS OF THIS REPORT ARE ILLEGIBLE. t¢

has been reproduced from the hest avatlabls

copy t . ! .
“mty? permit the breadest possibis vaik

K/CSD/TM=-20

Contract No. W-7405 eng 26

COMPUTER SCIENCES DIVISION

A COLLECTION OF FORTRAN SUPPORT ROUTINES

Steven B. Cliff
Computing Applications Department

JANUARY 1978

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

b or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

UNION CARBIDE CORPORATION, NUCLEAR DIVISION
operating the

Oak Ridge Gaseous Diffusion Plant . Oak Ridge National Laboratory
Oak Ridge Y-12 Plant . Paducah Gaseous Diffusion Plant

for the
DEPARTMENT OF ENERGY

MASTEK

DISTRIBUTION OF THIS DOCUMENT 1§ UNLIMIT:

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

TABLE OF CONTENTS

Abstract . « « ¢ ¢ v e e v e v e e e e e

Acknowledgments

PART I. TRIDIG - A TRIDIAGONAL EQUATION SOLVER .
Appendix 1, Source Listing of TRIDIG . . .

PART II. CADTIMER - TASK TIMING ROUTINES

Appendix 1, Additional Comments on the Usage of CADTIMER
Appendix 2, Source Listing of CADTIMER

PART III. CONVERT - FREE-FORM INPUT ROUTINES
Introduction . .
User Characteristics .
Programming Characteristics . . .
Appendix 1, Examples of CONVERT Usage . .
Appendix 2, Source Listing of the CONVERT Routlnes
PART IV. PARMETER - PARAMETER FIELD ACCESSING ROUTINES
Appendix 1, Source Listing of PARMETER

PART V. ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES
Appendix 1, Source Listing of ABSADRES . . .

PART VI. VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE .

Appendix 1, Source Listing of VARIN .

PART VII. ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE .

Appendix 1, Source Listing of ABEND . . .
PART VIII. SET - ARRAY-SETTING ROUTINES

Appendix 1, Source Listing of SET

11

21

29

35
43

53
55
56
60
67
75
85
89
95
105
111
115
119
123
127

131

ABSTRACT

Descriptions of several routines designed to support and extend
FORTRAN programs used on the IBM 360/370 series computers are included
in this document. These routines, which have been used in a variety of
programs, run the gamut from input processors to timers, to absolute
address accessors, to mathematical analysis routines. Most of the rou-

tines are written in IBM 360/370 Assembler Language.

ACKNOWLEDGMENTS

The work of B. D. Dingus in preparing some of the graphs in this
report is acknowledged.

Fiscal support for the development came from a variety of sources,
including the Computing Applications Department of the Computer Sciences
Division, the Engineering Technology Division, and the Operations Analysis
and Planning Division of Union Carbide Corporation and by National Science
Foundation Grant GK-37434 and the National Institutes of Health Grant
HL-15564 administered by Dr. J. H. Forrester of the University of
Tennessee. This support was essential to the development of these routines.

Discussions with E. D. Drennen, J. E. Park, L. I. Schlemper, and

B. D. Dingus contributed to the concepts for some of these routines.

11

PART I

TRIDIG - A TRIDIAGONAL EQUATION SOLVER

13

PART 1

TRIDIG - A TRIDIAGONAL EQUATION SOLVER

An Assembler Language equivalent to the tridiagonal equation solver,
TRIDIG, as developed by J. E. Park [i], has been developed for use on
IBM 360/370 computers. Particular attention was given to fully optimizing
the use of the pipeline/parallel processing capabilities on the Model 195
at ORGDP, as described in IBM documentation [2].

TRIDIG is invoked by

CALL TRIDIG (A,B,NA,NB,MIL,NDIM)

where
NA is the number of the node with which the first equation
is associated,
A is the tridiagonal matrix A(NDIM,3),

A(N,J) with J=1,2,3, are the -, 0, + elements for equation for the
Nth node,

B is the constant vector in the matrix equation on entry and
solution vector on exit,

MIL is ignored, but must be present to maintain compatibility
with FORTRAN TRIDIG,

A&B are double precision.

CONSTRAINTS:
A must be "well conditioned." (See Ref. [1].)
1 < NA, NB, NDIM < 100

-NA < NB < NDIM.

14

The assembler version is faster than the FORTRAN-H, OPT=2, by 527%
for a system of three equations, falling asymptotically to 30% for 93
equations. Savings of 10% or more in the total CPU time of some applica-
tions programs have already been observed, making the investment of writ-
ing this version justified with a reasonable date of cost recovery
expected.

In testing TRIDIG, it became desirable to compare it with not only
FORTRAN-H, OPT=2, but also the other available compilers and at other
optimization levels. Thus the local ORNL FORTRAN (FTN63), IBM FORTRAN-H,
OPT=0 (HO), IBM FORTRAN-H, OPT=1 (Hl1l), IBM FORTRAN-H, OPT=2 (H2),

IBM FORTRAN-G (FORT-G), and the IBM FORTRAN-H, extended plus, OPT=3

(FORT X), compilers were all tested along with the assembler version

of TRIDIG. 1In all cases, the overhead was constant with only the compiler
of the test routine varying. All runs were made on the IBM 360/195 at
ORGDP, with the same system of equations for the same number of samples.
The results of these tests are given in the following graphs.

Figure 1 shows the time required to perform 5000 solutions as a
function of the number of eqdations. In each case, the relationship is
linear, as expected, since the time of the solution technique is known to
be proportional to the number of equations. The overhead is a constant
0.61 seconds for all cases and is included in the time for all plots.
Figure 2 is of the same data, but with different scaling to ease dis-

criminations of H2, FORT X, and Assembler.

15

Figures 3 and 4 have the data of Figures 1 and 2 normalized relative
to HOPT2. Thus HOPT2 is displayed as a straight line with faster compilers
below it and slower ones above. Figure 3 especially accents the poor
performance of the G, FIN63, HOPTO, and HOPT1 which are steadily diverging
from the HOPT2 efficiency level. The XOPT3 and Assembler routines are
continually getting better as the number of equations increase as is clearly

visible in Figure 4.

Thus, TRIDIG is a good example of a CPU intensive routine which can
be coded in Assembly Language with considerable CPU savings. The

appendix is a complete source listing of TRIDIG.

REFERENCES

1. James E. Park, Utility Routines for Tridiagonal Matrices,
UCCND/CSD/INF-74, November, 1975, pp. 13-14.

2. IBM System/360 Model 195 Functional Characteristics, GA22-6943-4,
October, 1975.

TIME PER EQUARTIGN

COMPILER COMPARISON

LEGEND
o = ASM
o =X 0OPT3
a=H OPT2
+=H OPTI
x =hH OPTO
o =0
v = FTNB3

[w)

]
40

-
50

NO. EQUATIONS

Figure 1

100

91

TIME PER EQUATION

COMPTILER COMPARISON

-a
)

1 T T T 7
20 30 40 50 60 70 30 3C

NO. EQUATIONS

Figure 2

Al

16.0

TIME PER EQUATION
10.0

8.0

8.0

1

4.0

i

2.0

12.0 14.0
1 I]

LEGEND
0 = ASM
o=X 0OPT3
a=H OPT2
+=H OPT1
x=H OPTO
o =0
v = FTNG3

COMPILER COMPARISON

L
[3

LY

o

!
ﬁ.‘l Ol 3
bl

|

ju]

o

T T 1
30 40 50 60

NO. EQUATIONS

Figure 3

70 80 99

1
100

8T

TIME PER EQUATION

36.0

COMPILER COMPARISON

A A A A A A A
£ £ 1=3 r=3 =3 o ¥

b 3
[+ 3
>

LEGEND
o = ASM

o =X OPT3
a=H OPT2

T 1 T T 1
10 20 30 40 50 60 70 50 90

NO. EQUATIONS

Figure 4

100

61

21

PART I, Appendix 1

Source Listing of TRIDIG

23

TRIDIANG CSECT O

#* 3 3 ¥

Usa

NA
NR
A

2]

MIL
NDTM

38 3 e W3 b 40 3 3 40 3 g I 3 3 3 3 6 % 3 3 3 4 o4 3 3% g o on %

TRI-NDTAGONAL EOQUATION SOLVER

BASFD ON FORTRAN SUBROUTINE TRIDIG BY Je.E. PARK

AND IS OPFRATIONALLY FQUIVALENT EXCEPT NM DERUG TYPE WRITES ARE
AVAILABLE. HOWEVER, THE SAME ARGUMENT LIST IS USED.

GE:

DEVELOPEN BY STEVEN B. CLIFF JUNE 8,1977

CALL TRIDIG (A, B, NA, NB, MIL, NDIM)

IS
IS
IS

IS

IS
IS

NUMBER OF NONE WITH WHICH THE FIRST EQUATION IS ASSOCIATED.

NUMBER (OF NODE WITH WHICH THE LAST EQUATION IS ASSOCIATED.

TRIDIAGONAL MATRIX A(NDIMy3). A(N,J) WITH J=1,243 ARE =,0,+
ELFMENTS FOR EQUATION FOR NTH NODE,.

CONSTANT VECTOR IN MATRIX EQUATION UM ENTRY AND SOLUTION
VECTOR ON EXIT

IGNORED

FIRST DIMENSION OF A, ONLY DIMENSION OF B

CONSTRAINTS:

A MUST BE WFLL CONDITINONED,
NA,NR,NDIM MUST BRE BETWEEN O AND 101

THIS ROUTINE IS OPTIMIZED PER SUGGESTIUNS IN

IBM SYSTEM/360 MODEL 195 FUNCTIONAL CHARACTERISTICS
GA22-6943-3

56 EXECUTABLE INSTRUCTIONS ARE HERE VS, ALMOST 200 BY FORTH,0PT=2
FORWARD
BACKWARD LONP HAS 6 VS, 16

LOOP HAS 11 vS, 23

RFGISTER USAGE AND ASSIGNMENTS:

GENFRAL:
ARG EOUL 1 POINTER TO ARGUMENT LIST
Al EQU 2 BASE FOR A{X,1) THUS A(22,1) = Al1(22)
A2 EOU 11 BASE FOR A(X,2) THUS A(22,2) = A2{(22)
A3 FOu 12 RASE FOR A(Xs3) THUS A(22,3) = A3(22)
R FQu 3 HASE FOR R({X)
z EQU 14 BASE FOR Z(X)
U EQU 10 BASE FOR U(X)
NA EQU ¢4 ADDRESS OF NA, THEN NA
NB EOU 5 ADDRESS OF NB, THEN NB
NDIM EQU 7 ADNDRESS OF NDIM, THEN DIM)
BASE EOU 13 BASE REGISTER FOR LOCAL ADDRESSING
SAVE FOU 13 SAVE REGISTER FOR SYSTEM LINKAGE
EP FQU 15 HAS ADDR 0OF ENTRY POINT
LINK EQU 14 RETURN ADDRESS IS HERE
X FOU 6 INDEX REGISTER
cM8 EOU 8 CONSTANT -8 - MUST BE EVEN; USES REG+1 (BXLE,BXH)

TRINOOIO
TRINDOOZ20
TRIDOO3O
TRINDOO&GO
TRIDOOS0
TRIDOOKO
TRIDOOTO
TRINOORO
TRIDOWVIO
TRINO1CO
TRIDOL1O
TRIDD120
TRIDO130
TRIDO140
TRIDO150
TRINDO16O
TRIDOLTO
TRINDO18O
TRIDO19O
TRIDOZ20O
TRIDOZ10O
TRIDOZ220
TRIDO230
TRINO240
TRIDO250
TRIDO260
TRIDG2TO
TRIDOZ280Q
TRIDO290
TRINDO3GO
TRIDO310
TRINO320
TRIDO330
TRINO340
TRINO3S50
TRINDO3KO
TRIDO370
TRIDO380
TRINDO390
TRIDO4OO
TRINDO&10O
TRINO&20
TRIDO430
TRINO4G4Q
TRIDO450
TRIBDO460
TRINO470
TRINDN4BO
TRINO490
TRIDOS00
TRIDOS10
TRIDO520
TRIDO530
TRIDOK4O
TRIDOSS0
TRINOSAKD

CR Fon

£

a0

R

24

CONSTANT 8 = MUST BE EVEN: USES REG+1

NISPLACFMENTS :

s

K FOIL R B{K)=K{X,4R}
KP1 FOU 16 RIK+1)=KPI{X,H)
0 R{K=1)=KM] (X,R)

KM1 Fou

£

¥ FLOATING

2
B

R7 [SATY]

POINT:

(RXLE HXH)

6 RFGISTER STNRAGE FOR 7

FL U2 INTERMEDTATF OUANTITY EL
Rtt Fou 4 RFGISTER STNRAGE FNR U
C1 STATERN) CONSTANT 1.0D0
RA FOU A ROGISTER STORAGE FNR R

ENTRY TRIDIG

USING TRIDIG,FP
TRIDIA A G0

nc XL1'7?

nc CL7'TRIDIG
RFGS ns an
DRLF nc 1n11.00
CMm1 nc 1F1-1°

ALWECT nc

£33

LA

e

GN STM LIMK LINK=-2,12{SAVE) SAVE CALLER'S REGS
LR XySAVE HOLD USER SAVE AREA ADDRESS
LA BASE,REGS SET MY SAVE AREA (ALSN BASFE REG)
DRNP FP N0 NOT NEED EP AS RASFE
USING RFEGS,BASE RECAUSF SAVE IS READY
ST Xe+4(9SAVE) PUT CALLER'S ADDRESS IN MINE
ST SAVE,,8(4X) PUT MY SAVE AREA IN CALLER'S
LM Al ZNDIMLO(ARG) GET ANDRESES FOR ALL ARGUMENTS
LA C8,16 SET CONSTANT 8(16 FIRST) (IGNORE
L NA,O(4NA) GET NA
SR Al,C8 SET Al (MUST ALLOW FOR K)
L NB,O(sNB) GET NB
SR R,C8
L NDIM,N(,NDIM) GET NDIM
SRL C8,1 NOW ITS B
LR 42,A1 SET A2
SLL NDTM,3 MULTIPLY NDIM RY R
L Uy AUVECT SET U: (ADCON INSURES ADDRESSABILITY)
SLL NA,3 MULTIPLY NA BY 8
AR A2 ,NDIM AS REQUIRED
SLL NR,3 MULTIPLY NB BY 8
LA LyZVECT=16 SET Z
LR X 9 NA SET X
LR A3,A2 SET A3
Ln C1,0BLE]} GET & KEEP CONSTANT 1.000

A(UVECT-16)

SKIP DVER ID AND STORAGF ARFEA
SEVEN CHARACTERS IN NAME
NAMF=TRIDIG WITH PAD

SAVE AREA FOR LINKAGE

FoPo CONSTANT 1

INTEGER CONSTANT =1

TRINOSTO
TRINOSKO
TRIDOSG0
TRIDOKOO
TRIDOALO
TRIDOAZ2/0
TRIDOA3ZH
TRINDO64O
TRIDO6KSO
TRINO660
TRINDOGT(
TRIDO6BO
TRIDO6SO
TRIDOTOO
TRIDOT 1(
TRINDOT20
TRIDOT30
TRINDOT740
TRINDOT750
TRIDOTEO
TRIDOTTO
TRIDO780
TRIDOT790
TRIDOBOO
TRINOBLO
TRINOB20
TRINO830
TRIDOB4O
TRINORSO
TRIDO86O
TRIDOBTO
TRIDO88BO
TRIDOBYO
TRINOSOO
TRIDOYL1O
TRIDOG20
TRIDO930
TRINOY4O
TRIDOYSO
TRIDO960
TRIDOYTO
TRINO98O
TRINO99O
TRIN1000
TRIN1010
TRIN1020
TRIN1030
TRIDLC&GO
TRID10OS0
TRIN1060
TRIN1070
TRID1080O
TRID1090O
TRID1100O
TRID1110
TRIN1120

25

AR A3 NDTM AS RFQUIREN TRIN1130
LR CR+14NH SET LIMIT FOR X TRID1140

% TRIN1150
% HAVE ALL PRFLIMINARY STUFF, NDW REGIN CALCULATIONS TRIN1160
% 1% TRID1170
¥ o 7INAY=R(NA) TRIN1180
% 3 Ln RZ,KIX,B) SAVE Z(NA) FOR LATER TRIN1190
1 STN RZsK(Xe7) TRIN1200
TRID1210

(NA)=1,.0D0 / A(NA,2) TRIN1220

Ln Cl,NBLEL GET & KEEP CONSTANT 1,000 TRID1230

x 1 LDR RULC1 no TRID1240
® 1 pN RUSKI{Xo82) INVERSION TRID1250
% 1 STD RULK(X,l1) TRIN1260
% 2 AR XsCR INCREMENT X FNR LOOP TRID1270
xorw FL=A(K,1)%U(K=1) TRID1280
¥ $FNRWARND LCNR EL 4RUY GET U(X-1), COMPLEMENTING IN PROCESS TRID1290
woe MD EL K{X,4A1) MPY BY A(K,yl) TRID1300
% TRID1310
EREE Z(K)=R{K)}=FL*Z(K=1) TRIN1320
¥t MDR RZ,EL -ELxZ(K-1) TRID1330
x 3 AN RZ K (X4R) ADD R(K) TRIN1340
® 1 STD RZsK(Xs2) STORE Z(K), KEEP IT IN RZ FOR NEXT LOOP TRID1350
% rw TRID1360
ERRE DIK)I=1.0N0/ (A(K2)~EL*A(K=1,3)) TRID1370
w3 M) EL,KML1IX,A3) =—EL*A(K-1,3) DISCARD EtL TRIN1380
w1 AD EL K{X,A2) ADD A(K,2) TRID1390
%1 LPR RU,C1 GET 1.,0n0 TRID1400
* 3 DPR RU,FEL NN INVERSION TRIND1410
%t STN RULK(X,U) STARE U(K), RZ WILL HAVE Z(K=1) TRIN1420
oo TRID1430
NN S1 K=NAT1,NK TRID1440

51 CONTINIF TRID1450

BXI_F X9 CRYFORWARD TRIN1460

TRID1470

SHRE TRIN1480
% IR X o NR SFT X TO LAST FLEMENT TRIN1490
s LR CMR+1,NA SET LIMIT TN Na TRIN1500
) CMA+1,CM1 BUMP LIMIT ONE RECAUSE OF BXH TRID1510

LCR CMR,CA SET INCREMENT Tn =8 TRIN1520

TRID1530

R(NR)=Z{NB)*U(NB) TRID1540

TRID1550

MDR RZ,RY ZINR)%U(NR) TRID1560

* STD RB,K{X,8) SET R(NB) TRID1570
% g% TRIN1580
x 1k TRID1590
% 1 AR X 4 CMR NECREMENT X FOR LODP TRID1600
1% TRID1610
* oo BEI=(Z0I)=A0Jy3)%E(J+1) }=U(J) TRID1620
% $RACKWARD MD RByKI{XsA3) BJ+1)%A(Js3): B(J+1) IS IN RB TRID1630
w1 LCDR RB,RK COMPLEMENT RR TRID1640
% 1 AD RBsK{XyZ) ADD Z(J) TRIN1650
x 3 MD RB 9K (X ,U) MPY BY U(J) TRID1660
% 1 STD RB,K(X,B) STORE B(J)3 R(J+1) IS IN RR TRID1670

* 1k TRID1680

26

NN 52 K=MC,NR TRID1690

72 COMTINIIF TRIN1700

B XH X9sCMR,RACKWARD TRID1710

TRIND1720

TRID1730

TRID1740

TRID1750

7 (NA)=R(NA) TRID1760
LU{NA)=1.0D0 / A(NA,2) TRID1770

Ln R7 4K (X4R) SAVE Z2(NA) FOR LATER TRIN1780

LDR RU,LC1 no TRID1790

STh RZ4sK(XyZ) TRID1800

[RI0] RUK({X,A2) INVERSITON TRID1810

STD RUGK (X gli) TRIN1820

AR X,C8 INCREMENT X FOR LOOP TRIN1830

CNOP 0,R ’ TRID1840

DO STMT GFNERATS SOME 0OF THE INTRODUCTORY CHODE AND MORE LATER; BUT TRID1850
* N(INE HERF TRID1860
= TR1D1870
* WHILF IN FORWARD LOOP, THE PRECEENING Z & U ARE IN Rl & R2Z TRID1880
* INTERMEDIATE QUANTITY ELy IS NEVER STORED AND THE TWO SUBTRACTS TRID1890
* LISITNG EL ARF MADE ADDS BY COMPLEMENTING EL FIRST TRID1900
3 TRID1910
*x FL=A(Ky1)=1(K=1) TRID1920
s TRID1930
* 7IKY=R(K)=FEL*Z(K=1) TRID1940
3 TRID1950
% H(K)=1,0D0/(A(K,2)-EL*A(K-1,3)) TRID1960
FORWARD LCDR EL,RU GET U(K-1), COMPLEMENTING IN PROCESS TRID1970
MD EL K(X,A1) MPY BY A(K,l) TR1D1980

MNR RZ,EL ~EL*Z(K-1) TRID1990

M EL yKM1(X,A3) —-EL*A(K-1,3) DISCARND EL TRI1D2000

LDR RU,C1 GET 1.000 TRID2010

AD RZ,K({X,y8) ADD B(K) TRID2020

AD ELyK(X,A2) ADD A(K,2) TRID2030

STD RZ4KI(Xe2) STORE Z(K), KEEP IT IN RZ FOR NEXT LOOP TRID2040

DDR RU,EL DO INVERSION TRID2050

STD RULK({X,U) STORE U(K)y RZ WILL HAVE Z(K-=1) NEXT LQOP TRID2060

% TRID2070
* NO 51 K=NAT1,NB TRID2080
* 51 CNNTINUE TR1D2090
BXLE X4C8yFORWARD TRID2100

% TRID2110
= FNRWARD LONP IS 9 WORNS LONG AND WILL BE CONTAINED FULLY IN THE TR1D2120
* 16 WORD INSTRUCTIONM STACK AND WILL RE EXECUTED IN LOQP MODE TRID2130
* : TRID2140
x THF BACKWARD LOOP IS ESTABLISHED AS TRID2150
* NN 52 K=NR-1,NA,-1 (ALL MULTIPLIED BY THE WORD LENGTH-8) TRID2160
* TRID2170
*) TR1D2180
* BINB)=Z(NR)*U(NB) TRID2190
* RECALL: NB WAS LIMIT OF FORWARD LOOP, THEREFORE RU=U(NB); RZ=Z(NB) TRID2200
* NOTFE ¢ NN LONGER NEED RZ, SO USE IT FOR RB TRID2210
% TRID2220
2 TRID2230

3

J+=NR+NC-1 TRID2240

% NOAT NEFNEN

IR
MDR
LR
LCR
A
ST
AR
cCNOp
ne §2

%

27

CMB+]1 ,NA SET LIMIT TO NA
R74RU Z(NB) =11 (NH)
Xy NH SET X TO LAST FLFMENT
CMR,C8 SET INCRFEMENT TO =8
(MR+1,CM] BUMpP LIMIT ONE BFCAUSF NF RXH, NOT BXHE
RR WK (X 8B) SET B(INB)
Xy (M8 NDECREMENT X FOR LONP
NyR
K=NC 4 NB

* NO CNONE MOW, RUT HAS FEARLTER, AND WILL LATER

2 BUAI=(Z03)=AJ93)5ER{I+1))I%R0())
BAC KWARD) MD RA,KI{X,A3) BIJ+11#A(J,3): KIJ+1) IS IM RR
LCPDR RRLRA COMPLEMENT RH
AD RByK(Xy7) ADD 7(.)
MR RR K {X,ll) MPY BY U(J)
STND RR,K(X,R) STORE R(J): HA(J+1) IS IN RR
b3
3% NN §2 K=NC 4NB

¥ 52 CONTINUE

B XH

FULLY IN

Xy (CMB,RACKWARD

THF STACK IN LOOP MODE

* BACKWARD LANP IS 5 AND NNE HALF WORDS LONG: IT WILL BE EXFCUTED
%

i#* 2

RFETURN
L
LM
MV T
RR

skt

THF LI £ 2V

* NIMENST
IVFCT ns
UVFCT ns

END

SAVE.4(,SAVE) UNLINK SAVE ARFAS
LINK,LINK=?2,12(SAVF) RESET THE REGISTERS
12(13) 4X'FF?

L INK RYFE

EFCTORS PER HIRASAKI'*S FORMULATINN ARE HERE, THEIR

ON OF 101 IMPOSES THE LIMITS NN NAGNB,NNDIM LISTED AROVE
1010
101D

TRINZ2250
TRINDZ2?260
TRINZ270
TRINZ2280
TRID2290
TRIDZ2300
TRID2310
TRINZ2320
TRINZ330
TRIN2340
TRIN?350
TRINZ2360
TRINZ2370
TRINZ2380
TRIN2390
TRIN2400
TRID2410
TRIN2420
TRID?430
TRIN2440
TR1ID2450
TRIN2460
TRINZ2470
TRIN2480
TRID2490
TRIN2500
TRIN?510
TRINZ520
TRID2530
TRINZ2540
TRIN2550
TRINZ2560
TRIN2570
TRINDZ2580
TRID2590
TRIN2600
TRID?610
TRIDZ26K20

29

PART IT

CADTIMER - TASK TIMING ROUTINES

31
PART II

CADTIMER - TASK TIMING ROUTINES

One of the tools most needed in analyzing and improving software is
accurate, precise measurement of the time spent in the various sections
of a program. This information is essential not only to finding the CPU
intensive portions but also to evaluating the effectiveness of modifica-
tions made in efforts to improve sections under scrutiny.

Prior to the present development, the best tools apparently available
for use at ORGDP were the routines ICLOCK, ITIME, JSTIME [l] or similar
routines developed at ORNL with precisions of one/one-hundredth (0.01)
of a second. This level of precision is unacceptable to a computer

bas fast as the 360/195 with over 185,000 machine cycles (about 50,000
machine instructions) between clock "ticks'". Frequently, programs have
sections which are much shorter than one/one-hundredths of a second but
which are executed thousands of times per use of the program.

Obviously, a set of better timing routines was needed. It is to fill
this need that the CADTIMER routines were written. These routines use
(via STIMER and TTIMER supervisor calls [2]) the 26.04166 microsecond
clock available on the 360/195, allowing only 482 machine cycles (about
120 machine instructions) within a clock-interval. It must be noted that,
although the clock intervals are 26.04166 microseconds, the time is up-
dated only every fourth tick. Thus, the CADTIMER routines have a limit

of 104.16664 microseconds as the true time between ticks.

32

The CADTIMER general-purpose timing routines have a total of 21
entry points, 20 of which return an indicator of the time used by the
task. The 20 time-evaluating entry points are named in the following

manner:

S
Rl | [;gg}
D H

I26

The first letter indicates the type and length of the timer value returned
with I, R, D referring to four-byte integer, four-byte real and eight-byte
real, respectively. The second letter indicates the units of measurement
with S, M, H referring to seconds, minutes, and hundredths of seconds,
respectively. The single three-letter group, 126, refers to four-byte
integers with timer units as units. The last pair of three-letter options
select the interval over which measurement is to be made, INT representing
the interval since the last call to an "INT" routine, while TOT represents
the total time of the interval since the first call to any CADTIMER
routine. Thus, to get the time in seconds as a single-precision real
number since the last call to an "INT" routine, the entry point RSINT
is used. (See Appendix 1 for more examples and details of the calling
conventions.)

The 21st routine, NTIMC, returns as a four-byte integer, the number

of times any of the CADTIMER routines have been called.

33

The first call to any of the routines (except NTIMC) is used as the
setup call and a zero (of the appropriate type) is returned. Thereafter,
each routine responds as its name implies. A maximum of 12 hours CPU
time is allowed by any program which uses CADTIMER. Since CADTIMER uses
STIMER and TTIMER, no other use of them should be made. Further, CADTIMER
is not overlayable--it must be in the root segment of any overlay program.

These timer routines have already been used in situations where the
precision afforded by the predecessor timers would have been totally
unsatisfactory. Intervals as short as the previous clock's ticks can now
be measured accurately allowing much finer study of the characteristics of
programs than was previously available.

The complete source listing for CADTIMER is contained in

Appendix 2.

REFERENCES

1. (CSD Programmer's Notebook, November 10, 1975, pp. 20-7, 20-9, and
20-10.

2. Supervisory Services and Macro Instructions, IBM Manual GC28-6646-7,
Sections 77 and 82.

35

PART II, Appendix 1

ADDITIONAL COMMENTS ON THE USAGE OF CADTIMER

37

Each of the 21 entry points has one argument and, because of FORTRAN
conventions, may be invoked either as a FUNCTION or SUBROUTINE. For
example, the sequence

1. IMPLICIT DOUBLE PRECISION (D)

2. CALL IMTOT (ISET)

3. (1.4E-2 Seconds of Computation)

4. R1V = RSTOT (R1A)
5. R2V = RSINT (R2A)
6. R3V = SNGL (DSTOT (D3A))

7. (2.4E-2 Seconds of Computation)

8. R4V = RSTOT (R4A)
9. R5V = RSINT (R5A)
10. R6V = RSINT (R6A)

11. CALL IHTOT (I7A)
12. (4.2 Seconds of Computation)

13. R8V = RSTOT (R8A)

14, D9V

DHINT (D9A)/100.0

15. R10V = R8V - SNGL (D9A)

16. R11V = I26TOT(I11A)*26.01466E-06

17. CALL ITIMC (I12A)

18. CALL RMTOT (R13A)
would result in the following values for the indicated variables. (The
times for all statements except the three times explicitly noted are

assumed to be zero.)

38

Variable Value Comment

ISET 0 The first call to CADTIMER always
returns O.

R1V,R1A 1.4E-2 Both the argument and functional value
are REAL*4

R2V,R2A 1.4E-2 Since no previous TUINT routine has

been called, the total time is returned.

R3V,D3A 1.4E-2, 1.4D-2 Total time is still 1.4E-2. This shows
relationship between all RUYYY* and
DUYYY routines.

R4V, R4A 3.8E-2 Total time since first call.

R5V,R5A 2.4E-2 Time since last TUINT routine (last
call was Line 5).

R6V,R6A 0.0 Time since last TUINT routine (last
call was Line 9).

I7A 3 Three-hundredths of a second has
elapsed. Note that ISTOT would have
returned zero.

R8V,R8A 4.238 Total time since Line 2.
D9A 420.E-2 420.E-2 seconds since Line 10.
D9V 4.2 D9V could have been set to DSINT. This

shows relationship between TSYYY and
THYYY routines.

R10V 3.8E-2 Total time before beginning of current
interval.

R11V 4,238 Total elapsed time (same as RSTOT).

I26TOT 162739 Number of timer increments since Line 1.

This line shows relationship between
I26YYY and RSYYY routines.

*
The nomenclature TUYYY is interpreted as follows. The T is the type

of routine: I, R, or D. The U is the unit of the routine: S, M, or H.
The YYY is the interval of measure next: TOT or INT. Thus RUYYY refers
to all the routines that return real values, TUINT to any interval measur-
ing routine, and TSYYY to any second returning routine.

39

Variable Value Comment

I12A 11 Number of calls to CADTIMER routines.
This does not include calls to NTIMC.

R13A 7.06E-2 Total number of minutes since first
call (Line 2).

Note again that the first call to any CADTIMER routine (except NTIMC)
returns zero and initializes both the total and interval timers. Each
successive call to TUTOT routine returns total CPU time since this first
call. Each call to TUINT routine resets the interval time and returns
the length of the interval. The type and length of the argument are the
same as the functional value (if used) and the appropriate argument must
be present. The length and type of the value returned depend on the
first letter of the routine name; I is always four-byte integer, D is
always eight-byte real, and R is always four-byted. These routines are
related by

IUYYY=IFIX(RUYYY)=IFIX(SNGL(DUYYY))

RUYYY=SNGL(DUYYY).

Note that the IFIX function causes truncation and loss of significance
for IUYYY routines. The SNGL function will cause loss of significance
after about four seconds.

The second letter of each routine name determines the units of the
value returned; M is minutes, S is seconds, and H is hundredths of seconds.
These are related by

THYYY=TSYYY/100=TMYYY/6000.

Some loss of significance can occur with the divisions, but except for

integer types, loss should be negligible as implemented in CADTIMER.

40

The exception to this two-letter typing and units rule is the I26YYY
routines, which return the actual number of timer increments as a four-
byte integer. Thus, these routines are related to RSYYY by

RSYYY=FLOAT (I26YYY)*26.04166E-6
and the earlier relationships can be used to derive correspondences
between I26YYY and any TUYYY routine. No roundoff or truncation can occur
with the I26YYY routines which afford maximum precision and accuracy,
but in a less convenient form. CADTIMER carefully minimizes the errors
in these conversions; hence, the user should get the correct type, length
and unit by invoking the appropriate routine.

The last three letters of the routine name determine the interval
over which the time is measured; TOT being the total CPU time since the
first call to a CADTIMER routine, and INT being the interval since the
last call to a TUINT routine unless no TUINT has been previously called,
then it is equivalent to a call to TUTOT.

The exception to all of these naming conventions is the special
routine, NTIMC, which returns the number of times any of the other
CADTIMER routines have been called. NTIMC does not set the clocks,
either total or interval, nor does it increment the number of calls
counter. The value returned is a four-byte integer number of times
called.

The 21 entry points and their use is described in Table 1. The
type column refers to both the argument and functional value which are
always the same. The naming conventions are clearly evident in all

applicable routines.

41

Table 1

CADTIMER
ENTRY VALUE

Type Unit Interval

IHTOT I*4 .01 Sec Total since first call
RHTOT R*4 .01 Sec Total since first call
DHTOT R*8 .01 Sec Total since first call
ISTOT I*4 Seconds Total since first call
RSTOT R*4 Seconds Total since first call
DSTOT R*8 Seconds Total since first call
IMTOT I*4 Minutes Total since first call
RMTOT R*4 Minutes Total since first call
DMTOT R*8 Minutes Total since first call
IHINT I*4 .01 Sec Interval since last INT call
RHINT R*4 .01 Sec Interval since last INT call
DHINT R*8 .01 Sec Interval since last INT call
ISINT I*4 Seconds Interval since last INT call
RSINT R#*4 Seconds Interval since last INT call
DSINT R*8 Seconds Interval since last INT call
IMINT I*4 Minutes Interval since last INT call
RMINT R*4 Minutes Interval since last INT call
DMINT R*8 Minutes Interval since last INT call
I26TOT I*4 26.04166E-6 Sec Total since first call
I26INT I*4 26.04166E~-6 Sec Interval since last INT call
NTIME I*4 Number of calls Since first call

43

PART 1T, Appendix 2

SOURCE LISTING OF CADTIMER

LEP1

EEPL

EEP2

LEP2

&LEP3

EEP3

GOES

CADT

VE

* % 3 % ¥

21

#* 3¢ 3 3 o3 3 3

MACRO

BEGIN

DROP

USING

ENTRY

B

DC

DC
«GN STM

LR

L

MV1

8

USING

ENTRY

8

bC

nc
«GO STM

LR

L

MVI

B

USING

ENTRY

B

bl

DC
«GO STM

LR

L

MVI

DROP

USING
YSNDX LA

BAL

MEND

SPACE
IMER CSECT

PRINT

RSION 1.0

45

GEP1,&EP2,6EP3,60TIME

SAVE

EEPL1,EP SET TEMPARY BASE

LEP1 PUT EP1 IN ESD

&EP1.GO SKIP 1D

X'05! LEN OF ID

CLS'EEP]! 10

LINKyLINK-2,12(SAVE) SAVE THE REGS

OLDS 4 SAVE SAVE OLD SAVE AREA POINTER

SAVE,ADREGS GET NEW POINTER
SETARG,X'50' SET EP OPCODE = SINGLE INTEGER STORE
GOESYSNDX GO JOIN OTHER EP ROUTINES
GEP2,EP

&EP2

&EP2.GO

X'06!

CL6'EEP2?

LINKsLINK=2,412(SAVE)

OLDS ySAVE

SAVE,ADREGS

SETARG,X*70* SINGLE FLOAT STORE
GOESYSNDX

LEP3,EP

&EP3

&EP3.GO

X'06°

CL6'EEP3?

LINKyLINK=2,12(SAVE)

OLDS,SAVE

SAVEsADREGS

SETARG,X'60*' DOUBLE FLOAT STORE
EP

REGS yBASE

TEMP,&DTIME

LINKGETIT

3
0
GEN

7- 1-77 STEVEN B, CLIFF

THESE ROUTINES ALL ACCESS THE TTIMER & STIMER MACROS AND NO

OTHER ACCESS TO THEM SHOULD BE MADE.

EJECT
GENERAL PURPOSE TIMING ROUTINES DEVELOPED IN THE

ENGINEERING SUB-DEPARTMENT OF THE COMPUTING APPLICATIONS

DEPARTMENT

OF THE COMPUTER SCIENCES DIVISION OF THE

NUCLEAR DIVISION OF UNION CARBIDE CORPORATION AT THE
OAK RIDGE GASEQUS DIFFUSION PLANT ON THE IBM 360/195

ENTRY POINTS ARE PROVIDED. ALL HAVE ONE ARGUMENT WHOSE
TYPE AND RETURNED VALUE IS THE SAME AS THE FUNCTIONAL
VALUE RETURNED.

CADTO003
CADT0004
CADTO0005
CADTO0006
CADT0007
CADTO008
CADT0009
CADTO010
CADTOO011
CADTOO12
CADTOO0O13
CADTOOL4
CADTO0015
CADTOO16
CADTOO017
CADTOO18
CADTOO019
CanNT0020
CaDTO021
CADT0022
CADTO0023
CADTO0024
CADTO025
CADT0026
caDT0027
CADTO0028
CADT0029
CADTO0030
CADT0031
CADT0Q032
CADT0033
CADT0034
CADT0035
CADTO0OO036
CADTO0037
CADT0038
CaDTO039
CADTO0040
CADTO041
CADT0042
CADTO0043
CADTO0044
CADT0045
CADTOO046
CADTO0047
CADTOO48
CADT0049
CADTO050
CADTOQO051
CADTOO0S52
CADT0053
CADTOO054
CADT0055
CADTO056
CADTQOS7
CADTO058

3 e 4t 36 3 p 36 38 3% 46 3 3k 3 3¢ 3t b g6 3F 2 3 3 3F 3 b 30 b b 4 3 36 2 3 35 36 3 36 3 3¢ 3 2 3 2 ae 3 u

38 3 3¢ 3t g 36 3 3 30 3t

46

20 OF THE ROUTINES RETURN THE CPU TIME AS THEIR FUNCTION VALUE

AND WILL DESCRIBED TOGETHER. THE NAMES OF THE ROUTINES DETERMINE
THF TYPEs LFENGTH, UNIT, AND MEASUREMENT INTERVAL BY THE FOLLOWING
FORMULA 2

IT) st 1707
IRY 1M TINTI
D1 IH]
11261

WHEREF: THE FIRST CHARACTER DETERMINES THE TYPE AND LENGTH:
I IS INTEGER (NORMAL LENGTH = & BYTES)
R IS REAL (SINGLE PRECISION = 4 BYTES)

D IS DOURLE (DOURLE PRECISION = 8 BYTES)

THE SECOND CHARACTER DETERMINES THE UNITS OF RETURNED VALUE:

S IS SECONDS
M IS MINUTES
H IS HUNDRETHS OF SECONDS, I.E.s» S/100

THE THREE CHARACTER GROUP RETURNS THE ACTUAL NUMBER
OF TIMER UNITS, EACH UNIT=26.01466E-06 SEC

THE LAST THREE CHARACTERS DETERMINE MEASUREMENT INTERVAL:
TOT IS FOR THE INTERVAL CONSISTING OF THE TOTAL TIME
SINCE THE FIRST CALL TO ANY OF THESE CADTIMERS
INT IS FOR THE INTERVAL SINCE THE LAST CALL TO AN MINT®
ROUTINE OR SINCE THE FIRST CALL IF ND "INT" HAS
BEEN CALLED,

THUS ISTOT RETURNS THE TOTAL NUMBER OF SECONDS SINCE THE FIRST

CALL 70O ANY CADTIMER ROUTINE IN AS AN INTEGER,
DUE TO TRUNCATION ALL TIME LESS THAN 1 SECOND IS LOST.

RMINT RETURNS THE NUMBER OF MINUTES SINCE THE LAST CALL TO
AN INT ROUTINE AS A SINGLE PRECISION REAL NUMBER,
NO TIME NECESARILY LOST DUE TO TRUNCATION
OR ROUND OFF

126 INT RETURNS THE NUMBER 0OF TIMER UNITS SINCE THE LAST
CALL TO AN 'INT' ROUTINE AS AN INTEGER

FIRST CALL AS AN INTEGER NUMBER., THIS IS EQUILVALENT

TO THE CSD ROUTINE ICLOCK
INENTITIES: (ONLY A FEW OF THE MANY THAT EXSIST)

IMTOT = ISTOT/60 ISTOT = IHTOT/100 = IFIX(RSTOT)
RMINT .= SNGLE(DMINT) = RSINT/60.0 = RHINT/60,0/100.0
ISTOT = IFIX{FLOAT(I26TOT)*26.04166E-06)

FJECT

USAGE: PICK THE DESIRED ROUTINE USING THE FORMULA ABOVE.

(FOR EXAMPLE DHTOT)
INVOKE 1T IN EITHER OF TWO WAYS:
AS A FUNCTION - DBLTIM = DHTOT (DT)
AS A SUBROUTINE - CALL DHTOT (DT)
RESULT FROM BOTH IS THAT DT IS SET AS THE DOUBLE PRECISION
TOTAL TIME AND THE VARIABLE DRLTIM IS THE SAME AS DT

CADTO0059
CADTO060
CADTO061
CADTO062
CADT0063
CADTO064
CADT0065
CADT0066
CADTONO67
CADTOO068
CADT0069
CADTOO070
CADTOO0T1
CADTO0072
CADTQ073
CADTOO74
CADT0075
CADTOO076
CADTOOT7
CADTO0078
CADTO079
CADTO080
CADTOO081
CADTO082
CADTOO0R3
CADTOO084
CADTO0085
CADTO086
CADTO0087
CADTOO88
CADT0089
CADTO090
CADTO0091
CADTO0092
CADT0093
CADTO094
CADTO0095
CADTO0096
CADT0097
CADTOO098
CADT0099
CADTO100
CADTOl101
CADTO102
CADTO103
CADTO104
CADT0105
CADTO0106
CADTO107
CADTO108
CADTO109
CADTO110
CADTO111
CADTO112
CADTO113
CADTO1l14
CADTO115
CADTO1l6
CADTO117
CADTO118

47

¥ THF TWENTY-FIRST ROUTINE NTIMC RETURNS THE NUMRER OF TIMES ANY OF

s

It

LR T 13

USAGFE:
i
*
*
%
I
* NFED
3%

THE TIME RNOUTINES HAVE REEN CALLED. THIS COUNTER IS INCREMENTED
BY ONE WITH FACH CALL TO THE CADTIMER ROUTINES

ICNT = NTIMC(IC) OR CALL NTIMC (IC)
RESULTS IN IC AND ICNT BEING SET TO THIS COUNT

THF FIRST CALL TO ANY CADTIMER ROUTINE INITIALIZES THE CLOCK AND
RETURNS A ZERO AS A TIME VALUE. GENERALLY THIS WILL ELIMINATE THE

FOR A SPECIAL, SET-UP CALL.

* RFGISTER ASSIGNMENTS:

LINK
ARGADR
FUNC T
TEMP
ARG
TIME
oLDns
TMP

sk

EQts 13 NORMAL BASE REG

EQU 13 SAVE AREA POINTER

FQU 15 ENTRY POINT ADDRESS
EQU 14 RETURN ADDRESS

EQU 1 ADDRESS OF ARGUMENT'S ADDRESS
EQU 0 FUNCTIONAL VALUE REG
EQU 2 SCRATCH REG

FOU 12 ADDRESS OF ARGUMENT
EQU 11 CURRENT TIME

EQU 9 OLD SAVEAREA POINTTER
EQU 2] SCRATCH REGISTER

¥ MASK FOR TEST UNDER MASK

ON
*

EQU XYFF?!

* STORAGE & CONSTANTS

X

REGS NS 9D REG SAVE AREA
LONGT IMF DC 1F'1658880042' 12HR MAX CPU TIME ALLOWED
FIRSTIME DC 1F'O! VALUE OF TIMER AT FIRST CALL
LASTIME DC 1F*O! VALUE OF TIMER AT LAST CALL
CALCNT nc 1F10! COUNT OF NUMBER OF TIMES CALLED
#* CONVERSION CONSTANTS:
TINTOH DC 1F'384" FR INTERVALS TO HUNDRETHS (FIXED)
T1INTOS nc 1F*38400°" FR INTERVALS TO SECONDS (FIXED)
IINTOM nC 1F'2304000° FR INTERVALS TO MINUTES (FIXED)
RINTOH DC 1D'26.04166E-04' FR INTERVALS TO HUNDRETHS (FLODAT)
RINTOS DC 1D'26.04166E-06' FR INTERVALS TO SECONDS (FLOAT)
RINTOM DC 1D'43,40277€E-08"' FR INTERVALS TO MINUTES (FLOAT)
*

EJECT

3 3¢

TEMP

3+ %

GETIT

SUBROUTINE TO LINK THE SAVE AREAS AND GET CURRENT TIME
IN REGISTER TIME, AND INTERVAL IN REG FUNCT
IN INTERVALS (BOTH FIXED & FLOATING PT)

HAS ADDRESS OF LASTTIME FOR THIS TYPE CALL

USING REGS,SAVE
ST OLDS 44 (4SAVE) L INK

ST SAVE,8(,0LDS) SAVE AREAS

L ARG,O(,ARGADR) GET ADDR. OF ARGS

™ CALLED,ON HAS TIMER BEEN SET?
80 SET YES=BRANCH

STIMER TASK,BINTVi =LONs I IME

MVI CALLED,ON SET CALLED FLAG
TTIMER

ST FUNCT,FIRS)VIME SET FIRSTIME

ST FUNCT,L STIME SET TIME OF LAST CALL

LR TIME,FUNCT

CADTO119
CADTO120
CADTO121
CADTO122
CADTO123
CADTO124
CADTO125
CADTO126
caDYT0127
CADTO128
CADTO129
CADTO130
CADTO131
CADTO132
CADTO133
CADTO134
CADTO0135
CADTO136
CADTO137
CADTO138
CADTO139
CADTO140
CADTO141
CADTO142
CADTO143
CADTO144
CADTO0145
CADTO146
CADTO147
CADTO148
CADTO149
CADTO150
CADTO151
CADTO152
CADTO153
CADTO154
CADTO155
CADTO156
CADTO0157
CADTO158
CADTO159
CADTO160
CADTOl61
CADTO162
CADTO01l63
CADTO164
CADTOl165
CADTO1l66
CADTOl67
CADTO168
CADTO169
CADTO170
CADTO171
CADTO172
CADTO173
CADTO174
CADTO175
CADTO176
CADTO177
CADTO178
CADTO179
CaDTO180

SR
B

SET TTIMER

LR
S
LCR

GOTIME EQU

ST
L

LD
LA
ST
BR

CALLED DC

DS

FLOAT nC

% ¥ ¢ 4 3

3

3*

#

DC
EJECT

BEGIN EXECUTA

THE XHINT ROU

FUNCT,FUNCT
GOTIME

TIME,FUNCT
FUNCT,0(,TEMP)
FUNCT ,FUNCT
*
FUNCT,FLOAT+4
TMP,CALCNT
FUNCT,,FLDAT
TMP41(,TMP)
TMP 4CALCNT
l4
X'00°*
00
X'4E000000°
1F*0?

BLE CODE

TINES

48

GET ZERD FOR T{ME AT FIRST CALL
SKIP TTIMER

SAVE CURRENT TIME
GET CORRECT INTERVAL

HAVE INTERVAL IN FUNCT
FLOAT INTERVAL
INCREMENT CALLED COUNTER

" BEGIN IHINT,RHINT,DHINT,LASTIME

ST

MD

SRDA

D

LR

8
EJECT

THE XSINT ROU

TIME,LASTIME
FUNCT,RINTOH
FUNCT,32
FUNCT,IINTOH
FUNCT o FUNCT+1
RETURN

TINES

CONVERT INTERFVALS TO
HUNDRETHS, BOTH FIX & FLO

BEGIN ISINT4RSINT4DSINT,LASTIME

ST

SRDA

D

MD

LR

8
EJECT

THE XMINT ROU

TIME,LASTIME
FUNCT,32

FUNCT,IINTOS
FUNCT,RINTOS

SET TIME OF THIS CALL
CONVERT HUNDRETHS TO SECONDS

FIXED
AND FLOATING

FUNCT,FUNCT+1 DISCARD REMANDER

RETURN

TINES

BEGIN IMINTRMINT,DMINT,LASTIME

ST
SRDA
D

MD

LR

-]
EJECT

THE XHTOT ROU

TIME,LASTIME
FUNCT,32
FUNCT,TINTOM
FUNCT,RINTOM
FUNCT o FUNCT+1
RETURN

TINES

CONVERT TO MINUTES

CADTO181
CADTO182
CADT0183
CADTO184
CADTO185
CADTO186
CADT0187
CADTO188
CADTO189
CADT0190
CADT0191
CADTO0192
CADTO193
CADTO194
CADTO195
CADTO196
CADTO197

- CADTO198

CADTO199
CADT0200
CADT0201
CADTO0202
CADT0203
CADTO204
CADT0205
CADTO206
CADT0207
CADTO208
CADT0209
CADTO0210
CADTO211
CADTO212
CADTO0213
CADTO214
CADTO0215
CADTO216
CADT0217
CADTO0218
CADTO219
CADTO0220
CADT0221
CADTN222
CADTO223
CADTO0224
CADTO0225
CADTO0226
CADTO0227
CADTO0228
CADT0229
CADT0230
CADT0231
CADTO0232
CADT0233

"CADTO0234

CADT0235
CADTO0236

* % 3

3 2 3

3% 4 3

NTIMC

NTIMCGO

* 3 3¢

3

126INT

BEGIN IHTOT,RHTOT,NDHTOT,FIRSTIME

MD FUNCT,RINTOH
SRDA FUNCT,32
D FUNCT,TINTOH
LR FUNCT 4 FUNCT+1
R RETURN

EJECT

THE XSTOT ROUTINES

BEGIN ISTOT,RSTOT,NSTOT,FIRSTIME

SRDA FUNCT,32

D FUNCT,IINTOS
MD FUNCT,RINTOS
LR FUNCT4FUNCT+1
B RETURN

EJECT

THF XMTOT ROUTINES

BEGIN IMTOT,RMTOT,NDMTOT,FIRSTIME

SRDA FUNCT,32

D FUNCT,TINTOM
MD FUNCT,RINTOM
LR FUNCT,FUNCT+1
B RETURN

FJECT

THE NTIMC ROUTINE

USING NTIMC,EP
ENTRY NTIMC

B NTIMCGO

nc Xt06¢

DC CL6NTIMC

STM LINKyLINK=2,12(SAVE)
LR NLNS,SAVE

L SAVE ,ADREGS

DROP EP

USING REGS,SAVE
MVI SETARG,,X'50"
ST OLDSy4(ySAVE)

ST SAVE,8(,0LDS)
L ARG 4O (yARGADR)
L FUNCT,CALCNT
B RETURN
NDROP SAVE

FJECT

THE I126XXX ROUTINES:

USING I26INT,EP
ENTRY I26INT
B 126 INTGO

CADT0237
CADT0238
CADT0239
CADT0240
CADTO241
CANTO0242
CADT(243
CADTO244
CADT0O245
CANTO246
CADTO0247
CADTO248
CADTO0249
CanT0250
CADT0251
CADT0252
CADTO253
CADTO0254
CADT0255
CADTO0256
CADTO0257
CADT0258
CADTO0259
CADT0260
CADTO261
CANTO262
CADTOZ263
CADTO264
CADT0265
CADTO266
CADTO0267
CADTO268
CADTO0269
CADTO270
CADT0271
CADTO0272
CADT0273
CADTO274
CADT0275
CADTO0276
CADTOQ277
CADT0278
CADT0279
CADT0280
CADTO0281
CADTO0282
CADTO0283
CADTO284
CADT0285
CADTO286
CADTO0287
CADTO0O288
CADT0289
CADT0290
CADTO0291
CADT0292

50

nc Xt06! CADT0293

nc CL6YI2AINT? CADTO0294

I26INTGO STM LINKyLINK=2,12(SAVE) CADTO0295
LR OLDS,SAVE CADTO0296

L SAVE,ADREGS CADT0297

USING REGS,SAVE CADTO298

DROP EP CADT0299

LA TEMP,LASTIME CADT0300

BAL LINK,GETIT CADTO301

ST TIME,LASTIME CADT0302

MV] SETARG,X'50" CADTO303

3] RETURN CADT0304

* CADT0305
* CADTO0306
DROP SAVE CADTO0307

USING 126TO0OT,EP CADTO0308

ENTRY 126T0T CADTO0309

126707 B 126TOTGN CADTO310
ne X106! CADTO311

DC CL6'126TOT! CADTO312

[126TOTGN STM LINKyLINK-2,12(SAVE) CADTO0313
LR OLDS,SAVE CADTO314

L SAVE,ADREGS CADT0315

USING REGS,SAVE CADTO316

DROP EP CADTO0317

LA TEMP,FIRSTIME CADTO318

BAL LINK,GETIT CADTO0319

MV1 SETARG4X'50" CADT0320

B RETURN CADTO0321

DROP SAVE CADTO0322

% CADTO0323
EJECT CADTO324

* CADTO0325
* RETURN REQUIRES BOTH FUNCT REGS TO BE SET CADTO326
* AND THAT THE OPCODE FOR THE STORE AT SETARG BE SET FOR THE CADTO0327
* CORRECT TYPE AND LENGTH FOR THE TYPE OF ARGUMENT FOR CADTO328
* THIS CALL. CADTO0329
RETURN EQU *® CADTO0330
* CADT0331
et Re ke R R AR R AR R I W A RN T NG %8080 s 35 s e o e e e o o ok ok o CADTO0332
* CADT0333
* SETARG IS ONLY A SKELETION TO GET THE BASE, CADTO0334
* INDEXy DISPLACEMENT, AND OPERAND REGISTER CADT0335
* CORRECT. THE OPCODE MUST BE SET BEFORE EACH CADTO336
x EXECUTION, CADT0337
* CADTO338
FkgpnnkaxkkxkkTHIS IS SELF MODIFYING CODE*#&k¥xkxikkdksk CADTO0339
* CADTO0340
gtk ok KRR R Aok WAR N I NG o dok g se e sde s sr ek ok X ko CADTO341
* CADTO342
SETARG ST FUNCT,0(ARG) STORE ARGUMENT-TYPE & LEN FIXED CADTO0343
ST FUNCT,20(0LDS) SET INTEGER FUNCTIONAL VALUE CADTO344

LR SAVE,OLDS RESET SAVE AREA POINTER CADT0345

LM LINKyLINK=~2,12(SAVE) RESTORE REGS CADTO0346

MVI 12(SAVE),ON SET SUCCESSFUL RETURN FLAG CADTO0347

BR LINK CADTO0348

51

SPACE 5 CADT0349

ADREGS nc A(REGS) CADTO0350
END . CADTO351

53

PART III

CONVERT- FREE-FORM INPUT ROUTINES

55

PART III

CONVERT - FREE-FORM INPUT ROUTINES

INTRODUCTION

Most FORTRAN programs use fixed format input requiring considerable
effort on the part of the user to follow the format requirements. Further,
several runs are usually required to resolve input errors. Additionally,
several constraints are placed upon both the programmer and the user which
can substantially increase the complexity of the input process. The CONVERT
free-form input package alleviates the following FORTRAN constraints. A
variable number of input items is easily handled with CONVERT, not the
user, counting the number of input items. Any number of scalers and arrays
of any mix of types is allowed with the arrays loaded in parallel, rather
than sequentially. To allow these flexibilities, CONVERT alters the
familiar concept of cards by using special characters, rather than card
boundaries, to delimit groups of input.

CONVERT is a group of seven entry points which allow a free-form in-
put to IBM FORTRAN programs. Items are separated by commas and may be real,
integer, logical, or alphanumeric in nature. CONVERT uses a ''logical
record" concept whereby a given group of data may span any number of physi-
cal input cards. CONVERT was originally used in an earlier form described

in [1].

56

USER CHARACTERISTICS

Each input group, or "logical record,'" will have as many input values
as specified in the documentation for the program of which CONVERT is a
part. Each logical record may be composed of any number of input cards,
with as many used as needed to input all the required data. (The amount
of data within a given block may be variable--check the overall program
documentation.) The end of data on each logical record is noted by a
semicolon (;) as the last character to be scanned on a card. All charac-
ters after the semicolon are treated as comments. A card may have only
a semicolon if previous cards in this logical record have defined all the
required data, if any. All intermediate cards, that is, all cards in
a logical record except the last, have the end of data on each card noted
by a colon (:), indicating more data follows on additional cards. All
characters after the colon are treated as comments, and a card whose first
nonblank character is a colon is a comment only card.

Card boundaries are irrelevant for all processing except as just
described, where colons and semicolons are used to demark the end of cards.
All the data in one logical record is treated as one continuous stream
during conversion. (Indeed the key benefits of the colon-semicolon con-
ventions lie in this variable, unlimited length record format, since all
the data does not have to appear on one card.)

This continuous stream is interpreted by either of two basic
techniques, alphanumeric and numeric, as specified by the programmer
of the program using CONVERT. A logical record may be either alphanumeric

or numeric, but never mixed.

57

Alphanumeric data is any continuous string of characters except
colons or semicolons terminated by a semicolon. The logical record may
span any number of cards, each ending with a colon. The length used by
CONVERT will be that specified by the original programmer and should be
specified by the program documentation. If more characters are supplied
in the input than the program requested, only the number requested will
be transferred; the remainder will be ignored. If too few characters
are provided, CONVERT will pad with blank characters as needed.

Numeric data is any mixture of integer, logical, or real variables,
separated by commas and ending with a semicolon. Items may be any number
of arrays or scalars, but all scalar items must precede the array items
on each logical record with the number of items and their types specified
in the documentation for the program which uses CONVERT. The valid forms
of numeric items are displayed in Figure 1, where they are divided by
variable type. CONVERT uses only the syntax of the input, interpreted
as in Figure 1, to determine the type of input. The user must follow
the documentation for the program which uses CONVERT and ensure that
correct types are used in all places. The most common error is the
absence of a decimal point in a real whole number specification
(i.e., 42 instead of 42.).

The scanning of each field begins at the end of the previous field
or the beginning of the logical record and proceeds left to right,

ignoring all extraneous characters, including blanks, until a sign,

Type
Integer

Real

Logical

Where:

58

Valid Forms Example

Si#,
Si.,
S#.#,
S#ES#,
S.#ES#,
S#.#ES#,
CTC,
CFC,
S is
is
s is
is
E is
C is
T is
F is

1, -123, +4562, 421,

1., +42., -61.,

6.41, -1296.82, 69.4221,
6E3, 64E-12, 194E+36,
6.E4,-.942E-6, .1E 01
+84.9420E+10, -89.4E1,80. 1E4

T,.True.,All is True Today,
F,False,All is False Today,

an optional sign, any of "+'", "-'", or blank.
If absent or blank, a "+" is assumed.

any number of digits 0 - 9.

the item separator.

the decimal locator.

the exponent (power of 10) indicator.

an optional string of characters except T or F.
the FORTRAN .TRUE. indicator.

the FORTRAN .FALSE. indicator.

Figure 1

CONVERT Numeric Input Forms

59

digit, a "T" or an "F" is found. If a "T" or an "F'" is found, even
after finding a sign, a digit, or an "E", CONVERT stores the appropriate
logical value and then skips all characters until a comma or semicolon
is found. If a sign or a digit is found, scanning continues until a
decimal point, a comma, or an "E" is found. If a comma is found, the
sign-digit pair is converted to an integer and stored. If a decimal point
is found, a flag indicatingthat this item is real is set and the scan
continues through any digits that follow to the decimal point until a
comma or an 'E" is found. If an "E" is found, the real flag is set and
the exponent is scanned in the following manner. If the character after
the "E" is a sign (+, -, blank), it is appropriately noted and the next
two characters are interpreted as digits of the exponent, unless the
second is the comma ending the field. If the character after the "E"

is not a sign, the next two characters are interpreted as the exponent,
unless the second is a comma. When a comma is found in the item, it is
converted to real, since the real flag was set, and stored. Any charac-

ters between the exponent and the comma terminating the item are ignored.

Thus, CONVERT accepts items in standard FORTRAN format except that
extraneous characters including blanks are always ignored (except in the
exponent field of a real value) and the values are separated by commas
rather than fixed columns.

Data in a logical record are always arranged with scalar quantities
first, if any, followed by the array items, if any. The number of scalars

and arrays and the number of items in the arrays are determined by the

60

program using CONVERT, and its documentation must be consulted to enter
the correct number of data items. After all the scalars have been entered,
the arrays are entered in parallel (that is, element 1 of array 1,
element 1 of array 2, ... , element 1 of array N, element 2 of array 1,
element 2 of array 2, ... , element 2 of array N, element 3 of array 1,
etc.) until all the data is in. While the number of arrays is constant,
the number of items in each array is not necessarily constant. Indeed,
this parallel loading of arrays with a variable number of elements is

one of the reasons for using CONVERT. Since CONVERT counts the number of
items stored and passes the number back to the calling program, the user
is generally spared the task of counting the number of items in the input

stream.

PROGRAMMING CHARACTERISTICS

The preceding section described the information needed to prepare
data for a program which uses CONVERT. This section describes the calling
sequences and conventions needed to incorporate CONVERT into a larger
program.

CONVERT assumes the existence of a common block named ALFAIN with
a length of at least 88 bytes. The first four bytes is a logical variable
set to .FALSE. if no end of file in the input data was found or .TRUE.
if the end of file was found. The second four bytes are an integer

variable with the FORTRAN unit number to be used in reading the input

61

data. The next 80 bytes are the card image currently being converted.

A typical statement establishing this common block is
COMMON/ALFAIN/LEOF, IUNIT,RECORD (20)

which must be included in the calling routine.

CONVERT consists of two CSECTs, one Assembler and the other FORTRAN.
The FORTRAN CSECT, a subroutine named REREAD, has no arguments and is
responsible for actually reading the data into the record field in ALFAIN
and calls entry EOFRR upon reaching end of file in the input data. As
listed here, it reads from the FORTRAN unit specified in word 2 of
ALFAIN and lists each record without change on FORTRAN Unit 6 as it is
read. It is a simple routine and may easily be modified to suit particu-
lar requirements. The Assembler CSECT is named CONVERT# and has six entry
points, one of which must be called only by the REREAD routine.

Entry point CNVRTA has two integer arguments specifying the number of
scalars and arrays in subsequent logical record that CONVERT will
interpret. Entry point CNVRTT is CNVRTA's complement. It, too, has two
integer arguments, but CNVRIT sets them to the current values of the
number of scalars and arrays, respectively.

The EOFRR entry sets the end of file flag in ALFAIN to TRUE and
returns to the caller of CONVERT, not to the routine which called EOFRR.
This nonstandard linkage requires that a REREAD be called only by CONVERT

and that only REREAD call EOFRR.

62

Entry point CNVRTC has two arguments, an array and an integer
variable. CNVRTC reads the next logical record from the input and con-
verts it as a character or alphanumeric data, filling the array with the
data. The integer specifies the number of characters to be returned with
CNVRTC truncating or padding the input as required.

The most-used entry point is CONVERT, which reads the next logical
record, converts it as numeric data, and stores it in appropriate scalar
and array locations as defined in the last call to CNVRTA. The argument
list is of variable length and type also, depending on the last call to
CNVRTA. The argument list first has as many scalars as specified by
CNVRTA, then the correct number of arrays and, finally, an integer which
returns the number of items placed in each array. The types of all the
arguments except the last must match the type indicated by the syntax
of the input data as CONVERT will return items ofbthe type specified by
the syntax, not as specified in the calling sequence. If the user inputs
data such that all of the arrays do not get the same number of items, the
count will ignore the extra and they will be lost. The USER CHARACTERISTICS
segment has substantial information on the way data is input and stored
which will not be repeated here.

The entry point LIGNOR is a logical function (all the others are
subroutines) which returns a .TRUE. value if the character after the
semicolon ending the last logical record was an ampersand (&). LIGNOR
must be called only after CONVRT has been called. It can be used to flag
the logical record in some way. For instance, if the ampersand is present,
the record could be ignored by the calling program or two types of inter-

dispersed data could be distinguished by this ampersand. The use of

63

this routine and warnings about the indiscriminate inclusion of ampersands
after semicolons are up to the programmer using this package.

Figure 2 is a list of possible calling sequences for CONVERT and some
comments on them. Appendix 1 has a typical input deck.

Thus CONVERT is a usable alternative to the fixed column input of
standard FORTRAN,and it provides some options on input that FORTRAN does
not easily support such as a variable amount of input. A complete source

listing is found in Appendix 2.
REFERENCE

1. cCliff, S. B., "A Method for the Study of Experimental Pulsative Flow
Through a Converging-Diverging Tube," unpublished Master's thesis,
The University of Tennessee, Knoxville, June, 1976.

64

CALL CNVRTA (4,7)

Sets CONVRT for four scalars and seven arrays, setting its
argument list to 12 variables long.

CALL CNVRTT (NSCAL,NARR)

Sets NSCAL to 4 and NARR to 7 since 4,7 were used in the last
call to CNVRTA.

CALL CNVRTC (CHARAC,14)

Reads next logical record and defines the first 14 characters
of CHARAC from the input.

CALL EOFRR
CALL REREAD

Both of these calls are illegal by user programs and must not
be used.

CALL CONVRT (N1,N2,R1,L1,N3,N4,R2,R3,L2,L3,N5,NEL)

Reads next logical record and stores the first four items in
scalars N1, N2, Rl, L1 and then loads the remainder in the
arrays N3, N4, R2, R3, L2, L3, N5. Finally it sets the integer
NEL to the number of elements placed in each of the arrays.
The use of four scalars and seven arrays was determined by the
last call to CNVRTA. Thus the number of arguments is the sum
of the two arguments of CNVRTA plus 1, for NEL. The types of
the variables must agree with those on the input data. If a
total of 25 items was on the logical record, NEL will have a
value of 3 (((25-4)/7)=3;(#Items - #Scalars)/#Arrays)=NEL).

LOGICAL LIGNOR

IF (LIGNOR(O)) GO TO 42
If the character after the semicolon was an ampersand, LIGNOR(O)
will be TRUE and execution will pass to statement 42. If the

character is not an ampersand, LIGNOR will be FALSE and the
branch will not be taken.

Figure 2

Possible Calling Sequences for CONVRT

65

COMMON/ALFAIN/LEOF, IUNIT,RECORD (20)

IF (LEOF) GO TO 94

NOTES:

Tests LEOF for end of file on the last call to CNVRTC or CONVRT
and goes to 94 only if end of file was found.

Both arguments for CNVRTA and the second for CNVRTC are inputs

to CONVRT and are not changed. The argument to LIGNOR is ignored.
All other arguments are meaningless on entry and are defined by
CONVRT.

The input variables must have been previously set.

The dimensions of all arrays in the call to CONVRT must be
greater than the value of NEL on return.

The user should check for array overflows.

Figure 2 (Contd.)

67

PART III, Appendix 1

EXAMPLES OF CONVERT USAGE

69

Statement
Number Statement
1 IMPLICIT INTEGER (I,N)
2 IMPLICIT REAL ((D,R,T,P)
3 LOGICAL LEOF L1, L2, LNOPRM
4 DIMENSION TIA1(30), RA2(30), HEADER(10), TIME (30,20)
PRES(30,20), IREFNO(20, ITABLN(20)
5 COMMON /ALFAIN/ LEOF, IUNIT, RECORD(20)
6 EQUIVALENCE (IAl1l,RA2)
7 IUNIT=5
8 CALL CONVRTC (HEADER,40)
9 CALL CNVRTA(O0,1)
10 DEFLT1=42.6
11 DEFLT2=3.1415
12 DEFLT3=32.2
13 IDFLT1=6
14 IDFLT2=12
15 CALL CONVRT (IA1,NINPUT)
16 IF (NINPUT .GT. 30) CALL ABEND(1)
17 IF (LEOF) CALL ABEND(2)
18 IF (NINPUT .LT. 3) CALL ABEND(3)
19 IVARI=TAI(1)
20 IVAR2=TA1(2)
21 RVAR3=RA2(3)
22 IF (NINPUT .GE. 4) IDFLT1=TIAl(4)
23 IF (NINPUT .GE. 5) DEFLT1=RA2(5)
24 IF (NINPUT .GE. 6) DEFLT2=RA2(6)
25 IF (NINPUT .GE. 7) IDFLT2=IAl(7)
26 IF (NINPUT .GE. 8) DEFLT3=RA2(8)
27 IF (NIMPUT .GE. 9) WRITE(6,101)
28 101 FORMAT (10X, 'TOO MANY ITEMS ON CARD #2, REST IGNORED')

Figure 1-1
Sample Use of CONVERT

70

Statement

Number Statement
29 IF (IDFLT1 .GT. 20) CALL ABEND (4)
30 CALL CNVRTA (1,2)
31 DO 200 I=1, IDFLT1
32 CALL CONVRT (IREFNO(I), TIME(1,I), PRES(1,I),

ITABLN(I))

33 IF (LEOF) CALL ABEND(5)
34 IF (ITABLN(I) .GT. 30) CALL ABEND(6)
35 200 CONTINUE
36 LNOPRM= .FALSE.
37 CALL CNVRTA(4,1)
38 CALL CONVRT (L1,R1,R2,1I3,TA1,NINPUT)
39 IF (NINPUT .GT. 30) CALL ABEND (7)
40 IF (LEOF) LNOPRM= .TRUE.

Figure 1-1 (Contd.)

71

Card
Number Card

1 THIS IS A SAMPLE DECK FOR CONVERT: HEADER

2 14, 16, 62.443,: ALWAYS SPECIFY 3 VALUES

3 3, : THREE TIME VS. PRESSURE TABLES

3 647, 1.4E-03, : IDFLT1, DEFLT1

5 ; END OF CONTROL RECORD

6 : BEGIN TIME VS. PRESSURE TABLES

7 1 : TABLE #1

8 0.0, 10.0, 1.0,20.2, 2.0, 31.0, : BEGIN SPIKE

9 3.0, 28.0, 3.5, 25.2, 3.75, 26.8 : NOTE HUMP

10 4.0, 22.0, 5.0, 15.0, 6.0, 12.5 : END OF SPIKE

11 7.0, 10.0, 1E10, 10.0 ; STEADY AT 10

12 3 : TABLE #3

13 0.0, 1E3, 3.0, 7.0E2, : SLOW FALL FOR 3 SEC.

14 3.1, 6.32E2, 3.2, 6.04E2, 3.3, 5.5E2, 3.4, 5E2,
3.5, 4.00 : RAPID DEPRESSURIZATION

15 3.6, 4.00, : SHORT STABILITY

16 3.8, 5E2, 4.0, 6E2, 5.0, 7E2 : SLOW PRESSURIZATION TO
STEADY

17 : THE FOLLOWING CARDS DESCRIBE THE LIQUID SLUG AT 6.0
SEC

18 : THEY HAVE BEEN DELETED FOR THIS TEST

19 : 5.5, 8E2, 6.0, 8.62E2 : UP TO PEAK PRESSURE

20 : 6.3, 7.84E2, 6.7, 6.9E2, 7.25, 7.E2 : BACK TO STEADY

21 1E10, 7E2; STEADY STATE AT 700

22 2 : TABLE #2

23 0.0, 100.0, 10.0, 200.0, 20.0, 100.0, 1E10, 1E2 ;

Figure 1-2

Sample Data Deck

72

Assume that the executable statements of Figure 1-1 are in the program
using CONVERT and that Figure 1-2 is the data deck to be read. This
example defines a header array with statements 4 and 8 which read card 1.
Note the use of comments after the data on this record and throughout the
input deck. Then a control record, cards 2 to 5, is read into a scratch
array area by statements 9 and 15. Statement 16 terminates the program if
the scratch area has been exceeded,while statement 17 terminates upon early
end of file. Statement 18 ensures that the three required quantities are
present and statements 19, 20, and 21 move them from the scratch area into
usage area. Statements 10 to 14 set defaults for the optional variables
on the control record.

Then, using the number of items placed in the scratch area as a key,
statements 22 to 26 change the default values if the user has input
them. 1In this case, six items were specified on data cards 2 through 5,
changing three of the optional values. The spreading over multiple cards
allows the data to be changed easily; here data cards 3 and 4 could be
removed returning them to their default values without generating invalid
syntax. Statements 27 and 28 issue a ﬁarning message if too many items
were in the control record. Statement 29 then ensures that array bound-
aries will not be exceeded in the next loop. Data card 6 is strictly a
comment which is ignored as the next logical record, cards 6 to 11, is
read in the first execution of the loop in statements 31 to 35. Statement
30 sets CONVERT for one scaler (a reference number for each table) and two
arrays (a time versus pressure curves). Statement 32 invokes CONVRT with
the appropriate arrays. Note that the length of each table (ITABLN) is

automatically set by CONVRT. Statements 33 and 34 ensure that sufficient

73

data is supplied, but that the table arrays are not exceeded. Table #1
is spread over cards 7 to 11 and specifies a table with 11 pairs of
values. The table stored next has a reference number of 3 and is specified
in data cards 12 to 21. The table was originally 17 pairs of values long,
but the pressure hump due to the slug of liquid noted in cards 16 to 20
has been commented out and will be ignored. Thus this table is nine pairs
of points long. The third table has a reference number of 2 and is cards
22 and 23. Only four pairs of values comprise this table. Next, an
optional parameter table is assumed to be present in statement 36. State-
ment 37 defines the next record to have four scalers and one array, and
statement 38 attempts to read it. Statement 39 ensures the integrity of
storage areas, and statement 40 checks to see if any data was present.
Since all the data had already been read, the flag of no parameter is set
to TRUE indicating it was not input. |

Thus this example illustrates several of CONVERT's features and some
of the coding techniques that can be used with it. Records 16, 17, 18,
27, 28, 29, 33, 34, and 39 are needed only to check the data, providing
more user security in input preparationvthan is normally found in most

programs.

75

PART III, Appendix 2

SOURCE LISTING OF THE CONVERT ROUTINES

77

MACRO
LINK
LA 2+SVEOQO1
ST 13,4(0,2) SAVE
ST 2+8(0,13) AREA
LR 13,2 LINKAGES
MEND
CONVERT# CSECT O BEGIN ASSEMBLE

ENTRY CNVRTT
#*CALL CNVRT (NOSCAL yNOARRAY)
*CONVERT TEST E.P. - TD GET CURRENT VALUES OF CONSTANTS
*NOSCAL IS NUMBER OF SCALERS - A POSITIVE INTEGER
*NOARRY IS NUMBER OF ARRAYS - A POSITIVE INTEGER

USING CNVRTT,15
CNVRTT SAVE (14412} 4%

LINK
LM 2+3,0(1)
LA 94NOSCAL

MvC 0(4,2),0(9)
MVC 0(443),4(9)
L 13,4(0,13)
RETURN (14,12),T
ENTRY CNVRTA
*C ALL CNVRTA(=-=SAME ARGUMENTS AS CNVRTT==-)
#CONVERT ALTER E.P. = USED TO CHANGE THE CONSTANTS OF THIS PROG
USING CNVRTA,1S
CNVRTA SAVE (14412)44%
L INK
LM 293,01(1)
LA 9,NOSCAL
MVC 0(4,9),0(2)
MVC 4(4,49),0(3)
L 13,4(0,13)
RETURN (14,12),7
ENTRY EQFRR
¥*IF END OF FILE IS FOUND IN REREAD, EOFRR IS CALLED AND IT RETURNS

* CONTROL TO THE PRODGRAM THAT CALLED CONVRT AND SETS EOF FLAG
USING #*,15

EOFRR L 13,SVEQQ]1 +4
L T+ALFAINAD
LA 5,1(0,0)

ST 5,0(0,7)
WTL 'END OF FILE IN REREAD'

ABEND 65

RETURN (14412),T

ENTRY ,CONVRT DECLARE ENTRY POINT TO BE AT CONVRT
#*THIS ROUTINE CONVERTS THE ALPHAMERIC INPUT FROM THE TELETYPE TO
* APPROPRIATE NUMERIC FORM

*USAGE‘ CALL CONVRT (RECORD.A,B,CyD,..-.GySvTv-...Z)
* WHERE RECORD IS A CHARACTOR STRING TO BE DECODED, OF ANY LENGTH,

* OF THE FORMS$,$,$,%...%,C WHERE $ IS A REAL OR INTEGER
* NUMBER IN CHAR FORM, SEPARATED BY COMMAS, AND C IS

* EITHER A COLON OR SEMICOLON IT IS IN MALFAIN"

*ANY NUMBER OF SCALORS AND/OR ARRAYS ARE PERMITTED AS SET BY CNVRTA
*A CARD OF FORM : COMMON /ALFAIN/ LEOF,INR,RECORD MUST APPERA IN

*A CARD OF FORM : COMMON /ALFAIN/ LEOF,INR,RECORD MUST APPEAR IN

CNV10000
CNV10001
CNV10002
CNV1N003
CNV10004
CNV10005
CNV10006
CNV10007
CNV10008
CNV10009
CNV10010
CNV10011
CNV10012
CNV10013
CNV10014
CNV10015
CNV10016
CNV10017
CNV10018
CNV10019
CNV10020
CNV10021
CNV10022
CNV10023
CNV10024
CNV10025
CNV10026
CNV10027
CNV10028
CNV10029
CNV10030
CNV10031
CNV10032
CNV10033
CNV10034
CNV10035
CNV10036
CNV10037
CNV10038
CNV10039
CNV10040
CNV10041
CNV10042
CNV10043
CNV10044
CNV10045
CNV10046
CNV10047
CNV10048
CNV10049
CNV10050
CNV10051
CNV10052
CNV10053
CNV10054
CNV10055

78

*BOTH THE CALLING AND REREAD PROGRAMS, RECORD IS AS DESCRIBED ABOVE
*LEDF IS LOGICAL END DF FILE IN REREAD--SET TO .TRUE. VALUE BY THIS
*PROGRAM IF END NF FILE IS FOUND: IT IS SETTD .FALSE. IF NO EOF FOUND
* INR IS NOT TOUCHED BRY THIS PROGRAM BUT CAN BE USED TO TRANSMIT

* INPUT UNIT NUMBER TO REREAD

*IF INPUT IS REAL, REGUALR REAL VALUES ARE RETURNED

*AN INTEGER IS ANY CONSISTING ONLY OF NUMBERS

*A REAL INPUT IS ANY THAT HAS EITHER A DECIMAL OF AN E TO DENOTE A

* POWER OF TEN

*ALL BLANKS AND ILLEGAL CHAR REGUARDLESS OF LOCATION ARE IGNORED

* EXCEPT AS NOTED

* AyBsCreeeaFyGy ARE VARIABLES OF LENGTH FOUR BYTES, EITHER

* REAL OR INTEGER, THAT CORRESPOND TO EACH $ IN RECORD

* SyTeessy ARE LINEAR ARRAYS OF ANY LENGTH , WITH EACH ELEMENT
* OF LENGTH FOUR BYTES TO RECIEVE DATA VALUES IN PARRELL
*NOTE LOGICAL VALUES CAN BE RETURNED TO ANY ARGUMENT IF THAT IS TYPE
#%% NOTE =*%% THE USER MUST KEEP TYPES CORRECT; THIS ROUTINE

* CHECKS THE SYNTAX IF THE INPUT RECORD TO DETERMINE TYPE

* Z IS THE NUMBER OF VALUES PLACED IN EACH ARRAY ON RETURN TO

® CALLING PROGRAM :

*IF INPUT IS INTEGER, REGULAR INTEGER VALUES ARE RETURNED

*A COMMA ",v DELIMITS EACH VALUE OR WORD

*A PERIOD "." DENOTES DECIMAL LOCATION, IF NEEDED

*ALL BLANKS, REGUARDLESS OF LOCATION, ARE IGNORED

*A COLON ":" DENOTES END OF A RECORD THAT IS CONTINUED - IT MUST BE

* PRECEEDED BY A COMMA

%A SFMICOLON “;" DENOTES THE END OF A RECORD THAT IS NOT CONTINUED, IT
* MUST BE PRECEEDED BY A COMMA

®*1F INPUT IS CHARACTOR "T", A FORTRAN LOGICAL .,TRUE. VALUE IS RETURNED
*IF INPUT IS CHARACTOR "F", A FORTRAN LOGIACL .FALSE. IS RETURNED

*AN E DENOTES A REAL VALUE WITH THE POWER OF TEN FOLLOWING TH E

*ONCE A T DR F IS ENCOUNTERED, ALL CHAR ARE SKIPPED. UNTIL A COMMA

*ONCE AN E IS FOUND, THE OPTIONAL SIGN CHAR IS CHECKED FOR, THEN AT
* MOST TWO DIGITS OF EXPONENT, THEN ALL CHAR ARE SKIPPED UNTIL A
* COMMA IS FOUND.THIS IS THE ONLY REGION THAT EXTRANOUS CHAR

* (EXCEPT BLANKS) ARE NOT IGNORED

*INPUT FORMS:

* INTEGER: S#, 1,-123,+4521,1245,

* REAL: S#e, 2e9—541.,4+5874,,

* SHe#, . 302912.4564+257,.14,-12.006,

* SHES#, TES,+1452E-12,-4E 5,

* S.#HES#, +.,20345E28-,00234E-42,

* SH#HJHES#, +12.542E-164-142,563E3,8,452E-458

* EACH S IS AN OPTIOMAL SIGN CHAR, +0R=, + IF OMMITED
* # IS ONE OR MORE DIGITS OF SET 0-9

* . IS THE DECIMAL LOCATOR :

* E IS THE EXPONENT INDICARATOR

* y IS THE REQUIRED SEPARATOR BETWEEN VALUES

*REGISTER ASSIGNMENTS:

* GENERAL 0,1 USED AS WORK REGISTER PAIR

* 2 COUNTS THE ARGUMENTS

* 3 COUNTS THE ARRAYS

* 4=5 PAIR, THE NUMBER IS ASSEMBLED HERE

* 6 COUNTS NO OF DIGITS AFTER A , OR E; IF

* NEGATIVE, THE NUMBER IS AN INTEGER

* 7 FOLLOWS DOWN THE INPUT RECORD POINTING TO THE

CNV10056
CNV10057
CNV10058
CNV10059
CNV10060
CNV10061
CNV10062
CNV10063
CNV10064
CNV10065
CNV10066
CNV10067
CNV10068
CNV10069
CNV10070
CNV10071
CNV10072
CNV10073
CNV10074
CNV10075
CNV10076
CNV10077
CNV10078
CNV10079
CNV10080
CNV10081
CNV10082
CNV10083
CNV10084
CNV10085
CNV10086
CNV10087
CNV10088
CNV10089
CNV10090
CNV10091
CNV10092
CNV10093
CNV10094
CNV10095
CNV10096
CNV10097
CNV10098
CNV10099
CNV10100
CNV10101
CNV10102
CNV10103
CNV10104
CNV10105
CNV10106
CNV10107
CNV10108
CNV10109
CNV10110
CNV10111

79

* CHAR TO BE DECNDED CNV10112
* A THE EXPONENT IS ASSEMBLED HERE, IF ZERO~- CNV10113
* THERE IS NO EXPONENT CNV1O0114
* 9 INCREMENTS DOWN THE LIST OF ADDRESSES TO CNV10115
* INDICATE WHICH ARGUMENT IS NEXT CNV101l16
* 10 FIXED POINT CONSTANT 10 CNV1O0117
* 11 INDEXES THROUGH ARRAYS CNV10118
* 12 FIXED POINT CONSTANT 4 KEPT HERE CNV10119
* 13 BASE REGISTER, SAVE AREA ADDRESS CNV10120
* 14-15 SUBROUTINE LINKAGE CNV10121
* FLOATING POINT: CNV10122
* 0 FLOATING POINT (REAL) NUMBER ASSEMBLED AND CNV10123
* CONVERTED HERE CNV10124
* 2 FLOATING POINT CONSTANT 10.0 CNV10125
* 4 FLOATING POINT ZERO CNV10126
* 6 NOT USED CNV1Ol127
* CNV10128
USING CONVRT,15 CNV10129

CONVRT SAVE (14412)y,* SAVE THE REGISTERS CNV10130
L INK CNV10131

B SVEOO1+72 CNV10132

USING SVEOO1,13 CNV10133

DROP 15 DROP 15 AS BASE REG CNV10134

SVEOO1 ° DS 18F CNV10135
SR 11,11 SET INDEX REGISTER TO ZERO CNV10136

LR 2,11 SET ARGUMENT COUNTER TO INITIAL VALUE CNV10137

LR 3,11 SET ARRAY COUNTER TD ZERQO CNV10138

LA 12,44 GET CONSTANT "“FOUR™ CNV10139

LA 10,10 GET CONSTANT MWTENY CNV10140

SDR byt GET FLOATING POINT ZERO CONST CNV10141

LD 24010 GET FLOATING POINT 10,0 CNV10142

LR 9,1 PUT ADR OF ARG IN REG 9 CNV10143

L 1 yNOARRY CNV10144

A 1,NOSCAL CNV10145

MR 0,12 CNV10146

L 1,0(1,9) CNV10147

ST 1,ADTNPT OF LAST ARGUMENT CNV10148

L T+ALFAINAD SET REG7 TO BEGINNING OF INPUT RECORD CNV10149

LA T7+8(0,7) CNV10150

*BEGIN LOOP TO DECODE A WORD CNV10151
WORDLOOP SR 545 CLEAR REGS 5 & 6 CNV10152
SR 8,8 CNV10153

STH 5¢+FLAG SET FLAGS TO ZERO CNV10154

L 6+CM1000 MAKE REG6 VERY NEGATIVE AS A FLAG CNV10155

B CHARLOOP+4 SKIP THE INCREMENTING OF REG1 CNV10156

*BEGIN LOOP TO DECODE A CHARACTOR CNV10157
CHARLOOP LA T741(0,7) ADD 1 TO REG7-IT POINTS TO THE CHAR TO CNV10158
* BE DECODED CNV10159
CLI 0(7)4yX%40" IS THIS CHAR A BLANK? CNV10160

BE CHARLOOP BRANCH BACK IF IT IS - I.E. SKIP IT CNV10161

CLI 0(7),X%68" IS IT A COMMA? CNV10162

BE COMMA BR TO DECODE A COMMA IF IT IS CNV10163

CLI 0(7)sx14E" IS THIS CHAR A t4¢? CNV10l64

BE CHARLOOP BR IF IT IS - I.E. SKIP IT CNV10165

CLI 0(7),X'60" IS THIS CHAR A '='? CNV10166

BNE *+12 SKIP FLAG SETTING IF IT IS CNV10167

LOGIC AL

TRUF

FALSF

RFAL#

MV i

CLI
BNE

BNE
MV I

CLI
BE

BM
LA
CLI
BE

IC

BM
ST
LR
MR

FLAGyX'FF
CHARLOOP
O(7),X048?
*+10

LXY;)
CHARLQOP
1,1
1,000,7)
1,F0O
LOGICAL
6,C1

44,10

591
CHARLOOP
O(7)4XVES?
TRUE
O(7)4XC5?
REAL#
0(7),X'C6!
FALSE
CHARLOOP
5,1(0,0)
+6

545
T9y1(0,7)
O(T7)4X"6R?
FALSE+2
RFADY
T91(0,7)
0(T7) X140
REAL#

6496

*+6

646
O(7),X'4E"!
*+16
0(7)4X*'60"
*+20

FLAG+1 4X'FF?!

T+1(0,7)
O0(7) X040
*=8
8,0(0,7)
8,F0
COMMAL OK
T+1(0,7)
O0(7)sXt460"
k=8

1,1
1,0(0,7)
1,FO
COMMALOK
1,WORK

1,8

0,10

1 yWORK

80

SET FLAG BITS TO ONE

RETURN FOR NEXT CHAR

IS IT A DECIMAL?

BR IF NOT A DECIMAL

SET 6 TO 7ZERD AS FLAG

RETURN FOR NEST CHAR

CLEAR REGY1 TD RECIEVE THIS CHAR
GET THIS CHARACTOR

TRY TO CONVERT IT TO A NUMBER

BR TO LOGICAL VARTABLE IF CHAR IS NOT A #

INCREMENT DIGIT COUNTER HY 0OMR

SHIFT PREVIOUS DIGITS IN THIS WORD BY 10

ADD LOW ORNDER DIGIT TO HIGH DORDER ONES
GO TD NEXT CHAR

IS IT A nyn?

BR IF IT IS

IS THIS CHAR AN “E"?

BR TO TAKE CARFE NF EXP

IS THIS CHAR A F?

BR IF IT 1S

SKIP UNKNOWN CHAR

GET TRUE VALUE

SKIP NEXT INSTRUCTION

GET FORTRAN FALSE. VALUE

SKIP TO NEXT CHAR

IS IT A COMMA?

SKIP CHAR

BR T0O STORE WORD IF CHAR IS COMMA

_SKIP THE mEm

IS THIS CHAR A BLANK?

BR IF IT IS A BLANK

CHECK- HAS A DECIMAL BEEN FNUND?

BR IF ONE HAS ’

FORCE DECIMAL RECORDING IF ONE HAS NOT
IS THE EXP POS?

SKIP NGS SIGN PROCESSIMNG
IS THE EXP NEGATIVE?
SKIP SIGN BIT SETTING IF NO SIGN GIVEN
SET NEGATIVE EXP BITS TO ONES

SKIP SIGN CHAR

IS THIS CHAR A BLANK

SKIP IF IT 1S

GET THIS CHAR .

CHANGE TO NUMERIC FORM

GO LOOK FOR COMMA

SKIP FIRST CHAR

IS THIS CHAR A BLANK?

SKIP IT IF IT IS

CLEAR REG1 TO RECIEVE THIS CHAR

GET NEXT CHAR

CONVERT TO NUMERIC FORM

GO LOOK FOR COMMA

SAVE SECOND DIGIT

PUT FIRST DIGIT IN REG1

SHIFT FIRST DIGIT OVER

ADD SECOND DIGIT

IfF IT IS

CNV10164
CNV10169
CNV10170
CNV10171
CNV10172
CNV10173
CNV10174
CNV10175
CNV10176
CNV10177
CNV10178
CNV10179
CNV10180
CNV10181
CNV10182
CNV10183
CNV10184
CNV10185
CNV10186
CNV10187
CNV10188
CNV10189
CNV10190
CNV10191
CNV10192
CNV10193
CNV10194
CNV10195
CNV10196
CNV10197
CNV10198
CNV10199
CNV10200
CNV10201
CNV10202
CNV10203
CNV10204
CNV10205
CNV10206
CNV10207
CNV10208
CNV10209
CNV10210
CNV10211
CNV1O0212
CNV10213
CNV10214
CNV10215
CNV10216
CNvV10217
CNV10218
CNV10219
CNV10220
CNV10221
CNV10222
CNV10223

LR
B
LA

COMMALNK CLI
BNE

COMMA LTR
AM
MVC
ST
LD
ADR
™
BNO

LNDR

LTR
BNP
DDR
BCT
LTR
BNP
™
R0
MDR
BCY
B
NNR
RCT
FLOATED STD
L
R
INTEGER TM
BNO
LNR
RFADY LA
c
BP
L
ST
AR
LA
LITLELOP CLI
BE
CLI
BE
CLI
BNE
8

8,1
COMMALOK
T41(0,7)
O0(T7)4X'68R!
COMMALDK-4
646
INTEGER
WORK,,FLOATC
Sy WORK+4
0y WORK

0'4
FLAG X' FF?*
x+6

0,0

646

*+10

0,2

(‘)1*"2

8,8
FLOATED
FLAG+1 ,X'FF?*
*+14

042

By %=2
FLOATED
042

89*‘2

04 WORK

5 ¢ WORK
READY
FLAGsX'FF?!
READY

5,5
2,1(0,2)

2 yNOSCAL
ARRAYS
1,0(0,9)
5+,0(0,1)
9,12
7+1(0,7)
O(7),X'7A0
COLON
0(7)4X*5E"
SEMICOLN
O(T7) X040
WORDLNOP
LITLELOP-4

81

PUT TOTAL EXP IN 8
GO LOOK FOR COMMA
SKIP THIS CHAR
IS THIS CHAR A COMMA?
GO LOOK FOR COMMA
IS THIS WORD AN INTEGER?
BR IF IT IS
GET CONSTANT FOR FLOATING REAL NO,
ST THE INTEGER
LOAD FLOATED, UNNORMALIZED NO TO FPRO
ADD '0.0' TO NORMALIZE NO.
CHECK FOR SIGN OF INTEGER
BR IF POSITIVE
COMPLEMENT FPRO - MAKE IT NEGATIVE
CHECK NO OF DIGITS IN FRACTIONAL PART
BR IF ND DIGIEO FE&5I-4EE&D-&
DIVIDE BY '10.0*
BR UNTIL EXP IS EXHAUSTED
CHECK FOR EXPONENT
BR IF EXP IS NOT PDS-NO OR ZERO EXP
CHECK EXP SIGN
BR IF EXP SIGN IS NEG
MULTIPLY BY 10.0
BR UNTIL EXP IS EXHAUSTED
SKIP NEG EXP CALC
DIVIDE BY 10.0
BR UNTIL EXPONENT IS EXHAUSTED
STORE FLOATED WORD
GET WORD FOR STORAGE IN CALLING PROG
SKIP SIGN CHECK
CHECK SIGN OF INTEGER
SKIP IF POS
MAKE NEG IF NEEDED
INCREMENT ARG COUNTER
CHECK FOR THE ARRAYS AS
ARGUMENTS AND BR IF NECESSARY
PUT ADR OF ARGUMENT IN 1
STORE THIS WORD IN CORRECT ARGUMENT
SKIP TO NEXT ARGUMENT
SKIP COMMA
IS THE NEXT CHAR A COLON?
BR IF IT IS
IS IT A SEMICOLON?
BR TO DECODE A SEMICOLON IF IT IS
IS IT A BLANK?
IF NOT BLANK, RETURN TO DO NEXT WORD
CHECK NEXT CHAR

*THERE ARE 4 ARRAYS THAT RECIEVE VALUES AND THEY RECIVE VALUES IN
HENCE COUNTERS MUST BE SET AND CHECKED TO PUT VALUES

* PARALLEL.
* IN CORRECTLY
ARRAYS L 1,0(0,9)
ST Se0(11,1)
"
AR 9,12
LA 3,1(0,3)
C 3 ,NOARRY

PUT ADR OF ARGUMENT IN 1

STORE WORD IN CORRECT ARRAY WITH PROPER
INDEX VALUES

SKIP TO NEXT ARGUMENT

INCREMENT ARRAY COUNTER

CHECK-IF LAST ARRAY~- DO NOT BRANCH

CNV10224
CNV10225
CNV10226
CNV10227
CNV10228
CNV10229
CNV10230
CNV10231
CNV10232
CNV10233
CNV10234
CNV10235
ChNV10236
CNV10237
CNV10238
CNV10239
CNV10240
CNV10241
CNV10242
CNV10243
CNV10244
CNV10245
CNV10246
CNV10247
CNV10248
CNV10249
CNV10250
CNV10251
CNV10252
CNV10253
CNV10254
CNV10255
CNV10256
CNV10257
CNV10258
CNV10259
CNV10260
CNV10261
CNV10262
CNV10263
CNV10264
CNV10265
CNV10266
CNV10267
CNV10268
CNV10269
CNV10270
CNV10271
CNV10272
CNV10273
CNV10274
CNV10275
CNV10276
CNV10277
CNV10278
CNV10279

82

BNE LITLELOP-4 OTHERWISE BR TO CHECK FOR COLONS
*IF AT FOURTH ARRAY, MUST RESET COUNTERS
AR 11,12 INCREMENT ARRAY INDEX TO NEXT WORD
LR 1,3 GET NO OF ARRAYS
MR 0,12
SR 9,1 BACK ARGUMENT POINTER TO FIRST ARRAY
SR 3,3 RESET ARRAY COUNTER
B LITLELOP=-4 CHECK FOR COLONS
*DECODE COLON BY READING IN THE NEXT RECORD AND RESETING REG7 TO
% THE BEGINNING OF THE NEW RECORD
*REREAD HAS NO ARGUMENTS AND IS CALLED FROM THIS POINT
COLON L 15,RERADD REG1S5 IS ADR OF REREAD ROUTINE
BALR 14,15 CALL REREAD ROUTINE
L T+ALFAINAD SET REGT TO BEGINNING OF INPUT RECORD
LA T7+8(0,7)
SDR 444 GET FLOATING POINT ZERO CONST
LD 2,010 GET FLOATING POINT 10.0
B LITLELOP GO TO NEXT WORD LOOP VIA COLON CHECK
*DECODE SEMICOLON BY DETERIMINING THE TOTAL NO., OF POINTS AND
* STOREING ITAND RETURING TO THE CALLING PROGRAM
SEMICOLN LTR 11,11 HAS THE ARRAYS BEEN REACHED?
BNP RETURNS BR IF NO ARRAYS USED
M 10,C1 PREPARE ARRAY INDEX REG FOR NDIVISION
DR 10,12 REG11 HAS TOTAL NO. OF POINTS
L 1 4ADTNPT REG 1 HAS ADR OF LAST ARGUMENT
ST 11,0(0,1) STORE TOTAL NO,., OF POINTS
RETURNS SR 545 SET EOF VALUE TO .FALSE.~-
ST T+SEMIADD SAVE ADDRESS OF END OF RECORD
L T+ALFAINAD
ST 5+0(0,7)
L 13,4(0,13) UNLINK SAVE AREAS

RETURN (14,12),T RETURN TO CALLING PROGRAM

ENTRY L IGNOR
*LOGICAL FUNCTION TO DETERMINE IF THIS RECORD SHOULD BE IGNORED

*LRSULT = LIGNOR (RECOED)
*LRSULT = RRUE. IF & FOLLOWS ;
*LRSULT = .FALSE. IF NO & FOLLOWS 3

USING LIGNOR,15
LIGNOR SR 0,0

L 1,SEMIADD
CLI 1(1)sX*50°"
BE AMPER
BR 14
AMPER L 0.,Cl
BR 14
FLAG DS 1H FLAGS FOR SIGN BITS AS NEEDED
CM1000 pc 1F*-1000* LARGE NEGATIVE NUMBER FOR FLAG IN REG 6
D10 DC 10*10.0°* FLOATING POINT TEN .
WORK DS 10 A DOUBLE WORD OF WORKING SPACE IN CORE
FLOATC DC X*'4E00000000000000° FLOATING CONV CONSTANT
cl DC 1F*'1? CONSTANT 1
FO DC X*'000000F0O* CONVERSION CONSTANT-ALPHAMERIC TO NUMERIC
ADTNPT DS 1F ADR OF LAST ARGUMENT
ALFAINAD DC V{ALFAIN)
RERADD DC V(REREAD) ADR OF REREAD ROUTINE

NOSC AL DC 1FeT7

CNV10280
CNV10281
CNV10282
CNV10283
CNV10284
CNV10285
CNV10286
CNV10287
CNV10288
CNV10289
CNV10290
CNV10291
CNV10292
CNV10293
CNV10294
CNV10295
CNV10296
CNV10297
CNV10298
CNV10299
CNV10300
CNV10301
CNV10302
CNV10303
CNV10304
CNV10305
CNV10306
CNV10307
CNV10308
CNV10309
CNV10310
CNV10311
CNV10312
CNV1D313
CNV10314
CNV10315
CNV1031l6
CNV10317
CNV10318
CNV10319
CNV10320
CNV10321
CNV10322
CNV10323
CNV10324
CNV10325
CNV10326
CNV10327
CNV10328
CNV10329
CNV10330
CNV10331
CNV10332
CNV10333
CNV10334
CNV10335

83

NOARRY nc 1Ft4
SEMTADD DS 1F
END

10

SUBRNUTINE REREAD

LOGICAL LFOF

COMMON /ALFAIN/ LLENF, INR,RECORD(20)
NATA 1C/0/
READ(INR,1,END=10) RECORD
FORMAT(20A4)

IC=1C+1

WRITF (642) IC,RECORD
FIORMAT(15X,16,'=',T725,20A4)
LEOF = .FALSE.

RETURN

LEOF=, TRUF,

CALL ENOFRR

RFTURN

END

CNV10336
CNV10337
CNV10338
CNV10339
CNV10340
CNV10341
CNV10342
CNV10343
CNV10344
CNV10345
CNV10346
CNV10347
CNV10348
CNV10349
CNV10350
CNV10351
CNV10352
CNV10353

85

PART IV

PARMETER - PARAMETER FIELD ACCESSING ROUTINES

87

PART IV

PARMETER - PARAMETER FIELD ACCESSING ROUTINES

Most FORTRAN programs are controlled from data read through the
FORTRAN library from various unit numbers. This control suffices for
most programs, but there are occasions where control from another source
is desired. The parameter field of the EXEC Job Control Language
Statement [1]

//STEPNAME EXEC FORTHCLG,PARM.GO='PARAMETER FIELD'
provides such an extra input. A good example of the use of this field
is the FORTRAN-H compiler itself. The compiler uses the SYSIN file as
source input, which has no control specifications built in. All compiler
options are provided through the parameter field of the FORT step, e.g.,
(PARM.FORT="XREF,MAP'). Although the compiler is written primarily in
standard FORTRAN, it has assembler language code similar to the two
routines discussed below to access the parameter field.

The first routine, ALPARM, is an INTEGER FUNCTION which has one
argument:

INTEGER ALPARM
ILEN = ALPARM (PARM)

The functional value (ILEN) is the number of characters in the PARM field,
with zero returned if no field was specified. If ILEN is positive, the
characters from the PARM field are copied (A4 FORMAT) into the argument,
PARM, which must be dimensioned to accept the entire PARM field which may
be 100 characters (25 words) long. Only the first ILEN characters are

transferred; the rest remain as before the invocation of ALPARM.

88

The second routine, PARM, is also an INTEGER FUNCTION with one
argument:

INTEGER*2 PARM, I2
I = PARM (I2).

This routine provides for a typical use of the PARM field since it scans
the total field looking for the value of the keyword "MODEL'" which is
assigned a value by a field such as '"MODEL=2D". Thus, the functional
value PARM and the argument I2 are both returned with the value of MODEL,
here "2D", in an INTEGER*2 format. The value returned consists of the
two characters (not binary numbers) of MODEL. Thus, MODEL can have the
value of any two characters available for use in the PARM field, whether
numeric or not. If no PARM field was specified or the string ''MODEL="
was not found, or both characters were not specified, a binary zero is
returned. Because of FORTRAN conventions, PARM may also be invoked by
CALL PARM (I2)
where the functional value is ignored. The phrase '"MODEL='" may occur
anywhere in the PARM field, intermixed with other characters as desired.
Both of these routines may be invoked repeatedly in the same program
without harm, and they may be invoked in an intermixed fashion if desired.

Appendix 1 is a complete source listing.

REFERENCE

1. Job Control Language Reference, IBM Manual GC28-6704-3, pp. 89-90.

89

PART IV, Appendix 1

SOURCE LISTING OF PARMETER

91

PARMAMTR CSECT O PRM10000O
VERSION 1.0 JUNE 20,1977 STEVEN B, CLIFF PRM10001
* PRM10002
% THESE ROUTINES ACCESS THE PARM FIELD OF THE EXEC STATMENT PRM10003
* PRM10004
* USAGE FOR PARM: PRM10005
* 1=PARM{I2) PRM10006
* . PRM1000O7
* WHERE [12 RECIVES THE FIRST TWO CHARACTERS AFTER THFE STRING PRM10008
* "MODEL=%", IF NO PARM FIELD DR NO "MODEL=" PRM10009
* A NUMERIC ZERO IS RETURNED. I2 IS TYPED PRM10010
* INTEGER #*2 PRM10011
* I RECIEVES THE SAME AS 12 EXCEPT, BECAUSE OF PRM10012
* STANDARD FORTRAN LINKAGES, IT MAY BE TYPED AS PRM10013
* 1%2,1%4,L %4 OR L*1 WITH APPROPRIATE RESULTS. PRM10014
* IF TYPED AS L*1 ONLY ONE CHARACTER (THE SECOND) PRM10015
* WILL BE AVAILABLE, OTHERWISE THE TYPES ARE THE SAME PRM10016
* PRM10017
* PRM10018
* PRM10019
* USAGE FOR ALPARM: PRM10020
* J=ALPARM(IA) PRM10021
* WHERE IA IS AN ARRAY WHICH RECIVES ALL OF THE PARM FIELD PRM10022
* ' THAT IS PRESENT., SINCE THE FIELD MAY BE PRM10023
* UPTO 100 CHARACTERS LONG, IT SHOULD BE DIMENSIONED PRM10024
* TO AT LEAST 100 CHARCTERS, 25 WORDS, PRM10025
* J RECIVES THE NUMBER OF CHARACTERS PLACED IN 1A,) PRM10026
* AND IS TYPED EITHER INTEGER*4 OR INTEGER*2, . PRM10027
* IF NO PARM FIELD IS PRESENT, J WILL BE ZERO. PRM10028
* NOTE: ONLY THE FIRST J CHARACTERS OF TA WILL BE INTIALIZED, PRM10029
SAVE EQU 13 PRM10030
BASE EQU 13 . PRM10031
X EQU 2 PRM10032
TEMP EQU 1 PRM10033
FUNT EQU 0 PRM10034
LINK EQU 14 PRM10035
EP EQU 15 PRM10036

USING PARM,,EP PRM10037

ENTRY PARM PRM10038
PARM B GO PRM10039

bC XL1'06! PRM10040

DC CL6'PARM PRM10041
REGS DS 9D ’ PRM10042
cT nC 1F0 70 PRM10043
cs DC 1F*8¢ PRM10044
c100 DC LF*100° PRM10045
MODEL DC CL6'MODEL=" PRM10046
GO STM 14412412 (SAVE) PRM10047

LR X9 SAVE PRM10048

LA BASE,REGS PRM10049

DROP EP PRM10050

USING REGS yBASE PRM10051

ST Xy4(4SAVE) PRM10052

ST SAVE,8(,X) PRM10053

L 11,0(,1) PRM10054

KEEP LR 3,2 PRM10055

LTR
BN2Z

LTR
BNM
LH
C
BL
c
BH
LA
La
LOOPM CcLI
BE
LODPMGO AR
BCT
RETURN SR

8
GNTM cLC
BNE
C
BL
1C
SLt
1C
Stt
SRA
RYFBYF STH
BYEBYEGN L
ST
LM
MVI
BR
ENTRY
USING
ALPARM B

ADRFG nc
MOVIT MvC
GN2 STM

KFEP2 LR

92

214(,43) GET FIRST SAVF AREA
2,2 FIRST IF NO BACK CHAIN
KEEP

3,24(,3)

3,0(43)

3,3

RETURN

540(43)

5,C8

RFETURN

5,C100

RETURN

10,1

342(43) SKIP NVER COUNT
0(3),C M LOOK FOR M
GNTM

3,10

5,L00PM

BYEBYE

MODEL,,0O(3)

LOGPMGO

5,C7

RFTURN

0,6(3)

0,8

0,7(3)

0,16

0,16

0,0(,11)

13,4(,13)

0,20(,13)

14,12,12(13)

12(13) 4X'FF?

14

ALPARM

ALPARM,EP

602

XL11'06!

CL6'ALPARM ¢

A(REGS)

0(0411)4,2(3)
14,12,12(SAVE)

XySAVE

BASE,ADREG

EP

REGS,BASE

Xy94(4SAVE)

SAVE,B(,X)

11,0(,1)

3,2

2¢4(,43) GET FIRST SAVE AREA
2,2 FIRST IF ND BACK CHAIN
KFEP2

3,24(,3)

3,0(,3)

PRM10056
PRM100OS7
PRM10058
PRM10059
PRM10060
PRM10061
PRM10062
PRM10063
PRM10064
PRM10065
PRM10066
PRM10067
PRM10068
PRM10069
PRM10070
PRM10071
PRM10072
PRM10073
PRM10O0OT74
PRM10075
PRM10076
PRM10077
PRM10078
PRM10079
PRM10080
PRM10081
PRM10082
PRM10083
PRM10084
PRM10085
PRM10086
PRM10087
PRM10088
PRM10089
PRM10090
PRM10091
PRM10092
PRM10093
PRM10094
PRM10095
PRM10096
PRM10097
PRM10098
PRM10099
PRM10100
PRM10101
PRM10102
PRM1(103
PRM10O104
PRM10105
PRM10106
PRM10107
PRM10108
PRM10109
PRM10110
PRM10111

3,3
RETURN
5,0(,3)
5+5
RETURN
5,100
RETURN
SyMOVIT
045
RYEBYEGO

93

PRM10112
PRM10113
PRM10114
PRM10115
PRM10116
PRM10117
PRM10118
PRM10119
PRM10120
PRM10121
PRM10122

95

PART V

ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES

97
PART V

ABSADRES - ABSOLUTE ADDRESSING AND OTHER GOODIES

Access to absolute memory addresses is not available in FORTRAN, yet
occasions do arise where complex coding can be dramatically simplified
if variables can be accessed not by name, but by absolute address. It
was to fill this need that the ABSADRES routines were written. Several
additional routines were added to ease other situations.

There are eight classes of routines in the ABSADRES group. The first
class returns the absolute address of its argument as its functional
value. The second class returns as its functional value the value of the
variable whose absolute address is given as an argument. The third class
returns the address of its argument list as a functional value. The
fourth calls the routine given as the second argument with the argument
list address given as the first argument. The fifth clears an array to
zeroes, and the sixth sets an array to blanks. The seventh class provides
the complement of the second class by storing a value in a location
referenced by its absolute address. Thé eighth class provides a null
subroutine.

The first class of routines consists of seven entry points which
return the address of their first argument as a functional value. The
entry names are DADRES, RADRES, TADRES, LADRES, ADDRES, LOCFN, and LOCATN;
and, due to FORTRAN conventions, they are all alike in that their func-
tional values may be any type desired. However, the intention is that
they would be types REAL*8, REAL*4, INTEGER*4, LOGICAL*4, REAL*4, INTEGER*4,
and INTEGER*4, respectively. The multiple names were given to ease inter-
facing with FORTRAN coding conventions. Figure 1 is a table of Class 1

routines.

98

The second class of routines consists of nine entry points which
return the value of a location in memory referenced by its absolute
address given as an argument. All nine have this one argument, but the
alignment and length of the value returned vary depending upon the
routine called. One byte length with any alignment is assumed by entry
BVALUE, while entry HVALUE assumes a length of two bytes and halfword
alignment. LOGICAL*1 and INTEGER*2 are the suggested types for BVALUE
and HVALUE, respectively, but INTEGER*4 may also be successfully used.
Entries LVALUE, IVALUE, RVALUE, and VALUE are alike since all fetch four
bytes aligned on full-word boundaries. Their suggested types are
LOGICAL*4, INTEGER*4, REAL*4, and REAL*4, respectively. The DVALUE entry
returns eight bytes with doubleword alignment as a double precision value.
The two complex entries, CVALUE and CDVALU, set both real and imaginary
parts from consecutive words and doublewords, respectively, and their sug-
gested types are COMPLEX*8 and COMPLEX*16. Figure 2 is a table of the
second class of routines.

The third class of routines consists of the single entry ARGADR
which is an integer function returning the address of the argument list
itself. The fourth class has two entries, ARGCAL and CONFUS, which are
the same. They expect two arguments, both addresses. The first is the
address of a routine name, which must appear in an EXTERNAL statement and
to which control is transferred with an argument list whose address is the
second argument. The latter address may be established by ARGADR.

The fifth and sixth classes have entries ZEROUT and BLANKS,
respectively. They expect two arguments--the first is an array and the
second is a word count of the length of the array. ZEROUT will then set

to numeric zero (floating point and fixed point are the same) the array

99

for as many four-byte words as specified. (Note: Word alignment is
assumed and the user must adjust the word count to reflect element lengths
other than four bytes.) BLANKS is the same as ZEROUT except four blank
characters fill the four-byte words instead of numeric zeroes. These
blanks are compatible with any standard FORTRAN A-type format.

The seventh class consists of nine subroutine entries which provide
the complement of the second class of routines, since they store values
into locations referenced by absolute address. All entries have two
arguments—-—-the absolute address of the location to be changed and the
value it is to receive. The length of the value and the length of storage
to be changed are determined by the entry point used. In all cases, the
value is placed in the location specified one byte at a time without
inspection, with no assumed alignment. Entry BSTORE moves one byte, while
entry HSTORE moves two bytes. LOGICAL*1l for characters and INTEGER*2
would be typical data types for these routines. Entries RSTORE, LSTORE,
ISTORE, and STORE all move four bytes (one word) with possible types of
REAL*4, LOGICAL*4, INTEGER*4, and INTEGER, respectively. Each of CSTORE
and DSTORE moves eight bytes with typicél types of complex and double
precision. The last entry, CDSTOR, moves 16 bytes and is used for the
COMPLEX*16 data type. Figure 3 is a table of this class of routines.

The last class has one entry, ABSADR, which is a null routine con-
sisting of only a RETURN statement. It may be invoked as a function or
subroutine with or without an argument list of any sort.

These eight classes of routines can be used in some program-
ming situations for simpler and faster programs. For example, many pro-

grams consist logically of two phases, an input and set-up phase and the

100

transient or calculation phase. Two such programs are RELAP and PINSIM,
both used by the ORNL-BDHT program [l]. They both allow the user to
specify up to nine specific quantities to be printed in a "minor edit"
with a very high frequency, with each minor edit producing one line with
all nine variables and the transient time listed. In both cases the
specific variable can be any of several dozen quantities (temperatures,
pressures, densities, flow rates, etc.) which are defined for several
positions (volumes, slabs, junctions, etc.). Both programs have input
routines which decode the user input (which may appear as "AP 32" or
"PHIW(1;6)") into an internal code which will allow the minor editing
routine in the calculation phase to select the specific quantity to be
printed. However, a dramatic difference in the two programs arises from
PINSIM's use of ABSADRES and RELAP's use of normal FORTRAN techniques.
PINSIM stores the absolute memory address of the specific quantity to be
printed, while RELAP stores flags and pointers. Then, in the calculation
phase, PINSIM, with an extremely simple, short loop (3 FORTRAN statements),
obtains and prints the nine variables. RELAP, on the other hand, must
decode the flags and pointers in a long, more complex loop (230 statements)
to fetch the same nine variables. Indeed PINSIM's entire minor edit rou-
tine is only 39 statements, while RELAP's corresponding routine is 514
statements! The same technique could be used in the handling of trips,
even to the point of resetting them when required.

A null subroutine is occasionally useful when an external routine
can be specified. For example, ERRSET in the FORTRAN library allows the
specification of user error-handling exit. The most used example of a

null program segment is IEFBR14, which is a null routine.

Routine

DVALUE
RVALUE
LVALUE
IVALUE
VALUE

BVALUE
HVALUE
CVALUE
CDVALU

Routine

DADRES
RADRES
LADRES
TADRES
LOCFN

LOCATN

Length

-

Bytes
Bytes
Bytes
Bytes
Bytes
Byte

Bytes
Bytes
Bytes

OO N P

101

Figure 1

Suggested Type

DOUBLE PRECISION, REAL#*8
REAL, REAL*4

LOGICAL, LOGICAL*4
INTEGER, INTEGER*4
INTEGER, LOGICAL, OR REAL
INTEGER, LOGICAL, OR REAL

Class 1 Routines

Alignment

Double Word
Full Word
Full Word
Full Word
Full Word
Byte
Halfword
Full Word
Double Word

Figure 2

Suggested Type

DOUBLE PRECISION, REAL*8
REAL, REAL*4

LOGICAL, LOGICAL*4
INTEGER, INTEGER*4

REAL, INTEGER, OR LOGICAL
LOGICAL*1

INTEGER*2

COMPLEX, COMPLEX*8
COMPLEX*16

Class 2 Routines

102

Routine Length Suggested Type
BSTORE 1 Byte LOGICAL*1
HSTORE 2 Bytes INTEGER*2
RSTORE 4 Bytes REAL*4
LSTORE 4 Bytes LOGICAL#*4
ISTORE 4 Bytes INTEGER*4
STORE 4 Bytes INTEGER, REAL OR LOGICAL
CSTORE 8 Bytes COMPLEX*8
DSTORE 8 Bytes REAL*8
CDSTOR 16 Bytes COMPLEX*16
Figure 3

Class 7 Routines

103

The argument list addressing routines have yet to be applied in an
actual applications program, but an array of addresses of routines and
a corresponding array of addresses of arguments lists could be passed to
a routine which invoked the various routines in the array "blindly,"
without knowing which routine was being invoked, Possible uses include
the dynamic specification of the execution path of a program. Also, since
an argument list is simply an array of addresses, the user can build an

argument list dynamically.

Appendix 1 is a complete source listing.

105

PART V, Appendix 1

SOURCE LISTING OF ABSADRES

106

ARSANRFS CSECT 0 AUR10000
* ADR10001
% THESE ROUTINES ARE DESIGNED TO GIVE FORTRAN PROGRAMS ACCESS AUR10002
% TO ABSOLUTE ADDRESSING SCHEMES AND NTHER GOUDIES ADR 10003
* ADR10004
% THF FIRST ROUTINE RETURNS THE ABSOLUTE ADDRESS OF I1TS ARGUMENT AS ITS ADR10005
* FUNCTIONAL VALUE ADR10006
% ADR10007
% THE SECOND ROUTINE RETURNS THE VALUE STORED IN THE ABSOLUTE ADDRESS — ADR10OOR
% GIVEN RY ITS ARGUMEN AS ITS FUNCTIONAL VALUE. ADR10009
* ADR10010
% BOTH ROUTINES RETURN INTEGER, SINGLE PRECISION FLOATING POINT, AUR10011
% DOUBLE PRESCISION FLOATING POINT, AND LOGICAL VALUES, HFNCE THE ADR10012
% SEVFRAL ENTRY POINTS. I#2 AND L*1 ARE NOT SUPPORTED FOR THE FIRST ADR10013
#* FUNCTINN, EXTENDED PRECISION IS NOT SUPPORTED. ADR10014
% ADR10015
% STANDARD FORTRAN FUNCTION LINKAGE IS ASSUMED, BUT THESE ROUTINES DO ADR10016
% NOT APPEAR [N TRACEBACKS IF ADDRESSING, PROTECTINN, OR ALIGNMENT ADR10017
* FRRORS OCCUR. ADR10018
% ADR10019
% GENERAL PURPOSE REGISTER ZERO IS USED FOR VALUE RETURN AS IS FP REGO ADR10020
% ADR10021
%* THF THIRD ROUTINE RETURNS THE ADDRESS OF THE ARGUMENT LIST ITSELF ADR10022
* ADR10023
% THE FOURTH CALLS THE ROUTINE GIVEN AS THE SECOND ARGUMENT WITH THE ADR10024
* ARGLIST GIVEN AS THE FIRST ARGUMENT ADR10025
N ADR10026
% THE FIFTH CLEARS AN ARRAY TO ZEROS ' ADR10027
% THE SIXTH CLEARS AN ARRAY T0 BLANKS ADR10028
* ADR10029
* VERSION 1.0, APRIL 10,1977 STEVEN B. CLIFF ADR10030
% ADR10031
* ADR10032
* ADR10033
* ADR10034
s ADR10035
% ALL OF THE ENTRIES IN THE FIRST, SECOND, AND THIRD RUUTINES ARE ADR10036
% FUNCTIONS AND ALL USE THE FIRST ARGUMENT. IF MORE ARGS ARE PRESENT, ADR10037
% THEY ARE IGNORED. ADR10038
ADR10039

THE FUNCTION TYPE FOR ROUTINE IS ENTIRELY UP TO THE CALLING PROGRAM ADR10040
AS INTEGER*4,REAL%*4, AND REAL*8 VALUES ARE RETURNED. THE ARGUMENT ADR10041

E=3
& MAY BE OF ANY DESIRED. ADR10042
* ADR10043
% THE FUNCTION TYPE FOR ROUTINE 2 IS SOMEWHAT ENTRY DEPENDANT: ADR10044
* ENTRY FUNCTION TYPE ARGUMENT TYPES (AS USED TO ROUTINELl) ADR10045
* RVALUE T4gL4,4LY,12 ANY (ANY ALIGMENT) ADR10046
* HVALUE T44L44L1,12 ANY EXCEPT L1 (HALF WORD ALIGMENT) ADR10047
* RVALUE I4sL44R44R84L1,12 ANY EXCEPT 12,L1 (FULL WORD ALIGMENT) ADR10048
LVALUE F44L44R44RB4L1 412 ANY EXCEPT 12,L1 (FULL WORD ALIGMENT) ADR10049S
IVALUE I49L4yR44R8B,4L1412 ANY EXCEPT I2,L1 (FULL WORD ALIGMENT) ADR10050
VALUE I144L4+R44RB4LL,12 ANY EXCEPT 12,L1 (FULL WORD ALIGMENT) ADR10051
NDVALUE 14,L4,R4,RB,L1,12 R8,C8,C16 (NBLE WORD ALIGMENT) ADR10052

CVALUE 149L44R44RB4CB,12,4L1,12 C8 (TWO FULL WORD ALIGNMENTS) ADR100S53
CDVALU I4,L4 R44RB,CAR,C1l6,L1,12 Clé6 (TWO DBLE WORND ALIGNMENTS) ADR1OO54
ADR10055

3 4 % o3 3t

EREIE I 2 IR R IR IR T

3%

#0933 o3 3%

I

* o

3 3 3 3 3 o3 3 x

3%

Woa 3 g 3 3 o2 % 4 o 3

L S

3¢

107

WHILF ALL THFE ABOVE TYPE MIXES ARE LEAGAL, THE FOLLOWING IS DESIGNED:
RVALUE I4 CHARACTORS,L1
NVALUE 14 CHARACTORS ,12
RVALUE R4 R4
LVALUE La L4
IVALUE 14 14
VALUE R4 ,14 Ré4,14
DVALUE R& R8
CVALUE cs c8
CDVALUY Clé Cle

OF COURSFE LDTS OF GAMES CAN BE PLAY WITH UNUSUAL RESULTS WITH
ALL THESE ENTRIES

ROUTINE 3 COULD NOT CARELESS ABOUT THE TYPE AND OR LENGTH OF THE
ARGUMENT IT IS LANDED

ROUTINE 4 EXPECTS ADDRESSES AS BOTH ARGUMENTS (AS DOES ALL OF
ROUTINE 2, FOR THAT MATER), THE FIRST EFITHER FROM ROUTINE 3
NR SOME SIMILAR TRICK, THE SECOND CAN BE FROM ROUTINE 1 OR
AN FXTERNAL ROUTINE IN FORTRAN

ROUTINFS 5 AND 6 EXPECT ARRAYS AS THE FIRST ARG AND INTEGERS AS THE
SECOIND, FULL WORD ALIGNMENT IS ASSUMED

SOME FQUILVALENT ACTIONS BASED IN FORTRAN
IMPLICT T4(1-K)L%*4(L)yR4(R~2Z)4RB(D)CB(C)4+C16(CD)414(B4LOCFN)

I=TADRES(J) I1=ADDRES(J) (ADDRES AS 14)

R=RADRES(S) R=ADDRES(S) (ADDRES AS R4)
ALL THE ADDRESS ROUTINES ARE EQULLVALENT

[=IVALUE(TADRES(J}) 1=J

R=RVALUE(RADRES(S)) R=S

L=LVALUE(LADRES(L1)) L=L1

K=TADRES{J);I=1VALUE(K) 1=J

I=BVALUF(LOCFN(J)) SET BOTTOM BYTE OF I TO TOP BYTE OF J
I=BVALUE{LOCFN{J)+2) SET BOTTOM BYTE OF I TO THIRD BYTE OF J
R=RVALUE(RADRES(C)+4) R=AIMAGI(C)

AND MUCH MORE STRANGE POSSIBLITIES

V=ARGCAL (ARGADR(X),SIN) V=SIN(X)
CALL COMFUS(ARGADR(I,J,40),PDUMP) CALL PDUMP(I,J,0)
V=ARGCAL{ARGADR({X) 4ANDRES(SIN) V=SIN(X)

THE POSSIBLITIES BY SETTING VARIABLES AND LATER USEING THEM ARE
QUITE NUMEROUS

ROUTINE 1: RETURN THE ADDRESS

ENTRY DADRES yRADRES LADRES,IADRESyADDRES+ABSADRyLOCFN,LOCATN
ALL OF THESE ENTRY POINTS ARE IDENTICAL, DIFFERENT NAMES ARE

ADR10056
ADR10057
ADR10058
ADR10059
ADR10060
ADR10061
ADR10062
ADR10063
ADR10064
ADR10065
ADR10066
ADR10067
ADR10068
ADR10069
ADR10070
ADR10071
ADR10072
ADR10073
ADR10074
ADR10075
ADR10076
ADR10077
ADR10078
ADR10079
ADR10080
ADR10081
ADR10082
ADR10083
ADR10084
ADR10085
ADR10086
ADR10087
ADR10088
ADR10089
ADR10090
ADR10091
ADR10092
ADR10093
ADR10094
ADR10095
ADR10096
ADR10097
ADR10098
ADR10099
ADR10100
ADR10101
ADR10102
ADR10103
ADR10104
ADR10105
ADR10106
ADR10107
ADR10108
ADR10109
ADR10110
ADR10111

108

* GIVEN TO EASE FOOLING THE COMPILER

*
DADRES
RADRES
LADRES
IADRES
ADDRES
LOCFN

LOC ATN

% #

-3

EQU
EQU
EQU
EQU
EQu
EQU
EQU
MVI
SDR
LE
L
BR

ROUTINE 2:

*

*

*

*

%

*

*

0(1),X°00°* CLEAR HIGH ORDER BIT

0,0 CLEAR FP REG O TO RECIEVE ADDRESS IN TOP

0,0(,1) GET ADDRESS FOR FLOATING RETURNS
0,0(,1) GET ADDRESS FOR FIXED POINT RETURNS
14 RETURN

RETURN THE VALUE

ENTRY DVALUE,RVALUE,LVALUE,IVALUE,VALUE yBVALUE ,CVALUE,HVALUE

* DIFFERENCES IN ROUTINES ARE DUE TO ALIGNMENT ASSUMTIONS

*

% BYTE ALIGNMENT (FP NOT ALLOWED)

BVALUE

*

HVALUE

* FULLWORD ALIGNMENT

RVALUE
LVALUE
IVALUE
VALUE

EQU *
SR 0,0 CLEAR REG FOR FIXED POINT RETURN
L 1,0(,1)
L 1,0(,1) GET ARG,
1C 0,0(41) GET BYTE
BR 14 RETURN
* HALFWORD ALIGNMENT (FP NOT ALLOWED)
EOU *
L 1,0(41) GET ADDRESS
L 1,0(s1) GET ARG.
LH 0,0(+1) GET HALFWORD
BR 14 RETURN
EQU *
EQU *
EQU *
EQU *
SDR 0,0 CLEAR FP REG O
L 1,0(,1)
L 1,0(,1) GET ADDRESS OF FULL WORD
LE 0,0(41) GET FP VALUE
L 0,0(41) GET FIXED POINTY VALUES
BR 14 RETURN

*

%

* DOUBLE
DVALUE

WORD AL IGNMENT

EQU
L

L
LD
L
BR

*
1,0(,1)

1,0(,1) GET ADDRESS

0,0(41) GET DOUBLE WORD

0,0(91) ALSO GET BINARY VALUE(TOP HALF ONLY)
14 RETURN

ADR10112
ADR10113
ADR1O114
ADR10115
ADR1O116
ADR10117
ADR10118
ADR10119
ADR10120
ADR10121
ADR10122
ADR10123
ADR10124
ADR10125
ADR10126
ADR10127
ADR10128
ADR10129
ADR10130
ADR10131
ADR10132
ADR10133
ADR10134
ADR10135
ADR10136
ADR10137
ADR10138
ADR10139
ADR10140
ADR10141
ADR10142
ADR10143
ADR10144
ADR10145
ADR10146
ADR10147
ADR10148
ADR10149
ADR10150
ADR10151
ADR10152
ADR10153
ADR10154
ADR10155
ADR10156
ADR10157
ADR10158
ADR10159
ADR10160
ADR10161
ADR10162
ADR10163
ADR10164
ADR10165
ADR10166
ADR10167

109

* SINGLFE PRECISION COMPLEX

CVALIIF EQU *
SDPR 0,0 CLEAR FP REG 082 SO VALUE IS ALSO PRECISION
SNR 242 INCREASEN FROM SINGLE TO DOUBLE IF DESIRED
L 1,0(41) GET ADDRESS
L 1,0(,1)
LE 040(41) GET RFAL PART
LE 294(41) GET IMAGINARY PART
L 0,0(41) GET BINARY PART?
BR 14 RETURN

s
*

% DOUBLE PRECISION COMPLEX
ENTRY CNVALU
CDVALU EQU *

L 1,0(,1) GETADDRESS

L 1,0(,41)

LD 0,0(+1) GET REAL PART

Ln 24,8(41) GET IMAGINARY PART
L 0+0(s1) GET BINARY PART?
BR 14 RETURN

* ROUTINE 3: RETURN ANDDRESS OF ARGUMENT LIST
ENTRY ARGADR

ARGADR EQU *
LR 0,1 GET ADDRES OF ARG LIST

ABSADR EQU *
BR 14 RETURN

*

* RNOUTINE 43 CALL SECOND ARG WITH FIRST AS ARGLIST
ENTRY CONFUS,ARGCAL

ARGCAL EQU *

CONFUS EQU *

L 154+4(,1) GET ADDRESS OF SECOND ARGUMENT
L 1,0(,1) SET NEW ARG LIST
L 1,0(,1)
BR 15 CONTINUE ONWARD
* ROUTINE 5: ZERO THE ARRAY THAT 1S THE FIRST ARG, WHICH SEOND
* ARGUMENT WORDS LONG
ENTRY ZEROUT 4BLANKS
USING BRLANKS,15
ZEROUT SR 0,0 GET ZERO
LA 15,10(,15) FIX BASE REG
8 ZANDB
* ROUTINE 6: BLANKS THE ARRAY LIKE ZEROUT
BLANKS L 0+BLANK GET BLLANKS
ZANDB ST 14,SAVE14 SAVE 14
L 1444(,1)
L 14,0(,14) GET ARG # 2=-THE COUNT
L 1,0(,1) GET ARG # 1-THE ARRAY
LOOPIT ST 0,0(,1) SET NEXT WORD
LA 1y4(,1) BUMP POINTER
BCT 14,L00PIT SKIP BACK COUNT TIMES
L 14,SAVE14 RESTORE 14

BR 14 RETURN

ADR10168
ADR10169
ADR10170
ADR10171
ADR10172
ADR10173
ADR10O174
ADR10175
ADR10176
ADR10O177
ADR10O178
ADR10179
ADR10180
ADR10O181
ADR10182
ADR10183
ADR10184
ADR10185
ADR10O186
ADR10187
ADR10O188
ADR10189
ADR10190
ADR10191
ADR10192
ADR10193
ADR1O194
ADR10195
ADR10196
ADR10197
ADR10198
ADR10199
ADR10200
ADR10201
ADR10202
ADR10203
ADR10204
ADR10205
ADR10206
ADR10207
ADR10208
ADR10209
ADR10210
ADR10211
ADR10212
ADR10213
ADR10214
ADR10215
ADR10216
ADR10217
ADR10218
ADR10219
ADR10220
ADR10221
ADR10222
ADR10223

110

% ADR10224
% ROUTINE 7 STORES IN ABSOLUTE LOCATIONS ~THE EXACT OPPOSITE ADR10225
% (F ROUTINE 2 EXCEPT 7 IS SUBROUTINE WHILE 2 IS FUNCTION ADR10226
% ADR10227
% USAGE: (ALL F.P. SIMILAR) ADR10228
% CALL STORE (LOCA,VALUE) ADR10229
* ADR10230
* WHERE LOCA IS ABSOLUTE ADDRESS TO RECIEVE VALUE VALUE, ADR10231
* VALUE HAS LENGTH IMPLIED BY CHOICE OF E,P, ADR10232
% ADR10233
USING %*,15 ADR10234
ENTRY DSTORE,RSTORE,LSTORE,1STORE,STORE,BSTORE ,CSTORE,HSTORE ADR10235
ENTRY CDSTOR ADR10236
BSTORE EQU = ADR10237
LA 0,0 MOVE 1 BYTE (ZERO SINCE CNT IS 1 LOW) ADR10238
LA 15,0017 ADR10239
BR 15 ADR10240
% ADR10241
USING *,15 ADR10242
HSTORE EQU = i ADR10243
LA 0,1 MOVE 2 BYTES ADR10244
LA 15,0017 ADR10245
BR 15 ADR10246
% ADR10247
USING *,15 ADR1.0248
RSTNRE EQU = ADR10249
LSTORE EQU = : : ADR10250
ISTORE EQU = ADR10251
STORF EQU = ADR10252
LA 0,3 MOVE &4 BYTES ADR10253
LA 15,001T ADR10254
BR 15 ' ADR10255
CSTORE EQU = ADR10256
USING #,15 ADR10257
DSTORE EOU = - ADR10258
LA 0,7 MOVE 8 BYTES ADR10259
LA 15,0017 ADR10260
AR 15 ADR10261
* ADR10262
USING %*,15 ADR10263
COSTOR LA 0,15 MOVE 16 BYTES ADR10264
LA 15,0017 o ADR10265
USING DOIT,15 ADR10266
DOIT EQU * ADR10267
ST 14,SAVEL14 SAVE 14 ADR10268
L 1444(,1) GET ADDRS OF VALUE - ADR10269
L 1,0(,1) GET ADDRS OF ARG ADR10270
L 1,0(,1) GET ARG= ADDRS TO RECIEVE VALUE ADR10271
STC O,MVIT+1 SET NUMBER OF CHARACTOR TO USE ADR10272
MVIT MVC 0(0,1),0(14) MOVE IT ADR10273
L 14,SAVEl4 RESET 14 ADR10274
BR 14 RETURN, NOTE: REG O HAS # OF BYTES MOVED ADR10275
SAVEl4 DS 1F ADR10276
BL ANK DC X'40406040" ADR10277

END ADR10278

111

PART VI

VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE

113
PART VI
VARIN - VARIABLE LENGTH RECORD INPUT ROUTINE

Normal IBM FORTRAN cannot read variable length records with format
control. These variable length records include not only those from run
time FORTRAN but also the compiler SYSPRINT and other common systems
programs. The subroutine VARIN allows these records to be successfully
read by run time FORTRAN under Al format.

The Queued Sequential Access Method (QSAM) is used to read records
of length not greater than 137 bytes and in the variable blocked format
with ASA carriage control characters. The DDNAME is SYSIN and the file must
be physical sequential.

VARIN internally fixes the DCB as follows:

//SYSIN DD DCB=(DSORG=PS,LRECL=137,RECFM=VBA,OPTCD=C).
Normally only the blocksize (BLKSIZE) subparameter needs to be specified
in the DCB parameter. Of course, unit, dataset name, volume, etc.,
information must be supplied as needed.

The calling sequence to VARIN is

CALL VARIN (LEN,REC)
where LEN is the number of characters in the input record (-1 on the
end of file) and REC is the storage area (133 words) which receives
the input record in an Al format (Al format has one character per word
in the high-order byte with blank characters in the low-order three
bytes).

While all 133 words of REC are initialized to blanks, only the

first LEN words will have data from the record. LEN is exactly the

114

LRECL for the current record. LEN is minus 1 (~1) and REC is all blanks
upon end of file. VARIN opens DDNAME SYSIN on the first call and leaves
it open until end of file when it is closed.
VARIN may also be invoked as an integer function with value the
same as LEN. For example, after
INTEGER VARIN
LEN1=VARIN(LEN2,REC)
LEN1 and LEN2 will have identical values.
VARIN has been used to process FORTRAN compiler SYSPRINT output for
the microfiche indexing routine FFIN [1].

Appendix 1 is a complete source listing.

REFERENCE

1. Steven B. Cliff and Brenda D. Dingus, FFIN - FORTRAN Microfiche
Indexer, K/CSD/INF-78/10, March 1978.

115

PART VI, Appendix 1

SOURCE LISTING OF VARIN

117

VARINOUT CSECT 0 VARNO 100
ENTRY VARIN VARNO110
* VARNO120
* CALL VARIN(LEN,REC) VARNO130
x TO RECEIVE LEN WORDS (A1 PORMAT) IN REC VARNO140
- LEN=0 CN ECF. ALSO, VARIN MAY BE USED AS INTEGER PUNCTION = LEN VARNO150
USING IHADCE,10 VARNO160
- YARNO170
> YARNO 180
USING SAVEA,13 VARNC190
SAVEA DS 18F VARNO200
VARIN SAVE (14,12),,* VARNO210
USING VARIN,15 VARNO220
LR 3,13 LINK VARN0230
L 13,ADSAYV SAVE VARNO240
DROP 15 AREA VARNO250
ST - 13,8(3) AS VARN0260
ST 3,4(13) RECUIREL ‘ VARNC270
LM 11,12,0(1) GET ARGS 11=LEN, 12=REC VARNC280
LA 10,DCBIN SET BASE POR DCB VARNC290
™ DCBOFLGS, DCEOFCPN IS SYSIN OPEN? VARNO300
BNZ INOPEN 1PS VARNG310
] WTL 'OPEN SYSIN' VARNC320
CPEN (DCEIN,INPUT) VARNO330
INOPEN EQU = SYSIN IS OPEN,CLEAR REC VARNC34O
MVI 0 (12) ,X'40" VARNC350
MVC 1(200,12),0(12) CLEAR 50 WORDS VARNO360
MVC 201(200,12),200(12) CLEAR 51 TO 100 WORDS VARNO370
MVC 401(131,12) ,4C0(12) CLEAR 101 TO 133 WORDS VARN0380
GET DCPIN,BDW GET NEXT RECORD VARNO390
LH 9,DCBLRECL GET CHAR IN BOF VARKOUOO
5 9,ClU VARNO410
ST 9,0(,11) SET ZEN ' VARNOU420
ST 9,20(,13) SET FUNCTIONAL VALOE VARNO430
LA 8,BOF VARNOGYO
LGP BVC 0 (1,12),0 (8) MOVE 1 CHARACTOR VARNO450
LA 12,4(,12) SKIF THROUGH REC (A1) VARNO4G60
LA 8,1(,8) SKIP THROUGH BUF (Al4) VARNCUTO
BCT 9,LOP MCVE RDW CHARACTORS VARNO480
L 13,4 (,13) UNLINK VARNOU90O
RETURN (14,12),T RETURN VARNOS00
- VARNCS10
*END OF FILE : VARNOS520
ENDSYSIN EQU * VARNOS30
* WTL 'END OF SYSIN' VARNOS40
CLOSE (DCBIN) , YARKO0550
L 0,M1 _ VARNOS60
ST 0,0(,11) : VARNOS70
ST 0,20(,13) VARNOS580
L 13,4 (,13) VARK0590
RETURN (14,12),T VARNO60O
1 BC 1B~ VARNOE10
cu oC Sy VARK0620

RIW LS 1F RECCRD DESCRIPTOR WORD VARNQ0630

BUF
ALSAV
DCBIN

LS
LC
DCB

DCBD
END

118

uor THE INPUT RECORD VARNO64O
A (SAVEA) VARNOG650
DCNANP=SYSIN,LSORG=PS, EODAD=ENDSYSIN,LRECL=137, XVARNO660
RECFM=VBA,CPTCD=C, MACRP=GM VARNO670
DSORG=QS,DEVD=RD VARK0680

VARNOE9D

119

PART VII

ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE

121

PART VII

ABEND - USER-REQUESTED ABNORMAL PROGRAM END ROUTINE

Nearly all programs encounter abnormal conditions which are best
handled by program terminations. The FORTRAN STOP n statement could be
used in such situations, but, sincé the traceback capabilities of the
FORTRAN extended error handling feature are not invoked, no record of the
routine with control when the error was recognized or of its calling
history is made available to the user. While the error code (assignable
with the number n on the STOP n statement) is very useful, often it alone
does not provide sufficient information. To meet this need, this ABEND
routine was written. It not only allows a numeric code, but it also in-
vokes the traceback feature.

The calling sequence for ABEND is

CALL ABEND (ERRCOD)
where ERRCOD is a four-byte integer with value between 0 and 4095,
inclusive.

ABEND saves the caller's registers-in a standard system SAVE area
at entry point ABENDREG, making their location in any dump easier to
find. Then ABEND calls ERRTRA, a standard entry in the FORTRAN library
to produce a traceback. From this traceback, the full calling sequence
up to the call to ABEND can be determined, including the statement number
of the call to ABEND itself. Further, Register 0 in the traceback is the
hexadecimal representation of the ERRCOD specified in the argument. Three

WRITE TO LOG (WTL) macros are then issued, putting the lines

122

USER ABEND
PROGRAM ABNORMAL TERMINATION REQUEST
USER ABEND
in the system log listing of the program. Finally, a supervisor request
for an abend is issued. This abend will have the user-completion code
specified by the ERRCOD argument. The supervisor then terminates the
program writing a dump to any SYSUDUMP or SYSABEND datasets present.

ABEND does not return to the calling routine.

Appendix 1 is a complete source listing.

123

PART VII, Appendix 1

SOURCE LISTING OF ABEND

AREND

ABRENDREG

RFEGIN

WTt.

ERRT

CSFCT
FNTRY
EXTRN
PRINT
USING
SAVE
LA
ST
ST
LR
B

DS
USING
NDROP
L
L
L
LR
StL
SRNL
L
BALR
WTL

WTL
LA
LR
sve
nc
END

0

ABENDREG
FRRTRA

GEN

¥415
(Y4,12) 4%
2 yABENDREG
13,4(0,2)
2+8(0,13)
13,2

BEGIN

18F
ABENDREG,13
15

125

SAVE ALLTHE REGS AND SET LINKAGES

SAVE AREA

3,0(0,41) GET ADDR OF ARG

0,0(0,43) GET ARGUMENT INTO REG 0 FOR TRACEBACK
2,192(0,0) GET DUMP, STEP CODES

3,0

3,4

244

15,ERRT GET THE TRACE BACK

14,15

YUSER ABREND?®
PROGRAM ABNORMAL TERMINATION REQUEST!
YIJSER ABEND?

15,0(0,3) GET ABREND CODNF

1,3 GET ARGS FOR AREND CALL

13 DO ABEND

A(ERRTRA) ADRES NF TRACE BACK ROUTINE

ABD20000
ABD20001
ABD20002
ABD20003
ABD20004
ABD20005
ABD20006
ABD20007
ABD20008
ABD20009
ABD20010
ABD20011
ABD20012
ABD20013
ABD20014
ABD20015
ABD20016
ABD20017
ABD20018
ABD20019
ABD20020
ABD20021
ABD20022
ABD20023
ABD2002¢4
ABD20025
ABD20026
ABD20027

ABD20028 -

ABD20029

127

PART VIII

SET - ARRAY-SETTING ROUTINES

129

PART VIII

SET - ARRAY-SETTING ROUTINES

One of the most common actions a FORTRAN program takes is the setting
of an array to constant values, typically requiring a complete DO loop.
These three routines were written to simplify this task.

The primary routine is the general array setting routine SET with
calling sequence:

CALL SET (LEN, SKIP, ARRAY, WORD)

where
LEN is a four-byte INTEGER specifying the number of full
words to be assigned a value,
SKIP is a four-byte INTEGER specifying the number of full words
to be skipped between each assigned word,
ARRAY is a four-byte array to be assigned with total length
at least LEN times SKIP,
WORD is the four-byte value to be used in setting ARRAY,

WORD (which may contain an INTEGER; LOGICAL, or CHARACTER value)
is placed in the first word of ARRAY, then in FIRST + SKIP, then
FIRST + 2 * SKIP,..., then FIRST + LEN % SKIP. If SKIP is 1, consecutive
memory locations will be set, as would be desired in a single-dimensional
array or when setting all of a multidimensional array. If SKIP is not 1,
parts of a multidimensioned array may be set, allowing columns or planes
of two- or three-dimensional arrays to be defined without altering the

remainder.

130

The two most common uses of SET would be to define all of an array
to either_a numeric zero or to blank characters. To ease this operation,
two additional entries are defined with calling sequences:

CALL SETBLK(LEN,ARRAY)

CALL SETZER(LEN, ARRAY)
where the arguments are the same és for SET. The missing arguments,
SKIP and WORD, are fixed. SKIP is set to 1, for consecutive location
assignment. WORD is set to blanks (Hex '40404040') for SETBLK and to
numeric zero (Hex '00000000') for SETZER. Note that integer and floating-
point zero are identical and that even DOUBLE PRECISION variables can be
initialized by SETZER or SETBLK if the LEN variable is adjusted to account

for the extra length of the variable ARRAY.

Appendix 1 is a complete source listing.

131

PART VIII, Appendix 1

SOURCE LISTING OF SET

R

133

SET CSECT O
USING *,15
* CALL SET (LEN,SKIP,ARRAY,WORD)
* TAKES ®WORD™ AND PUTS IT IN LEN LOCATIONS OF ARRAY,STARTING
* WITH THE FIRST THEN FIRST+SKIP,FIRST+2%SKIP.csees
* FIRST+LENXSKIP

*LEN = A%B%C WHERE DIMENSION ARRAY(A,B,C)
*EXAMPLE CALL SETZER(10%20,NUM) WHERE DIMENSION NUM (10%20)
* IF THE LENGTH OF THE VARIABLE IS OTHER THAN & BYTES, LEN MUST
* BE ADJUSTED ACCORDINGLY
% IN ALL CASES ARRARY SHOULD BE ALIGNED ON A FULL WORD BOUNDARY
* (THIS IS AUTOMATIC FOR ALL BUT INTEGER®*2 & LOGICAL*1)
*THIS IS A TRUE SUBROUTINE-WILL APPEAR IN TRACE BACK
* .
* CALL SETBLK (LEN,ARRAY)
* SAME AS SET EXCEPT WORD IS 4 BLANK CHARACTORS, SKIPS = 1
* CALL SETZER (LEN,ARRAY) SAME AS SET EXCEPT WORD IS NUMERIC
* ZERO,SKIP = 1 :
*SETZER WORKS FOR BOTH REAL AND INTEGERS AS DESCRIBED AROVE
ENTRY SETZER
ENTRY SETBLK

SAVE (14412) 4% SAVE REGS & LINK SAVE AREA
LM 2,5,0(1) GET ADDRESS OF ARGUMENTS
* REG 2 HAS THE LENGTH OF THE ARRAY
* REG 3 HAS THE NUMBER OF WORDS TO B8 SKIPPED BETWEEN INSERTIONS
* REG 4 HAS FIRST ELEMENT TO RECIECE A CHAR
* REG 5 HAS THE WORD T0 BE STORED
L 9,0(3) GET SKIPS
LA 644 GET CONSTANT FOUR
MR 8,46 MAKE SKIPS SUOTABLE FOR BYTEADD
LR 3,9 3 NOW HAS THE BYTE FORM OFSKIP
L 10,0(5)
LR 12,15
B ALLTOGTH
ns on
US ING *,15
SETBLK SAVE (144912) 9%
L 10,BLANKS
L 12 ,ASF
8 TOGETHER
ns on

USING *,15
SETZFER SAVE (14,412) 4%

L 10, ZERD
L 12 4ASF
TOGETHER L 290(1)
L 444(1)
LA 3.4
USING SET,12
DROP 15
ALLTOGTH LA 8,SAREA
ST 13,4(8)
ST 8,8(13)
LR 13,8
L 11,0(2) GET LENGTH

LPR 11,11 INSURE THAT IT IS POSITIVE

SETLO000
SET10001
SET10002
SET10003
SET10004
SET10005
SET10006
SET10007
SET10008
SET10009
SET10010
SET10011
SET10012
SET10013
SET10014
SET10015
SETL10016
SET10017
SET10018
SET10019
SET10020
SET10021
SET10022
SET10023
SET10024
SET10025
SET10026
SET10027
SET10028
SET10029
SET10030
SET10031
SETL0032
SET10033
SET10034
SET10035
SET10036
SET10037
SET10038
SET10039
SET10040
SET10041
SET10042
SET10043
SET10044
SET10045
SET10046
SET10047
SET10048
SET10049
SET10050
SET10051
SET10052
SET10053
SET10054
SET10055

STORE

ASF
SAREA

BLANKS

ZEROD

BZ *+16

ST 10,0(0,4)
LA 4,0(3,4)
BCT 11,STORE

L 13,4(13)
RETURN (14412),7
DC A(SET)

DS 9D

DC . Xv40404040°
DC 1F1Q?

END

134

STORE WORD
INCREMENT 4 BY SKIPS
RETURN TO DO NEXT WORD

SET10056
SET10057
SET10058
SET10059
SET10060
SET10061
SET10062
SET10063
SET10064
SET10065
SET10066

Computer Sciences

1. L. L. Anthony
2. D. E. Arnurius
3. B. Beard
4., A. A. Brooks
5. H. P. Carter/
ORNL CSD Libra
6-25. S. B. Cliff
26. R. L. Cox
27. K. E. Cross
28. J. S. Crowell
29, B. D. Dingus
30. E. D. Drennen
31. R. H. Fowler
32. R. E. Funderlic
33. P. Gaffney
34, G. E. Giles
35. R. W. Henderson
36. H. R. Hicks
37. J. T. Holdeman
38. S. K. Iskander
39. R. D. McCulloch
40. J. E. Park
41. C. E. Price
42, L. I. Schlemper
43. J. G. Sullivan
44-47 R. E. Textor
48. J. A. Tindall
49. J. N. Tunstall
50. W. D. Turner
51. G. W. Westley
52. G. E. Whitesides
53. J. W. Wooten
54. J. H. Zeigler
55. ORGDP CSD Library

Gaseous Diffusion

56.
57.

G. J. Kidd
G. F. Malling

135

K/CSD/TM-20

INTERNAL DISTRIBUTION

ry

Operations Analysis and Planning

58.
59.

E.
H.

Von Halle
G. Wood

Separation Systems

60. A. J. Szady

Engineering

61. W. C. Stoddart

Engineering Technology

62, R. C. Hager
63. R. A. Hedrick
64. D. G. Thomas

ORGDP Information Services

65-67. D. S. Napolitan

ORGDP Library

Copies 68-71

ORGDP Records - RC

Copy 72

136

EXTERNAL DISTRIBUTION

73. J. H. Forrester, The University of Tennessee, Knoxville, TN
37916
74~100. Technical Information Center, Department of Energy, Post Office
Box 62, Oak Ridge, TN 37830

