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Abst rac t  

H 
The r,educed c ros s .  s e c t  i ons  .Q (nR, u) have been c a l c u l a t e d  f o r  i o n i z a t i o n  R 

I 

from t h e  nR = 4s ,  4p, 4d and 4f sub leve l s  and t h e  r e s . u l t s . f i t t e d  t o  s imple 

func t ions  o f  t h e  impact e l e c t r o n  energy u i n  t h re sho ld  u n i t s .  With t h e s e  

I 

va lues  p l u s  those  obtained i n  ou r  e a r l i e r  work r e s u l t s  are now a v a i l a b l e  f o r  
I 
I .  . 

I a l l  the  sub leve l s  I s ,  2s,  2p, 3s ,  3p, 3 d , . 4 s ,  4p, 4d and 4 f .  From t h e  va lues  

H 
f o r  Q (nR,u) one can r e a d i l y  o b t a i n  t h e  c r o s s  s e c t i o n  f o r  d i r e c t  i o n i z a t i o n  R 

I from any of t h e s e  subleve ls .  i n  any h igh ly  charged complex ion  using t h e  s imple 
I 
I 

1 procedures  given i n  o u r  e a r l i e r  work. The t o t a l  i o n i z a t i o n  c r o s s  s e c t i o n  wi th  

I 
I i n c l u s i o n  of  t h e  exc i t a t i on -au to ion iza t ion  c o n t r i b u t i o n  has  been obta ined  f o r  
1 
I 5+ 

Be-like and L i - l i ke  ions.  The r e s u l t s  f o r  t h e  L i - l i ke  i o n s  N ~ +  and 0 a r e  

i n  gene ra l ly  gvod agreement w i th  r ecen t  r e s u l t s  of Crandal l  and co-workers. 
I 

Basic hydrogenic ion  d a t a  f o r  sca led  R-matrix elements and c o l l i s i o n  s t r e n g t h s  

I have been ca l cu la t ed  f o r  t h e  t r a n s i t i o n s  1s-2s, 2p, 3s ,  3p, 3d; 2s,  2p-3s, 3p, 
I 

I 3d, 4s ,  4p, 4d, 4 f ;  and 3s ,  3p, '3d-4s, 4p, 4d, 4 f ,  5s ,  5p, 5d, 5 f ,  5g f o r  t h e  

e i g h t  impact e l e c t r o n  ene rg i e s  i n  threshold  u n i t s  E = 1.0, 1.2,  1.5, 1.9, 2.5, 

4  .O,  6.0, and 10.0. C o l l i s i o n  s t r e n g t h s  and r a d i a t i v e  l i n e  s t r e n g t h s  f o r  t h e  

An = 0 t r a n s i t i o n s  i n  He-like and Be-like ions  have been ca l cu la t ed  f o r  a d d i t i o n a l  

Z va lues  so  t h a t  r e s u l t s  a r e  now a v a i l a b l e  f o r  He-like ions  wi th  Z = 6,  8 ,  10, 

12, 14, 16, .  18, 20, 22, 24, 26, 28, 30, 3 6 ,  42, 48, .54, 64 and 74 and f o r  Be-like 

i o n s  wi th  t h e  same-Z.va lues  f o r  Z - > 12. A l l  t h e s e  c o l l i s i o n  s t r e n g t h  d a t a  have 

been f i t t e d  t o  simple func t ions  o f . t h e  impact e l e c t r o n  energy t h a t  a r e  r e a d i l y  

i n t e g r a t e d  over  a  Maxwellian t o  o b t a i n  c o l l i s i o n  r a t e s .  Pre l iminary  r e s u l t s  

have been obta ined  f o r  t h e  n = 2  . to  n =  3 t r a n s i t i o n s  i n  Be-like ions .  



I. In t roduc t ion  

'I'he purpose in .  t h e  work repor ted  he re  is  t o  o b t a i n  c r o s s  s e c t i o n s  f o r  

e x c i t a t i o n  and i o n i z a t i o n  of very  h ighly  charged ions  by e l e c t r o n  impact 

f o r  use i n  c o n t r o l l e d  thermonuclear f u s i o n  r e sea rch ,  where such d a t a  a r e  

needed f o r  d i agnos t i c  purposes and f o r  e s t ima t ing  t h e  energy l o s s e s  due t o  

t he  presence of h ighly  charged impuri ty  ions .  Since a .  very  l a r g e  amount of 

c r o s s  s e c t i o n  d a t a  is  needed . fo r  t hese  purposes,  i t  i s  advantageous t o  u se  

an  approach which .is r ap id  and y e t  q u i t e  accu ra t e .  The ,present  approach 

s a t i s f i e s  t h e s e  requirements  f o r  ve ry  h ighly  charged ions .  

The method used is  a  coulomb- om-~xchange method t h a t  is equ iva l en t  

t o  u se  of f i r s t  o r d e r  t ime dependent pe r tu rba t ion  theory  i n .  which t h e  

pe r tu rba t ion  c o n s i s t s  of  t h e  e n t i r e  e l e c t r o s t a t i c  i n t e r a c t i o n  between the  

e l e c t r o n s  p l u s  a l l  r e l a t i v i s t i c  c o r r e c t i o n s .  .Hence, t h e  ze ro th  o r d e r  

Hamiltonian H f o r  s c a t t e r i n g  of  an e l e c t r o n  by an  ion  of nuc lea r  charge 
0 

number Z wi th  N bound e l e c t r o n s  i s  a  sum of N + 1 independent n o n - r e l a t i v i s t i c  
I 

hydrogenic-ion Hamiltonians,  Hi, which can be w r i t t e n  

r 

N+l  
= C Hi, 

Ho i=l 
(2)  

where energy i s  i n  u n i t s  of 2z2 Rydbergs and d i s t a n c e s  a r e  i n  u n i t s  of a  /Z. 
0 

The ze ro th  o rde r  wave func t ions ,  which .a re  e igenfunct ions  of t h e  Hamiltonian 

Ho, a r e  antisymmetric sums of products  of N + 1 hydrogenic-ion wave func t ions .  

I n  o rde r  t o  r ep re sen t  s c a t t e r i n g  one of t h e s e  must b e  a  f r e e  coulomb func t ion  

and t h e  o t h e r  N a r e  hydrogenic bound s t a t e  func t ions .  

This  approach has t h e  fol lowing advantages: (1) No o r thogona l i t y  



problems a r i s e  and exchange i s  included i n  a  completely c o n s i s t e n t  manner 

because t h e  wave func t ions  of a l l  e l e c t r o n s ,  f r e e  and bound, a r e  e igenfunct ions  

of Hamiltonians of e x a c t l y  t h e  same form given by Eq ( I ) ,  above. (2)  The 

2 2 
r e s u l t s  f o r  t h e  sca led  c r o s s  s e c t i o n  Z Q o r  s ca l ed  c o l l i s i o n  s t r e n g t h  Z R 

f o r  any h ighly  .charged ion ,  r e g a r d l e s s  of i t s  complexity,  can be expressed i n  

t e r m s  o f  t h e  sca led  n o n - r e l a t i v i s t i c  R-matrix elements Z% f o r  hydrogenic 

ions ,  even wi th  inc lus ion  of t h e  . f i r s t  o r d e r  r e l a t i v i s t i c  co r r ec t ions .  Th i s  

occurs  because we inc lude  i n  t h e  r e l a t i v i s t i c  c o r r e c t i o n s  only t h e  dominant 

terms, those going a s  t h e  h ighes t  power of Z ,  s e e  Eq (3) below. These c o n s i s t  

of a sum of s i n g l e  p a r t i c l e  o p e r a t o r s  and hence make no d i r e c t  c o n t r i b u t i o n  

t o  t h e  mat r ix  elements determining t h e  i n e l a s t t c  s c a t t e r i n g  c r o s s  s e c t i o n s ;  

however, they  do have t h e  important i n d i r e c t  e f f e c t  o f  in t roducing  in t e rmed ia t e  

coupling e f f e c t s ,  a s  discussed below. i n  connect ion w i t h  Eq (3) .  ~ h b  f a c t  t h a t  

t h e  r e s u l t s  f o r  complex ions  can be  expressed i n  terms of t h e  ZRH f o r  hydro- 

genic  i ons  l e a d s  t o  an  immense reduct ion  i n  computational e f f o r t  because i t  

i s  t h e  c a l c u l a t i o n  of  t h e  bas i c  t r a n s i t i o n  ma t r ix  elements (R-matrix elements)  

t h a t  r e q u i r e s  most of  t h e  computer time i n  c r o s s  s e c t i o n  ca lcu la t ions . .  I n  t h e  

p re sen t  approach t h i s  needs t o  be done only f o r  t h e  r e l a t i v e l y  s imple case  

of hydrogenic ions .  Then t h e  r e s u l t s  can b e  used over  and over  aga in  t o  c a l c u l a t e  

c r o s s  s e c t i o n s  o r  col1. is ion s t r e n g t h s  f o r  any t r a n s i t i o n  i n  any complex i o n  

w i t h  very  l i t t l e  additional'computational e f f o r t .  (3)  Configurat ion mixing 

o r  i n t e r a c t i o n  and in te rmedia te  coupling e f f e c t s  can be r e a d i l y  included (and 

a r e  being included i n  a l l  of our  r ecen t  and c u r r e n t  work on e x c i t a t i o n )  through 

use of mixing c o e f f i c i e n t s  ob ta ined  by d i agona l i z ing  t h e  p e r t u r b a t i o n  H'  

c o n s i s t i n g  of t h e  e l e c t r o s t a t i c  i n t e r a c t i o n  between t h e  bound e l e c t r o n s  i n  



t h e  t a r g e t  i on  and the  r e l a t i v i s t i c  i n t e r a c t i o n s .  S p e c i f i c a l l y ,  when we use '  

t h e  s a m e . u n i t s  a s  used i n  w r i t i n g  Eqs (1)  and (2)  

where u r e p r e s e n t s  t h e  screening  by t h e  o t h e r  bound e l e c t r o n s  of t h e  nuc lea r  
n, t, 

charge seen by e l e c t r o n  i and a l l  o t h e r  symbols have t h e i r  customary meanings. 

This  pa r t  o f  t h e  c a l c u l a t i o n  i s  a l s o  g r e a t l y  s i m p l i f i e d  by t h e  f a c t  t h a t  o u r  

ze ro th  o r d e r  t a r g e t  i on  wave func t ions  a r e  composed of ant isymmetr ical  sums 

of products  of hydrogenic-ion wave func t ions .  We n o t e  t h a t  mixing i s  included 

only among s t a t e s  w i th  a  common t o t a l  angular  momentum quantum number J and a  

belonging t o  t h e  same complex, , i . e .  having t h e  same s e t  of p r i n c i p a l  quantum 

numbers and p a r i t y .  including mixing among s t a t e s  i n  a d d i t i o n a l  con£ i g u r a t i o n s  

would correspond t o  inc luding  c o n t r i b u t i o n s  of h igher  o rde r  i n  powers of 1 / Z  

2 2 and a Z  and hence should not  be done when working i n  t h e  regime f o r  which 

t h e  p re sen t  pe r tu rba t ion  approach is  v a l i d  un le s s  a l l  terms of t h e  n e x t  o rde r  

a r e  included,  which i s  very  d i f f i c u l t  t o  do. Th i s  may be  a  source  of e r r o r  

i n  us ing  more e l a b o r a t e  programs designed p r i n c i p a l l y  f o r  n e u t r a l  atoms o r  

s l i g h t l y  charged i o n s  i n  t r e a t i n g  h igh ly  charged ions: (4)  In  f a c t ,  a  f o u r t h  

advantage of  t h e  present  method i s  t h a t  i t  i s  probably gene ra l ly  much l e s s  

prone t o  e r r o r  than  most o t h e r  methods due t o  i t s  s i m p l i c i t y ,  and when e r r o r s  

a r e  made they a r e  more r e a d i l y  de tec ted .  

We no te  t h a t  when a l l  r e l a t i v i s t i c  c o r r e c t i o n s  a r e  neglec ted  t h e  approach 

we a r e  using g ives  exac t  n o n - r e l a t i v i s t i c  r e s u l t s  f o r  t h e  sca l ed  c o l l i s i o n  

2 
s t r e n g t h  Z Cl i n  t h e  l i m i t  Z  + m. For t h i s  reason they have sometimes been 



reger red  t o  as Z = w r e s u l t s .  'However, s i n c e  t h e  approach can be  regarded a s  

a  p e r t u r b a t i o n  theory  approach, a s  d i scussed  above, i t  should b e  accu ra t e  

whenever t h e  p e r t u r b a t i o n  is smal l  r e l a t i v e  t o  H . This  tends  t o  be t h e  c a s e  
0 

when Z >> N  because then  t h e  i n t e r a c t i o n  of  each e l e c t r o n  wi th  t h e  nuc leus ,  

which i s  included i n  t h e  ze ro th  o r d e r  Hamiltonian, g r e a t l y  exceeds t h e  e l ec t ron -  

e l e c t r o n  i n t e r a c t i o n  included i n  t h e  pe r tu rba t ion .  However, Z should no t  be  

s o  l a r g e  that t rea tment  of r e l a t i v i s t i c  c o r r e c t i o n s  a s  p a r t  of t h e  p e r t u r b a t i o n ,  

a s  w e  do i n  o b t a i n i n g  in t e rmed ia t e  coupling e f f e c t s ,  becomes i n v a l i d .  A s  i n d i c a t e d  

by t h e  comparisons wi th  o t h e r  t h e o r e t i c a l  work and experiment made i n  r e f e r e n c e s  

1 and 2 ,  which a r e  a t t ached ,  i t  appears  t h a t  wi th  poss ib ly  a  few except ions  

f o r  t r a n s i t i o n s  w i t h  very  smal l  c o l l i s i o n  s t r e n g t h s  t h e  method i s  a c c u r a t e  

f o r  e x c i t a t i o n  t o  w i th in  30% when Z  i s  i n  t h e  range 

, 3 N  5 Z 2 ' 74 .  ( 4  

I n  f a c t ,  f o r  most of t h i s  range t h e  r e s u l t s  appear t o  be somewhat more a c c u r a t e  

than  t h i s  and they appear  t o  be a s  r e l i a b l e  a s  those  obta ined  wi th  much more 

e l a b o r a t e  methods. 

I n  t h e  c a s e  of i o n i z a t i o n  t h e  method appears  t o  be accu ra t e  down t o  a 

lower va lue  of Z than  f o r  e x c i t a t i o n .  S p e c i f i c a l l y  t h e  comparisons i n  r e f e r e n c e s  

3 and 4 and i n  r e f e r e n c e s  5 and 6,  which a r e  a t t ached ,  suggest  t h a t  t h e  

approach i s  a c c u r a t e  f o r  i o n i z a t i o n  t o  w i th in  ~ 2 5 %  when 

Z / N  > 2 .  - (5 

The accuracy i s  expected t o  improve a s  t h e  degree of i o n i z a t i o n  inc reases ,  i . e .  

a s  Z/N i nc reases .  The g r e a t e r  range of accuracy f o r  i o n i z a t i o n ,  d e s p i t e  t h e  

f a c t  t h a t  we have neglec ted  conf igu ra t ion  mixing and in te rmedia te  coupling i n  

' t r e a t i n g  i o n i z a t i o n ,  probably a r i s e s  because i o n i z a t i o n  is  s i m i l a r  t o  e x c i t a t i o n  



summed over  many f i n a l  s t a t e s  s o  t h a t  e r r o r s  tend t o  cance l  ou t .  

I n  t h e  fol lowing s e c t i o n s  we w i l l  d i s c u s s  t h e  s p e c i f i c  work done i n  each 

of t h e  a r e a s  of i o n i z a t i o n  and e x c i t a t i o n  dur ing  t h e  c u r r e n t  per iod  August 1, 

1979 - August3.4 1980. However, be fo re  proceeding wi th  t h i s  we say a  word 

about t he  at tachments  t o  t h i s  progress  r e p o r t .  They c o n s i s t  of t h e  fol lowing:  

(a)  Repr in t s  oE work repor ted  i n  t he  previous progress  r e p o r t ,  which were 

published dur ing  t h e  c u r r e n t  per iod.  These a r e  t h e  f i r s t  t h r e e  at tachments .  

(b) Galley proofs  of t h r e e  papers  which w i l l  appear i n  t h e  October, 1980, 

i s s u e  of Ap. J. Suppl. and which were a t t ached  i n  pre l iminary  form ,to t h e  

previous  progress  r e p o r t .  . These a r e  t h e  next  t h r e e  at tachments .  ( c )  Two 

r e p r i n t s a n d t h r e e p r e p r i n t s  of work done e n t i r e l y  dur ing  t h e  c u r r e n t  per iod .  

These a r e  t h e  l a s t  f i v e  at tachments .  

11. I o n i z a t i o n  R e s u l t s  

(a)  Direc t  Ion iza t ion  

. H  
The reduced c r o s s  s e c t i o n  QR(nR,u) f o r  i o n i z a t i o n  from t h e  nk = 3p and 

3d sub leve l s  of hydrogenic i ons ,  a s  we l l  a s  a l l  lower sub leve l s  considered i n  

our  e a r l i e r  work 4,  7 ,  were c a l c u l a t e d  us ing  t h e  Coulomb-Born-exchange method 

and t h e  r e s u l t s  given i n  Ref. 5. This  is  t h e  ' a t tached  J. P h y s . ' ~  r e p r i n t  by 

Moores, Golden and Sampson. During t h e  c u r r e n t  year  t h i s  work was cont inued 

H 
and r e s u l t s  f o r  Q (n%,u)  f o r  i o n i z a t i o n  from t h e  4s ,  4p, 4d and, 4f s u b l e v e l s  R 

were obta ined  . in  Ref. 8. This  is  t h e  a t t ached  r e p r i n t  by Golden and Sampson 

e n t i t l e d  " Ioniza t ion  from t h e  4s ,  4p, 4d and 4f Sublevels.  of Highly Charged 

Ions." Thus, r e s u l t s  f o r  QH (nR,u) f o r  a l l  t h e  10 sub leve l s  is, 29, 2p, 39, 
R 

3p, 3d, 4 s ,  4p, 4d and 4f a r e  now a v a i l a b l e .  Th i s  i s  expected t o  cover  a l l  

c a s e s  of  app rec i ab le  i n t e r e s t .  The new r e s u l t s  have been f i t t e d  t o  t h e  same 



form a s  t h a t  proposed i n  Ref 3  and used i n  our  e a r l i e r  work. '' s p e c i f i c a l l y ,  

where. u  is  t h e  impact e l e c t r o n  energy i n  t h re sho ld  u n i t s .  Eq (6) i s  r e a d i l y  

i n t e g r a t e d  over a  Maxwellian t o  o b t a i n  c o l l i s i o n  r a t e s ,  e.g.  Eq (11) of Ref. 

3.  It a l s o  goes i n t o  t h e  c o r r e c t  Bethe approximation form a t  h igh  e n e r g i e s  

u  >> 1 given by Eq (9)  of Ref. 7.  Values f o r  t h e  c o e f f i c i e n t s  e n t e r i n g  Eq (6) 

f o r  3d and a l l  lower sub leve l s  a r e  given i n  Table 2 of Ref. 5 ,  whi le  those  

f o r  4 s ,  4p, 4d and 4f sub leve l s  a r e  given i n  Table 2 of Ref. 8. 

H 
The r e s u l t s  ' f o r  Q (nR , u) have v e r y ,  wide appl ica ' t  i on  because from them one 

R 

can o b t a i n  r e s u l t s  f o r  t h e  c r o s s  s e c t i o n  f o r  d i r e c t  i o n i z a t i o n  from sub leve l  

nR of any h igh ly  charged ion ,  which is  over ha l f  ion ized  i n  accordance wi th  

Eq ( 5 ) ,  r e g a r d l e s s  of i t s  s t a t e  of e x c i t a t i o n .  Th i s  can be  done by fo l lowing  

the  simple p r e s c r i p t i o n s  given i n  our  e a r l i e r  work3' 7. ' S p e c i f i c a l l y  , according 

t o  t h e  p r e s c r i p t i o n  given i n  Ref. 3, t h e  c r o s s . s e c t i o n  f o r  i o n i z a t i o n  from . '  

subleve l  nR of an  ion  i n  l e v e l  j i s  . . . . 

Here r i s  t h e  number of e l e c t r o n s  i n  sub leve l  nR and ziff(n!L) i s  an  e f f e c t i v e  
nR 

nuclear  charge number, which can be w r i t t e n  

(C ) i s  a  screening  parameter t h a t  t akes  i n t o  account t h e  sc reen ing  where one ., 
of t h e  nuc lea r  charge by t h e  o t h e r  bound e l e c t r o n s  and i s  assumed t o  depend 

only  on t h e  con f igu ra t ion  C Values f o r  Zeff(nR) o r  anR assuming a l l  e l e c t r o n s  
j ' 



o t h e r  than t h e  a c t i v e  one a r e  i n  t h e  lowest s t a t e s  allowed by t h e  P a u l i  p r i n c i p a l  

have been given i n  Table 3 of r e f e rences  5 and 7  and i n  Table 2 of Ref. 4 .  

I Recently i n  t h e  a t t ached .Ref .  8 a  gene ra l  procedure w a s  given f o r  ob ta in ing  

I Z e f f  f o r  any sub leve l  of any ion  i n  any s t a t e  of e x c i t a t i o n ,  s e e  Eqs (6)  - (11) 

1 
I and ~ a b % e  3 of  Ref. 8. This  procedure is c o n s i s t e n t  wi th  our  e a r l i e r  recommendations 

except f o r  a  few of those  f o r  i nne r  s h e l l  i o n i z a t i o n  given i n  Ref. 7. 

* 
I n  Ref. 7  t h e  a l t e r n a t i v e  express ion  t o  Eq ( 7 )  given by 

was proposed, where 1' /IH is t h e  i o n i z a t i o n  energy i n  Rydbergs of sub leve l  
n  R 

n!2 of t h e  ion  i n  l e v e l  j. E i the r  procedure has  equal  a p r i o r i  v a l i d i t y  because 

i n  t h e  l i m i t  Z + -, where t h e  approach g ives '  t h e  exac t  n o n - r e l a t i v i s t i c  r e s u l t s ,  

l A R l l H  +, [Zeff (nR)/n] * + ( ~ / n )  2. Actua l ly  t h e  two proposa ls  g ive  n e a r l y  t h e  

, . 
1 same va lues  i n  most cases .  'They d i f f e r  most when Z i s  q u i t e  small .  The 
1 

b igges t  d i f f e r e n c e  f o r  i ons  s a t i s f y i n g  Eq (5) occurs  f o r  L i - l i ke  carbon ions ,  
I 

where Eq (7) g ives  r e s u l t s  about 15% lower than  Eq (9) .  E a r l i e r  we favored 

Eq (7) because i t . a p p e a r e d  t o  g ive  b e t t e r  agreement w i t h  t h e  experimental  

r e s u l t s  f o r  i o n i z a t i o n  r a t e s  t h a t  a r e  a v a i l a b l e  f o r  r e l a t i v e l y  low Z. However, 

Eq (9)  appears  t o  ag ree  s l i g h t l y  b e t t e r  w i th  t h e  r ecen t  d i r e c t  i o n i z a t i o n  

9 
c r o s s  s e c t i o n  measurements of Crandal l  et  a 1  f o r  L i - l i ke  n i t r o g e n  and oxygen 

ions .  

* 
For t h e  more complex i o n s  i n  which more than  one l e v e l  i s  p o s s i b l e  f o r  t h e  

f i n a l  con f igu ra t ion  of t he  ion ,  t h e  r e s u l t s  given by Eqs (7)"or (9)  must be 
mul t ip l i ed  by a n  a d d i t i o n a l  f a c t o r  g iv ing  t h e  r e l a t i v e  p r o b a b i l i t y  f o r  
i o n i z a t i o n  t o  t h e  p a r t i c u l a r  f i n a l  l e v e l ,  a s  done f o r  example i n  cons ider ing  
c a s e  4 i n  Sec 6  of Ref. 4 .  



(b) Inner  S h e l l  Exci tat ion-Autoionizat ion Cont r ibut ions  

The r e s u l t s  d i scussed  t h u s  f a r  apply o ~ i l y  t o  d i r e c t  i o n i z a t i o n  from any 

sub leve l  nL. I n n e r s h e l l  e x c i t a t i o n  followed by a u t o i o n i z a t i o n  a l s o  c o n t r i b u t e s  

t o  t h e  t o t a l  i o n i z a t i o n  cro'ss s e c t i o n  and appears  t o  g ive  q u i t e ' a  l a r g e  

c o n t r i b u t i o n  i n  some c a s e s  9 9  lo. Although t h i s  .probably o c c u r s  f o r  too  l a r g e  

a  va lue  of u  t o  have a  major e f f e c t  on i o n i z a t i o n . r a t e s  i n  most cases ,  f o r  

some i t  i s  expected t o  be important.  Th i s  is most l i k e l y  f o r  i o n s  wi th  a  

s i n g l e  e l e c t r o n  o u t s i d e  f i l l e d  s h e l l s ,  where t h e  number of e l e c t r o n s  t h a t  

can c o n t r i b u t e  t o  i nne r she l l - exc i t a t i on -au to ion iza t ion  i s  l a r g e  r e l a t i v e  

t o  t h e  s i n g l e  valence e l ec t ron ,  which can only  d i r e c t l y  i o n i z e .  

During t h e  c u r r e n t  year we have been c a l c u l a t i n g  t h e  e x c i t a t i o n -  

a u t o i o n i z a t i o n  c o n t r i b u t i o n  us ing  t h e  same gene ra l  method used i n  our  o t h e r  

.work and d iscussed  i n  t h e  In t roduct ion .  Af t e r  summation over  f i n a l  s t a t e s  t h e  

r e s u l t s  f o r  t h i s  c o n t r i b u t i o n  by t h e  p re sen t  method t ake  a  very  simple form 

2 
e x p r e s s i b l e  i n  terms of t h e  sca led  hydrogenic i on  c o l l i s i o n  s t r e n g t h  Z R H ' 

I n  Ref. 6,  which i s  t h e  a t t ached  r e p r i n t  of a  L e t t e r  t o  t h e  Ed i to r  of J. 

Phys. B: Atom. Molec. Phys. by Sampson and Golden, r e s u l t s  were g iven  f o r  

t h e  t o t a l  i o n i z a t i o n  c r o s s  s e c t  i on  . inc luding  exc i ta t ion-auto ' ion iza t  ion  

3+ 5+ 
c o n t r i b u t i o n s  f o r  L i - l i ke  ions .  The r e s u l t s f o r  C , b14+ and 0 were 

found t o  be  i n  most ly very  good agreement w i t h  t h e  measurements of Crandal l  

S+ 
e t  a19, e s p e c i a l l y  f o r  t h e  more h igh ly  charged L i - l i ke  i o n s  b14+ and 0 . 
Near t h e  end of Ref. 6 ,  a  simple phys i ca l  explana t ion  ' for  t h e  observed 

9  

i n c r e a s e  i n  t h e  r e l a t i v e  importance of  t h e  exci tat , ion-au ' toionizat  i on  c o n t r i -  

bu t ion  wi th  Z f o r  Z - < 8 was given i n  terms of t h e  e f f e c t s  of t h e  g r e a t e r  

sc reening  ,of t h e  nuc lea r  charge by t h e  o t h e r  bound e l e c t r o n s  i n  t h e  c a s e  of a  



2s  e l e c t r o n  than  a  1 s  e l ec t ron .  It was a l s o  p red ic t ed  t h a t  t h e  importance 

of t h e  exc i t a t i on -au to ion iza t ion  c o n t r i b u t i o n  would moderate f o r  h igher  Z. ] 

I n  Ref. 11, which i s  t h e  a t t ached  p r e p r i n t  by Sampson and Golden e n t i t l e d  ; 

" Ion iza t ion  Cross Sec t ions  wi th  Inc lus ion  of Exci tat ion-Autoionizat ion 

Cont r ibut ions  f o r  Ions  wi th  5 o r  Less  Bound Electrons," .we have included t h e  , 

' e f f e c t  of t h e  branching r a t i o  f o r  a u t o i o n i z a t i o n ,  a s  opposed t o  r a d i a t i v e  

12 
decay. Th i s  was done us ing  a  simple procedure suggested by Hahn . I n  Ref. 

6 t h i s  r a t i o  was taken t o  be un i ty ,  which is  a  good approximation f o r  low Z .  

However, i t  becomes important as Z i nc reases .  I n  f a c t ,  i n  Ref. 11 i t  i s  

found t h a t  t h e  importance of  t h e  e x c i t a t  ion-auto ioniza t ion  c o n t r i b u t i o n  a s  

measured by t h e  r a t i o  of t h e  second peak ( t h e  exc i t a t i on -au to ion iza t ion  peak) 

t o  t h e  f i r s t  peak i n  t h e  i o n i z a t i o n  c r o s s  s e c t i o n  reaches  a  maximum . in  Li- .  

l i k e  i ons  f o r  Z - % 13. It then  slowly d e c l i n e s  w i th  Z f o r  h igher  Z due t o  t h e  

increased  importance of r a d i a t i v e  decay f r o m . t h e  upper a u t o i o n i z i n g . l e v e l s .  

For  Be-like i o n s  t h e  exc i t a t i on -au to ion iza t ion  c o n t r i b u t i o n  is g e n e r a l l y  

found t o  be somewhat l e s s  important than  f o r  Li-1,ike ions ,  a s  expected, due 

t o  t h e  g r e a t e r  number of va lence  e l e c t r o n s  t h a t  c o n t r i b u t e  t o  d i r e c t  i o n i z a t i o n .  

The con t r ibu t ion  i s  s t i l l  l e s s .%mpor t an t  f o r  t he  boron and h igher  i s o e l e c t r o n i c  

sequences u n t i l  t h e  sodium sequence i s  reached. I n  ou r  immediate f u t u r e  work 

on i o n i z a t i o n  we in tend  t o  cons ider  Na-like and Mg-like ions ,  where t h e  

exc i t a t i on -au to ion iza t ion  c o n t r i b u t i o n  i s  known t o  be  l a r g e  due t o  t h e  l a r g e  

number of n=l  and n=2 e l e c t r o n s  t h a t  can be i n n e r s h e l l  exc i t ed  and then  au to ion ize  

compared wi th  t h e  one o r  two n=3 va lence  e l e c t r o n s  t h a t  can d i r e c t l y  i o n i z e .  

We no te  t h a t  f o r  04+ t h e  experimental  r e s u l t s  of  Crandal l  e t  a l lo  exceed 

those  i n  Re;f. 11 by about 15 t o  25% a t  and above t h e  peak of t h e  i o n i z a t i o n  



c r o s s  s ec t ion .  I n  c o n t r a s t  t o  t h e  imp l i ca t ions  of t h e  d i scuss ion  on page. 

t h r e e  of Ref. 10, t h i s  i s  t h e ' o n l y  case  t h a t  t h e i r  experimental  r e s u l t s  a r e  

a v a i l a b l e  f o r  Be-like ions  s a t i s f y i n g  Eq (5). This  is  about equal  t o  t h e  

magnitude of t h e  discrepancy between experiment and our  r e s u l t s 6  f o r  t h e  

analogous case  of L i - l i ke  carbon,where Z) N a l s o  i s  2.  We expect  improvement 

i n  o u r  r e s u l t s .  f o r  Be-like ions  w i t h  inc rease  i n  Z s i m i l a r  t o  t h a t  found f o r  

4+ 
t h e  Li - l ike  i o n s  N . a n d  0'' i n  Ref. 6. 

111. Exc i t a t i on  Resu l t s  

(a)' General Remarks 

Our e x c i t a t i o n  r e s u l t s  a r e  expressed i n  terms of t he  c o l l i s i o n  s t r e n g t h  R .  

The we l l  known r e l a t i o n s h i p  between t h e  c r o s s  s e c t i o n  Q(i+k) and t h e  c o l l i s i o n  

s t r e n g t h s  ~ ( i - k )  f o r  a  ' t r a n s i t i o n  i-tk i s  

where w i s  t h e  s t a t i s t i c a l  weight of t h e  i n i t i a l  s t a t e  i and ( E / I H ) i s  t h e  
i 

impact e l e c t r o n  energy i n  Rydbergs. In  our  approach t h e  q u a n t i t y  d i r e c t l y  

2 
ca l cu la t ed  is  t h e  sca l ed  c o l l i s i o n  s t r e n g t h  Z R(i-k).  S imi l a r  t o  t h e  c a s e  

of i o n i z a t i o n ,  we use t h e  approx.imate r e l a t i o n  

.where t h e  q u a n t i t y  i n  t h e  b races  i s  ou r  d i r e c t l y .  c a l c u l a t e d  va lue  f o r  

2 
Z R(i-k) and Z e f f  i s  an  e f f e c t i v e  nuc lea r  charge number t h a t  t akes  i n t o  account 

approximately t h e  scre,ening of t h e  nuc lea r  charge by t h e  i n a c t i v e  bound e l e c t r o n s .  

For An # 0 t r a n s i t i o n s ,  i . e .  t r a n s i t i o n s  involv ing  a  change i n  r a d i a l  quantum 

number n ,  we u s e  t h e  same va lue  f o r  Z as used f o r  i o n i z a t i o n  from t h e  same 
e f f  



lower l e v e l ,  whi le  f o r  t h e  An = 0 t r a n s i t i o n s  we u s e  an average of t h e  Z 
e f f  

f o r  i o n i z a t i o n  from t h e  i n i t i a l  and f i n a l  l e v e l s  of t h e  t r a n s i t i o n .  

(b) Hydrogenic Ion  Resu l t s  

A s  mentioned i n  t h e  In t roduct ion ,  t h e  b a s i c  d a t a  i n  our  approach a r e  

2  t h e  sca led  hydrogenic i on  R-matrix elements  Zs because t h e [ Z  aCa1 t h a t  

we c a l c u l a t e  wi th  our  approach can always be expressed i n  terms of  t h e  Z 
R ~ '  

r e g a r d l e s s  of  t h e  complexity of t h e  i o n  being considered.  A cons iderable  

amount of t h i s  b a s i c  ZRH d a t a  i s  a v a i l a b l e  from t h e  e a r l i e r  work i n  References 

13 and 14. However, i t  was decided t h a t  i t  would b e  d e s i r a b l e  t o  have d a t a  

out  t o  higher  impact e l e c t r o n  e n e r g i e s  than  a r e  u s u a l l y  covered i n  References 

13  and 14 and f o r  a d d i t i o n a l  t r a n s i t i o n s .  In  Ref. 15, which is  t h e  a t t ached  
. . 

p r e p r i n t  by Golden, Clark,  G o e t t ,  and Sampson e n t i t l e d  "Scaled C o l l i s i o n  

S t r eng ths  f o r  Hydrogenic Ions", r e s u l t s  have been c a l c u l a t e d  f o r  a l l  t h e  46 

t r a n s i t i o n s  1s-2s, 2p, 3s ,  3p, 3d; 2s, 2p-3s, 3p, 3d, 4 s ,  4p, 4d, 4 f ;  and 39, 

3p, 3d-4s, 4p, 4d, 4 f ,  5 s ,  5p j  5d, 5 f ,  5g f o r  t h e  e i g h t  impact e l e c t r o n  

e n e r g i e s  i n  threshold  u n i t s  e: = 1.0, 1 .2,-  1.5, 1 .9,  2.5, 4.0, 6.0 and 10.0. 

Some of  t hese  t r a n s i t i o n s  were considered f o r  t h e  lower e n e r g i e s  i n  t h e  e a r l i e r  

work 13'14, but  were redone i n  Ref. 1 5  because t h e  c a l c u l a t i o n s  f o r  low e n e r g i e s  

r e q u i r e  very  l i t t l e  computer t ime wi th  t h e  p re sen t  e f f i c i e n t  program and because 

t h e  present  program i s  a l s o  be l ieved  t o  be  more accu ra t e .  It was obta ined  by 

modifying t h e  e f f i c i e n t  i o n i z a t i o n  program of Ref. 5  t o  do e x c i t a t i o n .  Ac tua l ly  

i t  is  too  lengthy  t o  publ i sh  t h e  ex t ens ive  hydrogenic R-matrix d a t a  obta ined ,  

which has  been put on t ape  and punched on cards .  Thus, i n  Ref.15 we simply 

2  
g i v e  t h e  r e s u l t s  f o r  t h e  sca led  hydrogenic c o l l i s i o n  s t r e n g t h s  Z OH and 



2 e  
Z RH. However, as summarized i n  Ref. 15, i t  h a s  been shown i n  r e f e rences  16 

and 17 tha t , even  wi th  such e f f e c t s  a s  in te rmedia te  coupling and conf igu ra t ion  

2  
mixing included, t h e  [Z.R] t o  be used i n  Eq (1  1) f o r  many t r a n s i t i o n s  of 

c a l  

i n t e r e s t  i n  He-like and Li - l ike  ions  can be expressed i n  terms of zLil and H 
2 e 

Z $2 mu l t i p l i ed  by f a c t o r s  involv ing  t h e  mixing c o e f f i c i e n t s .  W e  no t e  t h a t  H 

Ref. 17 i s  t h e  a t t ached  J. Phys. B r e p r i n t  by Sampson, Clark  and Parks.  O f  

2  course ,  t h e  r e s u l t s  f o r  Z Q - a l s o  apply d i r e c t l y  fo r .hydrogen ic  i ons  s a t i s f y i n g  H 

Eq ( 4 ) ,  i . e .  wi th  Z % 3. 

In  our f u t u r e  work we p lan  t o  c a l c u l a t e  r e s u l t s  f o r  a d d i t i o n a l  t r a n s i t i o n s  

i n  hydrogenic i ons  inc luding  t r a n s i t i o n s  between sub leve l s  wi th  t h e  same 

p r i n c i p a l  quantum number n  f o r  n  = 3, 4  and 5, i . e .  f o r  t r a n s i t i o n s  such a s  

3s-3p, 3p-3d e t c .  Recently cons iderable  i n t e r e s t  has  been expressed i n  such 

t r a n s i t i o n s  i n  H-like and He-like ions .  
18 I 

(c )  In te rmedia te  Coupling Resu l t s  f o r  An = Q T r a n s i t i o n s  i n  Complex 
Ions  Including F i t s  t o  t h e  Data 

.We cons ider  now t h e  work on e x c i t a t i o n . o f  complex i o n s  and d i s c u s s  f i r s t  

t h e  t r a n s i t i o n s  involving no change i n  p r i n c i p a l  quantum number n.  I n  t r e a t i n g  

t h e s e  so-cal led An = 0 t r a n s i t i o n s  s p e c i a l  problems a r i s e .  The theory  f o r  t h i s  

w a s  developed ve ry  thoroughly i n  Ref. 1 and appl ied  t o  He-like and Be-like 

i o n s  i n  r e f e rences  1, 2  and 19. These papers  a r e  t h e  t h r e e  papers  f o r  which 

t h e  g a l l e y  proofs  a r e  a t tached .  During t h e  c u r r e n t  year  r e s u l t s  were c a l c u l a t e d  

f o r  t h i s  type of t r a n s i t i o n s  f o r  cons iderably  more Z va lues  so t h a t  we now 

have in te rmedia te  coupling r e s u l t s  f o r  Z = 6,  8 ,  10, 12, 14, 16, 18, 20, 22, 

24, 26, 28, 30, 36, 42, 48, 54, 64, ,and 74 f o r  He-like ions.  For Be-like i o n s  

we h a v e r e s u l t s f o r  t h e  same Z va lues  except t h a t  we begin wi th  Z = 12. 



F i t s -  t o  t h e  new d a t a  p l u s  t h e  d a t a  g iven  i n  r e f e rences  1, 2  and 19. have a l s o  

been made. The r e s u l t s  a r e  g iven  i n  Ref 20. The gene ra l  form used f o r  t h e  

f i t s  i s  

Iz2nlfi t  = + - + 
c a l ,  o  (a+€) C2 +(5/3) i2s loge (€ ) .  

(a+€)  
2  

Here E i s  t h e  impact e l e c t r o n  energy i n  t h re sho ld  u n i t s ;  c  c l ,  c2  and a  
0' 

a r e  a d j u s t a b l e  parameters determined wi th  a r a p i d  program t h a t  u ses  l e a s t  

2  
squares  f i t  procedures; and Z S i s  t h e  sca led  r a d i a t i v e  l i n e  s t r eng th .  In  

t h i s  connect ion we  d i g r e s s  f o r  a  moment t o  no te  t h a t  t h e  comparisons 

wi th  o t h e r  c a l c u l a t i o n s  and experiment made i n  r e f e r e n c e s  1 and 2 

i n d i c a t e  t h a t  r e s u l t s  by t h e  present  method f o r  e l e c t r i c  d i p o l e  l i n e  

s t r e n g t h s  a r e  e s s e n t i a l l y  a s  a c c u r a t e  a s  those  by more e l a b o r a t e  methods f o r  

Z i n  t h e  range s a t i s f y i n g  Eq (4 ) .  s i n c e  they  a r e  a l s o  needed i n  a p p l i c a t i o n  , ' 

of t h e  Coulomb-Bethe approximation t o  o b t a i n  the  l a r g e  R c o n t r i b u t i o n  t o  t h e  

2 
c o l l i s i o n  s t r e n g t h s  f o r  a l l o w e d t r a n s i t i o n s ,  we now r e g u l a r l y  c a l c u l a t e  Z S 

f o r  a l l  t r a n s i t  i ons  f o r  which it i s  ;on-vanishing. 

Returning t o  t h e  d i scuss ion  of Eq (12) ,  we n o t e  t h a t  f o r  very  h igh  

2 2  e n e r g i e s  t h e  c o r r e c t  asymptot ic  form f o r  Z $2 i s (4 /3 )Z  S loge (€ ) .  However, 

i t  a p p e a r s ' t h a t  t h i s  form is no t  reached .for An = 0 t r a n s i t i o n s  u n t i l  E is  

extremely high.  For t h e  range of e n e r g i e s  covered by ou r  d a t a ,  which i s  expected 

t o  i nc lude  t h e  e n t i r e  range of app rec i ab le  i n t e r e s t  i n  plasma a p p l i c a t i o n s ,  

t h e  form given by Eq (12) g i v e s  extremely good f i t s ,  u s u a l l y  t o  w i t h i n  a  f r a c t i o n  

2  
of  a  percent  f o r  t h e  t r a n s i t i o n s  i n  which Z S  is  not  zero  o r  very  smal l ,  and 

t h e  accuracy is usua l ly  only  s l i g h t l y  l e s s  f o r  t h e  o t h e r  types  of t r a n s i t i o n s .  

On t h e  o t h e r  hand, f o r  An f 0  t r a n s i t i o n s  it appears  t h a t  t h e  b e s t  f i t s  a r e  



2 2  
obtained wi th  (4/3)Z S  r ep lac ing  (5/3)Z S  i n  - t h e  f i n a l  term of Eq (12) .  

I '  2 This  i s  ind ica t ed  by t h e  f a c t  t h a t  very  good f i t s  t o  t h e d a t a  f o r  Z QH were 

I 2 obtained i n  Ref. 15 us ing  t h e  form given by Eq (12),  bu t  w i th  co and 5/32 S 

2  rep laced  wi th  t h e  Bethe, c o e f f i c i e n t s  D '  and A ' ,  where A'  = 413 Z S. 

We n o t e  t h a t  t h e  presence of t h e  c o e f f i c i e n t  a  i n  Eq (12) l e a d s  t o  

cons iderable  improvement i n  accuracy over  e a r l i e r  f i t s  w i th  a  = 0 and t h e  

corresponding c o l l i s i o n  r a t e  s t i l l  involves  only  t h e  f i r s t  and second 

I exponent ia l  i n t e g r a l s .  S p e c i f i c a l l y ,  assuming Maxwellian e l e c t r o n s  t h e  

c o l l i s i o n a l  e x c i t a t i o n  r a t e  per  ion  i n  t h e  lower l e v e l  corresponding t o  u s e  

where N and T a r e  t h e  e l e c t r o n  d e n s i t y  and temperature.  e  
! 

I n  t h e  immediate f u t u r e  we a l s o  p l a n .  t o  c a l c u l a t e  r e s u l t s  f o r  An = 0 

t r a n s i t i o n s  between t h e  doubly exc i t ed  s t a t e s  belonging t o  con f igu ra t ions  of 

t h e  kind 2R 2~ i n  He-like ions ,  which.we have r e c e n t l y  learned  a r e  of 
a b  

i n t e r e s t  f o r  plasma d i a g n o s t i c  purposes21. Th i s  can be  done very  r e a d i l y  

because they  a r e  l i k e  those  considered i n  Ref. 2  f o r  Be-like Tons except  

2  
t h a t  d i f f e r e n t m i x i ~ l ~ c o e f f i c i e n t s  apply  due t o  t h e  absence of t h e  1s co re  

i n  t r e a t i n g  He-like ions .  

(d) In te rmedia te  Coupling Resu l t s  f o r  An # 0 T r a n s i t i o n s  I n  Complex 
Ions  

In  Ref. 16 and i n  r e f e rences  17 and 22 of which r e p r i n t s  a r e  a t t ached ,  

we obtained in te rmedia te  coupling c o l l i s i o n  s t r e n g t h s  f o r  va r ious  t r a n s i t i o n s  

i n  He-like i o n s  involv ing  a change i n  n  va lue  and f o r  i n n e r s h e l l  e x c i t a t i o n  



of L i - l i ke  ions.  We have a l s o  obta ined  in te rmedia te  coupling r e s u l t s  f o r  

t r a n s i t i o n s  between t h e  n  = 2 and n  = 3 s t a t e s  i n  Be-like i o n s ,  i . e .  t r a n s i t i o n s  

2  2 between s t a t e s  of t h e  1 s  21.2% and 1 s  2 ~ ~ 3 %  conf igu ra t ions .  However, t h e  

. . 
l a t t e r  r e s u l t s  have not  been-publ i shed  ye t .  F i r s t  they  were delayed because 

they  were obtained wi th  t h e  screening  parameter a i n  Eq (3)  omit ted.  I n  
"iRi 

Ref. 2, where t h e  An = 0 t r a n s i t i o n s  i n  Be-like ions  were s tud ied ,  i t  was found 

t h a t  in te rmedia te  coupling r e s u l t s  f o r  some of t h e  s p i n  change t r a n s i t i o n s  a t  

moderate o r  f a i r l y  low Z a r e  very  s e n s i t i v e  t o  t h e  s t r e n g t h  of t h e  sp in -o rb i t  

i n t e r a c t i o n .  Considerable  improvement was obta ined  when t h e  p h y s i c a l l y  more 

reasonable  choice  of inc luding  a i n  Eq (3) was made. Thus, we planned 
n3 gs 

t o  redo t h e  n  = 2 t o  n  = 3 t r a n s i t i o n s  i n  Be-like ions  us ing  Eq (3) i n  ob ta in ing  

t h e  mixing c o e f f i c i e n t s .  However, i n  t h e  meantime we decided t o  c a l c u l a t e  t h e  

I b a s i c  hydrogenic i on  d a t a  out  t o  h igher  ene rg i e s ,  a s  d i scussed  i n  subsec t ion  

1 
I 

I I11 (b) .  Thus, we delayed a l l  c a l c u l a t i o n s  of An # 0 t r a n s i t i o n s  i n  complex 

i o n s  u n t i l  t h e  new hydrogenic ion  d a t a  was completed. It should be mentioned 

the  r e s u l t s  a r e  needed t o  h igher  e n e r g i e s  than  we o r i g i n a l l y  expected because 

t h e  work i n  Ref. 23 and more r e c e n t l y  i n  Ref. 24 i n d i c a t e  t h a t  i n  many 

c a s e s  of i n t e r e s t  f o r  fu s ion  t h e  r a t i o  of i o n i z a t i o n  energy t o  kT f o r  which 

a  p a r t i c u l a r  s t a g e  of i o n i z a t i o n  i s  important  is  o f t e n  q u i t e  smal l  z1 ,  r a t h e r  

than  somewhat g r e a t e r  than  1, a s  i n  most a s t r o p h y s i c a l  problems. Thus, i n  

order '  t o  determine c o l l i s i o n  r a t e s  a c c u r a t e l y  i t  i s  sometimes necessary  t o  have 

c r o s s  s e c t i o n s  f o r  h igher  e n e r g i e s  than we o r i g i n a l l y  expected. Moreover, i n  

a p p l i c a t i o n s  t o  complex i o n s  a l l  t h e  Bethe c o e f f i c i e n t s  a r e  u s u a l l y  not  

a v a i l a b l e  so  t h a t  i t  i s  d i f f i c u l t  t o  e s t ima te  t h e  c r o s s  s e c t i o n s  f o r  moderately 

I 
high  ene rg i e s  un le s s  d i r e c t  c a l c u l a t i o n s  have been made. Recent ly we have 



'been redoing t h e  n  = 2 t o  n  = 3 c a l c u l a t i o n s  i n  Be-like i o n s ,  but  we delayed 

pub l i ca t ion  aga in  because we found an  incons is tency  between t h e  c o l l i s i o n  

I s t r e n g t h s  and l i n e  . s t r eng ths  f o r  a  few t r a n s i t i o n s  i n  applying t h e  Coulomb- 

Bethe approximation f o r  v a r i o u s  R values .  Th i s  i s  a  cons is tency  check we 

gene ra l ly  make, a s  d i scussed  below Eq ( 6 2 ) . o f  t h e  a t t ached  Ref. 1, and i t  has  

I been h e l p f u l  i n  f i nd ing  i n c o n s i s t e n c i e s  i n  o t h e r  work, a s  we l l  a s  our  own 

I pre l iminary  r e s u l t s .  In  the  case  of t h e  n  =. .2 t o  n  = 3 t r a n s i t i o n s  i t  turned 

ou t  t h a t  t h e  incons is tency  a r o s e  because a phase f a c t o r  had been omit ted i n  

I t h e  l i n e  s t r e n g t h  c a l c u l a t i o n s .  The r e s u l t s  f o r  t h e s e  t r a n s i t i o n s  i n  Be-like 

ions  are: expected t o  be  ready f o r  .publ ica t ion  ve ry  soon. ' 

I n  t h e  ve ry  near  f u t u r e  we a l s o  expect t o  proceed wi th  calculat?ions f o r  

a d d i t i o n a l  i n n e r s h e l l  e x c i t a t i o n  t r a n s i t i o n s  i n  L i - l i ke  ions  and wi th  c a l c u l a t i o n s  

f o r  both An = 0 and An = 1 t r a n s i t i o n s  i n  boron-like ions .  

F i n a l l y  we no te  t h a t  a l l  ou r  r ecen t  c a l c u l a t i o n s  a r e  being made using 

j j  coupled b a s i s  s t a t e s  a s  we l l  a s  t h e  more f a m i l i a r  LS coupled b a s i s  s t a t e s .  
b 

Although t h i s  r e q u i r e s  more work, i t  has s e v e r a l  advantages,  a s  d i scussed  i n  

References 1 and 2. For example, i t  s e r v e s  a s  a  check a g a i n s t  numerical 

e r r o r s  and h e l p s  i n  understanding t h e  behavior o f . r e s u l t s  f o r  a  given 

t r a n s t t i o n  as  Z i s  changed. 
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