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HIGH-SPEED, LOW-DAMAGE GRINDING OF ADVANCED CERAMICS
Dr. Joseph A. Kovach, Dr. Stephen Malkin

ABSTRACT

In the manufacture of structural ceramic components, it has been well
documented that grinding costs can comprise up to 80% of the entire
manufacturing cost. The majority of these costs arise from the conventional
multi-step grinding process which generally requires numerous grinding wheels,
additional capital equipment, additional perishable dressing tools, and additional
labor.

In an attempt to reduce structural ceramic grinding costs, an initial
feasibility investigation was undertaken to develop a single step, roughing-
finishing process suitable for producing high-quality silicon nitride ceramic parts
at high material removal rates and at substantially lower cost than traditional,
multi-stage grinding processes. This feasibility study employed the combined
use of laboratory grinding tests, mathematical grinding models, and
characterization of the resultant material surface condition. More specifically,
this Phase | final report provides a technical overview of High-Speed, Low-
Damage (HSLD) ceramic grinding and the conditions necessary to achieve the
small grain depths of cut necessary for low damage grinding while operating at
relatively high material removal rates.

The particular issues that are addressed include determining the effects of
wheel speed and material removal rate on the resulting mode of material
removal (ductile or brittle fracture), limiting grinding forces, calculation of
approximate grinding zone temperatures developed during HSLD grinding, and
developing the experimental systems necessary for determining HSLD grinding
energy partition relationships. In addition, practical considerations for production
utilization of the HSLD process are also discussed.

1.0 INTRODUCTION and OBJECTIVES

With increasing demands placed on improving the performance and cost
effectiveness of heat engines in a worldwide marketplace, additional emphasis is
continually being placed upon maximizing manufacturing productivity while
utilizing the state-of-the-art engine designs and materials. In particular, the role
of structural ceramics in heat engines has evolved considerably from the onset
of being an academic curiosity to the point where the primary concern is now




one of reducing final manufacturing costs. Unfortunately, the mechanical and
physical characteristics which make these materials desirable from a product
performance standpoint usually render them far from ideal in terms of
manufacturability. Typically, structural ceramic finishing costs alone can account
for up to 80% of the entire component manufacturing cost. Consequently, one of
the most challenging tasks now faced by manufacturing process engineers is the
development of a ceramic finishing process which maximizes part throughput
rate while minimizing costs and associated scrap levels.

To maximize material removal rates in the grinding operations necessary
for finishing structural ceramics, it is essential that the relationships between
product performance, material behavior, and manufacturing processes are
clearly defined in addition to understanding the effects of the required material
removal process. Since the consequences of in-service ceramic failure can be
catastrophic, extremely slow finishing operations are usually employed in an
attempt to minimize process induced defects. Usually, a painstaking multi-step
ceramic finishing process is deployed which requires numerous grinding wheels,
additional capital equipment, additional perishable dressing tools, and additional
labor. From this perspective, the development of improved grinding processes
for structural ceramic heat engine components will require not only strict
attention to the mechanics of the grinding process but requires a quantitative
understanding of the aforementioned interrelationships.

Based on the concerns outlined above, the efforts summarized in this
report represent the initial phase of a multi-phase program whose overall
objective is to develop a single step, roughing-finishing process suitable for
producing high-quality silicon nitride ceramic parts at high material removal rates
and at substantially lower cost than traditional, multi-stage grinding processes.
More specifically, the objective of this initial "Phase " research is to undertake
an exploratory feasibility investigation of High-Speed, Low-Damage (HSLD)
grinding by using high wheel speeds and fine grit wheels to achieve the small
grain depths of cut necessary for low damage grinding while operating at high
material removal rates. The particular issues addressed include:

® Development of the experimental systems necessary for identifying
approximate ceramic grinding zone temperatures and corresponding
energy partition relationships

® Determining the effects of wheel speed and material removal rate on
the resulting mode of material removal (low damage or fracture)

@ |dentifying what removal rates can be obtained under high speed
low damage grinding conditions

@® Outlining unique concerns for successful production implementation
of cylindrical and surface grinding processes



2.0 BACKGROUND

Previous research on the grinding of ceramics indicates that the
abrasive/workpiece interactions generally involve both ductile flow and brittle
fracture. As the abrasive engages the workpiece, initial cutting action occurs by
plastic or ductile flow which is followed by fracture if the grain depth of cut
becomes sufficiently large. By analogy with indentation fracture mechanics, two
principal types of cracks are generated: "lateral" cracks, which lead to material
removal, and "radial or median" cracks, which cause strength degradation.

One implication from the past research is that fracture damage may be
avoided or minimized if the grain depth of cut and/or unit grain load is kept below
some critical level such that predominantly low-damage grinding occurs. The
common approach to achieve this objective is to use extremely small removal
rates (fine depths of cut and low workpiece velocities), which are not economical
in production. From analytical considerations of grinding kinematics, the only
apparent way to overcome this drawback, namely to achieve large removal rates
while maintaining a small grain depth of cut, is through the use of high wheel
speeds and fine grit wheels.

It should be noted that low damage and ductile mode grinding generally
require a much higher specific energy (i.e. grinding energy input per volume of
material removed) than mixed mode grinding which involves both ductile flow
and fracture. This higher energy input will, in turn, lead to higher grinding zone
temperatures. The results of some recent Japanese research1 suggest that
elevated grinding zone temperatures tend to inhibit fracture and promote the
non-detrimental ductile mode of grinding. Moreover, the researchers achieved a
"polished" surface finish (2 microinch Ra) using a fine grit wheel without
impairing original material strength properties. High temperatures can thereby
have a beneficial effect on the resulting surface integrity, which is contrary to the
case of grinding metallic alloys.

It is hypothesized that the mechanical and thermal grinding effects can act
in concert to enhance material removal rates while minimizing incipient
microcracking tendencies in the ceramic workpiece. On the other hand, extreme
heat can reduce diamond wheel life. In conventional grinding of metallic alloys
with aluminum oxide wheels the majority of the grinding energy enters the
workpiece as heat.2 Conversely, when using superabrasive wheels, a large
portion of the heat energy is transferred into the wheel due to its superior
thermal conductivity.3 Since this "reverse" heat transfer phenomenon is even
more pronounced when grinding ceramic materials with diamonds, it is important
to understand the grinding "energy balance" to avoid reducing wheel life from
excessive heat, while maximizing the thermal benefits arising from plastic
deformation in the workpiece surface.

In order to calculate the transient temperature field in the workpiece, it is
first necessary to determine what portion of the total grinding energy enters the
workpiece as heat. Typically, an inverse heat transfer method is employed




whereby temperatures measured in the workpiece are used to obtain the heat
input at the grinding zone.4 One approach is to use thermocouples embedded in
close proximity to the workpiece surface. Recent work by Ueda, et al.5 indicates
that temperatures may also be accurately measured near the workpiece surface
using an infrared pyrometer with an optical fiber. Similar efforts involving
infrared pyrometry are also underway at the University of Massachusetts to
improve fundamental process understanding. Subsequently, through
modification of the Carslaw-Jaeger6 moving band heat source model, a useful
thermal model of ceramic grinding can be developed for approximate calculation
of HSLD wheel/grinding zone temperatures.

Additionally, the mechanical effects of the unit grain load on resulting
surface quality can be determined by measuring grinding forces. Typical
fracture mechanics principles? can be considered in combination with the
aforementioned temperature effects to enhance overall HSLD process mode!
performance. ldeally, it would be desirable to determine "thermal softening
temperatures" and unit load combinations such that the grinding parameters can
be appropriately altered to minimize wheel heating while maximizing material
removal rates and plastic flow in the workpiece surface. With the above
considerations in mind, the following technical approach was developed.

3.0 TECHNICAL APPROACH

The purpose of this section is to present the general approach used
throughout the investigation. Many of the procedural details are provided as
necessary in the following specific sections. Based on the background material
presented earlier, it became apparent that a rather broad technical approach
would be required to meet the feasibility objectives defined in the introduction.
Owing to the large number of independent process variables and difficulty
associated with on-line measurement of many of the dependent variables, an
interdisciplinary approach which combines laboratory experimentation with
previously established process models was employed.

The overall program utilized a team consisting of representatives from the
Eaton Corporation and the University of Massachusetts. In addition, a close
relationship with the High Temperature Materials Laboratory (HTML) at Oak
Ridge National Laboratory (ORNL) was maintained to help develop an in-depth
understanding of the resulting surface topography and its relationship to the
mode(s) of material removal. Plastic flow and/or brittle fracture was determined
through the use of scanning electron microscopy or, when possible, using high
power optical atomic force microscopes. The majority of the laboratory grinding
experimentation was conducted at Eaton's Corporate Machining Research
Center (MRC) utilizing three fully instrumented grinding machines covering
several grinding processes (conventional surface grinding, creep feed surface
grinding, I.D. grinding, and O.D. cylindrical grinding ). Where applicable, the



spindle power and grinding forces were measured. As a function of the process
under examination, the following conditions were collectively varied to establish
low damage grinding behavior at high material removal rates:

® Wheel speeds ranging from 5000 to 35,000 ft/min (25 - 178 m/s)

@ Wide array of grinding wheel types with:
@ Various bond systems (plated, resin, etc.) and,
@ Various diamond grit sizes (ranging from 180 to 1200)

® Workpiece velocities covering:
® Low speed creep feed conditions at 1 in/min (2.54 cm/min) to,
@ High speed O.D. grinding levels at 400+ ft/min (122 m/min)

Building on fundamental grinding kinematics and existing thermal grinding
models, the University of Massachusetts, in conjunction with Eaton's MRC,
utilized the above grinding data to calculate specific grinding energies,
approximate unit grain loads, and corresponding grinding zone temperatures.
Through modification of the Carslaw-Jaeger6 moving band heat source model,
the long range goal is to develop a useful analytical model of HSLD grinding.
Model verification will be performed through extensive analysis of the ground
surface morphology. In this Phase | investigation, the University of
Massachusetts developed a two-color infrared pyrometry system, described in
the following section, to measure ceramic grinding zone temperatures.

The majority of tests conducted in this study utilized Eaton's newly
developed sintered reaction bonded silicon nitride material (S/RBSN). Since this
material is formed from elemental silicon using a high speed diffusion reaction, it
offers the potential advantage of being considerably less expensive than
conventional silicon nitride powder-based materials having comparable
properties. Material blank fabrication was done using Eaton's pre-production
manufacturing facilities at the CoRD-DC center. Documented material
properties are similar to those of the Kyocera SN-220 silicon nitride material
(approx. 600 MPa flexural strength, 3.25 g/cc density, 300 GPa E-modulus, etc.).
As Table 1 indicates, the S/RBSN material compares favorably with the SN-220
material. In addition to material property comparisons, several grinding tests
were conducted in this study to assess relative grindability as well.
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4.0 RESULTS and DISCUSSION

4.1 THERMAL MEASUREMENTS DURING GRINDING

In order to calculate the temperatures generated by grinding, it is first
necessary to know the fraction of the total grinding energy conducted as heat to
the workpiece. In the present investigation, an inverse heat transfer method is
being used to estimate the energy input to the workpiece from temperature
measurements in the subsurface. This energy is then compared with the total
measured energy input, obtained from the measured grinding forces and power,
to determine the fraction of the grinding energy conducted as heat to the
workpiece. Two types of temperature measuring systems are being used. The
first utilizes a thermocouple embedded in the workpiece. The second utilizes an
infrared detector and optical fiber. This latter system is more complex, but
should provide much faster temperature response than the embedded
thermocouple.

Before proceeding with temperature measurements, a series of grinding
tests was conducted to provide a baseline to characterize the grinding behavior.
The workpiece materials were sintered reaction bonded silicon nitride (S/RBSN)
from Eaton Corporation and SN-220 silicon nitride from Kyocera. Temperature
measurements with the embedded thermocouple technique were performed on
S/RBSN. An optical infrared temperature measuring system, which utilizes a
two-color (Indium Antimonide/Mercury Cadmium Telluride or InSb/MCT) detector
was also developed. Subsequently, the system was set up and calibrated, and
initial grinding tests were conducted.

4.1.1 Grinding Tests

Grinding tests were conducted under straight surface grinding conditions
on sintered reaction bonded silicon nitride (S/RBSN). The results are
summarized in Figures 1-4. Figure 1 shows the normal and tangential force
components as a function of removal rate per unit width (Q'=vya). The forces
were measured with a Kistler 9257A dynamometer. The removal rate was
varied by altering both the workpiece velocity vy and wheel depth of cut a. Note
that both force components increase approximately linearly with removal rate
and that the normal force is approximately 3-5 times larger than the tangential
force. At the largest removal rate per unit width of 8.5 mm2/s, the forces were
initially found to be substantially above the straight line in each case. However,
when the wheel was periodically cleaned with an abrasive stick between each
grinding pass, the forces were reduced close to the straight lines, which
suggests that the high forces were caused by loading of the wheel with
workpiece material. Direct measurements of the net spindle power P are also
shown in Figure 2. As expected, the product of the tangential force component



from Figure 1 and the wheel velocity vs was found to be virtually the same as the
power for each data point.

The corresponding specific grinding energy is shown in Figure 3. A trend
of slightly decreasing specific energy was obtained with increasing removal
rates. Although similar results were previously obtained in the UMass grinding
laboratory for the grinding of hot pressed silicon nitride (HPSN) with a
comparable diamond wheel, the magnitude of the specific energy in the previous
tests was about 35% higher than for the present results. The lower specific
energy with the S/RBSN suggests that this material may not be as tough as the
HPSN. :

After grinding, the surface roughness Ry was measured using a Surtronic
3P. The data are summarized in Figure 4 in terms of Ra versus depth of cut for
various workpiece velocities. The results suggest that surface roughness is
more strongly affected by workpiece velocity than depth of cut.

Grinding tests on the SN-220 from Kyocera were also conducted under
straight grinding conditions in order to compare the results with those obtained
on the S/RBSN from Eaton. Figure 5 shows the normal and tangential force
components versus removal rate per unit width. Measured normal grinding force
for the Kyocera material had less scatter than the measurements on sintered
reaction bonded silicon nitride (S/RBSN). At the largest removal rate per unit
width of Q'=7.25 mm?2/s, wheel loading such as found with the S/RBSN did not
occur. Figure 6 shows the direct measurements of the net spindle power P,
which again are virtually the same as the product of the tangential force and the
wheel velocity vg. The corresponding specific energy is shown in Figure 7.
Comparing Figure 3 with Figure 7, it can be seen that the specific energy for the
Kyocera material is very close to the energy measured for the Eaton S/RBSN.

4.1.2 Temperature Measurements with Embedded Thermocouples

Temperature measurements with embedded thermocouples were
conducted under straight grinding conditions on S/RBSN. The experimental
setup for measuring the temperature response and grinding power is illustrated
in Figure 8. Note that a hole was drilled in each specimen, and then a
thermocouple (type K, 36 gauge wire) installed and held with high temperature
cement. Each thermocouple junction was initially about 1.2 mm from the top
surface of the workpiece. The grinding test was continued by taking successive
passes under the same conditions until the thermocouple was ground and
destroyed. The machine was left idle for a few minutes between successive
passes in order to ensure that the temperature of the workpiece returned to the
ambient temperature before the next grinding pass. The last grinding pass was
taken for reference as zero depth, and the locations of the previous grinding
passes were then calculated.

All grinding passes were performed in the upgrinding mode using a 5%
soluble oil grinding fluid and a Norton SD150-R100BX619C grinding wheel. For
the first test, a hole of 1.25 mm diameter was used. The results, summarized in




Figure 9, show a plot of the maximum temperature rise for each grinding pass
versus depth into the workpiece. It can be seen that the maximum measured
temperature rise from a depth of 0.2 mm to 0.7 mm was almost insensitive to the
depth, which is contradictory to what was expected. It is suspected that this was
caused by a combination of an oversized hole for the thermocouple, too much
cement, and poor contact between the thermocouple and the workpiece at the
bottom of the hole.

The next experiment used a smaller hole of 1.00 mm diameter and much
less cement. The maximum temperature rise for each grinding pass versus
depth in this configuration is shown in Figure 10. Although there is some scatter,
the maximum grinding zone temperature obtained with each subsequent pass
closer to the surface tended to increase as expected. An example of the
temperature response at a depth of 0.0375 mm below the workpiece surface is
shown in Figure 11. The horizontal scale is dimensionless length x/, where x is
the distance from the center of the heat source at the grinding zone (positive
ahead) and / corresponds to half the theoretical geometrical wheel-workpiece
contact length |.. Using moving band heat source theory, the measured
temperature response can be compared with the theoretical temperature
response for the input heat flux to the workpiece eq, where ¢ is the fraction of the
total energy transported as heat to the workpiece and q is the total heat flux at
the grinding zone. The total heat flux at the grinding zone was obtained as
q=P/lcb, where P is the net grinding power, I¢ is the geometrical wheel-workpiece
contact length (Ic=(dsa)'2), and b is the workpiece width. In this test the net
grinding power was about 1.8 kw, which corresponds to a specific energy of
about 36 J/mms3.

The theoretical temperature response in the workpiece was numerically
calculated using a finite difference method with the assumption of a triangular
heat source at the grinding zone. Unfortunately, correlation between the
theoretical and measured temperature responses was not good, as the
measured temperature response tended to lag significantly behind the
theoretical response (see Figure 11 for data at a depth of 0.0375 below the
surface). Therefore, a time constant t was also introduced into the theoretical
model, which essentially models the temperature measuring system as a first
order system. By selecting appropriate values for t and g, the modified
theoretical results can be matched to the experimental results. As shown in
Figure 11, a time constant of T=25 ms and an energy partition of e=16% appear
to provide a reasonable match. Figures 12 and 13 show temperature responses
and theoretical results at other depths, which would indicate that the energy
partition to the workpiece is about e=18%. In comparison to grinding of ferrous
alloys with conventional aluminum oxide wheels (where € can be as high as 80
to 90%) this is a relatively low value. However, for CBN superabrasive grinding
of ferrous alloys the energy partition to the workpiece ¢ is on the order of 20 to
50%. In light of the aforementioned system response issues, it is critical to
conduct more tests before definitive energy partition conclusions can be drawn.



In an attempt to reduce thermal inertia and improve system response,
additional embedded thermocouple tests were conducted using a smaller drilled
hole (0.75mm diameter) with less cement to secure the thermocouple. However,
even after several tests, the results were still not satisfactory. Based on
calculations using moving heat source theory and an analysis of the measured
temperature, the temperatures still did not rise as rapidly as they should have.
Microscopic observations of exposed thermocouple junctions after the tests
revealed insufficient bonding of the cement to the surrounding ceramic
workpiece. Apparently, the smaller hole made it more difficult to apply the
cement. Subsequently, another approach was evaluated using a small amount
of solder instead of cement to hold the thermocouple. Improved contact
between the thermocouple and ceramic was expected, however the results were
again unsatisfactory. Although only a very small amount of solder was used, the
thermal inertia of the thermocouple increased causing a significantly slower
response.

Based on the above tests, it is felt that peak ceramic grinding
temperatures can not be accurately and consistently measured in process using
the thermocouple approach due to the inherent time delay problems. One
possible reason is the poor contact between the thermocouple tip and the
ceramic workpiece. With a metallic workpiece, the thermocouple can be welded
to the workpiece, thereby providing improved contact and a faster time constant
(about 5 ms). Accuracy with a ceramic workpiece may also be worse due to its
lower thermal conductivity (which may induce additional thermal inertia errors)
and reduced heat conduction from the junction through the thermocouple wires.
For the one successful test, the thermocouple was apparently fully cemented at
the bottom of the hole. Obviously, any additional temperature measurements
will require a more reliable system. It is felt that an infrared system, which uses
an optical fiber to conduct the signal from the workpiece to a sensor, should be
more reliable and provide a faster response.

4.1.3 Infrared Temperature Measurement System Characteristics

The development of the infrared system and selection of the infrared
detector focused on thermal calculations, practical mechanical aspects of the
system, and calibration techniques. Thermal calculations were made to
determine the strength of the signal incident on the receiving surface of the
optical fiber. These calculations were made using the lowest expected signal
condition (i.e. at a lowest expected temperature of about 100 °C). The
attenuation of this signal through the optical fiber and the ratio of the signal to
noise were also determined. Various ways of polishing the surfaces and
preparing the fiber for connections to the workpiece and to the detector were
considered. The ends of the fiber must be polished periodically because
deterioration of the surface can occur due to inadvertent mechanically inflicted
scratches, chemical reactions or deposits from fluids, and thermal damage.
Although damage to the end surfaces will not obviate the signal, it will influence
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the calibration of the temperature measurements. In addition, large changes in
fiber curvature will influence signal conduction and have a deleterious effect on
the calibration. Consequently, a 2 m optical fiber length was selected to
minimize curvature change and at the same time keep the detector and other
electronics away from the immediate grinding operation.

Initially a single detector system was considered , however, for improved
performance a two-color detector was subsequently selected. The advantage of
the two color detector is that the measured temperature is determined by the
ratio of the signals received by two cells, thus the emissivity of the material is not
required to estimate the temperature. lt also appears that the conditions of both
ends of the fiber may have less influence on the measurement. Furthermore,
unlike with a single-color system, movement of the fiber will not affect the two-
color system accuracy. ltis also expected that the time response of the two-
color detector system should be almost as fast as a single detector system.
Moreover, other problems inherent with a single detector (such as calibration
and transient changes in the system) are less problematic with the two-color
system.

An InSb/MCT (Indium Antimonide & Mercury Cadmium Telluride) detector
was selected to cover a temperature range from room temperature to about
500 °C. The InSb cell absorbs and detects radiation at wavelengths from 1.0 to
5.5 um, while radiation with wavelengths longer than 6.0 um are detected by the
MCT cell. Optical fibers made of chalcogenide (which transmit radiation
between 3 um to 11 um) were selected. According to the thermal calculations at
100 °C, the energy transmitted to the detector from a 2 meter chalcogenide fiber
with core diameter 500 um is about 0.819 microwatts for wavelengths from 3.0 to
5.5 um, and is about 14.7 microwatts for wavelengths from 6 to 11 pm. At
500 ©C, the input energy is about 60 microwatts for wavelengths between 4 and
5.5 um, and 220 microwatts for wavelengths between 6 to 11 um.

4.1.4 Development and Calibration of a Two-Color Detector System

A schematic of the experimental infrared system setup is shown in Figure
14. Note that the infrared system utilizes a hole from the under side of the
workpiece, analogous to the thermocouple system. Radiation from the
workpiece is transmitted by the fiber to a detector which converts the radiation
energy from the fiber to an electrical signal. The two-color InSb/MCT detector
system was supplied with built-in preamplifiers and an optical SMA connector in
a metal dewar. The unit is operated at a temperature of 77 °K using liquid
nitrogen. Two chalcogenide fibers with core diameters of 0.01 and 0.02 inch
were purchased. Although a fiber with a larger cross sectional area can transmit
more energy, the incident radiation comes from a larger area which tends to
average the thermal data.

For calibrating the system, a blackbody (Figure 15) was made from pure
copper to ensure isothermal conditions within the body during cooling. Two
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thermocouples were installed in the copper body to monitor the temperature. A
hole was drilled, threaded and coated with lampblack to provide high emissivity
as a true blackbody. A hot plate (Omega, Chromalox Roph-204) with a
maximum temperature of 500 °C was used to heat the blackbody for calibration.
A 240 voltage power line was installed in the laboratory for operating the hot
plate.

A special fixture was designed and built to hold the workpiece specimen
and the optical fiber. Since the fiber is quite delicate, the fixture protects and
guides the fiber from the workpiece to prevent fracture if the bending radius
becomes too small. This fixture also adapts to a Kistler dynamometer for
grinding tests.

An analog tape recorder was selected to record all the data. The tape
recorder (Racal Recorder/V-Store 8) can simultaneously record up to 8 channels
of data with bandwidths from DC up to 100 kHz. Recorded signals can be
replayed and transmitted to a PC data acquisition system. The analog signals
can be sampled and filtered at different frequencies for data analysis.

Since the infrared system used in this project employs a fiber to transmit
the radiation from the workpiece to the detector, the calibration must be done
with the fiber. As previously indicated, the two-color detector system consists of
two infrared cells, MCT and InSb. The MCT cell has an AC ampilifier, and the
InSb cell has a DC amplifier. The AC-coupled cell can detect only an AC signal.
Therefore, a mechanical chopper was constructed to modulate the radiation from
the blackbody so that the chopped signal can be detected by the cell. The
experimental setup for calibrating the system is shown in Figure 16, and a
chopped signal output in Figure 17. The difference between the highest and
lowest values in Figure 17 represents the sensitivity of the cell.

The system was calibrated by monitoring the temperature of the
blackbody as it slowly cooled from an initial temperature after heating. Electrical
signals from the two cells were recorded by a PC. In these initial tests, a fiber
with 0.020 inch core diameter was used to calibrate the system. Output signals
from the two cells are shown in Figure 18. The ratio of the signal from the InSb
cell to the signal from the MCT cell as a function of temperature is shown in
Figure 19. Unfortunately, the signal fluctuated and became weaker at
temperatures below 200 °C, which greatly reduced the accuracy. After polishing
the fiber end, a second calibration was conducted which resulted in more
consistent data in the lower temperature range. Figure 20 shows the signals
after the second calibration, while Figure 21 represents the ratio of the two
signals. By comparing the results from these two calibrations, it can be seen
that although the absolute values from these two calibrations are somewhat
different, the ratios from both of these separate calibrations are very close. It
appears that the fiber end condition did not significantly affect the ratio.
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4.1.5 Temperature Measurement with the Two-Color Detector System

Once the system calibration was completed, several grinding tests were
conducted on the UMass Brown & Sharpe 1236 Hi-Tech CNC grinder using
8.5 mm wide S/RBSN specimens provided by Eaton. A 12" diameter Norton
ASD120-R75B56-1/8 wheel was used at a wheelspeed of 30 m/s and workspeed
of 1568 mm/s. The wheel depth of cut was 0.0375 mm for grinding with fluid, and
0.0254 mm for grinding without fluid. Prior to grinding, the wheel was trued
using a silicon carbide brake-controlled truing device then subsequently
conditioned with a silicon carbide abrasive stick. A tape recorder (Racal
Recorder/V-store 8) was used to record the signals from the two detector cells,
the power monitor, and the Kistler force dynamometer. One channel was used
to record voice to facilitate locating data files during signal retrieval. The grinding
test involved taking successive passes under the same conditions until reaching
the hole with the fiber.

To protect the fiber end surface from damage during the first grinding test,
the fiber was not placed in direct contact with the bottom surface of the hole.
Unfortunately, only weak signals were obtained from the two cells. In order to
increase the temperature, the fluid flow was turned off. This increased the
output, but the signals were much smaller than expected. Again, it was
suspected that the fiber tip was too far from the bottom surface of the hole.

The fiber end was then polished, and a second grinding test was
conducted. This time the fiber end was placed in direct contact with the bottom
surface of the hole with grinding fluid applied. At first a good signal was
obtained, but became weaker as testing continued. Even after turning off the
grinding fluid, the signal remained too small. The grinding test was stopped
before the hole was ground through. Atfter cleaning the fluid around the fixture
and specimen, the specimen was removed from the fixture. The fiber end was
found to be contaminated by grinding fluid. Apparently the fluid had gradually
penetrated the interface between the specimen and the fixture, causing the
signal to become too weak. )

A third grinding test was performed without fluid. In this case, much
stronger signals were recorded from both cells. The transient signals shown in
Figure 22 were obtained from the two cells at a depth of 0.2 mm below the
grinding surface. The maximum signals received from both cells versus depth
into the workpiece are given in Figure 23 while the signal ratio is presented in
Figure 24. Note that the ratio at shallow depths exceeded the maximum
calibration value at 500 ©C, indicating that the temperatures exceeded 500 °C.
It should be noted that during the last few passes the signals from the MCT cell
started to fluctuate. This fluctuation could be caused by degradation of the
heated end of the fiber.

The results of these initial grinding tests indicate that the infrared detector
can be used to measure temperatures in the workpiece subsurface during the
grinding of ceramics. In order to improve performance, subsequent efforts will
focus on methods to prevent grinding fluid from contaminating the fiber end and
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to make the system more robust. Fibers with smaller core diameters will also be
used to detect more localized temperatures on smaller areas of the workpiece.
Additional thermal analyses will be conducted based on the experimental results
using moving heat source theory to better estimate the energy partition to the
workpiece.

4.2 HIGH-SPEED, LOW-DAMAGE GRINDING FEASIBILITY TESTS

As indicated in the introduction, this initial Phase | effort is intended to be
an exploratory project directed toward determining the technical feasibility of high
speed low damage grinding of Si3aN4 (specifically Sintered RBSN). The efforts
described in this section will focus primarily on surface grinding results obtained
using plated wheels at speeds up to 35,000 SFM (178 m/sec) and material
removal rates up to 1 in2/min (11 mm2/sec) All reported grinding tests were
conducted at the Eaton Manufacturing Technologies Center (MTC) Machining
Research Center (MRC) using fully instrumented research grinders capable of
operating under a wide variety of speeds, feeds, and configurations.

Subsequent workpiece surface characterization was performed at the Oak Ridge
National Laboratories (ORNL) High Temperature Materials Laboratory (HTML).

4.2.1__Grinding Conditions

Prismatic S/RBSN specimens were ground on a custom built "semi-creep
feed" surface grinding machine capable of operating at workpiece velocities
between 1 - 180 in/min (0.42 - 76 mm/sec) with wheel speeds up to 40,000 SFM
(203 m/sec). Aside from the prismatic specimen tests, limited cylindrical grinding
was performed on a modified Weldon 1632 Universal ID/OD grinder for the high
speed O.D. grinding studies. Wheel speeds as high as 40,000 SFM (203 m/sec)
are also attainable on the modified Weldon. As will be discussed later, the
relative contact lengths and workpiece velocities developed under cylindrical
grinding conditions can be much different than those seen in surface grinding
thereby resulting in considerably different unit grit loads, localized workzone
temperatures, and chip formation modes.

Data logging was accomplished using a PC-based data acquisition
package and/or strip chart recorders. In the surface grinding modes (pendulum
and creep feed) force data was measured using a standard 3-axis Kistler force
dynamometer platform. Of particular interest are the normal and tangential
grinding forces. In the cylindrical grinding modes, the normal force was
measured using Kistler piezoelectric load washers built into the feed screws of
the machine tool. In all cases, spindle power was measured using watt
transducers. In subsequent tests, the temperature data will be recorded for all
surface grinding tests, and where possible for some of the cylindrical grinding
studies, using an infrared pyrometer equipped with an optical fiber input.

All tests discussed in this section were conducted using Eaton S/RBSN
material. Material blank fabrication was done using Eaton's pre-production
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manufacturing facilities at the CoRD-DC center. Building upon an agreement
with Coors Golden Technologies, production material will be subsequently
employed as Coors ramps-up its production S/RBSN manufacturing facility.
Documented material properties are similar to those of the Kyocera SN-220
silicon nitride material (approx. 600 MPa flexural strength, 3.25 g/cc density, 300
GPa E-modulus, etc.).

These tests were designed to identify how high wheel speeds and
removal rates might impact resulting grinding forces, finishes, and surface
quality. A relatively coarse (120 grit) brazed diamond wheel was used. As a
function of the process under examination, the following conditions were
collectively varied to establish low damage grinding behavior at high material
removal rates. A summary of all test data and grinding related parameters is
presented in Table 2. Note that wheel speed was increased from 5000 SFM (25
m/s) to 35,000 SFM (178 m/s) in increments of 10,000 SFM (51 m/s) while the
material removal rate was varied from 0.125 in2/min (1.34 mm2/s) to 1 in2/min
(10.75 mm2/s) by incrementing the depth of cut and workpiece velocity as
follows:

Depth of Cut Part Velocity Removal Rate
inches (mm) in/min (mm/s) in2/min (mm2/s)
0.0025 (.0635) 50 (21) 0.125 (1.34)
0.0050 (.1270) 50 (21) 0.250 (2.69)
0.0025 (.0635) 100 (42) 0.250 (2.69)
0.0050 (.1270) 100 (42) 0.500 (5.38)
0.0150 (.3810) 50 (21) 0.750 (8.06)
0.0100 (.2540) 100 (42) 1.000 (10.8)

4.2.2 Surface Inspection Technique

It has been well documented that in the grinding of ceramic materials, the
resulting workpiece surface is covered predominantly by machining grooves
produced from the abrasive grit cutting action. Unfortunately, fragmented areas
are also developed on the surface as a result of micro-fracture arising from the
grinding process. These "fractured" regions have been referred to as pull-out,
surface damage, pitting, grinding damage, and surface fragmentation. Such
damage, may extend several micrometers into the material and are often the
origin of failure in the finished ceramic component. For the purposes of these
experiments, the surface quality will be given by the percent pull out or surface
fragmentation. As reported by T. Bifano8 and J. Mayer9, a percent damaged
area on the order of 10% to 15% was considered as the ductile mode grinding
threshold.

After grinding, subsequent workpiece surface characterization was
performed at the ORNL HTML. From a most fundamental perspective, all
specimen surfaces were initially characterized using standard contact-type
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(stylus) surface profilometry equipment (see summary data in Table 2). More
importantly, the extent of plastic flow and/or brittle fracture was then determined
through the use of optical and scanning electron microscopy. The method
employed for quantifying surface fragmentation at the HTML is based on the
point-counting technique described in Quantitative Metallography10 and by
Underwood in Quantitative Stereology11. Basically, a transparency with a grid
consisting of one hundred points is randomly superposed on a micrograph (300
to 800X mag) of the ground surface. Points that fall within the fragmented
regions are counted as 1 while points falling on the boundary between
fragmented and unfragmented regions are counted as half. The total number of
counts is then divided by the total number of points in the grid (100 in this case)
to give a percentage. To improve statistical reliability, a grand average was
obtained by repeating the procedure on micrographs obtained from 10 randomly
chosen locations on each specimen. The results of these studies are described
in the following section.

4.2.3 Relationship of Surface Quality to Grinding Conditions

Under the conditions outlined above, it can be seen that the grinding
forces decrease considerably with increased wheel speed and/or reduced
material removal rate (see Figures 25A & 25B). In general, the grinding forces
are reduced by approximately a factor of two when increasing the wheel speed
from conventional speeds (e.g. 5000 SFM, 25 m/s) to over 25,000 SFM (127
m/s). From a production grinding standpoint this can be significant when rough
grinding a relatively weak or difficult to fixture component. Somewhat
surprisingly at the highest removal rates (1 in2/min, 10.75 mm2/s) the normal
force tended to increase slightly at 35,000 SFM (178 m/s). This is most likely the
result of some observed wheel loading. As expected, however, the grinding
forces decrease nearly linearly with decreased removal rate.

Figure 26 illustrates the wheel speed effects on surface finish for the
Eaton S/RBSN material. This graph shows a tendency toward improved surface
finish as wheel speed is increased. Hypothetically, this is a direct result of
increased workzone temperatures which tend to promote increased
ductile/glassy flow. Additional tests will be conducted to confirm this hypothesis.
Note however, in several cases, the surface roughness increased somewhat at
the highest wheel speed (35,000 SFM, 178 m/s). This is most likely the result of
a slight wheel imbalance which was observed at the highest speed.

More interesting is the improved surface finish achieved by going to high
material removal rates - - even while operating at conventional wheel speeds.
Realize that typical industrial ceramic roughing rates do not go much beyond
0.125 in2/min (1.34 mm2/s). However, by dramatically increasing the removal
rate, an improved surface is developed. Again, it is speculated that this may be
a result of increased workzone temperatures which promote plastic flow. From
an industrial perspective, this suggests that the emphasis on minimizing stock
envelopes via near-net shape technologies may not be as critical as once
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anticipated. What is not clear yet are the material removal rate and wheel speed
interactions and their effect on wheel life.

Possibly the most significant findings to date are graphically illustrated in
Figure 27. The data imply two notable trends:

@® |Increasing wheel speed, while operating at a relatively low material
removal rate of 0.125 in2/min (1.34 mm2/s) or less, can dramatically reduce
surface fragmentation. A five fold wheel speed increase from 5000 SFM (25
m/s) to 25,000 SFM (127 m/s) reduced "pull out" by almost a factor of four. To a
lesser extent, the same trend is true at higher material removal rates. Surface
fragmentation was reduced 2.5 fold by increasing wheel speeds when operating
at 1 in2/min (10.75 mm2/s).

@ Alternatively, increasing the material removal rate was also shown to
reduce surface fragmentation. Approximately a three fold reduction in "pullout”
was achieved by increasing removal rates from 0.125 in2/min (1.34 mm2/s) to
1.0 in2/min (10.75 mm2/s) while operating at conventional wheel speeds. At
35,000 SFM (178 m/s) a two fold reduction in surface fragmentation was
achieved by increasing the material removal rate.

SEM photomicrographs illustrating the above observations are also
provided in Figures 28A through 28D. Figure 28A shows the resulting workpiece
surface after grinding at 0.125 in2/min (1.34 mm2/s) with a wheel speed of 5000
SFM (25 m/s). The "white-frosted" areas represent regions of surface
fragmentation. [n this case, roughly 43% of the surface was "fragmented".
However, by increasing the wheel speed to 35,000 SFM (178 m/s), while
keeping all other conditions constant, surface fragmentation was reduced to 12%
(see Fig. 28B) - - which is indicative of "low damage" grinding. Alternatively, by
contrasting Figures 28A & C, or 28B & D, it can be seen that increasing the
material removal rate from 0.125 in2/min (1.34 mm2/s) to 0.5 in2/min (5.38
mm2/s) can also reduce the degree of surface fragmentation without increasing
the wheel speed. Again, some "pullout" reduction is also evident by going to
higher wheel speeds even while operating at relatively high material removal
rates (compare Figures 28C & 28D). As indicated by the data in Table 2, the
lowest level of surface fragmentation (6%) was achieved at the highest removal
rate and highest wheel speed.

Although extensive MOR testing was not performed*, these results tend to
suggest that a transition from a "brittle fracture" mode of grinding to a low
damage "ductile" grinding mode can be achieved by increasing wheel speeds
and/or material removal rates. As alluded to earlier, one possible explanation for
this behavior stems from the fact that the grinding force per grit (unit grit load) is
reduced significantly by increasing wheel speeds (see Figure 29) which, in turn,
will reduce the surface fracture tendency.

*Planned for Phase il of the effort
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It should be noted that the unit grit load data was determined by
measuring the actual grinding force and by counting the number of grits per unit
of wheel area using photomicrographic techniques. The wheel/workpiece
contact area was based strictly on the calculated geometric contact length. In
this fashion, an approximate unit grit load could be calculated.

Realize however, that unit grit load considerations alone will not account
for the low surface fragmentation witnessed when operating at the highest
material removal rates. Additional consideration must be given to the potential
effect of increased workzone temperature developed at high material removal
rates and/or wheel speeds which could help to promote plastic flow within the
workzone. As indicated in the Background section, it is felt that critical threshold
grit load and workzone temperature combinations can be identified to avoid

grinding damage.

4.2.4 Relationships Between Grinding Results and Thermal Calculation Results

In an initial attempt to gain some preliminary understanding of how the
grinding parameters might-affect the workzone temperatures, approximate
thermal calculations were performed using the Carslaw-Jaeger moving band
heat source solution as given in (4). It must be emphasized that, as with most
thermal analyses, a linear heat transfer model has been used with the
assumption of constant thermal properties independent of temperature. In
addition, this initial model does not include convective cooling effects. Moreover,
the actual fraction (g) of the total grinding energy (utotal) which enters the
workpiece as heat is yet to be identified; but, was assumed to be 50% for these
calculations. Nevertheless, based on the following relationship it can be seen
that increased specific grinding energy or increased material removal rates can
lead to increased temperature rise (©m) within the workzone.

1132263 v 2 (gt
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Where;
®m = maximum grinding zone temperature rise
o = thermal diffusivity =0.016 in/sec = 0.10cm2/sec
o/} = depth of cut
Vw = workpiece velocity
€ = fraction of total grinding energy conducted as heat into the

workpiece, assumed to be 50% in this case

Utotal = total specific grinding energy
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thermal conductivity = 17.34 BTU/hr.ft.OR = 30 Watt/m®K

equivalent grinding wheel diameter, which equals the wheel
diameter for surface grinding (12 in. (305 mm) in these tests).

General temperature trends were subsequently plotted in Figure 30 by
using the above relationship with mean thermal property data and the actual
grinding test data as given in Table 2. Recognize that the primary purpose of
this graph is not to predict absolute workzone temperatures, but rather to
illustrate maximum grinding zone temperature trends as a function of wheel
speed and material removal rate. From this perspective, the graph clearly
shows the tendency toward increased workzone temperatures at elevated wheel
speeds and material removal rates. Interestingly, the lowest level of surface
fragmentation (6%) occurred under the highest temperature conditions (i.e.
highest MRR, highest wheel speed) while the lowest temperatures resulted in
the highest surface fragmentation (43%). Follow-on efforts will focus on refining
the model to better predict surface fragmentation (Fig. 27) under varying wheel
speeds and removal rates based on the combined effects of reduced unit grit
load (Fig. 29) and the resulting thermal behavior (Fig. 30).

Recalling the force and surface finish graphs discussed earlier, a
production processing strategy for a thin, near-net component may utilize high
grinding wheel speeds to minimize fragmentation and maintain material
properties. On the other hand, for more robust components having a larger
stock envelope, increasing the material removal rate per pass while operating at
conventional wheel speeds may be the most attractive. Again, the process
economic trade-offs between wheel life, throughput, and resulting surface
integrity must yet be examined.

5.0 PRODUCTION IMPLEMENTATION CONSIDERATIONS

In addition to the testing discussed above, numerous tests were
performed in the Eaton Machining Research Center (MRC) to address potential
concerns/limitations associated with the HSLD grinding process. These included
a series of HSLD tests designed to increase cutoff rates by creep-feed grinding
and precision bore finishing rates using alternative single stroke honing
processes. In addition, data clearly show the influence of wheel roundness and
system balance on the resulting ceramic surface while operating at increased
wheel speeds.
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5.1 Creep-Feed and Cutoff Grinding

In the finishing of structural ceramics, parting operations (i.e. cutoff) are
often required to achieve correct component length. From a fundamental
perspective, this process is somewhat analogous to surface creep feed grinding.
Accordingly, the initial Eaton test series was focused on HSLD cutoff operations
using creep feed grinding. The primary objective was to identify potential
process limitations with respect to material removal rate and resulting surface
finish. During this study, approximately 30 S/RBSN specimens were "slit"
lengthwise under full-depth, creep feed grinding conditions using 0.0625" (1.6
mm) wide wheels. The rectangular specimens, provided by Coors Golden
Technologies, were approximately 4.0 " long x 0.370" wide x 0.430" deep ( 101.6
x 9.4 x 10.9 mm).

A schematic representation of the test setup in shown in Figure 31. Note
that the specimen is mounted to the "fixture base" by using a cyanoacrylate
adhesive. Upon conclusion of the test, the resulting halves are dis-mounted by
using either a hot plate (to melt the glue) or a solvent (to soften the glue). In all
cases, the fixture base is mounted to a Kistler 3-axis dynamometer to measure
forces. In addition, a spindle power monitor was used to help determine the
"effective" tangential & normal forces developed under full-depth creep feed
grinding conditions. To accurately determine the actual grinding power and
forces developed during deep slitting operations, it is important to subtract the
forces arising from fluid impact, frictional rubbing on the sides of the wheel, as
well as any hydrodynamic forces arising from coolant in the slot. This is done by
performing several "dead" passes to characterize the parasitic loss components.
During these tests approximately 0.75 H.P. (3 Ibs. horizontal force) was
consumed by the parasitic losses, which can account for about 25% of the total
power.

It is also important to note that under full-depth creep feed grinding
conditions the forces measured by the dynamometer (horizontal and vertical
forces) are not equivalent to the actual tangential and normal forces. As shown
in Figure 32, the horizontal and vertical force vectors must be resolved to
determine the total tangential and normal forces which effectively act at the
location given by the angle y. (Since all tests were conducted in the "up"
grinding direction, the force vectors shown in Figure 32 apply to up grinding.)

In these tests the depth of cut was quite large (0.430"), consequently the angle vy
was also quite large (approx. 169). Note that the angle y can be determined by
equating the measured power with the measured horizontal and vertical forces.
Alternatively, by assuming a triangular force distribution, it can be shown that y
acts at a point approximately 2/3 of the way up the arc-length-of-contact13.
Interestingly, the 2/3 approximation was good to within 2% for the majority of
these creep-feed ceramic grinding tests.

As an initial starting point, a Norton resin bonded diamond wheel (SD100
-R 50 B 69, 8" O.D.) was utilized at a feed rate of 0.5 in/minute (12.7 mm/min) at
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a full depth of 0.430" (10.9 mm) and a wheel speed of 10,000 SFM (50.8 m/s).
Once the wheel reached the full arc-length-of-cut at approximately 2.25" (57.15
mm) into the cut, the power spiked dramatically, which in turn actually set the
resin wheel on fire. This power spiking phenomenon, known as "burn-out", is
commonly observed in full-depth creep feed grinding of metallic alloys, and can
be attributed to boiling of the coolant within the workzone. In an attempt to
reduce "burn-out", the feed rate was reduced by a factor of two (to 0.25 in/min,
6.4 mm/min). However, once again, the power spiked thereby igniting the resin
bond in the wheel. As shown in Table 3, the specific energy ranged from 51 x
108 in-Ibs/in3 (351 joule/cu mm) to 154 x 108 in-Ibs/in3 (1060 joule/cu mm).

To improve the initial cutting effectiveness, the wheel was pre-conditioned
by taking a series of 36 up-grinding passes through a 5" (127 mm) long Norton
37 C 150 H11 VKPM abrasive stick purchased from the Sticks & Stones
Company. A feed rate of 10 in/min (254 mm/min) was used at a depth of 0.300"
(7.62 mm). Wheel speed remained constant at 10,000 SFM (50.8 m/s). Just as
in the case of the grinding tests, Cimperial 1011 (at a 10:1 ratio) was applied
through two nozzles at 40 PSI (0.2769 MPa) and 7.5 GPM (28.4 I/min) per
nozzle. This conditioning approach was used for the balance of the tests.

Once having re-conditioned the wheel, the test was repeated. Both the
specific energy and heat flux dropped considerably. Moreover, burn-out was not
observed. However, wheel wear was a concern with the resin bonded wheel.
Therefore, in an effort to improve G-Ratios, the wheel was changed to a Regal
metal bonded wheel (MD 80 N 50 M).

Using the Regal MD 80 N 50 M wheel, the feed rate was increased until
"burn-out" occurred. As shown in Figure 33 the tangential force develops
considerable spiking when the fluid begins to boil in the workzone. A similar
burn-out spiking behavior was observed for the power and normal force. Note,
however, that after burn-out occurs the forces and power return to a value lower
than before the spike. Since the power and forces reach extremely high values
during the spike, the wheel can self-sharpen (i.e. high forces breakdown the
wheel to expose fresh cutting edges). Alternatively, due to the extreme heat,
slight expansion of the wheel and/or workpiece can occur to momentarily to
increase the amount of stock removed, after which time the effective stock
removal is temporarily reduced when the wheel/workpiece return to their normal
dimensions. The net effect in either case is a subsequent reduction in force.

It should be noted that during spiking (burn-out) an orange fire-band
temporarily developed around the periphery of the metal bonded wheel.
However, unlike the resin wheel, the metal wheel did not catch on fire. In
addition, the burn-out heat flux (140,186 in-lb/in2-sec, 24.65 joule/mm?2-sec) was
considerably higher for the metal wheel than for the resin wheel (81,161 to
120,132 in-Ib/in2-sec, 14.8 to 22 joule/mm2-sec). Therefore, it was decided to
continue to use the metal bonded wheel owing to its higher temperature
capabilities and potential for higher material removal rates.
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In an attempt to further reduce the propensity for burn-out at increased
feed rates, a coolant induction channel was added to the setup (see Figure 31)
to assist in directing coolant into the workzone. By introducing additional coolant
into the workzone, additional heat energy can be convected away before any
vapor barrier forms from fluid boiling. Ideally, a transition from pool boiling to
forced flow boiling can be developed in the workzone to increase heat transfer.
As Table 3 indicates, by adding the coolant channel, burn-out was eliminated
with the metal wheel at the 0.6 in/min (15.2 mm/min) feed rate. Subsequently,
the feed rate was increased to 1.0 in/min (25.4 mm/min). Again, burn-out was
not observed. Note, however, the maximum heat flux did not exceed 125,863 in-
Ib/in2-sec (23 joule/mm2-sec). Consequently, it appears that the threshold burn-
out heat flux appears to be on the order of 140,186 in-lb/in2-sec (24.65
joule/mm2-sec) for the MD 80 N 50 M metal bonded wheel. To date, feed rates
have been increased to 2.0 in/min (50.8 mm/min) at full depth.

5.2 1.D. Finishing

In addition to addressing the challenges associated with creep feed
grinding, the complexities of creating an 1.D. of precise dimension, form and
surface finish were also investigated. Initially, tests at Eaton's Manufacturing
Technologies Center (MTC) examined the possibility of increasing material
removal rates by HSLD 1.D. grinding. It must be realized, however, that
conventional I.D. grinding suffers from several limitations. First of all, even with
a spindle speed of 60,000 RPM it is difficult to exceed 7800 SFM (40 m/s) on
small diameter 1.D. wheels (e.g. 0.5%, 12.7 mm). Secondly, the I.D. grinding quill
is not very rigid which, in turn, seriously limits material rates. Lastly, due to the
"flexible" quill, precision dressing of the diamond 1.D. wheel is severely
hampered. As a consequence of these factors acting in concert, the resulting
bore surface exhibited extreme taper (0.005", 0.127 mm) even at relatively low
material removal rates.

Therefore, the possibility of using a single stroke diamond honing process
as a substitute for L.D. grinding was investigated. In these tests all honing was
done on a Maho MH-700-S five axis CNC machining center using the horizontat
spindle. The objective was to generate an ID to +/- 0.0002 in (+/- 0.005 mm),
with a roundness tolerance of 0.000118 in (0.003 mm) and have a surface finish
better that 8 pinches Ry (0.2 micron). Two materials were used for the study,
Eaton S/RBSN and Kyocera SN-220. Diamond sleeves, used to produce the
ID's, ranged in grit sizes from 100, for roughing, to 1200 for superfinishing.

The tool consisted of a tool holder, mandrel, abrasive sleeve, pilot and
adjustment screw. The majority of the tool components were purchased from
Sunnen Products in St. Louis, MO. The size of the tool could be set by turning
the adjustment screw one indicating notch for every 0.0001 in (0.0025 mm) of
stock off the diameter to be removed. The adjustment screw draws the sleeve
up the tapered mandrel, causing the sleeve to expand.

T ——— -
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All tests were conducted using RD2 265M coolant from Master Chemical
of Perrysburg, OH, mixed at a 20:1 dilution ratio. Coolant was applied using a
“through the tool" technique and an external flood. Coolant was fed along the
shaft from jets 90 degrees apart at the end of the tool holder. The external flood
was applied 180 degrees apart. This allowed a direct flow of coolant into the
work zone. A feed rate of 30 in/min (12.7 mm/sec) was used to feed the tool
through the part. The tool was retracted at 472 in/min (200 mm/sec). The
surface speed of the sleeve at 125 ft/min (0.64 m/s).

Two methods of material removal were tried. The first was a fixed stage
approach. In other words, the total stock removal would occur over a
predetermined number of passes, from roughing to finishing. The number of
stages (passes) was determined as a function of the stock envelope and the
recommended depths of cut. For the Eaton parts, with an average stock
envelope of 0.027 in (0.70 mm), eleven stages were required. Only nine stages
were needed to remove the 0.018 in (0.47 mm) stock envelope on the Kyocera
material.

Abrasive Sleeve Descriptions

Tool Type Grit Material Removal Range - Off Diameter
Size (inches) (millimeters)
Roughing 100 0.001 - 0.004 0.03-0.10
Semi-Roughing 220 0.0005 - 0.003 0.013-0.076
Semi-Finishing 400 0.00005 - 0.0005 0.001 - 0.013
Finishing 800 0.000025 - 0.0002 0.0006- 0.051
Super-Finishing 1200 0.000025 - 0.00005 0.0006 - 0.0013

The material removal rate (MRR) was determined by assuming that a
cylinder of material was being removed per unit time per unit abrasive width (i.e.
length of hone). The length of the sleeve was six inches (150 mm) and the
duration of the grind was 0.20 min (12 seconds). It should be realized that since
the 1.D. honing tools are approximately 12 times longer than typical I.D. wheels,
the calculated MRR appears rather low. Nevertheless, in a production setting,
this process lends itself to low-cost multi-spindle machines. Cycle times on the
order of 12 seconds can be expected, versus 2 minutes with traditional I.D.
grinding. The following table lists the maximum material removal rate for a given
depth of cut.
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Material Removal Rates

Depth of Cut Off Diameter Max. Material Removal Rate at Depth of Cut

(inch) (mm) (in$/in/min) (mmS/mm/sec)
0.004 0.10 0.0032 0.034
0.003 0.08 0.0024 0.026
0.0005 0.013 0.00041 0.0044
0.0003 0.008 0.00025 0.0027
0.0002 0.005 0.00017 ) 0.0018
0.0001 0.003 0.000066 0.00071

Initially, this fixed stage approach appeared desirable since it could easily
be transformed into a production process. The number of machines, cycle
times, and other production variables could all be clearly identified.
Unfortunately, the parts have to be near final size. If a part has a large stock
envelope, large depths of cut are required. In our tests, this method proved
unsatisfactory due to excessive chipping at the exit end of the bore. The
relatively large depths of cut, 0.003 - 0.004 in (0.08 - 0.10 mm) off the diameter,
caused unacceptable chipping. It was shown that the Eaton S/RBSN material
had more pronounced chipping than did the Kyocera SN -220 material.

Subsequently, a fixed material removal approach was used with less
abusive depths of cut. Roughing was initially tried at 0.001 in. (0.025 mm) off the
diameter. Although this approach reduced the exit chipping, deep scratches
were developed in the workpiece surface. Based on visual examination, it
appeared as though the scraiches were more pronounced in the Kyocera
material than in the Eaton material. This may be due to the fact that the Eaton
material is more porous than the Kyocera material, thus "masking" the apparent
scratch depth.

In the next set of tests, the roughing depth of cut was changed to 0.0005
in (0.013 mm) per pass, with finishing at 0.0002 in (0.005 mm) and
superfinishing at 0.00005 in (0.001 mm) per pass. Chipping was significantly
reduced on the Eaton material, to the point where it could be removed by lightly
surface grinding the chipped face. Unfortunately, the main problem with this
fixed material removal approach is the exireme number of steps required to
finish the bore. Including all passes for grinding and tool sizing, a total of 45
steps was required to finish the bores.

Little appreciable wear of the abrasive sleeves was observed, with the
exception of the 400 grit sleeve. Power increased from the indistinguishable
level in the early tests, to approximately 0.12 HP (0.089 kW). Another indication
of tool wear was an improvement in surface finish. With a new 400 grit sleeve,
the best attainable R, was 8 pinch (0.2 micron). After 0.0476 in3 of combined
Eaton S/RBSN and Kyocera SN-220 stock removal with the 400 grit sleeve, the
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Rg improved to 3.4 microinch (0.09 micron). Based on the observed honing tool
wear, this translates to an approximate G-Ratio of over 6000.

From a roundness tolerance perspective, the objective was to develop
bore roundness on the order of 118 pinches (3.0 microns) with a surface finish of
7.9 pinches (0.2 microns). Measurements were made at the entrance, middle,
and exit of the bore. Roundness was worst at the entrance, but in all cases was
well within the desired roundness tolerance limits as given in the table below.

Average Roundness at the Entrance, Middle and Exit of Bore

Units Entrance Middle Exit
pinch 65.4 19.7 33.5
micron 1.66 0.50 0.85

In general, the single stroke honing process was able to create parts that
exceeded typical ceramic journal bore tolerances and surface finishes. Some
investigation must continue, however, to determine why the entrances of the
bores were more likely to be out of round, while the middle of the bore was six
times better (on average) than the required bore roundness tolerance. One
possibility is due to runout of the tool (the mandrel ranout about 0.002" at the
tip). Also, improved material removal rates and optimal abrasive surface feeds
need to be determined. Perhaps by lowering the unit grit load (by increasing
surface speed), chipping and light scratching can be eliminated. It should also
be noted that although the G-Ratios were quite good at conventional honing
speeds, the process economics may not compare favorably with 1.D. grinding
when considering the relatively high honing tooling costs. Additional economic
studies are planned for the Phase Il follow-on effort.

5.3 QO.D. Finishing

One of the final series of tests conducted during this Phase | investigation
involved the generation of precision O.D. tolerances under HSLD conditions.
Initially, the majority of this work took place using plated wheels. The data
summarized in Table 4 pertains to O.D. grinding of cylindrical specimens using a
workpiece velocity of 390 ft/min (1980 mm/s). As expected, the data shows that
an improved finish and reduced surface fragmentation is achieved by using a
finer grit wheel (400 vs. 120). Also note that at the highest material removal
rates significant reductions in grinding force are achieved by going to higher
wheel speeds. However, in several cases with the 120 grit wheel, increased
wheel speed tended to increase surface roughness and puliout. Although this
finding is somewhat contrary to the surface grinding studies discussed
previously, it lends considerable insight to the HSLD grinding process behavior.
It is important to realize that several factors, listed below, can dramatically affect
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localized workzone temperatures and unit grain loads, which in turn may alter
the material removal mode:

1) The roller workpiece velocity is between 50 to 100 times greater than for the
case of surface grinding. This may tend to promote increased surface fracture.

2) The O.D. contact length is approximately 10 to 50 times less than in surface
grinding. This results in much higher contact pressures (i.e. unit grit loads) and
the onset of surface fragmentation.

3) The maximum wheel speed used in this O.D. study was limited to 11,300
SFM (57 m/s) rather than the 35,000 SFM (178 m/s) used in the surface grinding
studies. Higher wheel speeds generally result in higher specific energies, which
in turn may increase workzone temperatures and plastic flow to reduce surface
fragmentation.

Aside from the plated wheel studies described above, a series of HSLD
0.D. grinding tests was conducted using a 400 grit, 100 concentration, resin
bonded wheel from Coors to grind cylindrical specimens made by Eaton and
Kyocera. All tests were performed on an instrumented Weldon 1632 grinder.
Both normal force and grinding power were measured. A summary of the test
conditions and results are presented in Table 5. Unlike in previous surface
grinding tests with plated wheels, the wheel speed was limited to 15000 SFM to
avoid de-laminating the resin bonded material from the aluminum core as well as
to minimize the possibility of igniting the resin at high speeds.

The resulting normal force and grinding power as a function of wheel
speed for the Eaton specimens is shown in Figure 34A and 34B. Note that the
grinding power remained relatively constant (see Figure 34B) over the speed
range tested; thus indicating that the tangential force decreased with increasing
wheel speed. This behavior is typical of what was previously observed with
plated wheels12. Conversely, increasing the wheel speed tended to increase the
normal force in all tests using this fine arit resin bonded wheel, which is
somewhat contrary to what was observed in the previous plated wheel tesis12,
Recall that with either 120 grit or 400 grit plated wheels the normal forces were
reduced at higher wheel speeds. It is speculated that increasing the wheel
speed increased the grinding zone temperatures, thereby softening the resin
bond to the point where the abrasive was not rigidly supported and could not
readily penetrate the ceramic. Consequently, perhaps only high temperature
bond systems (such as vitrified, metal, etc.) should be considered for HSLD
grinding processes. Future work will include thermal measurements and various
bond systems to better understand this unique normal force behavior at high
speeds.

Some indication of resulting surface quality is given Figures 35A & B.
Note that in almost all cases, the resulting surface finish and component
roundness tended to deteriorate with increased wheel speeds. For comparison,




26

in previous plated wheel tests utilizing 120 & 400 grit abrasive, the surface finish
tended to improve with increased wheel speeds using the 120 grit plated wheel,
while increasing speeds with the 400 grit wheel resulted in a poorer surface
finish. In future studies, tests with a coarse 120 grit resin wheel should be
conducted to better understand these potentially opposing tendencies.

5.4 Other Practical Implementation Concerns

In addition to the operations discussed above, considerable testing was
performed at Eaton MTC to address potential practical HSLD concerns and to
better understand the influence of wheel roundness and system balance on the
resulting ceramic surface while operating at increased wheel speeds. As given
in Figure 36, the relative performance of two similarly manufactured 120 grit
brazed diamond wheels is compared. The new 1.0" wheel was to be used in a
Phase Il series of HSLD G-Ratio studies. Unfortunately, a 15 to 20 pound
normal force oscillation was present with the 1.0" wheel versus only a 3 pound
oscillation with the 0.5" wheel (see Fig. 36). Indicator ring measurements
showed that the wheel was mounted concentric to within +/-0.0005". However,
by expanding the time scale on the force output trace, it could be seen that the
wheel had two high and two low spots on its outside diameter. The force traces
presented in Figure 37 represent two revolutions of the 1.0" wide grinding wheel.
Subsequently, measurements taken around the outside diameter of the wheel
showed it to be out-of-round by approximately 0.002 inch.

In an attempt to "round-up" the wheel, approximately 8 in3 of S/RBSN
was ground from a series of prismatic specimens. However, as shown in Figure
37, this approach essentially doubled the apparent force fluctuation in addition
to doubling the total grinding force. As a result, the wheel was sent back to the
vendor to be stripped, re-ground, and re-brazed with new abrasive. Upon
receipt of the re-brazed wheel, the test was repeated. Again, however, the force
fluctuation was still present (see Fig. 37). The exact reason for the out-of-round
condition was not determined, but was most likely linked to the high temperature
brazing process which could have led to thermal distortion of the unique hub on
the 1.0" wheel. Currently, a conventional diamond plating process is being used
to recoat the wheel. This new plated 1.0" wide wheel will then be employed in
the HSLD G-Ratio studies in the Phase |l follow-on effort.

As stated above, it is important to realize that in generating a high quality
surface finish, several additional factors, aside from grit size, must be considered
collectively. For example, as alluded to in Figures 36 & 37, any wheel runout
can have a profound effect on force fluctuation. This effect can be manifested in
reduced surface quality. Additionally, any wheel imbalance can also deteriorate
surface finish. More allusive however, is the problem of regenerative chatter
which encompasses system compliance, dynamics of the grinding action, as well
as all of the previously mentioned factors.

Figure 38 shows the development of some regenerative chatter by going
from a wheel speed of 6500 SFM to 15,000 SFM with a 400 grit resin bonded
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wheel. The amplitude and frequency of the "lobbing" is provided in Figure 39.
Note that at low speeds a small 3 lobed pattern is apparent with lobe heights of
0.187 microns. However, as the wheel speed is increased to 15,000 SFM, a
pronounced 22 lobe pattern is generated with lobe heights of 0.702 microns.

Typically, the first source of chatter to be considered is wheel imbalance
and runout. However, with a dressable resin wheel, runout was negligible.
Similarly, wheel balance checks showed the system to be well within accepted
levels. Recall, however, that as the wheel speed was increased the normal
forces increased (see Table 5 and Figure 34A) which in turn could have
contributed to vibration of the workpiece mounting arbor. In addition, it is
hypothesized that increasing the wheel speed also increased the grinding zone
temperatures to the point where the resin bond could not adequately support the
abrasive, thereby resulting in more of a "smearing or stick/slip" cutting action
rather than a smooth grinding action. From this perspective, perhaps only
dressable high temperature bond systems (such as vitrified, metal, etc.) should
be considered for HSLD grinding processes.

6.0 SUMMARY

An initial exploratory feasibility study of the High Speed Low Damage
(HSLD) grinding process was undertaken to identify how high wheel speeds and
removal rates might impact resulting grinding forces, finishes, and surface quality
of silicon nitride. Using a relatively coarse (120 grit) brazed diamond wheel,
tests were conducted at wheel speeds up to 35,000 SFM (178 m/sec) and
material removal rates up to 1 in2/min (11mm2/sec). It was shown that the
grinding forces decrease considerably with increased wheel speed and/or
reduced material removal rate and that a tendency toward improved surface
finish is developed as wheel speed is increased. Moreover, an improved surface
finish was obtained by going to high material removal rates; even while operating
at conventional wheel speeds.

It was also found that increasing wheel speed, while operating at a
relatively low material removal rate, can dramatically reduce surface
fragmentation. One possible explanation for this behavior stems from the fact
that the unit grit load is reduced significantly by increasing wheel speeds.
Alternatively, increasing the material removal rate was-also shown to reduce
surface fragmentation. Therefore, consideration must be also given to the effect
of increased workzone temperature developed at high material removal rates
and/or wheel speeds which could help to promote plastic flow within the
workzone. Although extensive MOR testing is yet to be performed, these resuits
suggest that a transition from a "brittle fracture" mode of grinding to a low
damage "ductile" grinding mode can be achieved by increasing wheel speeds
and/or material removal rates.
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In an attempt to experimentally identify the actual grinding zone
temperatures, two laboratory systems were designed, built, and evaluated. The
initial system employed a thermocouple embedded in the workpiece. It was
demonstrated, however, that the peak ceramic grinding temperatures could not
be accurately and consistently measured in-process with this approach due to
the inherent time delay problems. One possible reason is the poor contact
between the thermocouple tip and the ceramic workpiece. Accuracy with a
ceramic workpiece may also be worse due to its lower thermal conductivity
(which may induce additional thermal inertia errors) and reduced heat
conduction from the junction through the thermocouple wires.

To provide a faster temperature response and improved reliability a two-
color infrared pyrometry system, which uses an optical fiber to conduct the signal
from the workpiece to a sensor, was evaluated. Unlike with a single-color
system, movement of the fiber will not affect accuracy, fiber end conditions have
less influence on the measurement, and, most importantly, the emissivity of the
material is not required.to estimate the temperature. Based upon limited testing,
the results indicate that the two-color infrared detector can be used to measure
temperatures in the workpiece subsurface during grinding. However, in order to
improve performance, subsequent efforts will focus on methods to prevent
grinding fluid from contaminating the fiber end and to make the system more
robust. Fibers with smaller core diameters will also be used to detect more
localized temperatures on smaller areas of the workpiece. Additional thermal
analyses will be conducted using moving heat source theory to better estimate
the energy partition to the workpiece. In addition, future efforts will also identify
grinding zone temperatures developed under a wide range of material removal
rate and wheel speed combinations and the subsequent affects on MOR
strength and wheel life.

In summary, possibly the most significant findings to date which
demonstrate initial HSLD feasibility are given in Figure 27, in that:

® Increasing wheel speed, while operating at a relatively low material
removal rate of 0.125 in2/min (1.34 mm2/s), can dramatically reduce surface
fragmentation. A five fold wheel speed increase from 5000 SFM (25 m/s) to
25,000 SFM (127 m/s) reduced "pull out" by almost a factor of four. At low wheel
speeds, roughly 43% of the surface was "fragmented". However, by increasing
the wheel speed to 35,000 SFM (178 m/s), while keeping all other conditions
constant, surface fragmentation was reduced to 12% - - which is indicative of
"low damage" grinding.

@ Alternatively, increasing the material removal rate was also shown to
reduce surface fragmentation. Approximately a three fold reduction in "pullout"
was achieved by increasing removal rates from 0.125 in2/min (1.34 mm2/s) to
1.0 in2/min (10.75 mmZ2/s) while operating at conventional wheel speeds. At
35,000 SFM (178 m/s) a two fold reduction in surface fragmentation was
achieved by increasing the material removal rate.
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Figure 12. Temperature results with triangular heat source:
energy partition & = 18%.
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Figure 13. Temperature results with triangular heat source:
energy partition € = 18%.
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Figure 15. Blackbody for calibration.
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Figure 17. A chopped signal output from InSb cell at
temperature of 380°C.
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Figure 19. Ratio of signals from InSb and MCT cells
versus temperature from first calibration.
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fragmentation after grinding at 0.125 in?min (1.34 mm?/s) with a wheel

Figure 28A. SEM photomicrograph illustrating 43% surface
speed of 5,000 SFM (25 m/s).
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Figure 28B. SEM photomicrograph illustrating 12% surface
fragmentation after grinding at 0.125 in?/min (1.34 mm2/s) with a wheel
speed of 35,000 SFM (178 m/s). '
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Figure 28C. SEM photomicrograph illustrating 16% surface
fragmentation after grinding at 0.5 in?/min (5.38 mm?/s) with a wheel
speed of 5,000 SFM (25 m/s).
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Figure 28D. SEM photomicrograph illustrating 9% surface fragmentation
after grinding at 0.5 in?/min (5.38 mm#/s) with a wheel speed of 35,000
SFM (178 m/s).
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Ceramic Properties
Eaton/Coors and Kyocera Materials

Eaton - Coors Kyocera
RBSN S/RBSN SN220
Density glcc 3.30 3.20
Ib/cu in 0.1192 0.1156
Porosity % <0.1
Flexural strength MPa 175-275 620 590
(Weibull slope) ksi 25-40 90.0 85.6
Elastic modulus GPa 138.0 303.0 294.0
Msi 20.0 44.0 427
Hardness Hv

Other R45N 6§8-67 | KHN 1500 Ra 91

Fracture toughness MPartm. 3.00 6.60 5.70
(ISB) ksirtin
Poisson's ratio 0.22 0.28
Thermal expansion Temperature 25-1000 °C
range 77-1835 °F
10*/°C 3.00 3.50 3.20
10°I°F 1.67 1.94 1.78
Thermal shock

resistance °C 800 550
(delta T critical) °F 1475 1025
Thermal conductivity W/m K 30.00 25.00
BTU/hrft°F 51.90 43.25
Specific heat Jigk 0.65 0.67
BTU/Ib°F*10 0.1552 0.1600

Table 1. Comparison of ceramic properties for three materials:
- Eaton/Coors RBSN
- Eaton/Coors S/RBSN
- Kyocera SN220
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HSLD Surface Grinding Results

Material
Removal 0.125 in¥min 0.5 in¥min 1.0 in¥min
Rate 1.34 mm¥s 538 mm?s 10.75 mm?¥s
Wheel Speed
(f/min) 5,000 | 15,000 | 25,000 } 35,000 | 5,000 15,000 | 25,000 | 35,000§ 5,000 | 15,000 25,000 | 35,000
[m/sec) 25 76 127 178 25 76 127 178 25 76 127 178
Surface Finish Ra
(micro Inch) 48 45 39 38 38 37 38 43 30 36 31 32
{micron] 122 1.14 0.99 0.97 097 0.94 0.97 1.09 0.76 0.91 0.80 0.81
Surface Finish Rt
(micro inch) 447 371 288 324 335 304 268 297 222 258 244 241
[micron} 11.35 9.42 7.32 8.23 8.51 772 6.81 7.54 5.64 6.55 6.20 6.12
Puli Out
(%) 43 20 12 12 16 12 8 9 15 9 9 6
Normal Force
(Ibs) 21 1 9 7 49 18 25 24 124 85 63 92
IN] 93 49 40 31 218 80 b 107 552 378 280 409
Tangential Force
(tbs) 2 1 2 1 10 3 4 5 34 1 11 9
[N] 9 4 9 4 44 13 18 22 151 49 49 40
Power
(HP) 03 0.7 1.1 12 1.3 22 3.0 1.9 45 37 114 59
[kw] 0.2 0.5 0.8 09 1.0 1.6 2.2 1.4 34 2.8 8.5 4.4
Specific Energy
(in-binI)x10°-6 2.6 53 125 123 36 28 7.0 17 6.1 58 103 1.5
[joule/eu mm] 18 37 86 85 25 20 48 81 42 40 71 79
Contact Pressure
(psi) 369 185 161 115 612 222 311 298 1,069 739 562 817
[MPa] 25 13 1.1 0.8 42 1.5 2.1 2.1 74 5.1 3.9 5.6
Unit Grit Load
(Ibs/grit) 0014 0.007 0.006 0.004 1 0.023 0.008 0.012 0.011 0.041 0.028 | 0.021 0.031
[N/grit} 0.062 0.031 0.027 0.019 0.103 0.037 0.052 | 0.050 0.184 0.125 0.094 | 0.137
Grind
Temperature
(Fahrenheit) 351 740 1,169 | 1,269 843 1,377 1,840 1,210 | 2,262 1,876 5,793 3,012
[Celsius] 177 393 632 687 451 747 1,004 654 1,239 1,024 | 3,201 1,656

Table 2. Summary of conditions and results for HSLD surface grinding tests.
Notes:

- Eaton S/RBSN ground with Abrasive Technology 120 grit plated wheel

- Specific energy calculated using tangential force.

- Contact pressure calculated using normal force.
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Manufacturing
Technologies IE AT.N
Center M

HSLD Cylindrical Grinding Results

Eaton 120 Grit Wheel 400 Grit Whesl
Material
Material 0.267 i?/min 0.8 i?/min 0.267 in?/min 0.8 it/min
Removal 2.86 mm?/sec 8.6 mm?/sec 2.86 mm?/sec 8.6 mm?/sec
Rate
Wheel
Spesd
(f/min) 3,700 11,300 3,700 11,300 3,700 11,300 3,700 11,300
[m/sec] 18 57 19 &7 19 57 19 57
Surfacs
Finish Ra
{pin) 76 82 98 99 38 21 41 36
[micron] 193 2.08 249 251 0.97 0.53 1.04 0.91
Pull Out
(%) 54 76 39 50 20 17 26 19
Power
(HP) 04 03 0.8 1.0 0.6 0.6 1.6 2.0
kwl 0.3 0.2 0.6 0.8 0.5 0.5 1.2 15
Normal
Force
(Ibs) 18 12 55 18 21 7 41 25
N 82 55 243 78 95 33 182 113
Kyocera 120 Grit Wheel 400 Grit Wheel
Material
Material 0.267 i?/min 0.8 in?/min 0.267 i?/min 0.8 in?¥min
Removal 2.86 mm?/sec 8.6 mm?/sec 2.86 mm?/sec 8.6 mm?/sec
Rate
Wheel
Speed
(ft/min) 3,700 11,300 3,700 11,300 3,700 11,300 3,700 11,300
[m/sec] 19 57 19 57 18 57 19 57
Surface
Finish Ra
(iin) 89 74 90 96 33 23 34 32
[micron] 226 1.88 2,28 244 0.84 0.58 0.86 0.81
Pull Out
(%) 43 67 32 21 11 10 1 12
Power
(HP) 1.5 11 1.4 1.7 09 1.0 27 28
kW) 11 08 1.0 1.3 0.7 0.8 20 2.1
Normal
Force
(Ibs) 25 24 49 29 27 20 75 45
IN] 111 107 218 129 120 89 334 200

Table 4. HSLD Cylindrical grinding results.
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