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ABSTRACT 

Limita t ions  f o r  t he  energy d i s s i p a t e d  i n  t h e  spontaneous f i s s i o n  O F  . 

2 5 2 ~ f  have been s t u d i e d  on t h e  b a s i s  of t he  exper imental  fl-gment k i n e t l c ,  

ene rg i e s ,  neutron and y d a t a  and t h e  ca l cu la t ed  ( s t a t i c )  p o t e n t i a l  e n e r z i e s  of 

t he  fragments.  Upper bomds  f o r  t h e  d i s s i p a t e d  energy a r e  abta ined by r e s t r i c t i n g  

the  parameter space of t h e  f i s s i o n i n g  system t o  t h e  domain ilhich i s  c o e a t i b l e  

wi th  t h e  exper imental  pos t - sc i se ion  d a t a ,  and by computing t h e  maximum znergy 

a - r a i l ab l e  i n  t h i s  domain f o r  dissipation. No assumptions have been mads 

about  t h e  f i s s i o n  dynami-s o r  t h e  d i s s i p a t i o n  mechanism. A numerical e r s l u -  

az ion has  been performed f o r  19  p a i r s  of fragments l o  2 ' 2 ~ f ( s f ) ,  t a k i n g  i n t o  

a-count sphe ro ida l  f r a g m n t  shapes wi th  d i f f u s e  su r f ace ,  nuc lea r  i n t e r e s t i o n  

aad Coulomb e x c i t a t i o n  e f f e c t s .  The energy a v a i l a b l e  f ~ r  imte rna l  e x c i t a t i o n  

a t  s c i s s i o n  is found t o  be  sma l l  (L 10 MeV). An a n a l y s i s  c f  the u n c e r t a i n t i e s  

e l t e r i n g  i n t o  t h i s  r e s u l t  s h m s  t h a t  high d i s s i p a t i o n  i n  2 5 2 ~ f ( s f )  i s  hcompatible 

wl th  t h e  e x i s t i n g  exper imental  d a t a  un le s s  p e c u l i a r  frzgment shapes  

a r e  assumed. Upper bounds a r e  a l s o  given f o r  t h e  fragment deformations. We 
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d i scuss  t he  hypothesis  of minimum p c t e a t i a l  energy a t  s c i s s i o n ,  t h e  in f luence  

of fragmenc s h e l l  e f f e c t s ,  and t h e  re levance of da t a  from t e rna ry  f i s s i o n .  

KEYWORD ABSTRACT 

FISSION 2 5 2 ~ f ( s f ) ; c a l c u l a t e d  energy d i s s i p a t i o n ,  fragment 

deformation. I 
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I.  INTRODUCTION 

The problem of energy d i s s i p a t i o n  is  c r u c i a l  f o r  t he  convent ional  t r e a t -  

ment of f i s s i o n  i n  heavy nucle5. Apart from'few except ions  (e .g . ,  H i l l  and 

1 
Gheeler ), t he  time evo lu t ion  of t he  system i s  s tud ied  a s  a func t ion  06 a  

smal l  number of parameters,  t h a t  acca rn t  f o r  t he  few "impurtsnt" c o l l e c t i v e  

cegrees  of freedom.. This  t rea tment  wr re sponds  t o  t h e  exper imental  s i o u a t i o n ,  

rs only  c e r t a i n  c o l l e c t i v e  p r o p e r t i e s  of t h e  c~mpound nucleus  and its Irag- 

ments a r e  a c c e s s i b l e  t o  measurements. As t he  zonservat ion of energy dces  not 

epply  t o  such a  reasonable ,  buc a r b i t r a r y ,  s e l e c t i o n  of degrees  of freedom, 

t h e  problem of energy d i s s ipa t -on  i n m  t h e  o t h e r  ( i n t r i n s i c )  degrees  01 f r e e -  

dom must be overcome. 

Contradic tory  a s s u q t i o n s  have k e n  made e a r l i e r  abou: t h i s  c r u c i ~ l  e f f e c t  

ranging from ~ e r o - d i s a i g a t i o n ~ - ~  t o  almost complete d a m p ~ n g . ~  I n  part:  c u l a r  

t h e  con t r ibu t ion  of one-body and two-body e f f e c t s  t o  t h e  dissipation mechanism 

is c o n t r ~ v e r s i a l . ~ - ~ ~  U n t i l  tuday t t e  s t r e n g t h  of t he  d i s s i p a t i o n  and the  

m g n i t u d e  of t h e  i n t e r n a l  e x c i r a t i o n  energy r e s u l t i n g  from it a r e  s t i l l  u n k n m .  

A number of e s t ima te s  has  been given f o r  t h e  i n t e r n a l  e x c i r a t i o n  e n e r r  i n  

c e r t a i n  f i s s i o n  r eac t ions .  They a r e  based  on exper imental  i n f ~ r m a t i o n . ~ ' ~ ~ - ~ ~  

on hydrodynamical c a l c u l a t i o n s  v i t h  ~ d j u s t a b l e  v i scos i ty .  7-10 on p a r t i c u l a r  

n l c roscop ic  models,13'21-23 o r  on combinations of s e v e r a l  approaches. 13,24,25 

3 e  est imated i n t e r n a l  e x c i t a t i o n  enorg ie s  der ived from t h z o r e t i c a l  mo3els 

gene ra l ly  a r e  ve ry  l a r g e  (some a r e  even l a r g e r  than t h e  a w i l a b l e  energy a t  

s c i s s i o n ) .  The e s t i m a t e s  base3 on exper imental  d a t a  u sua l ly  y i e l d  sma l l e r  

~ a l u e s .  Some of them, however, neg lec t  c e r t a i n  types of e x c i t a t i o n  o r  make 

use of crude approximations fox t h e  nuc lea r  shape o r  t he  p o t e n t i a l  enezgy. 

4  

I t  is  the  aim of the  p re sen t  paper t o  determine energy d i s s i p a t i o n  l imi-  

t a t i o n s  i n  t he  spontaneous f i s s i o n  of 2 5 2 ~ f .  I n  o r d e r  t o  a r r i v e  a t  a s  f i r m  

a  determinat ion a s  poss ib l e  we r e l y  only on q u a n t i t i e s  which a r e  known wi th  

r e l a t i v e l y  high accuracy,  namely t h e  c a l c u l a t e d  fragment deformation, ene rg ie s ,  . . 

t he  Coulomb and nuc lea r  I n t e r a c t i o n  ene rg ie s  between them, and exper imental  

pos t - sc i s s ion  da t a .  I n  pa rc i i l c l a r  we avoid  any models o r  assumptions f o r  t h e  

dynamics of t he  nuc lea r  no t ion  o r  t he  uechanism of d i s s i p a t i o n  i n  f i s s i o n .  

This  is  achieved by n u y r i c a l l y  scanning the  space of deformation parameters 

of each p a i r  of fragments a t  a given fragment s epa re t ion .  A t  each s t e p  we 

determine lw i th in  c e r t a i n  b o u d s )  t h e . k i n e t i c  and e x c i t a t i o n  ene rg ie s  t h e  

fragments vould have a t  i n f i n l t e  s e p a r a t i o n ,  and compare these  values  wi th  t h e  

corresponding exper imental  da t a .  Then the  maximum energy a v a i l a b l e  f o r  d i s -  

s i p a t i o n  and c o l l e c t i v e  v i b r a t i o n  i s  numerical ly  searched f o r  under t he  con- 

s t r a i n t  t h a t  thp nuc lea r  deEormation b e  compatible v i t h  t h e  exper imental  

pos t - sc i s s ion  data .  

, The method of t he  p re sen t  paper d i f f e r s  from our  previous  es;imate18 i n  

t he  assumption of d i f f u s e  nuc lea r  s c r f aces .  This  r e q u i r e s  t o  abandon t h e  concept 

of a  s c i s s i o n  "point" (with a discont inuous  break-up of a  sharp-surface  drop- 

l e t  i n t o  fragments wi th  square-well dens i ty  d i s t r i b u t i o n s ) .  In s t ead ,  a  

sequence of fragment s e p a r a t i o n s  wi th  dec reas ing  neck dens i ty  is  considered 

(cf .  Sect .  111). I n  a d d i t i o n ,  t he  nuc lea r  i n t e r a c t i o n  energy between the  

fragments is n w  taken i n t o  account.  I h e  pos t - sc i s s ion  Coulomb e x c i t a t i o n  is 

no longer  assumed t o  be  sma l l .  I t  is t r e a t e d  a s  a  v a r i a t i o n a l  parameter 

t h a t  may, assume a r b i t r a r y  va lues  (up t o  t he  e x p e r i a e n t a l  fragment e x c i t a t i o n  

energy). Furthermore we have abandoned our previous  r e s t r i c t i o n  t h a t  t h e  

upper bound of t he  d i s s i p a t e d  (plus  non- t r ans l a t iona l  c o l l e c t i v e )  energy be  . 



a cons t an t  f ' rac t ion of t he  measured fragment e x c i t a t i o n  energy, indepen6ent of 

tt.e mass as:-mmetry of t he  f ragmentat ion.  The new r e s u l t s  show t h a t  t h i s  

~ s u m p t i o n  :a i n  f a c t  n o t  w e l l  f u l f i l l e d ,  t he  r e s u l t i n g  d i s s i p a t i o n  bow-d. 

' however. i s  o f  t h e  same o rde r .  

I n  SzJaect .  1I.A s e v e r a l  Limitir-g cond i t i ons  a r e  deri-led f o r  fragrtent 

deformations and energy d i s s i p a t i o n  ir. f i s s i o n .  These a r e  ; ra l id  f o r  a r b i t r a r y  

nuc lea r  def.?rmations. The l i m i t a t i o n s  a r e  evaluated a s s d l g  sphe ro ida?  f rag-  

r e n t s  ( a s  d s sc r lbed  i n  S.lbsect. 1I.B) f o r  t h e  spontar:eous f a s s i o n  of " ' ~ f  

vhere  par t i :u lar ly  a c c u r s t e  exper imental  d a t a  a r e  a v a i l a b l e  ( S u ~ s e c t .  1I .C) .  

The relaxatLon of t h e  assumprims of Ref. 18 and a thorough examinat ion of 

t i e  accurscy of t h e  r e s u l t s  ( S h s e c t .  II1.B) l eads  t o  a nuuber of new fandings  

cmcerning t h e  fragment shapes  (Subsest.  1 I I .C)  t he  alnimun! p o t e n t i a l  rnergy 

hypothesis  (Subsec t . I I I .D)  anc t h e  re levancy of t e rna ry  f i s s i o n  d a t a  f o r  

Mnary  fie.sion r e s u l t s  ( S u h e c t .  111.0. The conclus ions  r r e  summarized i n  

Sect .  IV. - 

11. MEWOD 

The ~ t h o d  descr ibed i n  the  f o l l o v i n g  subsect ion does no t  r e q u i r e  a n y  

Easumption sbc-ut t h e  shspe of t h e  f i c s i o n i n g  n . ~ c l e u s  o r  about t h e  funcaional  

l o n i o f  1:s p o t e n t i a l  energy. Therefore. t he  r e l a t i o n s  of Subsect .  1I.A a r e  

t e r i v e d  f o r  an a r b i t r a r y  s e t  OF shape parameters a .  For t he  numerical eva lua t ion  

of 2 5 2 ~ f ( a f ) ,  however, we meke use  of t h e  convent ional  sphe ro ida l  apprmxima- 

t i o n  f o r  t b e  fragment shapes .  This  is descr ibed i n  Subsec:. 1I.B. 

A. Energy ~ v a i l ' a b l e  f o r  D i s s ipa t ion  

We w o s i d e r  t h e  spontaneous f i s s i o n  of t he  parent  nucleus  (Z A ) i n t o  0 '  0 

rvo fra-its w i th  given mass and charge numbers (Z;,A ) and (Z2,A,). The - 1 
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energy r e l e a s e  of t h a t  r e a c t i o n  exper imental ly  s h w s  up a s  fragment k i n e t i c  

energy E ~ ~ ~ ( z ~ . A  .Z .A 1 ,  neutron and y-ray ene rg ie s .  On the  o the r  hand. 
1 2  2 

the  energy r e l e a s e  i s  equa l  t o  t h e  d i f f e r e n c e  o f  t he  ground-state p o t e n t i a l  
a 

energy V of t h e  parent  nucleus  and t h a t  of t he  fragments ( i f  we neglect  t h e  

sma l l  change i n  zero-point energy) ,  1.e.. 

2 2 
k in  z ,A . a g  - 1 v~~~~ = I E : ~ ~ ~  ( Z ~ , A ~ )  + E ~ ~ ~ ( ~ ~ . A ~ . ~ ~ . A ~ ) .  

0 0 0  1-1 1- 1 

(2.1) 

Here ao, a l ,  and a 2  denote  a r b i t r a r y  s e t s  of deformation parameters of t h e  

parent  nucleus  ( i = O )  and t h e  fragments ( 1 ~ 1 . 2 ) .  R e  s u p e r s c r i p t  g s t  r e f e r s  

t o  t h e  gound-state deformation. The t o t a l  energy of neutron and y-quanta 

emit ted from fragment (1) is  denoted by E expt(Zi,Ai). From the  exper imental  

q u a n t i t i e s  E* and E:zt only  the  mean values  f o r  each f ragmentat ion e n t e r  
expt  

i n t o  t h e  eva lua t ion  ( c f .  Subsect.  1I.C). A poss ib ly  ambiguous d i v i s i o n  of t h e  

exper imental  e x c i t a t i o n  energy betveen heavy and l i g h t  fragments (e .g . ,  due 

t o  s c i s s i o n  neutrons)  does no t  a f f e c t  t h e  p re sen t  a n a l y s i s  as w i l l  be  dia-  

cussed below. 

Any e x c i t a t i o n  d u r i n g t h e  descent  from sadd le  t o  s c i s s i o n  is e i t h e r  col-  

l e c t i v e  ( r e l a t e d  t o  changes in t h e  c o l l e c t i v e  coordinates  a ) o r  i n t e r n a l  
0 

( r e l a t e d  t o  o t h e r  degrees  of freedom). At s c i s s i o n  they r e s u l t  i n  t r a n s l a t i o n a l  

c o l l e c t i v e  energy Etrans (corresponding t o  non-zero r e l a t i v e  v e l o c i t y  between 

t h e  c e n t e r s  of mass of both  fragments) and o t h e r  ( v i b r a t i o n a l  o r  r o t a t i o n a l )  

c o l l e c t i v e  o r  i n t e r n a l  e x c i t a t i o n  energy X. The t o t a l  amount of e x c i t a t i o n  

energy Etrans + X a t  a c e r t a i n  deformation a. equals  t h e  decrease  i n  poten- 

t i a l  energy r e l a t i v e  t o  t h e  ground s t a t e  of t h e  pa ren t  nucleus ,  i . e . ,  

A ,agst) - V(ZO.AO,aO). 
+ ' t rans = V ( Z ~ .  o o (2.2) 

I t  is  convenient t o  de f ine  t h e  i n r e r a c t i o n  energy Vint  (due t o  Coulomb 

and nuc lea r  fo rces )  betweer: two a r b i t r a r y  p a r t s  (1.1.2) of t h e  system a s  

2 
Vint(Z1,A1,~2,A1sa0.a11a2) = V(ZO,AO,aO) - 1 V(Zi9AiBai)- (2 .3)  

I= 1 

I t  fo l lows then from Eqs. (2 .1)  - (2.31, t h a t  



- Vint(Zl.Al.z2,A2.a0.a1.a2) + E ~ ~ ~ I : Z ~ . A ~ , Z ~ . A ~ ) .  (2.4:) 

The f i n a l  Eragment k i n e t i c  e2ergy Ekin is  almost e q u a l  t o  t h e  sum =f 
exP t 

p re - sc i s s ion  k i n e t i c  energy E_ and the  i n t e r a c t i o n  energy Vint  a t  sclls- - ran3 

s ion .  It may be reduced 5y a c e r t a i n  amount 6 (e .g . ,  due t o  p o s t - s c i s s i x  

Coulomb e x c i t a t i o n  i n  t h e  s t r o n g l y  non-centra l  Coulomb f ie ld!  of t h e  deformed 

f ragments) .  Therefore ,  

Ekin  ewt(Zl,q,Z2,A2:~ = EtrJns+Vlnt(Z1.Al.Z2.A2.aOsa11a2) - (1-5)  

and, according t o  Eq. (2 .4)  

2 *  x - I [ E ~ ~ ~ ~ ( ~ ~ , A ~ )  t.V(Zi,Ailaigst) - V(Zi.Ai,~i)l  - 6 .  (!.6) 
i=l 

Equations (2.5) and (2.6) e r e  coupled, because Vint and V(ZI,Ai,aim 

a r e  (numerically) given f u n c t i o x  of t h e  same sets of var ia :>les ,  a l  and a 2 .  I n  

o r d e r  t o  d e t e d n e  an  upper bouid f o r  both  t h e  d i s s i p a t e d  e.xergir and the  non- 

t r a n s l a t i o n a l  c o l l e c t i v e  e x c i t a t i o n  energy,  we e l i m i n a t e  th.: unknown q u m t i t y  

Etrans i n  Eq. (2.5) by introducllng t h e  i n e q u a l i t y  

Ekin ewt (zlDqDz2.A2) ' ~ ~ ~ ~ ( ~ ~ ~ q . z ~ . ~ ~ , ~ ~ . a ~ , a ~ )  - '5 ( 2 . 7 )  

and t r e a t  6 as a numerical  pa rane te r  

Then f o r  each fragment p a i r  (Z1,~l)  and (Z2,A2) an upper bound can 

be determined by maximlzlng t h e  right-hand s i d e  of Eq. (2.6) under t h e  :on- 

s i r a i n t s  (2.7) and (2.8). Since  E : ~ ~ ( z ~ , A ~ )  and V ( Z  ,A ,agst) a r e  c o n ~ t z n t s  
1 1 %  

t h i s  amounts t o  numerical ly  s ea rch ing  f o r  t h e  c o n s t r a i n t  miaimus of V(ZL.Al,al) + 

V:Z A a ) + 6  a s  a func t ion  of :he s e t s  of deformation parameters a l  a ~ d  a 
2' 2' 2 2 

' o f  t h e  fragments and an s d d i t i o n a l  parameter 6. This  has  been p e r f o r m d  f o r  

2 5 2 ~ f ( s f )  d i n g  use of the  shape pa rame t r i za t ion ,  p o t e n t i a l . e n e r g y  a n 8  

e q e r i m e n t a l  da t a ,  t h a t  Ere desc r ibed  i n  t h e  fol lowing subsec t ions .  I t  turned 

ou t  t h a t  t h e  dependence of X on t h e  parameter 6 and on the  d i s t r i b u t i o n  of 
max 

X = X(H) + X(L) between heavy and l i g h t  fragment i s  very weak. I n  p r a c t i c e  
* * 

t h e  va lues  of X obta ined f o r  6 = 0 and X(H)/X(L) = Eewt(H)/Eexpt(L) were 
max 

found t o  approximate t h e  gene ra l  r e s u l t  w i th  s u f f i c i e n t  accuracy.  

From Eq. (2.6) a l s o  fol lows t h a t  

The i n e q u a l i t y  (2.9) w i l l  be used i n  Subsect .  1 I I .C  i n ' o r d e r  t o  o b t a i n  upper 

l i m i t s  f o r  t h e  fragment defornat lons .  

Figure  1 i l l u s t r a t e s  t he  method f o r  a one-dimensional parameter space 

(e .g . ,  symmetric f i s s i o n  wi th  s p h e r o i d a l  fragment defamation a l  = a 2  =.B. 

Here 6 = 0 and ze ro  nuc lea r  i n t e r a c t i o n  is assumed f o r  s i m p l i c i t y .  The Coulomb 

repu l s ion ,  Vint, between t h e  fragments i s  a dec reas ing  func t ion  of B .  There- 

f o r e ,  t h e  c o n s t r a i n t  (2.7) i s  f u l f i l l e d  only  i f  B ,x Bmin i n  Fig .  l b .  Under 

t h i s  c o n s t r a i n t  t h e  deformation energy of Fig .  l a  has  a minimum a t  B = Bmin 

and the  maximum energy a v a i l a b l e  f o r  ( r ~ t a t i o n a l ,  v i b r a t i o n a l  and i n t e r n a l )  

e x c i t a t i o n  is  given by Lx. I n  Fig. l a  t he  upper l i m i t  B- of t h e  fragment 

deformation i s  a l s o  given as r equ i r ed  by i n e q u a l i t y  (2.9).  I n  t h e  gene ra l  ca se  

of asymmetric f i s s i o n  (with nuc lea r  i n t e r a c t i o n  a n d ' s  $ 0) t h e  computation 

is complicated because a t  l e a s t  two interdependent  darameters  Bmin(l) and 

Bmin(2) r ep l ace  t h e  s i n g l e  va lue  Bmin and t h e  func t ions  V(6) and Vint(B) may 

not be monotonic i n  t h e  cons t r a ined  parameter space. 

B. P o t e n t i a l  Energy 

For t h e  eva lua t ion  of Eqs. (2.6) - (2.9) we parametr ize  t h e  shape of 

t h e  f i s s i o n i n g  nucleus  by two c o a x i a l  s?heroids .  Such a s p h e r o i d a l  parametriza- 

t i o n  has  o f t e n  been used f o r  t h e  p o t e n t i a l  energy a t  s c i s s i o n  and a f t e r  s c i s -  

sion.2s3'18'26-36 A s  only  energy differertces between such conf igu ra t ions  

e n t e r  i n t o  o u r  c a l c u l a t i o n  the  s p h e r ~ i d s l  approximation should b e  s u f f i c i e n t .  

Higher axia121'37-39 o r  n o n - a r i a ~ ~ ~  deformat ions  could i n  p r i n c i p l e  b e  included.  
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b u t  t h i s  would r e q u i r e  much more computer time. Moreover, t he  sphe ro ica l  

approximation enables  t h e  s tudy of inhomogeneities i n  t he  charge and mass 

d i s t r i b u t i o n s  a t  t he  nuc lea r  sx r f ace ,  because t h e  e f f e c t  of t h e  d i f f u s e  sur-  

face  on t h e  energy can be t r e a t e d  by co r rec t ions  wi th  high accuracy. 

We consider  f o r  t h e  r a d i a l  fragment dens i ty  a Permi distribution v i t h  

constant  s u r f a c e  th ickness .  'Ihen t h e  shape of t h e  n u c l e u s , i s  e p e c i f i e 9  by 

t h e  d i s t a n c e  d between t h e  equ iva l en t  sha rp  dens i ty  s u r f a r n s  of t he  fragments,  

and the  ~ o h r - ~ o t t e l s o n ~ ~  paral re ters  Pi ( I =  1 ,2 )  f o r  t he  fragment de fo rna t ions .  

The,semi-axes xi, yi a d  ti a r e  then given by 

v h e r e  

is  t h e  vo lu re  conservat ion condition i f  

f o r  each fragment p a i r .  The liquid-drop r a d i u s  parameter r is given below. 

The p o t e n t i a l  energy V w n s i s t s  o f  t h e  liquid-drop (LDM) and s h e l l  energy 

of each fragment. and a nuc lea r  i n t e r a c t i o n  (NI) and Couhmb r e p u l s i o ~  (CR) 

energy between them: 
2 

V(ZlsZ2.~,A2.Bl~B2,d) - 1 [VLDM(Zi,Ai,Bi) + Vshell(Zi,AI,Bi) I 
1-1 

+VCR(Z1vZ2~A1,A2.81,132.d) +\kI(Z0BA1.A281.82nd). 

(2.14) 

The l i q u i d 4 r o p  e n e r e  VLDM is  c a l c u l a t e d  'ftar Myers and ~ w i a t e c k i ~ ~ ' ~ ~  

With e x p l i c i t  express ions  f o r  t h e  a r e a  of t h e  equ iva l en t  sharp d e n s i t y  su r f ace  

1 

. . 10 

IS1 and f o r  t he  Coulomb energy42 of t h e  (homogeneous) charge Ze, i . e . ,  

where 
2 

I s I  2nx[x + f i  a r c  s i n  - 
z -x 

and 

c 2  = 1 - (x/z)  2 ( 2  > x) (2.17) 

a r e  func t ions  of t h e  semi-axes x and z. The parameters a 2 ,  r ,  and r a r e  

given below. The inhomogeneity of t h e  charge d i s t r i b u t i o n  a t  t h e  s u r f a c e  can 

be taken i n t o  account by a co r r ec t ion  40 VCS which is independent of shape i n  

high Here, i t  need not be considered e x p l i c i t l y  because i t  can- 

c e l s  i n  Eq. (2.6). The in f luence  of t h e  d i f f u s e  fragment s u r f a c e s  on t h e  

nuc lea r  i n t e r a c t i o n  is' t r e a t e d  i n  Eq. (2.27). 

The s h e l l  co r r ec t ion  %hell is taken t o  be  t h a t  of Myers and ~ w i a t e c k i . ~ ~ * ~ ~  

We p r e f e r  t h i s  over  S t r u t i x k y - t y p e  s h e l l  c o r r e c t i o n s  f o r  several . ' reasons .  

F i r s t .  i ts  uncomplicated f u n c t i o n a l  form enab le s  t h e  r a p i d  conputat ion of 

a l a r g e  number of f r a g m n t  deformat ions ,  which is necessary  f o r  t h e  minlmiza- 

t i o n  procedure f o r  Eq. (2.6). Second, i t  t u r n s  ou t  t h a t  secondary minima of 

t h e  fragments ( a t  Bi > a r t )  have almost no in f luence  on t h e  r e s u l t s  ( c f .  Sect .  

111). Third ,  t h e  Myers-Swiatecki s h e l l  energy i s  expected t o  desc r ibe  t h e  poten- 

t i a l  energy of fragments f a r  o f f  t h e  l i n e  of 13-stability w i th  s u f f i c i e n t  

accuracy, as i t  accounts  w e l l  f o r  t h e  binding ene rg ie s  and quadrupole moments 

of a l a r g e  number of n u c l e i  throughout t h e  p e r i o d i c  t a b l e .  A comparison wi th  . 

o t h e r  s h e l l  c o r r e c t i o n s  d l1  be given i n  Sec t .  111. 
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The s h e l l  c o r r e c t i o n  of M:,era and ~ w i a t e c k i ~ ~ ' ~ ~  reads  

where 
M5/3 -M5/3 

3  i 1-1 ~ ( m )  = - (m - Mi-l) - y(m 3 5 / 3 - M 5 / 3  
5Mi -Mi-l i -1) 

and M and Mi-l denote  =he n e a r e s t  ( sphe r i ca l )  magic numbers 40 
I .  

1 m I M 
i' C2.20) 

?or sphe ro ids  8 i n  Eq. (2.18) i a  r e l a t e d  t o  t h e  Hill-Wheeler parameterL '40 '44 

and t o  t h e  major semi-axis  z by 

The parameters  C, c ,  a  and r a r e  g iven b e l w .  

The Coulomb r epu l s ion  b e w e e n  the  two fragments i s  c a l c u l a t e d  a c a r d i n g  
, 

2 
:o Nix 

2  
z1z2e 

[e,(al) + ~ ( 9 -  1 + s(il,,i2) I aiz. 23 ) .  - VCR(Z1* Z2*A1,A2'B1.B2.d) - - z 1 + z 2 + d  

v i t h  

.md 

A s  ha s  been pointed  o u t  i n  Ref.  45, t h e  e f f e c t  of t he  d i f f u s e  s u r f a c e  on t h e  

Coulomb r epu l s ion  between the  fragments is  conta ined i n  t h e  term V N I '  

For t he  nuc l ea r  i n t e r a c t i o n  energy we have taken t h a t  of  Krappe and 

( s l i g h t l y  modified by i n t roduc ing  the  mean r a d i i  of cu rva tu re  r i  of  t h e  

equ iva l en t  s h a r p  d e n s i t y  s u r f a c e s  a t  t he  t i p s  of  t he  s p h e r o i d a l  f r agmen t s ) ,  

w i th  

' ri = r)i/~: (2.28) 

and 

g(x) = x c o s h  X - s i n h  X. (2.29) 

For comparison, we have a l s ~  used t h e  nuc l ea r  i n t e r a c t i o n  energy of Bass 47 

.(with a  Woods-Saxon form f a c t o r  cons t an t  of 0.7 fm48*,49); i t  turned o u t  t h a t  .. 

our  r e s u l t s  a r e  n o t  very  s e n s i t i v e  t o  t h e  p a r t i c u l a r  form of  VNI ( c f .  Sec t .  111) .  

. . Ten parameters  e n t e r  i n t o  t he  c a l c u l a t i o n , o f  t h e  p o t e n t i a l  energy. The 

l i q u i d - d r o p  energy VLDX c o n t a i n s  t h e  parameters  
4 1  

a 2  = 17.9439 MeV (2.30a) 

K = 1.7826 (2.30b) 

r = 1.2249 fm. ( 2 . 3 0 ~ )  

The parameters  of t h e  s h e l l  c o r r e c t i o n  Vshell a r e  
41 

C = 5.8 EQV ' . (2.31a) 

c  0.325 (2.31b) . 

a . =  .0.444 rc. ( 2 . 3 1 ~ )  

The 'nuc l ea r  i n t e r a c t i o n  energy VNI depends on. f o u r  pa rame te r s  
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ro = 1.16 fm (2.32a) 

so = 1.4 fm (2.32b) 

a = 24.7 MeV Q:32c) 

K 4.0. 0 . 3 2 d )  

Even i f  t h e  phys i ca l  meaning of some of t h e  parameters (2.32) co inz ides  wi th  

(2 .30) ; the  f i t  va lues  (2.32) have been taken wi thout  changes from RE£. .46. 

Plthough VNI i s  only  of minor importance f o r  our r e s u l t s ,  t h e  inf luence of 

~ l l  t e n  parameters on t h e  r e sua ta  has  been chetked, and w i l l  be  discussed 

I n  Sect .  111. 

C. . txper imental  Data 

The eva lua t ion  of Eqs. (2.6) - (2.9) r equ i r e s  t he  fol lowing inpu t  da t a :  

t h e  y i e l d  and charge assignment of each mass s p l i t ,  t he  e v e r i n e n t a l  frragment 

e x c i t a t i o n  ene rg ie s  (from neutron and y emiss ian d a t a ) ,  a n i  t h e  measured 

mean k i n e t i c  ene rg ie s  p e r  f r agsen t  p a i r .  

For t h e  mass y i e l d s  Y we have taken t h e  pre-neutron e n i s s i o n  da t a .o f  

Bchmitt, e t  a1. ,50 and Lor conpar ison,  t h e . e a r l i e r  da t a  measured by Whntstone. 51  

The f i s s i o n  modes (Ni,Zi) ~f 2 5 2 ~ f  have been taken from Schmitt 's:  t a b l e  28 

>f e n e r g e t i c a l l y '  favored doubly even f i s s i o n  modes. We t ake  these  f i s a i o n  

nodes even f o r  t h e  h igh  y i e l d  mass s p l i t s ,  where exper imental  mean fragment 

charges  a r e  known, because the  d i sc repanc ie s  a r e  and a d d i t i o n a l  pa i r -  

+g c o r r e c t i o n s  f o r  t h e  non- i r teger  exper imental .  mean va lues  can b e  a w i d e d .  

l o r  t h e  most asymmetric fragment p a i r s  (A1 90, 92) no charge va lues  a r e  

g i v e n  by Schmitt .  Here t h e  charge assignment was made a f t e r  t h e  Myere-Swiatecki 

mass formula.40 ( I t  l eads  t o  t h e  same f i s s i o h  modes2' a s  t h e  Wing-Forg mass 
. . 

formula52 used by Schmitt .)  . . 

The exper imental  fragmenz e x c i t a t i o n  energy E* has  been determined 
exp t 

according t o  t h e  r e l a t i o n  

EZxp;(%) = ( i + ' 1 + 0 . 7 5  M e ~ ) ; ( ~ g ) + 2  MeV (2.33) 

given by Nifenecker,  e t  a1.l '  Here ; denotes  t h e  measured number .of neutrons  
' 

p e r  fragment,  and i and n t h e  average binding and center-of-mass energy pe r  .. 

neutron. The o t h e r  terms account f o r  t he  energy of t h e  y The 

q u a n t i t y  i + + 0.75 MeV is given i n  Ref. 17. For t h e  neu t ron  number ;(%) 
we have used t h e  measurements of t h e  Saclsy  group17'54'55 and, f o r  comparison, 

t hose  of Gavron and ~ r a e n k e l . ~ ~  For t h e  most s m t r i c  mass s p l i t s  (% 126, 

128, 130) t h e r e  i s  a cons ide rab le  discrepancy between the  va lues  r e s u l t i n g  from 

Eq. (2.33) and those  fo1lowir;g from t h e   value^^ and t h e  fragment k i n e t i c  

energy.50 This  has  been co r rec t ed  Lor.' I n  o rde r  t~ t e s t  t h e  accuracy of t h e  

r e s u l t s  we have a l s o  used t h e  e x c i t a t i o n  ene rg ie s  g iven by Bowman, e t  a1. .57'58 

which a r e  independent of Eq. (2.33).  

The exper imental  k i n e t i c  e n e r g i e s  p e r  fragment p a i r  Ekio a r e  taken from 
exp t  

Fig. 10 of Schmit t ,  e t  a1." They a r e  ad jus t ed  such t h a t  t h e  mean value  

186.5 MeV of Ref. 50 is  reproduced. In o r d e r  t o  e s t i m a t e  t h e  u n c e r t a i n t i e s  

e n t e r i n g  i n t o  our  c a l c u ~ a t i o n  from t h e s e  d a t a ,  we have a l s o  used va lues  of 

WhetstoneS1 (with a mean val.le o f  185.7 MeV). A d i scuss ion  df t hese  

e r r o r s  i s  given i n  t he  f o l l e d n g  s e c t i o n .  

111. RESUtTS 

A. E x c i t a t i o n  Energy 

The concept of a s:i.?sion "point" o r  " l i ne"  i n  t h e  parameter  space i s  . . 
def ined  only w i t h i n  the  sharp-surface  l iquid-drop model w i th  discont inuous  

break-up of t he  d r o p l e t  i n t o  two fragments.  Actual ly  t h e  n u c l e a r  s u r f a c e  has  
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a c e r t a i n  diffuseness and s c i s s i o n  is as soc ia t ed  wi th  the  formation o i  a neck . 

with inc reas ing  l eng th  and decreas ing dens i ty .  Therefore,,  i n  the  p reeen t  paper 

we do not  r e l y  on t h e  s c i s s i o w p o i n t  concept bu t  s tudy the  continuous separa-  

t i o n  of t h e  fragments t y  eva lua t ing  Eqs. (2.6) - (2.8) s e p a r a t e l y  f o r  a 

sequence of i nc reas ing  d i s t ances  d = O , . . . , m b e w e e n  t h e  equ iva l en t  star:, su r -  

f aces  of t he  fragments. 59 

The maximization procedure of Eqs. (2.6) - (2.3) is  performed s e p a r a t e l y  

f o r  each value  of d and f o r  each of 19 p a i r s  of fragments,  f o r  which t h e  

exper imental  input  d a t a  of Subsect.  1 I . C  a r e  ava i l ab l e .  Figure  2 s h w  t h e  

r e s u l t i n g  upper bound Xmax of c o l l e c t i v e  n o n t r a n s l a t i o n a l  p l u s  i n t e r n d  

z x c i t a t i o n  energy of t h e  system a s  a func t ion  of t he  heavy (H) and l imt  (L) 

fragment mass f o r  a n u w e r  of s e p a r a t i o n s  d. Here we have allowed Xmax t o  

7ary independently from one fragment p a i r  t o  t h e  o t h e r .  Tne r e s u l t s  s.10~ 

t h a t  X- i s .  roughly constant6'  f o r  a l l  fragment p a i r s  a t  3 given sepa:ation d. 

F igu re  3 shows t h e  averags  va lue  ? weighted over a11 19 mass s p l i t s  max 

v i t h  t h e  y i e l d s  Y 

Ki th  inc reas ing  sepa ra t ion  d t h e  r e s u l t i n g  va lue  of Xmax i nc reases  monotonically 

LT t o  t h e  exper imental  fragment e x c i t a t i o n  energy a t  a s epa ra t ion  of d : =  5.3  fm. 

m e  i n c r e a s e  i n  Emax i s  a s soc ia t ed  wi th  decreas ing deformation energy cf t h e  

fragments,  and a corresponding decrease  i n  fragment deformittion. 

Even i f  we d i s r ega rd  very sma l l  s epa ra t ions  d ,  where ~ p h e r o i d a l  fragment 

s:lapea may be u n r e a l i s t i c ,  Fig. 3 i n d i c a t e s  r a t h e r  low d i s s i p a t i o n .  At d - 1 fm, 

f o r  i n s t a n c e  (where l e a s  than LZ of t h e  t o t a l  mass is conta ined i n  che ove r l ap  

r eg ion ) ,  t h e  upper bound is ? - 7 MeV. Taking t h i s  a s  f a c e  va lue  means t h a t  
mrclr 

i n  pas s ing  through t h e  (d  = 1 Em) conf igu ra t ion  l e s s  than 20% of the  e x ~ e r i m e n t a l  

16 

t o t a l  fragment e x c i t a t i o n  energy is  a v a i l a b l e  f o r  i n t e r n a l  and o the r  non- 

t r a n s l a t i o n a l  e x c i t a t i o n .  The i n t e r n a l  e x c i t a t i o n  energy a lone  should 

even be smal ler .  

B. Accuracy 

Unce r t a in t i e s  e n t e t  in tc .  our  c a l c u l a t i o n  Erom both' t h e  exper imental  d a t a  

and t h e  c a l c u l a t e d  p o t e n t i a l  energy: The accuracy of t h e  r e s u l t s  of Subsect.  

1I.A has  been examined by r epea t ing  the  c a l c u l a t i o n  wi th  t h e  fol lowing 

modif icat ions:  

(1) The unusual ly  l a r g e  r ad ius  parameter r - 1.2249 fm of t he  Myers- 

Swiatecki  mass formula41 has  been replaced by r = 1.1 fm, which is  c l o s e r  t o  

62,63 
e l e c t r o n  s c a t t e r i n g  d a t a .  

( i i )  The o t h e r  parametefs a 2 and < of the  l iquid-drop energy have been 

changed by 5% and t h e  parameters C and c of t he  s h e l l  energy by 10%. (The accuracy 

of t h e  o r i g i n a l  l iquid-drop parameter f i t k 0  is  1-22.] 

( i i i )  Schematic secondary minima have been included i n  t h e  deformation 

energy of each fragment by adding an a d d i t i o n a l  term t h a t  is 4 MeV deep. 

cen te red  a t  an a x i s  r a t i o  of 2:1, and Ls a q u a d r a t i c  func t ion  of t he  semi- 

a x i s  z of t he  fragment,  i .e.,  

4 i c v [ ( A  - 1.6)~/0 .15 ' -  11, 1.45 s .% 1-75.  (3.2) 
r C ~ l J 3  c 

( i v )  The nuc lea r  i n t e r a c t i o n  energy VNI a f t e r  Erappe and Eq. (2.27),  

4i-40 and 
has  been replaced by t h a t  of Bass, 

(v) has  been discarded a t  a l l .  VNI = 0 .  
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( v i )  The k i n e t i c  energy da t a  E~~~ of Whetstonei,' have been used -Instead ' 

exp t 

~f  those  of Schmitt ,  e t  a l .  50 

( v i i )  The same replacement has been made f o r  t he  y i e l d s  Y, which e a t e r  

Lnto Eq. (3.1).  
* 

( v i i i )  The fragment e x c i t a t i o n  ene rg ie s  E of Eq. (2.33) have been re- 
exPt  

eva lua t ed  us ing neutron d a t a  of Gavron and Fraenkel ,  56 

(1x1 and have been replaccd by t h e  e x c i t a t i o n  ene rg ie s  of Bovman, e t  a l .  57 

It turned out  t h a t  none of t h e  above modif icat ions  changes t h e  value  of 
- 
Xmax = 7 MeV by more than 50%. Thus an upper bound of 10 MeV f o r  t h e  P i s s i -  

pared p lus  n o n t r a n s l a t i o n a l  c o l l e c t i v e  e x c i t a t i o n  energy i n  2 5 2 ~ f  (s f )  should 

be  r a t h e r  f i rm  wi th in  t h e  frarework of t h e  sphe ro ids1  p o t e n t i a l  energy and t h e  

exper imental  d a t a  of Subsects.  L5.B and 1I.C. 

Changes i n  Xmax t h a t  woul i  r e s u l t  from t ak ing  .another  (non-sphero-ldal)' 

shape parametr izat ion,  of course ,  cannot be  p red ic t ed  i n  advance. Inc lus ion  

o f  a d d i t i o n a l  parameters ( l i k e  P deformat ions  o r  t h e  p o l a r i z a t i o n  of .:he f rag-  3 

ment charge d e n s i t i e s )  v o u l d . c a r t a i n l y  tend t o  i nc rease  Xmax,.since i t  would 

rnc rease  t h e  parameter space of che minimization procedure. Such ca1c;nlations 

would b e  r a t h e r  time-consuming a s  t h e  sphe ro ida l  computation scans  a l r eady  

ebout  19 x 50 x 50 x 10 5 500.000 p o i n t s  i n  t h e  (A1,B1,B2,d) parameter space.  

* 
High d i s s i p a t i o n ,  however [up t o  X = E ), is compatible wi th  exper i -  

max e x p t  

lpent only  i f  s t r a n g e  nuc lea r  shapes  a r e  assumed. Ic t h e  syannerric f i s s i o n  

of 2 5 2 ~ f ,  f o r  i n s t ance ,  t h e  h f l o f h e t i c a l  shape of Pig. 4 is requ i r ed  i n  c r d e r  

t o  simultaneousl;  s a t i s f y  Eq. (2.7) and Xmx = E* (even i f  6 = 0 and ze ro  
exp t  

deformation energy of t he  neck is assumed). Shor t e r  necks (d < 7.4 f m l d o  

mot f i t  t h e  exper imental  k i n e t l c  energy i n  Eq. (2.7) un le s s  one a l lows for  

d i s t o r t i o n s  of t h e  sphe res .  T2en t h e  fragments have a  c e r t a i n  amount ~f  defonna- 

17a 

High d i s s i p a t i o n  has  been obta ined i n  a  r ecen t  ca lcula t ion10 i n  =onjunc- 

t i o n  wi th  pecu l i a r  shapes  a t  s c i s s i o n .  It is  i n t e r e s t i n g  t o  no te  th'at t h i s  i s  

compatible wi th  the  r e s u l t s  cf t he  p re sen t  s tudy, .which does no t  r e l y  on t h e  

dynamical assumptions made i n  Ref. 10 (1.e. .  nea r ly  i r ro t a t iona1 ,hydro -  

dynamics, no s h e l l  e f f e c t s ,  modified one-body v i s c o s i t y  and t h e  ' r up tu re '  

of t h e  neck). However, the  fragment e x c i t a t i o n  ene rg ie s  corresponding t o  

Ref. 10 a r e  no t  known, and a  dec i s ion  i f  such p e c u l i a r  shapes  a r e  c l o s e  t o  

r e a l i t y  o r  not cannot be  made on t h e  b a s i s  of t h e  e x i s t i n g  f i s s i o n  da t a .  

t i o n  energy, and t h e  d i a s ipa t i zm is n o t  complete,  
4 

X m x <  Eexpt' 



C. Fragment Deformation 

Apart from secondary oinima (which a r e  t r e a t e c  below) the  p o t e n t i a l  energy 

V of Subsect.  1I.B i s  a m o n o t ~ n i c  func t ion  of the  £ragmen: deformat ioa  B 

Therefore, t h e  energy l i m i t s  of t he  previous  subsec t ions  imply cer ta im l i m i t s  

f o r  t h e  deformations of t h e  fragments a t  t he  beginning of t h e i r  s epa ra t ion .  

Considering each fragrnenc sepa ra t e ly ,  i n e q u a l i t y  (2.9) r equ i r e s  t h a t  t he  

deformation energy of each fragment ( r e l a t i v e  t o  its ground s t a t e  d e f c r m t i o n  

Bgat) i s  sma l l e r  than i t s  exper imental  e x c i t a t i o n  energy, i . e . ,  

V(Z.A,B) - v ( z , A , B ~ ' ~ )  I E : ~ ~ ~ ( z . A )  (3.4) 

and. according t o  Eq. (3 .3)  

V(Z,A,B) 5 V ( Z , A . B ~ , ~ )  - E* + v ( z , A , B ~ ' ~ ) .  
expt  (3.5) 

The upper bounds f o r  t h e  deformations 8 of t he  s i n g l e  fragmenrs n e  

3iven i n  Pig. 5 a s  a f r n c t i o n  of t h e  fragment maas number AF. The upper bound 

3max of Eq. (3.5) is independent of d. The f i g u r e  shows Chat t h e  h e a w  frag-  

lrents around t h e  doubly naglc  one (% - 132) have t o  be  almost undeforned i f  

:hei r  k i n e t i c  and e x c i t a t i o n  ene rg ie s  a r e  t o  be compatible w i th  e x p e r h e a t .  

I n  a r ecen t  paper Y i lk ins ,  e t  a t t r i b u t e  a number of e f f e c t s  i n  

f i s s i o n  t o  t he  occurrence of deformed (secondary) s h e l l s  LI sone f r aguen t s .  

Our r e s u l t s  g ive  no evidence t h a t  t he  fragment de fo rma t iom a r e  a f f e c t z d  by 

secondary fragments s h e l l s .  Even t h e  inc lus ion  of an a r t i f i c i a l  seconiary  

ninimum i n  the  p o t e n t i a l  energf of each fragment (by t h e  aAdi t iona1 re:m 

13.2)) l eaves  t h e  r e s u l t s  almost unchanged. The n e g l i g i b l e  i n f luence  a f  

~ e c o n d a r y  fragment s h e l l s  i s  i n  accordance wi th  the  e a r l i e r  r e s u l t s  of Dickmanr 

~ n d  ~ i e t r i c h ? '  

D. Minimum P o t e n t i a l  Energy Hypothesis 

A number of ca l cu la t i ,>ns  d e a l i n g  wi th  a nucleus  a t  s c i s s i o n  i s  based on 

t h e  hypothesis  t h a t  t h e  deformation a t  s c i s s i o n  i s  a s soc ia t ed  wich minimum 

p o t e n t i a l  energy i n  a c e r t a i n  parameter space t h a t  is  r e s t r i c t e d  t o  s c i s s i o n -  

type conf igurat ions .  The hypothesis  is  usua l ly  advocated by assuming t h e  change 

i n  nuc lea r  shape t o  be  slow compared wi th  t h e  motion of t h e  nucleons ( "ad iaba t i c  

assumption") o r  by. t ak ing  t h e  s c i s s i o c  po in t  t o  be  a s t a t i o n a r y  po in t  of t h e  

p o t e n t i a l  energy s u r f a c e  ( " sc i s s ion  minimum"). 

I n  t he  p re sen t  work we do no t  employ the  a d i a b a t i c  assumption nor do our  

r e s u l t s  give evidence f o r  a s c i s s i o n  minimum. For comparison, however, we 

have a l s o  considered t h e  deformations and e n e r g i e s t h a t  would follow from 

minimizing t h e  p o t e n t i a l  energy of t h e  s c i s s i o n  conf igu ra t ion ,  1 . e . .  

The deformations Emin. energy which fol low from t h e  minimum condi t ions  

aV/aBi + a V i n t / a B i  - 0 a r e  almost independent of d because the  d e r i v a t i v e s  

aVin t / aBi  depend only  weakly on d and V is  independent of d .  

Figure  5 shows these  9 va lues  c a l c u l a t e d  a f t e r  t h e  customary cond i t i on  of 

minimum p o t e n t i a l  energy (3.6). We f i n d  t h a t  t he  deformat ions  of minimum 

energy a r e  o u t s i d e  o u r b o u n d s f o r  a l l  fragments w i th  mass numbers $, between 

126 and 146. The discrepancy is p a r t i c u l a r l y  l a r g e  f o r  t h e  f r a p n t s  around 

t h e  doubly magic one wi th  mass number $, = 132. 

We have a l s o  p l o t t e d  t h e  B values  of t h e  locai minimum ( i f  any) i n  t h e  

(B1,B2) plane t h a t  is caused by t h e  ground-state s h e l l  e f f e c t  of t h e  heavy 
30 

fragment.  This  c r i t e r i o n  has  p rev ious ly  been used by Dickmann and D i e t r i c h  

(cf .  Fig .  3b of Ref. 30).  I t  can t e  seen t h a t  t he  B va lues  a s soc ia t ed  wi th  t h e '  

s h e l l  e f f e c t  i n  t he  heavy fragment gene ra l ly  a r e  i n  agreement wi th  t h e  l i m i t  
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Bmx. 
The l o c a l  s h e l l  minima occur only i n  fragments with mass numbers A,, 

between 126 and 138, i . e . ,  i n  t he  mass regior. with the  l a . ~ g e s t  d i sc re?anc ie s  

between t h e  deformations of rdnimum energy a r~d  our  bound Bmax.  heref fore, 

the  l o c a l  s h e l l  minimum l e a d s  t o  a spec t acu la r  improvement i n  defo.ma:ion ( c f .  

Fig. 5).  Thus the  f ragmensadon i n  f i s s i o n  seems t o  be & t e d n e d  by t h e  doutely 

s h e l l  c lo su re  (2 -  50, ' V =  82)   at her than by a d i a b a t i c  nuc lea r  motion Ln the  

v i c i n i t y  of t h e  sc iss i .>n po in t .  

E. Ternary F i s s ion  

I n  a number of papers  (cf. Refs. 64-66 and r e f s .  g iven t h e r e i n )  :he t r a -  

j e c t o r i e s  of long-range a lpha  p a r t i c l e s  (LRA) emi t t ed  i n  F i s s ion  have been 

s t u d i e d  i n  o r d e r  t o  ob ra in  informat ion about t h e  f i s s i o n i n g  nucleus  a,: t h e  

beginning of t h e  fragment s epa ra t ion .  Although t h e r e  a r e  l a r g e  d i sc repanc ie s  

between va r ious  r e s u l t s  of d i f f e r e n t  groups, t h e  agreemen: i s  s a t i s f a c t o r y  fo r  

t he  center- to-center  d is tance;  D r e s u l t i n g  from such c a l c . ~ l a t i o n s  (fez a com- 

p i l a t i o n  of LRA d a t a  s e e  Ref. 64, Table  XIV-3).  Most a n a ~ y s e s ~ ~ ' ~ ~  of LRA 

d a t a  y i e l d  ra the;  h igh value. of D (around 25 fm). 

A comparison wi th  Fig. 6 shows t h a t  . the  LRA values  of D = z + z + d  a r e  
1 2  

i n  accord wi th  our  fragment deformations only i f  we assume unreasonably l a r g e  

fragment s e p a r a t i o n s o f d  = 5 Em o r  more. We t h e r e f o r e  conclude t h a t  LRA f i s -  

s i o n  is d i f f e r e n t  from ordinary binary f i s s i o n  (without a lpha emissiom): 

E i t h e r  t h e  a lpha  p a r t i c l e s  a r e  emi t t ed  only i n  ( r a r e )  f i s s i o n  even t s  wi th  par- 

t i c u l a r  e longa t ion  of t h e  s c i s s i o n  conf igu ra t ion  o r  t h e  a lpha p a r t i c l e s  a r e  

emi t t ed  a f t e r  s c i s s i o n  a t  some sepa ra t ion  (v i z .  roughly d = 5 fm). - S ~ m i l a r  

discrepancies between b ina ry  and t e rna ry  f i s s i o n  have been noted e a r l - e r  by 

s e v e r a l   author^.^'^^*^^ 
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I V .  CONCLUSIONS 

We have der ived general  i n e q u a l i t i e s  t h a t  r e l a t e  t he  nuc lea r  nontransla-  , 

t i o n a l  e x c i t a t i o n  energy a t  (and a f t e r )  s c i s s i o n  t o  t he  measured d a t a  f o r  

fragment k i n e t i c  ene rg ie s ,  neutron and y-ray emission. For s p h e r o i d a l  f rag-  - 
ment shapes  an  upper bo"nd of only Emx = 7 MeV is determined f o r  t h e  vibra-  

t i o n a l  p lus  r o t a t i o n a l  c o l l e c t i v e  p lus  i n t e r n a l  e x c i t a t i o n  energy i n  2 5 2 ~ f  ( s f ) .  

The u n c e r t a i n t i e s  e n t e r i n g  i n t o  t h a t  va lue  from both  the  exper imental  d a t a  

and the  p o t e n t i a l  energy a r e  found t o  be  l e s s  than 50%. According t o  t h a t  

t he  energy a v a i l a b l e  i n  t he  spontaneous f i s s i o n  of 2 5 2 ~ f  ( roughly 50 MeV, see .  

Fig. 3) is a t  most weakly d i s s i p a t e d .  The assumption 'of high o r  complete damp- 

ing  can be r u l e d  out  un le s s  one a l lows f o r  unreasonable fragment shapes  ( l i k e  

Fig .  4 ) .  

Upper bounds have a l s o  been obta ined f o r  t h e  deformat ions  of t he  fragments 

(Fig. 5 ) .  The hypothesis  .of minimum p o t e n t i a l  energy a t  s c i s s i o n  is found t o  

d i sag ree  wi th  our  ana lys i s  f o r  mass d i v i s i o n s  c l o s e  t o  t h e  heavy fragment mess 

ql 132. On t h e  con t r a ry ,  a d e c i s i v e  in f luence  on t h e  f ragmentat ion from 

the  double s h e l l  c lo su re  (2 - 50. N = 82) i n  t he  heavy fragment i s  i n  accord 

wi th  our r e s u l t s .  We f i n d  no evidence f o r  e f f e c t s  from secondary fragment 

s h e l l s .  36 

The au tho r s  a r e  g r a t e f u l  t o  Drs. R. Bass, F. Dickmann, F. Gknenwein. 

J. J .  G r i f f i n ,  P. C. L ich tne r  and A. B. Volkov f o r  h e l p f u l  d i s c u s s i o n s  and 

correspondence. 



REFERENCES 

- 
Work supported by t h e  German 3undesministerium f u r  Forschung und Technologic, 

the  Deutsche Forschungsgemeinszhaft , t he  U .  S .  Department J E  Energy and 

;he Univers i ty  of Maryland Cowute r  Science Center.  

1. D. L. H i l l  and J .  A. Wheeler, Phys. Rev. 89. 1102 (1953). 

2. J. R. Nix. Univers i ty  of Za l i fo rn i a  Lewrence Radiat ion Laboratory Report 

No. UCRL-11338, 1964 (unpublished). 

J. R. Nix and W.  J. Swiatecki ,  Nucl. Phys. 2, 1 (1965). 

J. R. Nix, Nucl. Phys. u, 241 (1969). 

R. W. Hasse, Phys. L e t t .  m, 605 (1968); Nucl. Phys. w, 609 (1969); 

Phys. Rev. g. 572 (1971). 

P. Pong, Proc.  2nd IAEA Symp. on physics  and chemistry of f i s s i o n .  Vienna, 

1969 (IAEA Vienna, 1969). p. 133; S t a t i s t i c a l  theory of nuc lea r  f l s s i o n  

(Gordon and Breach, New York. 1969). 

R. Wieczorek. R. W.  Hasse and G. Siissmsnn. Proc.  3rd IAEA Symp. a1 phys ic s  

and chemist ry  of f l s s i o n ,  Rochester,  1975 (IAEA, Vienna, 19741, V21. 1, 

p. 523. 

R. W. Haase, Nuclear f r i c z i o n ,  p r e p r i n t  [Un ive r s i ty  of Munich, 19'7 

(unpublished) 1. 

J. R. Nix and A. J. S ie rk .  Physica  S c r i p t s  &, 94 (1974). 

K. T. R. Davies. A. J. S i e r k  and J. R. Nix. Phys. Rev. G. 2385 11976). 

A. J .  S i e r k ,  S. E. Koonin and J .  R. Nix, Phys. Rev. x, 646 (1975). 

11. W. J. Sv ia t eck i .  Proc. 1n:l. School-Seminar on . r eac t ions  o f  h e a p  ions  

wi th  n u c l e i  and s y n t h e s i s  of new elements,  Dubna. USSR, 1975 [Joimt  I n s t .  

f o r  Nuclear &search Report No. ~ 1 ~ ~ - ~ 7 - 9 7 3 4 :  1976 (unpublished) 1. p. 89. 

12. J. ~ f o c k i .  Y. Boneh, J. R. Nix, J.  Randrup, M. Robel. A. J. S i e r k .  and 

W. J .  S v i a t e c k i ,  Lawrence Berkeley Laboratory Report No. IBL-6536,: 

' 1977 (unpublished). 

23 

13. Y .  Boneh, J. Bfocki and W. D.  Myers, Proc. 4 th  I n t l .  Workshop on g ros s  

p r o p e r t i e s  of n u c l e i  and nuc lea r  e x c i t a t i o n s ,  Hirschegg, Aus t r i a ,  1976 

[Technische Hochschule Darmstadt Report No. mConf-76-015-000,  1976 

(unpubl ished) l ,  p. 77; Phys. L e t t .  e, 265 (1976). 

14. W .  J .  Swiatecki ,  Proc. Tn t l .  Conf. on nuc lea r  r e a c t i o n s  induced by heavy 

ions ,  Heidelberg, 1969, ed .  R. Bock and W .  R. Hering (North-Holland, - 
Amsterdam-London, 1970): p .  729; J. Physique Suppl.  2. C5-45 (1972). 

S. Bjdmholrn. Proc. 5 t h  Summer School on nuc lea r  phys i c s ,  Rudziska, Poland, 

1972, ed .  E .  Cies lak,  M. Dabrwska and A. Saganek [ I n s t .  of Nuclear 

Research Report No. INR-P-1447/I/PL, Warsaw, 1972 (unpubl ished)] ,  Vol. 1. 

p. 131; Physica S c r i p t a ~ ,  110 (1974). 

W. J. Swiatecki  and S.  Ejdrnholm. Phys. Rep. 4, 325 (1972). 

H. Nifenecker,  C. Signarbieux. R. Babinet,  and J. Po i tou ,  Proc. 3rd IAEA 

Symp. on physics  and chemist ry  of f i s s i o n ,  Rochester ,  1973 (IAEA, Vienna, 

1974). Vol. 2, p. 117. 

H. Schu l the i s  and R. Schu l the i s .  Phys. L e t t .  z. 7 (1975). 

P. Armbruater, Proc. 3rd I n t l .  Workshop on g ros s  p r o p e r t i e s  of n u c l e i  and 

nuc lea r  e x c i t a t i o n s .  Hirschegg, Aus t r i a ,  1975 [Technische Hochschule 

Darmstadt Report No. AED-Conf-75-009-000, 1975 (unpublished) 1, p. 32. 

A. Michaudon, Proc. I n t l .  Conf. on t h e  i n t e r a c t i o n s  of neutrons  w i t h n u c l e i ,  

Lowell, Mass., 1976, ed. E. Sheldon (Technical  Informat ion Center.  Energy 

Research and Development Adminis t ra t ion.  CONF-760715-Pl, S p r i n g f i e l d ,  

V i rg in i a .  19761, Vol. 1, p .  641. 

L. Wile ts ,  Theor ies  of nuc lea r  f i s s i o n  (Clarendon P res s ,  Oxford, 1964). 

G. SchUtce and L. Wilets,  Proc. 3rd IAEA Symp. on physics  and chemist ry  

of f i s s i o n ,  Rochester,  1973 (IAEA, Vienna, 1974). Vol. 1, p.  503; Nucl. 

Phys. w. 21 (1975). 



2L 

23. Y. Boneh and 2. Praenkel.  Phya. Rev. E, 893 (1974). 

24. K. T. R. Davies, S. E. Koonin, J.  R. Nix and A. J .  S i e r k ,  Proc. 3rc. I n t l .  
W. D. Myers and W. J. Swiatecki ,  Ark. Fya. 36, 343 (1967). 

. S. FlUgge,,Z. Phys. 130, 159 (1951). 

Workshop on g ros s  p r o p e r t i e s  of n u c l e i  and nuc lea r  e x c l t a t i o n s ,  Hirschegg, 

Aus t r i a ,  1975 [Technische Hochschule Darmstadt Report l o .  AED-Conf-75- 

009-000. 1975 (unpublishedD 1. p. 8. 

25. S. E .  Koonin and J .  R. Nix. Phys. Rev. G. 209 (1976)., 

A. J. S ie rk  and J .  R. Nix, Los Alamos S c i e n t i f i c  Laboratory Report No. 

LAP-151, 1976 (unpublished). 

B. C. Carlson, J. Math. Phys. 2, 441 (1961). 

W. Scheid and W. Greiner.  2. Phys. 226, 364 (1969) 

2b. R. Vandenbosch, Nucl. Phys. 46 .  129 (1963). 

2'. V. S. Stavinsky and L. N.  Sbehata, Nucl. Phys. 62. 145 (1965). 

28. H. W. Schmit t ,  Ark. Fys. 3j, 633 (1967). 

29. A. V. Ignatyuk, Sov. J .  N r e l .  Phys. 1. 626 (1966). 

30. F. Dickmann and K. D ie t r i ch .  Nucl. Phys. g, 241 (1959). 

31. V. A. Rubchenya, So-r. J.  Nucl. Phys. 9, 697 (1969). 

H. J. ~ r ' a ~ p e  and J .  R. Nix. Proc. 3rd IAEA Symp. on physics  and chemist ry  

of f i s s i o n ,  Rochester,  1973 (IAEA, Vienna, 1974). Vol. 1, p. 159; H. J .  

Krappe, Proc. HPI Heidelberg Sb-mp. on c l a s s i c a l  and quantum mechanical 

a spec t s  of heavy ion c o l l i s i o n s ,  Eeidelberg,  1974, ed. H.  L.'Harney, 

P. Braun-Munzinger i n d  C; K. Gelbke (Spr inger ,  Berlin-Heidelberg-New York, 

1975). p. 24. 
. . 

R. Bass, Phys. L e t t .  478. 139 (19i3) ;  Nucl. Phys. w, 45 (1974) . .  . P. Armbruster, Nucl. Phps. m, 385 (1970). 

0 .  D. Wilkins  and E. P. Ste lnberg.  Phys. L e t t .  428, 141 (1972). 
R. Bass, p r i v a t e  commu3ication. 

B. D. Wilkins, E. P. S t e inbe rg  and R. R. Chaaman, Proc. 3rd IAE4 Smp.  on 
The r ecen t  modif icat ion {R. Bass. Phys. Rev. L e t t .  2. 265 (1977)) has  

phys i c s  and chemistry of f l s s i o n ,  Rochester.  1973 (IAE4, Vienna. 1.74). 

Vol. 2, p. 496. 

8.  Schu l the i s  and R .  Schu l the i s .  Nuovo Cim. L e t t .  5,  159 (1973); N ~ c l .  P h y ~ .  

.A215. - 329 (1973); Nulcleonika 2. 645 (1974); Phys. L e t t .  528. 389 :1974); 

no t  'been used i n  t he  p re sen t  work. 

.H. W. Schmitt ,  J. H. Neiler and F. J .  Walter ,  Phys. Rev. 141. 1146 (1966). 

S. L. Whetstone, Phys. Rev. 131, 123 (1963). 

J. 'Wing and P. Fong, Phys. Rev. 136, B923 (1964). 

J .  Math. Phys. 16, 905 i1975). 
H. Nifenecker,  C. S igna rb iew.  N. Ribrag. J.  Po i tou  and J. Matuszek, 

.B. D. Wilkins, E. P. S t e inbe rg  and R. R. Chasman. Phye. Rev. G, 1832 (1956). 
. . 

P. Armbruster,  Proc. l s c  IAEA Symp. on physica and chemistsy of f i e s i o n ,  

Nucl. Phys. 9, 285 (1972). 

C. Signarbieux,  J. ~ o i t o u , ' ~ .  Ribrag and J .  Matuszek, Phys. Le t t .  z, 
Salzburg, 1965 (IAEA, Viema,  1965), Vol. 1, p .  103. 

W. Ntlrenberg. 2. Phys. 197, 246 (1966); Phys. Rev. g. 20M (1972)- 
C. S ignarbieux,  H. ~ i f e n e c k e r ,  J. Po i tou  and M. Ribrag, J .  Physique Suppl. 

A. Bohr and B. R. Mottelscn, Mat. Fys. Medd: Dan. Vid. Selsk .  2 a953) ,  

No. 16. 

40. W. D. Myers and W. J .  Swis tecki .  Nucl. Phys. 81, 1 (1C66). 

56. A. Gavron and 2. Fraenkel ,  Phys. Rev. g, 632 (1974). 



26 

H. R. Barnran, J. C. D. Y l l t on ,  S .  G. Thompson and W .  J .  Swiatecki, ,  Phys. 

Rev. 129. 2133 (1963). 

Af t e r  completion of our c a l c u l a t i o n  new d a t a  (R. L. Walsh and J. W. 

Boldeman. Nucl. Phys. a. 189 (1977)) have been publ ished.  which a r e  

FIGURE CAPTIONS 

Pig. 1: S impl i f i ed  example f o r  t he  eve lua t ion  of Ec.s. (2.6) - (2.9) i n  t h e  

case  of symmetric f i s s i o n  wi th  only  one deformation parameter 6. The , 

s o l i d  l i n e s  show the  fragment deformation energy (Fig .  l a )  and t h e  

Coulomb repu l s ion  ie tween the  fragments a s  ( ca l cu la t ed )  func t ions  

of ;he fragment deCormation 6 .  The h o r i z o n t a l  dashed l i n e s  g ive  c l o s e r  t o  those of Ref. 57. 

The v a r i a b l e  d  ( the  d i s t ance  between t h e  equ iva l en t  s h ~ s r p  s u r f a c e s  of t h e  t h e  exper imental  values .  The q u a n t i t i e s  r e s u l t i n g  from t h e  procedure 
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Pig. 4: Hypothet ical  nuc lea r  shape r equ i r ed  t o  make t o t a l  d i s s i p a t i o n  

Xmax - E* ' compatible w i th  t h e  exper imental  2 5 2 ~ f  s-tric . expt  

f i s s i o n  da t a  (here  s h e l l  e f f e c t s  a r e  neg lec t ed ) .  Complete d i s s ipa -  

t i o n  can be ru l ed  o u t  f o r  s h o r t e r  necks o r  d i s t o r t e d  fragments 

a s  used i n  t h e  p re sen t  work. 
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7ig.  5: Calcula ted fragment deformation B a t  s c i s s i o n  a s  a f i lnct ion >f t h e  

fragment mass number I$,. The curve l a b e l l e d  " m i l .  energj." 1.; 

determined from Eq. (3.6). The l a b e l  s h e l l  nininum r e f e r s  t o  t h e  

l o c a l  p o t e n t i a l  energy minimum t h a t  is caused by the  ground-s ta te  

s h e l l  e f  f e c t  i n  t he  heavy fragment. The q u a n t i t y  B i s  independent max 

Of d* and 'min. energy i s  r a t h e r  i n s e n s i t i v e  t o  d, a s  .d iscuszed 

i n  'the t e x t .  

Fig .  6: Upper bounds f o r  t h e  l eng ths  of t h e  semi-axes z P z 2  of t h e  Brag- 
1 

menta. The va lues  a r e  ca l cu la t ed  from B of Fig. 5 a c c o r d h g  t o  
max 

Eq. (2.11). 
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