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ABSTRACT

Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. .

The evaluations are based on analysis of experimental data, supplemented by results of nuclear model
calculations. The computational methods and the parameters required as input to the nuclear model
codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced
reaction cross sections, associated angular and energy distributions, and gamma-ray production cross
sections is included. Extensive comparisons of the evaluated cross sections to measured data are
shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy
Released in MAterials) and displacement cross sections to be calculated directly. These quantities are
fundamental to studies of neutron heating and radiation damage.



1. INTRODUCTION

Silicon is an important semiconductor material, so understanding neutron-induced radiation
damage effects is very important. There is considerable interest in the cross sections for secondary
charged particle production (including recoil nuclei) for radiation damage calculations in electronic
components. Since silicon is a major constituent of concrete and soils, neutron and gamma-ray
transport information is also important. For these reasons, much effort was put into the ENDF/B-VI
evaluations for the three stable isotopes of silicon. The evaluations are based on analysis of
experimental data, supplemented by results of nuclear model calculations which reproduce the
experimental data.

Evaluated data are given for resonance parameters, neutron induced reaction cross sections,

associated angular and energy distributions, and gamma-ray production cross sections. Since very
little information exists for the energy distributions of secondary neutrons, and there are no available
data for secondary proton and alpha energy distributions (except for the lowest discrete states), nuclear
model calculations were relied on to provide the necessary data. The primary code used for the
evaluation work was TNG (FU88, SH86), an advanced multistep Hauser-Feshbach code which
includes precompound and compound contributions to cross sections in a self-consistent manner,
provides correlated angular and energy distributions, calculates gamma-ray production, and conserves
angular momentum in all steps. Extensive model calculations were performed for each isotope with
the goal of simultaneously reproducing measured data for that isotope using a consistent set of
parameters. Internal consistency and energy conservation within each evaluation is ensured.

The new File 6 format of ENDF/B is used to represent energy-angle correlated data and recoil
spectra, both present for the first time in the silicon evaluations. Also, for the first time, all necessary
nuclear data are given to allow KERMA (Kinetic Energy Released in MAterials) and displacement
cross sections to be calculated directly from information available in the evaluation, dependent only
upon the quality of the evaluated data. These quantities are fundamental to studies of neutron heating
and neutron radiation damage.

This report documents the structure of the evaluations, notes important measured data utilized,
gives a summary of the model codes used, and shows the calculations compared to measured data.
Preliminary results for radiation damage show the overall quality of the silicon evaluation is much
improved over ENDF/B-V and should meet the present needs of the user community.






2. COMPUTATIONAL METHODS AND PROCEDURES

Nuclear model calculations play an important role in modern evaluations for the interpolation
and extrapolation of cross sections to energy regions where no data exist, and for predictions of
reaction cross sections for which there are few or no experimental data. However, in order to ensure
internal consistency, the model calculations should simultaneously reproduce as much of the
experimental information as possible for as many reaction channels as reliable data are available. As
noted earlier, the primary code used for this evaluation work was TNG (FU88, SH86), an advanced
multistep Hauser-Feshbach model. TNG includes precompound and compound contributions to cross
sections in a self-consistent manner, provides correlated angular and energy distributions, calculates
gamma-ray production, and conserves angular momentum in all steps. “The code is capable of using
variable energy bin widths for outgoing particle energies, i.e., smaller bins at low outgoing-particle .
energies and larger ones at high outgoing-particle energies. This capability has eliminated many
energy balance problems that occurred previously in cross-section evaluations as a result of using
uniform-width energy bins (SH86).

Calculations for %Si, °Si, and *Si at a number of incident energies from 0.01 to 20.0 MeV were
performed. Parameters required as input to TNG are discussed in Section 3. Parameters required for
the precompound mode of reaction were the same as determined previously (FU88) and were found
to be satisfactory for the present calculations. TNG simultaneously computes cross sections for all
energetically-possible binary reactions and tertiary reactions, and also computes the resulting gamma-
ray production cross sections, and outgoing particle spectra as required. The resulting cross-section
sets are consistent and energy balance is ensured. The results from TNG are found to agree reasonably
well with available data, and these comparisons are discussed in the following sections.

The resonance parameters are given in File 2 ENDF format for the evaluations. When sufficient
cross-section data were available, they were evaluated and used directly in the evaluations in File 3
format of ENDF; otherwise calculations are used. The new File 6 ENDF format is used to represent
the TNG computed energy-angle correlated data for each product of each reaction. Neutron, proton,
alpha, recoil (for first time in the silicon evaluation), and gamma-ray spectra are represented. Angular
distributions are given for the neutron emission spectra for 2Si only and isotropy is assumed for the
other isotopes and particles. Branching ratios for the discrete levels are given directly in File 12
format; i.e., the continaum and discrete gammas are given separately in the evaluations. Also, for the
first time, all necessary nuclear data are given to allow KERMA (Kinetic Energy Released in
MAuterials) and displacement cross sections to be calculated directly from information available in the
evaluation, dependent only upon the quality of the evaluated data. These quantities are fundamental
to studies of neutron heating and neutron radiation damage.

The following sections review the important measured data considered in the evaluations, and
examples of calculations compared to the data are given. Discussions of contents of the evaluations
are included.






3. PARAMETER DETERMINATION
3.1. RESONANCE PARAMETERS

Resonance parameters for the three isotopes of silicon were determined by a new self-consistent
analysis of relevant data, including both natural and isotopically-enriched samples. Oxygen data were
also included in the analysis, since the isotopically-enriched samples were oxides rather than pure
silicon. Thermal elastic and capture values were likewise included. The multilevel R-matrix code -

SAMMY (LA96) was used for the analysis, which incorporated both Doppler and resolution

broadening as well as other measurement-specific effects.

Using results from Mughabghab et al. (MU81) and Weigmann et al. (WE87) as guidance,
parameters were determined for 58 resonances in 2Si, of which five resonances are negative-energy
“dummies” (whose values determine the thermal cross sections) and nine lie above the cutoff energy
of 1.75 MeV. Twenty-nine resonances are specified for Si, of which three are at negative energies
and two lie above the cutoff energy of 1.50 MeV. Twenty-nine resonances are given for *°Si, of which
two are at negative energies and two are above the cutoff of 1.50 MeV. The set of data used for the
resonance region analysis is summarized in Table 1. The resonance parameters obtained, with
assigned spin and parity values, are given for the isotopes of 2Si, #Si, and *°Si in Tables 24,
respectively. More details and plots of the SAMMY fit are given in Section 4 for the total cross
section; a full report describing the resonance analysis is in preparation (LE97).

3.2 NEUTRON OPTICAL-MODEL POTENTIAL

Since optical-model parameters are essential input for nuclear model codes, a series of optical
model studies were performed in an attempt to generate a consistent set of neutron optical model
parameters. Thirty four elastic scattering angular distributions from 4 to 14 MeV were used in a
global search using the code GENOA (PE67) with the aim of fitting each angular distribution, the
energy averaged total cross section, and the available nonelastic cross section. In order to speed up
the searching and averaging over resonant effects, angular distributions measured at nearby energies
were averaged, resulting in a set of eight distributions at 4.25, 4.80, 5.25, 5.80, 6.60, 7.75, 8.75, and

14,1 MeV. In addition, two single measurements at 9.8 and 10.95 MeV were used in the search.
Details about the individual measurements are listed in Table 5.

In the global search by GENOA, a compound elastic term was included, the shape determined
from preliminary Hauser-Feshbach calculations using an average set of parameters and including
competition between the (n,n'), (n,p), and (n,a) channels. The shape of the compound elastic
contribution at the energies of the averaged data sets were fed into GENOA, and the magnitude of the
compound elastic contribution was searched on, in addition to the various parameters of the optical
model. A series of searches resulted in a set of optical model parameters which provided a good
overall fit to the averaged angular distributions as well as to the average total and nonelastic cross
sections. The resulting magnitude of the compound elastic contribution was checked later against the
compound elastic channel in the final stages of the Hauser-Feshbach calculations and the two results
were found to be in agreement to better than 10%.
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Details of the searching technique are similar to those used by C. Y. Fu (FU76) in the calcium

evaluation, and will not be discussed further here. Table 6 presents the final set of neutron optical
model parameters arrived at and used in the remainder of the evaluation. Figures 1 through 5 show
the final fits obtained to the data sets at incident energies of 4.8, 5.8, 7.75, 9.8, and 14.1 MeV.

3.3 CHARGED-PARTICLE OPTICAL-MODEL PARAMETERS

Proton and alpha optical model parameters were also required for the Hauser-Feshbach analysis.
The proton parameters were taken from the work of Perey (PE63, PE74). The alpha parameters were
taken from the 5 MeV set given by S. S. So (SO66), with the real radius changed from 1.80 f to 1.70

f. The proton and alpha parameters are given in Table 6.

3.4 THE DIRECT REACTION MODEL AND PARAMETERS

The Distorted Wave Born Approximation (DWBA) program DWUCK (KU72) was used to
calculate the direct-interaction component of the inelastic-scattering cross sections to a number of
levels in %8i for which information was available. Inputs to this code were the neutron optical-model
parameters of Table 6 and the deformation parameters, (3%, shown in Table 7. The value of the
deformation parameter (3% for the 1.779 MeV level was found to yield the correct amount of direct
interaction such that when combined with the compound reaction contribution, a good fit to the data
was obtained as shown in Fig. 6 (note that the TNG calculation for this level was not used in ENDF/B-
VI; see Section 8) . This value of B? is higher than most found in the literature (e.g., see HA84,
OB73, SE86, DE79, X178, BO83, ST65a, HO69, CL64, and AL86) but is the same as that found by
Crawley and Garvey (CR67) in the analysis of their 17.5 MeV (p,p') experiment, and was used
successfully by Brandenberger et al. (BR72) for their analysis of 8 and 9 MeV neutron scattering. The

% used for the 4.617 MeV level was obtained from Hohn et al. (HHO69) and is also higher than other
reported values (e.g., see HA84, SE86, and AL86), but the lower B%'s did not yield enough calculated
direct interaction cross section (see Fig. 7 for the TNG calculation versus data for this level). For the
higher lying levels, B? values from available references (see Table 7) were averaged to obtain the
values shown in Table 7.

The partial excitation functions ®Si(n,p,)*Al were computed by TNG, but no direct interaction
contributions were included because of lack of data. A direct reaction contribution was included for
%Si(n,0,)*Mg and ZSi(n,w,)*Mg, computed by taking the compound contribution for each level from
a preliminary TNG calculation times 33 and 17 percent, respectively, as recommended by Hermsdorf
(HES82a).

The resulting calculated direct interaction contributions, shown in Figure 8 for the inelastic
excitation cross sections and Figure 9 for the lowest two states in Mg, were used as input to the
Hauser-Feshbach code TNG for the purpose of including the direct interaction effects in the gamma-
ray cascade calculation. All TNG results were automatically scaled to maintain the same total reaction
cross section.
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3.5 DISCRETE ENERGY LEVELS AND LEVEL-DENSITY PARAMETERS

The statistical-model calculations with TNG require a complete description of the energy levels
of the residual nuclei for the various open channels. The low-energy excitation region of these nuclei
can be adequately described in terms of discrete levels for which we usually know the energy, spin
and parity (J™), and gamma-ray deexcitation branching ratios, hereinafter referred to as branching
ratios. As the excitation energy increases, our knowledge of these levels becomes incomplete, and
eventually, as their number increases, it is preferred to describe them in terms of a level density
formula. In this section we give the discrete levels used in the calculations and discuss the level
density formulae and parameters.

The reactions for which we need level information for the residual nuclei are: 2Si(n,n")*Si,
%Si(n,p)*®Al, 28Si(n,x)*Mg, 2Si(n,np)*’Al, ZSi(n,ne)*Mg, #Si(n,2n)*Si, and *Si(n,y)>Si for 2*Si;
BSi(n,n")?Si, Si(n,p)*Al, ¥Si(n,x)®Mg, *Si(n,np)2Al, *Si(n,ne)*Mg, *Si(n,2n) Bi, and
BSi(n,y)*Si for #Si; *Si(n,n)*’Si, *Si(n,p)*°Al, *Si(n,0)”Mg, *°Si(n,np)®Al, *°Si(n,ne)*Mg,
%0Si(n,2n)*Si, and *°Si(n,y)*'Si for **Si. The level energies, J* values and gamma-ray branching ratios
adopted for these nuclei are given in Tables 8 to 20 and were mostly taken from the compilation of
Endt and Van der Leun (EN78) or the Table of Isotopes (BR78). There are a few levels where the
energies are known, but J* values or branching ratios are experimentally undetermined. These J™
values and branching ratios were assigned as indicated by the parentheses in the tables. In most cases,
these values are as given in the references; others were estimated from systematics. It should be noted
that excited states were reported having excitation energies larger than for levels shown in Tables 8
through 20. However, the branching ratios for these higher levels were not known and thus the levels
were not explicitly used in the calculations.

To represent the continuum excitation energy region occurring above the highest-energy discrete
level (continuum cutoff E)), the level-density formulae as described by Fu (FU76, FU80) were used.

The level-density parameters of the residual nuclei of all reactions analyzed are given in Table 21.
Gilbert and Cameron (GI65) was referenced in obtaining these parameters, but several exceptions to
using their parameters and formulae are now noted. It was found that for computing the spin-cutoff
parameter “"c" a formula due to Facchini and Saetta-Menichella (FA68) produced better results and
was used for excitation energies greater than the tangency point (E,). The spin cutoff parameter at E,
was based on the cumulative sum of the discrete values. In between E, and E_, the spin cutoff
parameter was assumed to vary linearly with the excitation energy. Also, the parameter "a" for the
residual nuclei 2°Al, Mg, and Mg was altered from those given in Gilbert and Cameron (GI65) so
that calculated results from TNG gave better reproduction of the available data for the *Si(n,p)®Al,
*Si(n,c)* Mg, and #8Si(n,&)*Mg reactions (see comparisons to data in Section 8).

3.6 GIANT DIPOLE RESONANCE PARAMETERS

The giant dipole resonance parameters used as input to TNG in this analysis are those reported
by Fuller et al. (FU73). The resonance has a peak cross section of 52 mb, the width of the resonance
is 5 MeV, and the energy of the resonance peak is 20.2 MeV.






4. THE TOTAL CROSS SECTION

The evaluation for the total cross section is based upon a resonance parameter analysis of
available data for all three isotopes, as well as natural sample data (see Section 3.1). The analysis

extended from 10° eV to 1.75 MeV, a convenient cutoff just below the first inelastic level of %Si.
Above 1.75 MeV, recent 200-m high resolution total cross section data (HHA93) for a sample of natural
silicon were averaged and used in the evaluation for each isotope, since no data for the individual
isotopes were available at the higher energies, and to ensure consistency of the isotopic data with the
natural material. Tables 1-4 summarize the data used for the resonance region analysis and the
resonance parameters obtained. Figures 10-11 present plots of the SAMMY fit to the various data
sets. A brief discussion will now be given for each isotope.

4.1 2Si TOTAL CROSS SECTION

The experimental thermal scattering value was taken from Mughabghab (MU81), and given as
1.992:+0.006 b. Five negative-energy resonances were included in the analysis, which gave a thermal
value of 1.992 b and a good fit to available low energy cross section data. A total of 49 resonances
were determined for 2Si up to 1.75 MeV, and an additional 9 resonances were used to reproduce the
average cross section above the cutoff energy.

4.2 ¥Si TOTAL CROSS SECTION

The experimental thermal scattering value was calculated from the scattering lengths in
Mughabghab as 2.784+0.193 b. Three negative energy resonances were utilized in the fit and
provided a thermal scattering value of 2.779 b. The data of Harvey et al. (HA96) starting at 100 keV
also helped determine the three values of the negative energy scattering resonances. Since the data
were from a silicon dioxide sample, the oxygen total cross section was also included in the SAMMY
fit, which stopped at 1.50 MeV, corresponding to the end of the isotopic #Si data. A total of 24
resonances were identified from 10 keV to 1.5 MeV, and two additional resonances were utilized
above the cutoff energy to reproduce the average cross section. The SAMMY calculation for **Si was
used to bridge the gap from 1.5 to 1.75 MeV, above which energy the pointwise representation for the
natural element was utilized. (Note: The cutoff energy in the evaluated file was set to 1.3 MeV to
avoid inconsistencies with the threshold energy of the first inelastic level.)

4.3 *Si TOTAL CROSS SECTION

The experimental thermal scattering value of 2.49+0.04 b was taken from Mughabghab. Two

negative energy resonances were utilized in the fit and provided a thermal scattering value of 2.50 b.
The ¥Si0, data of Harvey et al. (HA83) were used from 100 keV to 1.5 MeV in the analysis to
identify the resonance parameters. A total of 25 resonances from 2 keV to 1.5 MeV were identified
for *°Si, and two resonances were utilized above the cutoff energy to reproduce the average cross
section. As for #Si, the SAMMY calculation for *°Si was used to bridge the gap from 1.5 to 1.75
MeV.






5. THE NONELASTIC CROSS SECTION

The nonelastic cross section represents the sum of all reaction processes except the elastic .
scattering. The available experimental data on the nonelastic cross section are very scarce and are
shown in Fig. 12 versus the calculation from TNG (0.9221 * 2Si + 0.047 *2Si + 0.0309 * *Sj) and
the ENDF/B-VI for %Si.
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6. THE ELASTIC CROSS SECTION

Below 5 eV the elastic scattering cross section is taken as constant at 2.042 b (DI71). At
energies above 5 eV, the evaluated elastic cross section is taken as the difference between the total
cross section and the evaluated nonelastic cross section. The evaluated elastic cross section for #Si
from 4 to 20 MeV is shown in Fig. 13 compared to available data for "Si. The experimental data
points were obtained by integration of angular distribution measurements. It should be noted that the
energy resolution of the experimental data for elastic scattering in general is much poorer than the
resolution available in modern transmission measurements. Thus the data do not verify the detailed
structure in the evaluated curve, but on the average the agreement is quite good. At incident neutron
energies above 10 MeV where the fluctuation of the total cross section is small, the evaluated elastic
cross section is in good agreement with the results of the optical model calculations that were
discussed in Section 3.2.
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7. THE CAPTURE CROSS SECTION

Average values for capture widths corresponding to spins and parities of the resonances for each
isotope were estimated from capture widths given in Mughabghab (MU81), and used for resonances
which did not have experimentally determined values in Mughabghab. Thermal values were taken
from Raman et al. (RA92), with the negative energy resonance capture values adjusted to reproduce
the values obtained by Raman et al. Above the resonance region (1.75 MeV) for each isotope, the
calculated capture shape from TNG was used and normalized to provide an approximate fit to
available experimental data, including points around 14 MeV. Experimental and calculated thermal
values from Raman et al. for *Si were (169+4, 169) mb, for *Si were (1193, 120) mb and for *°Si
were (107+3, 107) mb.
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8. THE (n,particle) REACTIONS

8.1 INELASTIC SCATTERING TO THE DISCRETE LEVELS

The inelastic scattering to the 1.779 MeV level was taken from the ENDF/B-V. This cross
section was reevaluated from ENDF/B-IV from threshold to about 9 MeV based on data of Kinney
and Perey (K170), and high resolution data of Dickens et al. (DI70, DI74) and Perey et al. (PE71).
These data were in good agreement up to about E, = 3.5 MeV, where the Perey et al. data stops. The
gamma-ray production data of Dickens for the 1.779 level goes up to E, = 9 MeV. There is still
structure above E, = 6 MeV in the gamma-ray data, which is dominated by excitation of the 1.779
level directly. However, there is significant feeding from the higher levels to the 1.779 level above
6 MeV, as indicated by TNG calculations. Thus, the structure above 6 MeV was included for the
1.779 level, but a linear cross section sigma=aE+b was removed from the Dickens data, with a,b
chosen so as to match other inelastic cross section data for the 1.779 MeV level which exist at about
9 MeV. Figure 14 presents the evaluation of the cross section for the 1.779 MeV level compared with
measured data. The high resolution data is not shown for clarity, since it is essentially the same as the
evaluated curve.

The inelastic cross section to the 4.617 MeV level was also taken from ENDF/B-V. The
evaluation for this level was lowered from ENDE/B-IV in order to better fit the available data (see Fig.
15). Inelastic scattering data to higher lying states in ?Si is much sparser than for the first two levels,
but shows the same wide fluctuations in adjacent data points, assumed to be due to the underlying
resonance structure. The evaluated cross sections for these levels are based on the results of the TNG
analysis, using available data as a guide. As mentioned in Section 3, a direct interaction component
was included for the 6.276, 6.879, and 6.889 levels. Comparisons to data for the 4.979 and 6.276
MeV levels are shown in Figs. 16-17, and for the sum of levels 6.879 and 6.889 in Fig. 18. Several
additional inelastic levels up to 8 MeV in 2Si were included in the evaluation and were taken from
the TNG analysis, but without benefit of comparison to measurements.

Discrete inelastic levels up to 6.0 MeV in ?Si and 5.0 MeV in 3°Si were included in the
respective evaluations. The TNG analyses were used exclusively since there is no available data. A
direct interaction component was not included.

8.2 THE *Si(n,p)*Al REACTION

There is considerable interest in the cross section for secondary charged particles for radiation
damage calculations in electronic components. For this reason, much effort was put into generating
a consistent evaluation for the (n,p) and (n,&) reactions. The total (n,p) cross section for *Si is based
on measurements from threshold up to E, = 9 MeV, and then extrapolated via the TNG calculation
from 9 MeV to 20 MeV, constrained by the scattered available data. The TNG energy distributions
are given for the proton, Al residual, and gamma rays in File 6 format. Prior to incorporation in File
6, the proton energy distributions from TNG were input to the RECOIL code (FU85), which converts
the distributions from the center of mass to the laboratory frame, and computes the energy spectra of
the heavy recoil nucleus. In addition, cross sections and angular distributions are given for individual
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levels (n,p;) up to 3 MeV in the residual nucleus ®Al, again based on calculation and using the
available data as a guide.

There is considerable (n,p) data available for silicon since it-can serve simultaneously as a
sample and detector. Data obtained in this manner is useful up to a neutron energy at which peaks
from the (n,p) and (n,) reactions overlap. However, the reaction product Al is radioactive and B
decays back 100% to the 1.779 MeV level in i, which then decays to the ground state. Hence either
the resulting {3 or y radiaton can be detected and used to obtain the (n,p) cross section at any neutron
energy. :

From threshold to 6 MeV, the evaluation is based on the $-decay data of Marion, Brugger, and
Chapman (MAS56). This was an activation experiment in which absolute beta counting techniques
were employed. From 6 to 9 MeV the data of Bass et al. (BA66) were used, in which they also
detected the resulting B-radiation. These were both relatively high resolution experiments which show
much resonant structure, and were in substantial agreement with other available data. An excellent
discussion of the relative merits of the various data sets available in this energy range can be found
in Drake's description of his 1968 evaluation (DR68).

Above 9 MeV the evaluation is based on the results of the TNG calculations. The calculations
were adjusted to reproduce cross sections to the low-lying groups of states p,, and p,,; as measured
by Mingay et al. (M1I71), Andersson-Lindstrom and Zauzig (AN65), Grimes (GR69), Mainesbridge
et al. (MA63), Shannon and Trice (SH66), Debertin et al. (DE67), Potenza et al. (PO63), and
Robertson and Zieba (RO72). Above about 8 MeV, the cross sections agreed in magnitude on the
average, with some differences in resonance peak locations (see Figs. 19 and 20). The calculations

are a good average representation of the data. Cross sections to the higher lying states p,, ps, etc. were
taken directly from the TNG results.

As noted earlier, up to E, = 3 MeV in Al, discrete levels were used in the Hauser-Feshbach
-analysis, while for E, > 3 MeV a level density representation was employed. Final results for
%88i(n,p)*®Al are shown in Fig. 21 and the TNG calculations (for E, > 9.0 MeV) are a good
compromise between the several discrepant data sets. From 14 MeV to 20 MeV, the tertiary reaction
channels (n,py) and (n,pn) are open, but the measurements based on the B decay of Al or the
resulting gamma ray measure only the (n,py) component. These cross sections will be more fully
discussed in the section on tertiary reactions.

8.3 THE *Si(n,d)’ Al REACTION

There have been no new measurements of the (n,d) reaction since the evaluation of Drake
(DR68), so this evaluated cross section is adopted. The threshold for this reaction is 9.7 MeV, and
the cross section rises to 2 maximum of 19 mb around 14 MeV and then decreases with energy up to
20 MeV. This cross section is very speculative, but in any case is not large.
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8.4 THE *Si(n,0)*Mg REACTION

The ?Si(n,o) reaction leads to Mg, which is stable. Consequently, the several measurements
available are from detection of the alpha groups resulting from excitation of discrete levels in *Mg.
A few MeV above the threshold (Ey, = 2.75 MeV), the experimental resolution is insufficient to
resolve the individual groups. A total helium production cross section measurement for Si at an
incident energy of 14.8 MeV due to Kneff et al. (KN86) is the only cross section available at 14 MeV.
‘We must therefore rely on the results of the TNG calculations for the (n,c) cross section above about
8 MeV. The TNG computed normalized distributions are given for the alpha, Mg residual (as for
the proton, the RECOIL code (FU85) was used), and gamma rays in File 6 format. In addition, cross
sections and angular distributions are given for individual levels up to 4.8 MeV in the residual nucleus
®Mg, based on calculation and using the available data as a guide.

From threshold to 8.4 MeV, the 1968 evaluation of Drake is adopted (DR68). This evaluation
was compared with data available from Grimes (GR69) and Miller and Kavanagh (MI67) and
excellent agreement both in structure and magnitude was found.

Above 8.4 MeV TNG results are used, as other alpha particle groups are contributing to the
cross section, but can not be resolved. However, measurements for the low-lying groups ¢,-c.5 are
available and are shown versus the TNG calculations in Figs. 22-27. Alpha optical model parameters
from So et al. (SO66) were used in the TNG calculations and were found to satisfactorily reproduce
the measured cross sections to the low-lying states. The level density parameters were adjusted to
reproduce the total helium production cross section of Kneff et al. (KN86). TNG calculations for the
(n,) and (n,an) + (n,ncx) reactions of the minor isotopes Si and *°Si are combined with 2Si and
shown in Fig. 28 versus Kneff's measured value. In addition, the gamma-ray production for photons
arising from transitions in Mg was checked and found to be in good agreement with the gamma-ray
production data of Dickens et al. (DI70, DI73).

8.5 THE (n,p) AND (n,e) REACTIONS FOR #8i, *Si

TNG calculations are compared to available data for *Si(n,p), *Si(n,c), and *°Si(n,) in Figs. 29-31.
The measurements are quite discrepant and the Hauser-Feshbach analysis offers a good compromise.
The calculation for **Si(n,p) is shown in Fig. 32. The calculated results are adopted for the cross
sections and normalized distributions for each of these reactions in the evaluations.

8.6 TERTIARY REACTION CROSS SECTIONS

Little or no data exist for the tertiary reaction cross sections of the isotopes of silicon with which

to compare the TNG calculations and thus the TNG results are used in the evaluations. Measured *Al
and Al production cross sections are compared with computed values from TNG in Figs. 33 and 34.
The good agreement allows confidence for the calculated (n,np)+(n,pn) cross sections for *Si and *Si.
Note that the calculation for ?Si(n,np)+(n,pn) is too small compared to the data of Tkeda et al. (IK88)
as shown in Fig. 35.
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No data were available for the (0,2n) or the (n,an)+(n,ne) reactions. The (n,2n) and
(n,an)+(n,ne) cross sections calculated by TNG for the three Si isotopes are presented in Figs. 36 and
37, respectively.

The energy distributions for the outgoing particles were taken from the TNG calculations for
the tertiary reactions. RECOIL (FU85) was used to convert the distributions from the center of mass
to the laboratory frame, and to compute the energy spectra of the heavy nuclei. The distributions for
particles from (n,np) and (n,pn) were weighted by their cross sections and combined for the
evaluations, with a similar treatment for (n,ne) and (n,on). Angular distributions are given only for
the outgoing neutrons in 2Si; isotropy is assumed for the other particles and gamma rays.



9. ANGULAR DISTRIBUTIONS

9.1 ELASTIC ANGULAR DISTRIBUTIONS

There is a large amount of neutron elastic scattering data from 40 keV to 15 MeV. Below 40
keV, the angular distribution is assumed to be isotropic, which was observed by Lane et al. (LA61,
LA62).

From 40 keV to 800 keV, the distributions were taken from a R-function analysis of the data
of Kinney and McConnell (K176). The angular distribution data of Kinney and McConnell (thinned)
were used between 800 keV and 3 MeV. The data at 3.1 MeV are from Popov (PO61) and those at

3.5 MeV-are from Tanaka (TA64). As noted in Section 3.2, from 4 to 9 MeV, angular distributions

measured at nearby energies were averaged, resulting in a set of seven distributions at 4.25, 4.8, 5.25,
5.8, 6.6, 7.75, and 8.75 MeV. The average distributions were obtained by fitting a Legendre series
" to each data set and averaging the coefficients to obtain the results used in the evaluation. The data
sets which make up each averaged group are given in Table 5. The data at 9.8 MeV are from the work
of Obst and Weil (OB73), and at 10.95 MeV from Nellis and Buchanan (NE72). From 11 to 20 MeV,
the results of the optical model calculations from GENOA (PE67) are used to provide the
recommended data set.

9.2 INELASTIC ANGULAR DISTRIBUTIONS

For the discrete levels 1.779, 4.617, 6.276, 6.879, and 6.8899 MeV of %Si, the angular
distributions in ENDF/B-VI are a weighted sum of Legendre coefficients from the TNG and direct
interaction (DWUCK) calculations. The angular distributions for all other levels of Si, #’Si, and *Si
were taken from the TNG analyses. The calculated differential (n,n") cross sections for exciting
selected low-lying discrete levels are compared with measurements in Figs. 38 through 49. The need
for nuclear model analyses and better data can be seen from these figures for in many cases the
measurements disagree with each other.

9.3 ANGULAR DISTRIBUTIONS OF NEUTRON-PRODUCTION CROSS SECTIONS

The computed angular distributions of neutron production cross sections for silicon at an
incident energy of 14.5 MeV and for secondary energies of E,, =2.0-3.0, 4.0-5.0, 6.0-7.0, and 7.0-8.0
MeV are compared with experiments in Fig. 50. Again, discrepancies exist among the measured data
sets. The results for E, = 7.0-8.0 MeV correspond to levels in the discrete region and include the sum
of TNG and DWUCK calculations. For E, = 6.0-7.0 MeV, the results are also in the discrete region
but are symmetric since there was no direct interaction contribution included and TNG computes the
angular distributions for only the compound component of the discrete levels. The computed results
lie below the data for the low outgoing energies and will be discussed further in the section on neutron

emission below.
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10. NEUTRON EMISSION SPECTRA

Neutron emission spectra were computed via TNG for 35 incident energies for each silicon
isotope. However, measurements are available only for the incident energy range from 14.0 to 14.6
MeV. Comparison of the calculated neutron spectra at an incident energy of 14.5 MeV (weighted sum
of 28i, #Si, and *Si) with the natural silicon experimental data is shown in Fig. 51. The data of
Clayeux and Voignier (CL72) were measured at 90 degrees and the data of Hermsdorf et al. (HE75,
HES82) and Takahashi et al. (TA83) are angle integrated. The calculation is angle integrated and
includes the direct inelastic cross sections from DWUCK that were input to the TNG code. The figure
shows the calculated total neutron emission spectra as well as the spectra associated with the
individual contributing reactions.

It appears that the calculated neutron emission is too small at low outgoing energies.
Experimentally, low energy neutrons form the largest part of the background, so background
subtraction is especially difficult in this region of the spectrum. It has been observed that the data of
Clayeux and Voignier (CL72) for several elements differ significantly at low outgoing neutron energy
from the data of Hermsdorf et al. (HE75) and others (see HE79). In most cases, the energy-integrated
neutron emission cross sections obtained from the data of Clayeux and Voignier are much larger than
the calculated results, due to the large number of low energy neutrons indicated in their work. It has
also been observed that the data of Takahashi et al. (TA83) is too large at low outgoing neutron
energies (FU86). Finally, since there is good overall agreement between calculation and experiment
in the nonelastic cross section, the various partial reaction cross sections, and gamma-ray production
spectra (see below), and since energy conservation must be satisfied, the computed neutron emission
compared to measurements as shown in Fig. 51 is judged to be acceptable.

In the *Si evaluation, the TNG computed angular distributions are given for the outgoing
neutrons from each individual contributing reaction in File 6 format. Normalized distributions
(isotropy is assumed) are given for ?Si and 3°Si. Again, the neutron distributions from TNG were
used as input to the RECOIL code (FU85) which converts the distributions from the center of mass
to the laboratory frame, and computes the energy spectra of the heavy recoil nuclei.
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11. GAMMA-RAY PRODUCTION CROSS SECTIONS

11.1 GAMMA-RAY EXCITATION FUNCTIONS

As discussed previously, a consistent and iterative Hauser-Feshbach analysis was employed to
reproduce as faithfully as possible data from (n,n’), (n,p), and (n,) reactions and the total cross
section. The results of this analysis, coupled with the gamma ray branching ratios (see Tables 8-20),
were used to calculate the resulting gamma ray production from these reactions. The computed
excitation functions for four gamma rays of Si, two gamma rays of *Si, and two gamma rays of *°Si
are shown in Figs. 52-59 compared to available measurements. Also, represeritative cross sections
from the (n,py) and (n,ay) reactions are compared to the calculations in Figs. 60-64. In general, the
calculations are a good compromise for the discrepant data.

11.2 INTEGRATED YIELD OF SECONDARY GAMMA RAYS

The integrated yield of secondary gamma rays with E, > 0.7 MeV for the TNG calculations and
measurement of Dickens et al. (DI73) are shown in Fig. 65. For clarity, the data of Dickens et al. were
plotted at the midpoints of the incident neutron energy bins. The calculated yields agree quite well
with the data.

11.3 GAMMA-RAY PRODUCTION CROSS SECTIONS AND SPECTRAL COMPARISONS

The calculated gamma-ray production cross sections are compared to the data measured by
Dickens et al. (DI73) in Figs. 66 through 68. Although the measurement, as well as the calculations
by TNG, were made at numerous incident energies, comparisons are shown only for energies of 5.5,
9.5, and 14.5 MeV. In each figure, the computed secondary spectra were smeared by a Gaussian
function corresponding to the resolution of the detector for the data. The peak near E, = 1.0 MeV is
from (n,py)+(n,evy), the peak near E, = 1.25 MeV is (n,0.y), E, = 1.78 MeV is from (n,n'y), E, =2.2
MeV is from (n,py), E.{ = 2.8 MeV is from (n,n'y), and the peaks near EY =4.5, 5.0, and 7.0 MeV are
from (n,n'y). In general, the calculations provide a good reproduction of the experimental data, and
in addition provide information on the cross sections for E, < 0.7 MeV. The calculated energy-
dependent yield and the TNG normalized distributions for the gamma ray are given for each reaction
using the File 6 format in ENDF/B-VI. For the discrete levels, the branching ratios are given directly

in ENDF/B-VI in file 12 format and thus the continuum and discrete gammas are given separately in
the evaluations.

Note that the energy dependence of the gamma ray cross sections is very useful as an
independent check on the energy dependence of various partial cross sections, and frequently provide
the bulk of the experimental information for some reactions. This is especially true when the neutron
energies are high enough that tertiary reactions such as (n,np) are possible. There is frequently very
little reliable data on such reactions, as direct measurements are difficult to untangle. However, the
gamma rays associated with the residual nuclei show up clearly and reproducing the gamma ray cross
sections with a model insures that the particle cross sections are at least approximately correct.
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12. UNCERTAINTY INFORMATION

Uncertainty files are given for all cross sections in File 3, including inelastic scattering (levels
and continuum), but not for the resonance parameters, energy distributions, angular distributions, or
gamma-ray production. Fractional and absolute components, correlated only within a given energy
interval, are based on data and estimates of uncertainties associated with the model calculations.
Details of the approaches used are given in Hetrick et al. (HE91).
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13. KERMA AND DAMAGE CALCULATIONS

Improvements to ENDF/B-VI for KERMA and damage calculations are discussed in detail by
Larson et al. (LA91). In summary, prior to ENDF/B-VI], evaluations did not contain spectral
distributions for outgoing charged particles, so only approximations could be made for heating and
KERMA. Many evaluations in ENDF/B-V had serious problems with energy balance. In contrast,
energy conservation is achieved for all reactions of silicon in ENDF/B-VI at all energies to better than
1%. Also, since most structural materials had elemental rather than isotopic evaluations in ENDF/B-
V, average reaction Q-values had to be used, thereby introducing added inaccuracies. Therefore, the
principal improvements in the ENDF/B-VI versus ENDF/B-V for Si regarding KERMA and damage
calculations include (1) use of isotopic evaluations to eliminate the need for average Q values, (2) use
of sophisticated nuclear model codes benchmarked against measured data to provide energy
distributions for all outgoing charged particles, and (3) use of File 6 formats which allowed energy-
angle correlated data to be stored, as well as recoil spectra. Thus, now KERMA can be calculated
directly and depends only upon the quality of the nuclear data, and not on the severity of the
approximation required to compute the average energy (LA91). Table 22 presents the #Si KERMA
computed from ENDF/B-VI and the ™Si KERMA calculated from ENDF/B-V. The table shows that
KERMA could not be computed from ENDF/B-V for several reactions.
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14. SUMMARY AND CONCLUSIONS

Advanced nuclear model codes, an improved experimental data base, more flexible ENDF
formats, and isotopic evaluations were used for the evaluation of silicon in ENDF/B-VIL. Cross
sections for all important reactions, with pre-equilibrium effects included, are given. Measurements
are used to benchmark the model calculations. Neutron, charged particle (including recoil for the first
time), and gamma-ray spectra are provided. Energy conservation is achieved to less than 1% for all
reactions at all energies. For the first time, the required nuclear data are given to allow KERMA,
heating, displacement cross sections, etc., to be calculated directly from information available in the
evaluation. Thus, these quantities are derived without approximation and dependent only upon the
quality of the evaluated data.

The silicon evaluation is much improved over ENDF/B-V. However, the evaluations would
benefit from improving the data base further. For example, isotopic total cross section data need to
be made available, particularly in the resonance region. Charged particle emission spectra are
nonexistent and are needed to verify the model calculations, as well as neutron emission spectra at
energies other than 14.5 MeV. Also, little or no data exist for the tertiary reactions with which to
benchmark model calculations. Uncertainties should be given for important resonance parameters,

as well as the angular and energy distributions.
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Appendix A. Tables



Table 1. Silicon Data Included in the Resonance Parameter Analysis

Total cross section data of Perey et al.(PE72) for natural silicon, measured on the 47-m flight -
path at the Oak Ridge Electron Linear Accelerator (ORELA) from 0.2 to 20 MeV (data used in

the resonance parameter analysis were from 0.2 - 1.8 MeV)

Transmission data of Harvey et al. (HHA93) for natural silicon, measured on the 200-m flight path
at ORELA from 0.3 to 20 MeV (data used in the resonance parameter analysis were from 0.3 -
1.8 MeV)

Total cross section data of Larson et al. (LA76), measﬁred on the 80- and 200-m flight paths at
ORELA from 5.0 eV - 730 keV (data used in the resonance parameter analysis were from 5.0 eV
- 700 keV)

®Si0, transmission data (FHA96) from 300 keV - 1.8 MeV and *¥'SiO, transmission data (HAS83)
from 100 keV - 1.5 MeV, measured on the 80-m flight path at ORELA

Elastic scattering thermal cross section for 8Si (1.99220.006 barns) from Mughabghab (MUS81),
and capture thermal cross section (0.169+0.004 barns) from Raman et al. (RA92). Values given
by resonance parameters are 1.992 and 0.169 barns respectively.
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Table 2. %Si resonance parameters. The analysis was performed with the
following radii: 4.1364 fm for the / = 0 and 2 resonances and
4.9437 fm for the I = 1 resonances

Energy (keV) l J T (eV) T, (V)
-3622.1 0 12 3.9362+6 145.36
-873.730 0 12 0.101510 1.0253
-365.290 0 12 0.030406 1.0
-63.1590 0 172 0.04689%4 1.0
-48.8010 0 12 0.0092496 1.0
31.7400 2 512 0.015667 1.0
55.6770 0 172 653.3100 1.5803
67.7330 1 3/2 2.658900 2.5
70.8000 2 52 0.029617 1.0
86.7970 1 3/2 0.726180 2.5
181.620 0 12 34894.00 5.6
298.700 2 52 9.886000 1.0
301.310 0 172 2.354800 3.6
354.590 2 5/2 14.46000 1.0
399.680 1 3/2 0.813610 0.66
532.660 1 3/2 532.8100 2.5
565.580 1 3/2 10953.00 2.9
587.170 1 172 199.1600 8.8
590.290 0 172 523.6600 3.6
602.470 -2 3/2 50.49100 34
714.040 1 32 . 1.216500 2.5
771.710 2 52 53.13900 1.0
812.490 1 3/2 30100.00 9.7
845.230 2 3/2 ~397.9100 2.0
872.310 2 52 32.14000 1.3
910.040 1 3/2 3673.300 1.13
962.230 1 172 76614.00 16.0
1017.80 2 512 76.19200 1.0
1042.90 2 5/2 933.7000 1.0
1085.20 0 172 72.79400 3.6
1148.10 2 52 3.146900 1.0
1162.70 0 12 3013.600 3.8
1199.50 1 172 14914.00 7.6
1201.20 0 12 4601.200 3.6
1256.40 0 12 17383.00 3.6
1264.40 2 52 843.6400 1.0
1379.90 2 3/2 65.29900 24
1408.30 1 3/2 5198.300 27
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Table 2. (continued)

Energy (keV) l J T, (eV) L, V)
1479.90 2 3/2 '3502.500 1.65
1482.40 1 12 0.886940 8.8
1512.30 2 512 91.49300 1.0
1528.70 2 32 2022500 24
1580.60 2 3/2 1495.500 2.4
1592.80 1 12 11199.00 8.8
1597.20 2 3/2 4017.200 2.4
1639.60 2 512 15293.00 1.0
1651.10 2 512 21555.00 1.0
1658.60 1 12 1555.300 8.8
1665.00 2 3/2 2159000 2.4
1785.00 2 3/2 192.9400 2.4
1805.70 1 312 1299.100 2.5
1850.70 2 5/2 35515.00 1.0
1852.40 1 3/2 70707.00 2.5
1923.70 2 512 1017.100 1.0
1968.90 2 512 5734.100 1.0
2248.70 0 12 444760.0 3.6
3007.30 0 12 289.9600 3.6
3067.80 0 12 4222900 3.6




Table 3. 2Si resonance parameters. The analysis was performed

with a radius of 4.40 fm
Energy (keV) l J T, V) T, (V)
-2041.70 0 0 2061100.0 290.64
-859.350 0 0 35059.0 0.99981
-431.280 0 0 228510.0 1.00590
15.2820 1 1 10.0 1.646
38.8190 1 2 75.9260 2.40
159.680 | 1 1200.30 1.90
184.460 1 1 136.740 1.50
336.790 1 1 2512.80 0.80
385.760 0 1 24133.0 4.670
552.240 1 2 1298.90 5.70
566.560 1 1 70820.0 3.0
619.660 1 2 725.960 3.0
649.730 1 2 1095.90 3.0
653.060 1 1 19386.0 6.30
715.060 1 1 978.570 0.30
716.770 0 0 219300.0 3.0
802.260 2 1 "9934.90 3.0
862.000 0 0 432930.0 3.0
872.480 1 1 17335.0 0.30
955.890 1 2 982.890 0.30
1098.40 2 1 57.7870 3.0
1113.80 1 1 76533.0 0.30
1122.30 1 2 4881.60 0.30
1178.60 0 1 8295.90 3.0
1192.30 1 1 375.060 0.30
1207.60 | 2 19795.0 0.30
1388.90 2 1 4271.40 3.0
1769.10 0 0 32.1360 3.0
2248.50 0 0 169.320 3.0
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Table 4. *'Si resonance parameters. The analysis was performed

with a radius of 4.20 fm
Energy (keV) l J T, (eV) L, V)
-1147.40 0 12 311750.0 912.97
-161.550 0 1/2 426.40 0.650
2.23500 1 3/2 0.932660 0.370
4.97700 1 12 1.1220 0.60
183.490 0 172 9997.60 6.0 -
235.230 2 32 115410 0.80
302.840 1 312 274.430 0.370
413.140 1 172 1580.10 0.60
645.240 2 312 401.430 0.80
704.910 2 3/2 423.190 0.80
745.450 1 3/2 14735.0 0.370
796.950 1 1/2 469.320 0.60
807.380 1 12 274.330 0.60
810.800 1 172 419.310 0.60
844.670 1 S 32 3315.30 0.370
878.820 2 32 110.630 0.80
979.820 1 12 591.820 0.60
1182.20 0 1/2 5912.40 6.0
1217.80 2 372 1888.90 0.80
1274.90. 1 172 2225.50 0.60
1302.00 2 372 304.790 0.80
1310.80 1 3/2 339.710 0.370
1338.00 1 172 4624.0 0.60
1356.00 1 32 12271.0 0.370
1383.60 1 1/2 25336.0 0.60
1401.00 2 3/2 1897.60 0.80
1412.10 1 372 668.620 0.370
1586.00 0 172 23644.0 6.0
2583.20 0 12 92076.0 6.0
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Table 5. Summary of Elastic Scattering Data Used in Optical Model Search

Author(s) Ref. E, Ave.E, Omn - Opa # angles
Knitter and Coppola KN67 4.00 20 150 10
Drake et al. DR69 4.00 404 136.5 6
Tanaka TA64 4.20 4.25 15 160 9
Knitter and Coppola KN67 4.25 20 150 10
Knitter and Coppola KN67 4.50 20 150 10
Tanaka TA64 4.50 15 160 9
Knitter and Coppola KNG67 471 20 150 10
Tanaka TA64 4.80 4.80 15 160 9
Tanaka et al. TA70 4.81 30 148 13
Knitter and Coppola KN67 4.99 20 150 10
Knitter and Coppola KN67 4.99 20 150 10
Knitter and Coppola KN67 5.25 5.25 20 150 10
Kinney and Perey K170 544 254 115.9 22
Knitter and Coppola KN67 5.50 20 150 10
Knitter and Coppola KN67 5.75 20 150 10
Tanaka et al. TA70 5.96 5.80 30 148 13
Martin et al. MAG68 6.00 28 153 15
Drake et al. DR69 6.00 404 136.5 6
Kinney and Perey ~ KI70 6.37 23.3 119.8 23
Drake et al. DR69 6.67 6.60 40.4 136.5 6
Tanaka et al. TA70 7.02 30 148 13
Drake et al. DR69 7.50 40.4 136.5 6
Kinney and Perey K170 7.55 155 136 23
Brandenberger et al. BR72 7.71 7.75 30 150 16
Brandenberger et al. BR72 7.96 30 145 13
Tanaka et al. TAT0 8.03 30 148 13
Velkley et al. VE74 8.47 31 160.7 14
Kinney and Perey  KI70 8.56 15.5 136 19
Velkley et al. VE74 8.92 8.75 31 160.7 27
Nellis and Buchanan NE72 8.91 31 121.8 11
Brandenberger et al. BR72 9.05 30 150 15
Obst and Weil OB73 9.80 9.80 20.7 151 20
Nellis and Buchanan NE72 10.95 10.95 31 121.8 10
Roturier RO64 14.1 14.1 103 165.1 13
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Table 6. Optical Model Parameters

Neutrons:
V- (MeV) =47.91-0.267E r, (fm) = 1.254
W (MeV) =0.0
Wp(MeV) = 12.95-0.053E r,, (fm) = 1.096
U (MeV) =7.6 1, (fm) = 1.254
Protons:
V (MeV) = 53.60-0.55E r,(fm) =1.25
W (MeV) =0.0
WyMeV) =13.5 r, (fm) =125
Alphas:
V MeV) =110.0 r, (fm) = 1.70
W(MeV) =50 r,, (fm) = 1.80

a, (fm) = 0.625
a, (fm)=0.519
a, (fm) = 0.625
a, (fm) = 0.65
a, (fm) = 0.47

a, (fm) =048
a, (fm) =0.438

E =incident energy (MeV),

V =real well depth,

W =imaginary well depth (Saxon-Woods),

W, = Imaginary well depth (Saxon-Woods derivative),
U = spin-orbit potential depth,

I,, I, I, = radii for various potentials,

a,, a,, a, = diffuseness for various potentials.
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Table 7. Deformation parameters of **Si levels

Level MeV) J* B2 ~ Ref.
1.779 2* 0.3300 CR67
4.617 4* 0.1089 HO69
6.276 3* 0.0400 . SE86
6.879 3 0.1225 SE86, HO69

6.889 4* 0.0961 SE86, HO69
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Table 8. Energy levels and gamma-ray branching ratios (in %) of ¥’Si

Initial State Branching ratios to state N

N ¥ E (keV) 1 2 3 4 5
1 5/2* 0

2 1/2* 780 100

3 3/2F 957 94 6

4 7127 2164 100

5 5/2 2647 20 3 77

6 (3/2)r 2865 96 4

7 9/2* 2910 94 6

8 172 3539 62 38

0 3/2* 3805 80 8 . 12
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Table 9 . Energy levels and gamma-ray branching ratios (in %) of *Si

Initial State Branching ratios to state N

N I* E(keV) 1. 2 3 4 5 6
1 0o 0

2 2 1779 100

3 4 4617 100

4 0 4979 100

5 3 6276 92 8

6 0" 6691 100

7 3 6879 64 33 3

8 4* 6889 100

9 2¢ 7381 37 63

10 28 7417 94 6

11 3% 7799 70 1 29
12 2% 7933 82 4 8 6
13 2 8259 9 70 4 17
14 1+ 8328 72 28

15 4 8413 2 4

16 6 8543 100

17 3 8589 94 6

oy
o <]

Iy 3904 47 53
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Table 10. Energy levels and gamma-ray branching ratios (in %) of *Si

Initial State Branching ratios to state N

N J* E(keV) 1 2 3 4 5 6 7 8
1 1/72* 0

2 372 1273 100

3 5/2 2028 94 6

4 3/2v 2426 87 13

5 512 3067 80 20

6 727 3623 2 89 9

7 7/2% 4080 68 32 .

8 9/2* 4741 93 7

9 172+ 4840 90 10

10 5/2% 4895 18 50 32

11 -3/22 4934 . 94 5 1

12 9/2° 5255 100

13 7127 5286 11 76 13

14 9/2* 5652 41 47 12
15 72 5813 25 30 45

16 3/2% 5949 14 23 15 22 26




Table 11. Energy levels and gamma-ray branching ratios (in %) of *°Si

55

Initial State Branching ratios to state N
N ¥ E (keV) 1 2 3 4 7 - 8 11
1 0* 0
2 2+ 2235 100
3 2* 3498 45 55
4 ¥ 3770 43 57
5 0* 3788 100
6 2 4809 36 16 44 4
7 3" 4830 92 8
8 3* 5231 21 75 4
9 4* 5280 100
10 0* 5372 ° 71 29
11 3 5487 61 39
12 2* 5613 44 56
13 4* 5950 100
14 4 6503 40 45 15
15 2% 6537 31 20 35 14
Table 12. Energy levels of *'Si
N J* E (keV)
1 3/2* 0
2 1/2* 752
3 5/2* 1695
4 3/2* 2317
5 5/2* 2789
6 7/2 3134
7 3/2 3534
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Table 13. Energy levels and gamma-ray branching ratios (in %) of ¥Al

Initial State Branching ratios to state N

N I*  E(keV) 1. 2 3 4 5 6 7 8
1 5/2% 0 _

2 12+ 844 100

3 3/2¢ 1014 97 3

4 7/2F 2211 100

5 512 2735 22 2 76

6 3/2% 2981 97 1 2

7 9/2* 3004 89 11

8 172+ 3679 2 60 38

9 3/2* 3956 84 5 5 6

10 1/2- 4055 86 14

11 52 4409 59 34 5 2

12 11/2* 4510 77 23
13 7/2¢ 4580 75 16 9

14 529 4812 40 25 35

15 3720 5156 100

16  5/2% 5247 5 77 16 . 2

17 (5/27) 5419 (100)

18  9/2* 5433 (100)
19 52 5438 83 13 4

20 (11/2% 5500 21 79
21 (3/2%) 5551 74 20 6

22 9/2* 5668 55 45
23 172 5752 39 13 36 12
24 (5/2%) 5827 15 85

25 729 5960 35 ' 42 23
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Table 14. Energy levels and gamma-ray branching ratios (in %) of 2Al

Initial State Branching ratios to state N

N J E (keV) 1 2 3 4 6 7 10
1 3* 0

2 2F 31 100

3 o* 972 100

4 3* 1014 37 63

5 1* 1373 5 55 40

6 1* 1620 6 92 2

7 2F 1623 100

8 2 . 2139 43 50 7

9 1* 2202 79 16 5

10 4* 2272 100

11 2F 2485 22 6 61 11

12 5* 2582 95 5
13 4* 2656 25 75

14 (3)r 2987 50 50
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Table 15. Energy levels and gamma-ray branching ratios (in %) of Al

Initial State - Branching ratios to state N
N ™  E(keV) 1 2 3 4
1 5/2F 0

2 12 1398 100

3 7/2* 1754 100

4 32 2224 100

5 3/2* 2865 56 44

6 5/2* 3062 33 67

7 - 5/2° 3184 7 14 24 55
8 1/2* 3433 &3 17
9 9/2* 3578 9 91

10 (5/2)" 3641 91 9

11 (3/2)" 3672 100

12 (72 3935 86 14
13 (7/2) 3985 100

14 (1/2%) 4057 50 50
15 5/2% 4220 100 -

16 (5/2%) 4403 45 55
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Table 16. Energy levels and gamma-ray branching ratios (in %) of Al

Initial State Branching ratios to state N
N I E(keV) | 2 4 5

1 3* 0

2 3H 250 100

3 1Y) 694 (50)  (50)

4 (0 (1000) (100) .

5 25 1135 (75) (25)

6 (49 1262 (50) (50)
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Table 17. Energy levels and gamma-ray branching ratios (in %) of *Mg

Initial State Branching ratios to state N

N ¥ E(keV) 1 . 2 3 4 5 6 8 9 10
1 0* 0

2 2F 1369 100

3 4% 4123 100

4 2 4238 79 21

5 3" 5236 - %8 2

6 4 6010 87 13

7 o* 6432 o 82 18

8 2* 7348 62 38

9 iy 7553 45 35 (20)

10 3 - 7616 23 72 5

11 1* 7747 21 74 5

12 ¢ 7812 33 60 .7

13 6" 8113 . 100

14 3 8358 5 49 16 11 ® & O
15 4 8437 63 23 7 6 1
16 I 8438 82 18

17 2¢ 8654 82 13

18 2 8864 93 7

19 2* 9002 55 18 27
20 " 9148 45 34 21
21 2* 9283 71 23
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Table 18. Energy levels and gamma-ray branching ratios (in %) of *Mg

Initial State Branching ratios to state N

N I E (keV) 1 2 3 4 5 6 7 8 10
1 5/2* 0

2 1/2* 585 100

3 312t 975 51 49

4 7/2% 1612 100

5 5/2 1965 26, 47 27

6 172 2564 3 80 17

7 772 2738 6 87 7

8 3/2+ 2801 22 39 39

9 9/2* 3405 19 81

10 3/2- 3414 10 76 14

11 5/2F 3908 11 66 13 10

12 7/2- 3971 79 21

13 9/2* 4060 60 39

14 172- 4277 5 79 12 4
15 3/2* 4359 52 47 ) 1

16 9/2* 4711 94
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Table 19. Energy levels and gamma-ray branching ratios (in %) of Mg

Initial State Branching ratios to state N

N 7  E(keV) 1 2 3 5 6 8 10 13 14
1 o* 0

2 2" 1809 100

3 2F 2938 10 90

4 0* 3588 100

5 3¢ 3941 38 62

6 4" 4320 100

7 2* 4332 8 82 10

8 3* 4350 .55 45

9 2¢ 4835 11 4 81 4

10 4" 4901 91 9

11 o* 4972 7 93

12 2* 5291 2 7 91

13 4* 5474 16 29 55

14 1% 5690 10 61 29

15 4+ 5715 19 38 37 6

16 (@Q* 6125 10 90

17 0" 6256 93 7
18 (3) - 6621 36 14
19 2" 6744 90 10

20 3 6878 28 72
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Table 20. Energy levels and gamma-ray branching ratios (in %) of 2’Mg

Initial State Branching ratios to state N

N I EkeV) 1 2 3 4 5 6
1 172* 0

2 32 985 100

3 512F 1698 100

4 52+ 1940 33 66 1

5 (7/2)* 3109 7 6 87

6 (5/2)* 3427 58 37 3 2

7 1/2* 3476 98 2

8 (32" 3485 43 4 13

9 3/22 3561 92 6 2

10 72 3760 100

11 3/2F 3786 50 2 32 16

12 (9/2*) 3884 7 81 6 6




Table 21. Level density parameters

Residual

T

E

a

PaN

Nuclei MeV)  (MeV)  (MeVY)  (MeV) MeV) MeV)
%Mg 2384 19850 .  3.320 513 4.033 9.3 15.63
2)Mg 1730 00754  4.800 246 5992 4.8 1096
2%)\g 2076 0.7308 4.080 426 5228 7.0 14.68
Mg 1274 07823 6.500 246  8.541 4.0 8.592
N 2375  -1.6920 3450 180 4533 6.0 13.00
N 2072 25400  3.800 000  5.116 30 9.025
N 2807 36220  3.000 167 4134 45 16.92
N 1744 -1.8640 4486 000 6323 1.4 7.500
75 2506  -1.8430  3.178 209 4176 4.0 14.49
75 2353 2.1350 3.050 389 4106 9.0 1222
21 2055 03677 3.570 209 4920 6.0 9.762
0 2158 06527  3.810 376 5371 5.0 14.00
3181 1.964 -0.3579 4.050 2.09 5.835 3.6 10.83

T = nuclear temperature

E,= parameter for matching lower energy level density to the higher one
a= 7’g/6 (g=density of uniformly spaced single particle states)
a = pairing energy correction

¢ = spin cutoff parameter

E_ = continuum cutoff
E,= tangency point
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Table 22. 2Si KERMA (MeV-barns) Calculated from ENDE/B-VI and "*Si KERMA (MeV-barns)

Calculated from ENDFE/B-V (in parentheses)

E, MeV)

Reaction 8 14 20
MT=2 (elastic) recoil 0.144 (0.174) 0.175 (0.182) 0.241 (0.238)
MT=16 (n,2n) recoil 0.0 0.0) 0.0 (0.0) 0.003 (0.224)
MT=22 (n,nc) o 0.0 0.034 0.733

recoil 0.0 0.012 0.205

sum 0.0 0.0) 0.046 (0.10) 0.938 (1.539)
MT=28 (n,np) P 0.0 0.050 0.922

recoil 0.0 0.036 0.325

sum 0.0 (0.0) 0.086 (0.198) 1.247 (1.572)
MT=51-67 recoil 0.326 0.185 0.171
(n,n’) discrete
MT=91 recoil 0.0 0.147 0.153
(n,n’) continuum
MT=51-91 sum 0.326 (0.359) 0.332  (0.233) 0.324 (-0.617)
MT=102 (capture) 1.62E-4 (1.52E-4) 244E-4 (2.14E-4) 3.07E-4 (2.60E-4)
MT=104 (n,d) 0.0 (0.0) 0.088  (0.088) 0.007 (0.007)
MT=600-613 P 0.578 0474 0.10
(n,p) discrete recoil 0.104 0.053 0.01
MT=649 p 0.0 0.838 . 0425
(n,p) continuum ‘recoil 0.0002 0.027 0.014
MT=600-649 sum 0.6822 (0.913) 1.392 (1.541) 0.549 (0.636)
MT=800-815 o 0.836 0.698 0.04
(n,e) discrete recoil 0.182 0.151 0.008
MT=849 4 0.0 0.309 0.117
(n,00) continuum recoil 0.0 0.080 0.028
MT=800-849 sum 1.018 (0.680) 1.238  (1.265) 0.193 (0.426)
Total KERMA 2170 (2.126) 3.357 (3.607) 3.502 (4.025)
Recoil KERMA 0.756 0.866 1.158
(n,n”) KERMA 0.326 (0.359) 0.332  (0.233) 0.324 (-0.617)
Proton KERMA 0.578 1.362 1.447

o KERMA

0.836

1.041

0.890



Appendix B. Figures



X See Table 1
E =4.8 MeV
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Fig. 1. Comparison of calculated and experimental differential elastic
scattering cross sections for **Si at E, = 4.8 MeV.
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x See Table 1
En=5.8 MeV
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Fig. 2. Comparison of calculated and experimental differential elastic
scattering cross sections for *Si at E, = 5.8 MeV.
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10*

X See Table 1
E =7.75 MeV
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Fig. 3. Comparison of calculated and experimental differential elastic
scattering cross sections for *Si at E, = 7.75 MeV.
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10*

x See Table 1
E =9.8 MeV
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Fig. 4. Comparison of calculated and experimental differential elastic
scattering cross sections for #*Si at E, = 9.8 MeV.
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X .See Table 1
E =14.1 MeV

10°

Cross Section (mb/sr)
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180

Fig. 5. Comparison of calculated and experimental differential elastic

scattering cross sections for *Si at E, = 14.1 MeV.
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Fig. 50. Comparison of calculated and experimental cross sections for angular spectra of
outgoing neutrons for #Si.
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Fig. 51. Neutron emission spectra from the TNG calculation compared with experimental data.
Contributions from the various neutron-producing components are shown (they sum to the total).
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The curves labeled (n,np) and n,ne) include the (n,pn) and (n,om) components, respectively.
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Fig 66. Secondary gamma-ray spectra vs gamma-ray energy from the TNG calculation (incident
energy E, = 5.5 MeV) compared with the data of Dickens et al. (DI73).
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Fig 67. Secondary gamma-ray spectra vs gamma-ray energy from the TNG calculation (incident
energy E, = 9.5 MeV) compared with the data of Dickens et al. (D173).
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Fig. 68. Secondary gamma-ray spectra vs gamma-ray energy from the TNG calculation
(incident energy E, = 14.5 MeV) compared with the data of Dickens et al. (DI73).
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