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ABSTRACT FEB 1 6 1993 DE93 007604
We develop an empirical equation for penetration depth of ogive-nose projecti ting concrete targets at
normal impact. Our penetration equation contains a single, dimensionless emﬁﬂﬁf t that depends only on
the unconfined compressive strength of the target. We determine the empirical constant from penetration depth
versus striking velocity data for targets with unconfined compressive strengths of nominally 14 MPa (2 ksi), 35
MPa (5 ksi), and 97 MPa (14 ksi). Predictions are in good agreement with six sets of penetration data for striking
velocities between 250 and 800 m/s.

INTRODUCTION
Brown [1] presents an historical account of empirical equations for penetration and perforation of concrete
targets. These empirical equations result from curve-fits with test data and do not provide physically based
descriptions. In addition, the empirical equations in [1] are expressed in terms of specific units, so these equations
are dimensionally dependent. In this paper, we develop a dimensionally consistent empirical equation for depth of
penetration into concrete targets that contains the functional form of recently published, experimentally verified,
analytical models [2,3,4].

MODEL FORMULATION
Forrestal and Luk [4] derive an analytical equation for penetration into soil targets that requires triaxial material
data from samples cored from the target material. Unfortunately, most penetration studies lack the necessary triaxial
test data required for input to analytical and computational models. Many experimental studies do, howevér, report
the unconfined compressive strength f; for concrete targets. To use this data base, we develop an empirical
penetration equation that describes the concrete targets in terms of unconfined compressive strength f/, a
dimensionless empirical constant § that multiplies f., and density p.

The development of the empirical equation starts with the equation for force on the projectile nose given in [4].
For the analytical model in [4] and this empirical equation, we assume normal impact and that the projectile is a
rigid body (nondeforming nose). Axial force is given by

F= mz(roA + NBpVZ) (1a)
8y -1

= 1b

241;/2 (1)

where the projectile has mass m, shank radius a, caliber-radius-head y, and rigid-body velocity V. The target is
characterized by density p and the constants (7oA) and B that involve only material parameters obtained from
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triaxial tests.
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Previous studies [2,3,4] showed that B depends mostly on the compressibility of the target material and B has a
narrow range; for example, B = 1.1 for aluminum targets [2,3], and B = 1.2 for soil targets [4]. By contrast, (7oA)

depends mostly on the shear strength of the target materials, and (roA) has a broad range. For this empirical
equation, we take B = 1 and (toA) = Sf/, where S is the dimensionless empirical constant that multiplies unconfined

compressive strength. Thus, the empirical equation for axial force takes the form

F=ma®(Sf;+ NpV?), z>4a [0)

where N is given by equation (1b). Equation (2) is limited to penetration depths z > 4a. For z <4a, the process is
dominated by surface cratering.

Post-test observations of soil and concrete targets show that the cavity left after penetration has a conical region
with length about two projectile shank diameters (4a) followed by a circular cylinder with diameter nearly equal to
the projectile shank diameter (2a). Thus, the cavity length 0 < z <4a is called the crater region, and the cavity
length 4a < z < P is called the tunnel region, where z is measured from the target surface and P is final penetration

depth. For the soil penetration tests analyzed in [4], P =100a; so the crater region was ignored. However, both the
crater and tunnel regions must be taken into account in the analysis of the more resistant concrete targets.

Deceleration data [4] show a rise time during the crater region, followed by a decaying pulse during the tunnel
region. For this model, we take force on the projectile nose as

F=cz, O<z<da (3a)
F=ma®(sf,+NpV?), 4a<z<P (3b)

where c is a constant. From Newton’s second law

2
m-g—t-zz—=—cz, 0<z<4a @

With the initial conditions z(t =0)= 0 and V(1 = 0) = V,, equation (4) has the following solutions for projectile
displacement, velocity, and acceleration:

z=(—‘a%)sina)t, 0<z<4a (5a)
dz

V=-Z=V,cosa)t, O<z<4a (5b)

d*z .

—5 =-0V;sinwt, 0<z<4a (50



3o

G

We now define #;, and V] as the time and rigid-body projectile velocity at z =4a. The unknowns ¢;, V;, and

¢ are found from the conditions of continuity of force, velocity, and displacement at z=4a and t = 1.

From equations (3 and 5)
: o2 cp 2 _
mwV, sinwt) = na (Sfc + NpV; ) atz=4a
Vicosoty =V, atz=4a

(%)sin ot =4a, atz=4a

Substituting (6¢) into (6a) gives
..,
c= T(Sfc + Nlez)

Squaring and then adding (6b) and (6¢) give

m(v2 - 2)

C:—ﬁ——
16a

Equating (7a) and (7b) gives the rigid-body velocity at z =4a as

y2 o mVe - dna’Sy!
! m+ 47ra3Np

From (6b),

Values of 11, V|, and c can be determined with equations (7b, ¢, and d).

Depth of penetration in the tunnel region is found from

md—zi—mvfix
dr? dz

= —mz(Sfc’+NpV2), da<z< P

(6a)

(6b)

(60)

(7a)

(7b)

(7o)
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Integrating (8) from V] to zero and 4a to P gives the final penetration depth

2
P=— 1| 1+X% |1 40, P>4a ©)
2ma”pN Sf¢

where V] is related to the striking velocity V; in equation (7c).

DETERMINATION OF EMPIRICAL CONSTANT FROM PENETRATION DATA

We solve for S and obtain

Se NpVZ | 1
T 3 2(p_
fe [l+ 4rma Np]exp[bra P 4a)Np}_1

m m

(10)

For each experiment, all terms on the right side of equation (10) are known, so we can calculate S for each data
point. We take the average value of S for the data points in each data set and compare results from equation (9) and
penetration data. This procedure produced accurate data fits for six sets of penetration data.

14 MPa (2 ksi) Grout Targets,

Hanchak and Forrestal [5] conducted depth-of-penetration experiments with 0.064 kg, 12.7-mm-diameter
projectiles with 3.0 and 4.25 caliber-radius-head nose shapes into grout targets. Table 1 lists the other parameters for
these experiments. The value of S in Table 1 is the average of the values calculated from equation (10) for each data
point. Figure 1 shows the results from equation (9) with § =21 and the data sets with y =3.0 and y =4.25.

i) Con T
Canfield and Clator {6] present depth-of-penetration data for full-scale (5.90 kg, 76.2-mm-diameter) and one-
tenth scale (0.0059-kg, 7.62-mm-diameter) armor-piercing projectiles. Table 1 lists the other parameters for these
experiments and the calculated value of S. Figures 2 and 3 show penetration data and results from equation (9) with
S = 13 for the full-scale projectile and S = 14 for the one-tenth scale projectile.

Ehrgott and Cargile [7] conducted depth-of-penetration experiments with 0.90 kg, 26.9-mm-diameter projectiles.
Table 1 lists the other parameters for these experiments and the calculated value of S. Figure 4 shows penetration
data and results from equation (9) with § = 12.

Pa (14 ksi) Con T

Ehrgott and Cargile [7] conducted depth-of-penetration experiments with 0.90 kg, 26.9-mm-diameter projectiles.
Table 1 lists the other parameters for these experiments with the calculated value of S. Figure 4 shows penetration
data and results from equation (9) with § = 7.

An Estimate for S versus f¢
We obtained values of S for six data sets. For the two data sets with nominal 14 MPa (2 ksi) grout targets,
S = 21; for the three data sets with nominal 35 MPa (5 ksi) concrete targets, S = 12, 13, and 14; and for the single



data set with a nominal 97 MPa (14 ksi) concrete target, S = 7. The model prescribes that S depends only on f;,
and equation (10) shows that § is proportional to 1/ /. Figure 5 shows the calculated values of S and a curve-fit
where S is proportional to 1/f/.

SUMMARY
We present a dimensionally consistent empirical equation for penetration depth of ogive-nose projectiles
penetrating concrete targets. This equation has a single, dimensionless empirical constant § that multiplies
unconfined compressive strength f.. The empirical constant S depends only on the unconfined compressive strength
of the concrete target and is independent of the projectile parameters and striking velocity. We note that the
penetration equation is limited to normal impact and rigid projectiles (nondeforming nose). Most of the penetration

data base is limited to V; <800 m/s, and for V; <800 m/s, the nose remained undeformed.
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Table 1. Penetration Parameters

Parameter Ref. [5] Ref. [5] Ref. [6] Ref. [6] Ref. {7] Ref. [7]
m (kg) 0.0642 0.0642 5.90 0.0059 0.906 0.904
2a (mm) 12.7 12.7 76.2 7.62 26.9 26.9
Y 3 4.25 1.5 1.5 2.0 2.0
N 0.106 0.076 0.204 0.204 0.156 0.156
p (kg/m3) 1960 1960 2310 2240 2370 2340
fc (MPa) 13.5 13.5 35.1 34.6 36.2 96.7
S 21 21 13 14 12 7
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Penetration data (5] and model prediction for 0.064 kg, 12.7-mm-diameter projectile with

f'c =13.5 MPa, S=21.
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Figure 2. Penetration data [6] and model prediction for 5.9 kg, 76.2-mm-diameter projectile with

f’c =35.1 MPa, S=13.
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Penetration data [6] and model prediction for 0.0059 kg, 7.62-mm-diameter projectile

with f'c = 34.6 MPa, S=14.
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Figure 4. Penetration data [7] and model prediction for 0.904 kg, 26.9-mm-diameter projectile with

f’c =36.2 MPa, S=12 and f'c = 96.7 MPa, S=7.
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Figure 5. Dimensionless empirical constant versus unconfined compressive strength.
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