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ABSTRACT FEB 1 6 1993 0 0 7 6 0 4

We develop an empirical equation for penetration depth of ogive-nose nroiet^e^ penetrating concrete targets at 
normal impact. Our penetration equation contains a single, dimensionless empmc^^oitstant that depends only on 
the unconfined comfHessive strength of the target We determine the empirical constant frtxn penetration depth 
versus striking velocity data for targets with unconflned compressive strengths of nominally 14 MPa (2 ksi), 35 
MPa (5 ksi), and 97 MPa (14 ksi). Predictions are in good agreement with six sets of penetration data for striking 
velocities between 250 and 800 m/s.

INTRODUCTION
Brown [1] presents an histoical account of empirical equations for penetration and perforation of concrete 

targets. These empirical equations result from curve-fits with test data and do not provide physically based 
descriptions. In addition, the empirical equations in [1] are expessed in terms of specific units, so these equations 
are dimensionally dependent In this paper, we develop a dimensionally consistent empirical equation for depth of 
penetration into concrete targets that contains the functional form of recendy published, experimentally verified, 
analytical models [2,3,4].

MODEL FORMULATION
Fcxrestal and Luk [4] derive an analytical equation for penetration into soil targets that requires triaxial material 

data frcHn samples cored from the target material. Unfortunately, most penetration studies lack the necessary triaxial 
test data required for input to analytical and computational models. Many experimental studies do, however, reptxt 
the unconfined compressive strength for concrete targets. To use this data base, we develop an empirical 
penetration equation that describes the concrete targets in terms of unconfined compressive strength /^ , a 
dimensionless empirical constant 5 that multiplies /<.', and density p .

The development of the empirical equation starts with the equation for fwce on the projectile nose given in [4].
For the analytical model in [4] and this empirical equation, we assume normal impact and that the projectile is a 
rigid body (nondeforming nose). Axial force is given by

F = «a^(ToA + /VBpV^) (la)

N = ^  (lb)
24vr^

where the projectile has mass m, shank radius a, caliber-radius-head y/, and rigid-body velocity V. The target is 
characterized by density p and the constants (tqA) and B that involve only material parameters obtained from

triaxial tests.
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Previous studies [2,3,4] showed that B depends mostly on the compressibility of the target material and 5  has a 
narrow range; for example, B = 1.1 for aluminum targets [2,3], and B = 1.2 for soil targets [4]. By conunst, (tqA) 
depends mostly on the shear strength of the target materials, and (tqA) has a broad range. For this empirical 

equation, we take B = l  and (tq4) = Sfc, where S is the dimensionless empirical constant that multiplies unconfined 

compressive strength. Thus, the empirical equation for axial force takes the form

F = 7ia'^{sf’ + NpV^), z > 4a (2)

where N  is given by equation (lb). Equation (2) is limited to penetration depths z > 4 a . For z < 4 a , the ix'ocess is 
dominated by surface cratering.

Post-test observations of soil and concrete targets show that the cavity left after penetration has a conical region 
with length about two projectile shank diameters (4a) followed by a circular cylinder with diameter nearly equal to 
the projectile shank diameter (2a). Thus, the cavity length 0 < z < 4a is called the crater region, and the cavity 
length 4a < z < P is called the tunnel region, where z is measured from the target surface and P is final penetration 
depth. For the soil penetration tests analyzed in [4], P = 100a; so the crater region was ignored. However, both the 
crater and tunnel regions must be taken into account in the analysis of the m oe resistant concrete targets.

Deceleration data [4] show a rise time during the crater region, followed by a decaying pulse during the tunnel 
region. For this model, we take force on the projectile nose as

F = cz, 0 < z < 4a (3a)

F = m'^[Sf^ + NpV^y 4 a < z < P  (3b)

where c is a constant From Newton’s second law

2
m ^ - ^ - - c z ,  0 < z < 4 a  (4)

dt

With the initial conditions z(l = 0) = 0 and V{t = 0) = , equation (4) has the following solutions for [a-ojectile

displacement, velocity, and acceleration:

z = ^— jsintot, 0 < z < 4 a  (5a)

V - ^ - V ,  coscot, 0 < z < 4 a  (5b)
dt

2
— = sintar, 0 < z < 4 a  (5c)
dl^



2 C 0}  ̂= — 
m

(5d)

We now define ij , and Vj as the time and rigid-body projectile velocity at z = 4 a . The unknowns , Vj, and 
c are found from the conditions of continuity of force, velocity, and displacement at z = 4a and t = ti-

From equations (3 and S)

mcoV̂  sin rati = m^^Sfc + NpV^ j , atz = 4a

V^cos©fi = Vi, atz  = 4a

£ ) -sin tatj = 4a, atz  = 4a

(6a)

(6b)

(6c)

Substituting (6c) into (6a) gives

c = ^ [ S f ’ + NpV^) (7a)

Squaring and then adding (6b) and (6c) give

m(v;-Vj2) 
■ —16a"

(7b)

Equating (7a) and (7b) gives the rigid-body velocity at z = 4a as

„ 2  mV}-Ana^Sfc 
M = - ——7 —377“m + Am  Np

(7c)

From (6b),

cos ■ft) C7d)

Values of Vj, and c can be determined with equations (7b, c, and d).

Depth of penetration in the tunnel region is found from

m̂  = m V ^  = -aa^(s/c' + VpV^), 4 a < z < P,dV (8)



Integrating (8) from V{ to zero and 4a to P gives the final penetration depth

,2  ^
D IP = ----- s— In

I m  pN
i . M

, Sfc }
+ 4a, P >  4a (9)

where Vi is related to the striking velocity in equation (7c).

DETERMINATION OF EMPIRICAL CONSTANT FROM PENETRATION DATA
We solve for S and obtain

N p V }   1________________

m
exp

2 m ^ {P -4 a )N p
m

(10)
- 1

For each experiment, all terms on the right side of equation (10) are known, so we can calculate S for each data 
point. We take the average value of S for the data points in each data set and compare results from equation (9) and 

penetration data. This procedure produced accurate data fits fw  six sets of penetration data.

14 MPa (2 ksi) Grout Targets.

Hanchak and Forrestal [5] conducted depth-of-penetration experiments with 0.064 kg, 12.7-mm-diameter 
projectiles with 3.0 and 4.25 caliber-radius-head nose shapes into grout targets. Table 1 lists the other parameters for 
these experiments. The value of S in Table 1 is the average of the values calculated from equation (10) for each data 
point. Figure 1 shows the results from equation (9) with 5 = 21 and the data sets with y/ = 3.0 and Y  = 4.25.

35 MPa (5 ksi) Concrete Targets.

Canfield and Clator [6] present depth-of-penetration data for full-scale (5.90 kg, 76.2-mm-diameter) and one- 
tenth scale (0.0059-kg, 7.62-mm-diameter) armor-piercing projectiles. Table 1 lists the other parameters for these 
experiments and the calculated value of S. Figures 2 and 3 show penetration data and results from equation (9) with 
S = 13 for the full-scale projectile and 5 = 14 for the one-tenth scale projectile.

Ehrgott and Cargile [7] conducted depth-of-penetration experiments with 0.90 kg, 26.9-mm-diameter projectiles. 
Table 1 lists the other parameters fw  these experiments and the calculated value of S. Figure 4 shows penetration 
data and results from equation (9) with S = 12.

97 MPa (14 ksii Concrete Targets.

Ehrgott and Cargile [7] conducted depth-of-penetration experiments with 0.90 kg, 26.9-mm-diameter projectiles. 
Table 1 lists the other parameters for these experiments with the calculated value of S. Figure 4 shows penetration 
data and results from equation (9) with 5 = 7.

An Estimate for 5 versus

We obtained values of 5 for six data sets. For the two data sets with nominal 14 MPa (2 ksi) grout targets,
5 = 21; for the three data sets with nominal 35 MPa (5 ksi) concrete targets, 5 = 12, 13, and 14; and for the single



data set with a nominal 97 MPa (14 ksi) concrete target, S = 7. The model prescribes that S depends only on , 
and equation (10) shows that S is proportional to 1 / Figure 5 shows the calculated values of S and a curve-fit 
where S is proportional to 1//^.

SUMMARY
We present a dimensionally consistent empirical equation for penetration depth of ogive-nose projectiles 

penetrating concrete targets. This equation has a single, dimensionless empirical constant S that multiplies 
unconfined compressive strength f c . The empirical constant S depends only on the unconfmed compressive strength 

of the concrete target and is independent of the projectile parameters and striking velocity. We note that the 
penetration equation is limited to normal impact and rigid projectiles (nondeforming nose). Most of the penetration 
data base is limited to < SOO m/s, and for < 8(X) m/s, the nose r»nained undeformed.
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Table 1. Penetration Parameters

Parameter Ref. [5] Ref. [5] Ref. [6] Ref. [6] Ref. [7] Ref. [7]

m(kg) 0.0642 0.0642 5.90 0.0059 0.906 0.904

2a (mm) 12.7 12.7 76.2 7.62 26.9 26.9

V 3 4.25 1.5 1.5 2.0 2.0

N 0.106 0.076 0.204 0.204 0.156 0.156

p (kg/m3) 1960 1960 2310 2240 2370 2340

f  c (MPa) 13.5 13.5 35.1 34.6 36.2 96.7

S 21 21 13 14 12 7
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Figure 1. Penetration data [5] and model prediction for 0.064 kg, I2.7-mm-diameter projectile with

To = 13.5 MPa, S=21.
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Figure 2. Penetration data [6] and model prediction for 5.9 kg, 76.2-mm-diameter projectile with

f c  = 35.1 MPa, 8=13.



10

0.09

•  \|/=1.5, Data 

— V|/=1.5, Equation (3)
0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
0 300 600150 450 750 900

V  (m /s)

Figure 3. Penetration data [6] and model prediction for 0.0059 kg, 7.62-mm-diameter projectile

with f ' c  =  34.6 MPa, S=14.
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Figure 4. Penetration data [7] and model prediction for 0.904 kg, 26.9-mm-diameter projectile with

r e  = 36.2 MPa, 8=12 and f  c = 96.7 MPa, 8=7.
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Figure 5. Dimensionless empirical constant versus unconfined compressive strength.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.


