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ABSTRACT

A metastable, disordered bce phase has been formed from the melt in a Cr-rich alloy of the
Nb-Cr-Ti system, where large volume fractions of the Laves phase would develop under
equilibrium  solidification conditions. X-ray diffraction (XRD) studies and lattice constant
determinations confirm that the melt-spun ribbons contain a bee phase beyond its terminal solid
solution limits. Solidification pathways are proposed based upon metastable and equilibrium
phase diagrams. Microstructures have been studied using optical microscopy, scanning electron
microscopy (SEM), and transmission electron microscopy (TEM). Cross-sectional TEM reveals
tiny, dispersed Laves phase precipitates within the metastable bec grains near the chill (wheel)
side. Away from the wheel, the microstructure changes to a dendritic structure of the bee and
C15 Laves phase. Annealing of the melt-spun ribbons produces a fine, two-phase microstructure
of the equilibrium phases. Microstructures from the melt-spun and arc-melted processing
conditions are compared. The microstructural control afforded through this metastable
processing route enables a methodology to tailor phase distributions for optimized toughness in
Laves phase alloys.

INTRODUCTION

Rapid solidification techniques offer potential to produce alloys with reduced segregation,
very fine grain sizes, and metastable phases. A metastable bee solid solution has been formed by
splat-quenching and mechanical alloying in the Nb-Cr binary system [1], TiCr,-NbCr, isoplethal
section [2], and NbCr,-Ti plethal section [2), where the Laves phase (AB, intermetallic) would
develop under equilibrium solidification conditions. The normalized differences between the
atomic radii obey Hume-Rothery rules for solid solubility, suggesting that a continuous
metastable solid solution in the Nb-Cr-Ti system is possible. This study examines rapidly
solidified CrNb,,Ti,, by melt-spinning, and the thermal stability of the metastable product.

The expected phases and phase transitions from the melt-spinning process and subsequent
annealing treatment are: Liquid — B,, (bec) — B, (bec) + C15 Laves phase (where m stands for
metastable and eq is equilibrium). The equilibrium two-phase product is being explored as a dual
phase alloy for high-temperature structural applications [3,4,5]. The NbCr, Laves phase has been
shown to have several desirable properties such as high melting temperature (~1730°C), high-
temperature strength [6], reasonable oxidation resistance [7,8], and appreciable creep resistance
[7]. However, the low-temperature brittleness of Laves phase intermetallics often requires the
incorporation of an additional, more ductile phase for practical applications [9]. Several two-
phase (bcctLaves) alloys have been explored, and studies suggest that an optimized
microstructure contain discrete Laves phases in a fine-grain structure [2,8,10,11]. The
decomposition of a metastable precursor phase from rapid solidification in this study explores
and demonstrates a methodology for achieving such microstructures.




EXPERIMENTAL PROCEDURES

The alloy for melt-spinning was initially arc-melted for desired compositional uniformity
in the final product. Niobium (99.9%), chromium (99.99%), and titanium (99.99%) were
weighed in the appropriate proportions for three separate ingots weighing approximately 20
grams each. For the arc-melting process, the system was evacuated to < 1 Pa and back-filled with
ultra-high purity argon (99.998%) three times prior to melting. A titanium getter ingot was
melted immediately prior to and adjacent to the melting of the ingot. The ingots were melted and
flipped over five times. :

After the alloys were arc-melted, they were loaded into a BN crucible with an orifice
diameter of 0.64 mm. The melt-spinning chamber was evacuated to < 1.3 Pa and back-filled with
ultra-high purity helium three times. The operating pressure in the chamber was ~8.4 x 10* Pa.
Using induction heating, the alloy was heated (within five minutes) to the pour temperature of
1800°C. The crucible was lowered to ~1.5 cm from a copper wheel (33 cm in diameter) that was
rotating at 2000 rpm. A helium gas pressure of 20.7 x 10° Pa ejected the molten alloy through the
orifice onto the spinning wheel, and the ribbon pieces were collected at the end of a four foot
long tube. For the annealing treatment, the ribbons were wrapped in Nb foil, annealed in a tube
furnace with Ti getters at 1300°C for 72 hours, and cooled to room-temperature at a cooling rate
of 1°C/min cool. Chemical analysis of the as-received material revealed impurity levels of 0.21
wt% oxygen, 0.42 wt% nitrogen, and 0.33 wt% boron. The ribbon composition was found to be
approximately 78.7 at%Cr-7.0 at% Nb-10.4 at% Ti.

For comparisons of melt-spinning to conventional processing, an ingot of the same alloy
composition was arc-melted into a 10 gram button. The ingot was then annealed at 1400°C for
100 hours, and cooled at a rate of 1°C/min.

X-ray diffraction (XRD) using Cu K radiation was performed on pieces of the melt-spun
ribbon with the chill-side or air-side towards the x-rays and detector, while a powder sample was
used for the arc-melted sample. Lattice constants were determined from a least squares fit. Cross-
sectional views of the melt-spun ribbons were analyzed by optical microscopy, scanning electron
microscopy (SEM), and transmission electron microscopy (TEM). Volume fractions of different
phases were determined by image analysis.

RESULTS AND DISCUSSION

The XRD scan of the as-received, melt-spun ribbon is shown in Figure 1. A structural
difference can be seen between the chill-side and air-side of the ribbons. The chill (or wheel) side
would have experienced the fastest cooling rate, and displays predominantly a bec phase. The
bee phase is also highly textured, suggesting a preferred growth direction along the cube axes,
[100]pce. On the other hand, the air-side of the ribbon contains a bec and C15 phase. The XRD
peaks of the bee phase are shifted towards higher 2 theta values, indicating a smaller lattice
constant. Some solute partitioning occurred, as the bee solid solution becomes Cr-enriched with
the appearance of the C15 Laves phase, (Nb,Ti)Cr,. No texture of the bee phase was apparent on
the air-side of the ribbon.

The data in Figure 2 displays the equilibrium bec lattice constants along the
Nb,, Ti,Cry00.6 Plethal section at 950°C [12], and those calculated from Vegard’s Rule. The bee
lattice constants from the as-received, melt-spun ribbons are also plotted. The bcc lattice
constants of the chill and air-sides are outside the ranges for equilibrium. Although the tie lines
in the ternary phase diagram do not necessarily occur along the plethal section, other possible tie
lines and bec lattice constants were considered (2.891—2.8954), assuming minimal solubility in
the equilibrium Cr-rich bee solid solution. A super-saturated and metastable bec phase was thus
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Figure 1. XRD scans from the (a) chill-side and (b) air-side of
the as-received, melt-spun ribbon.

phase. Thus, although the Laves phase may be thermodynamically more stable, kinetics prevent
their formation in favor of the metastable bcc phase.

The structural differences between the chill and air-sides that were demonstrated with the
XRD analyses, are also apparent from microstructural analyses. A SEM cross-sectional view of
an etched melt-spun ribbon is presented in Figure 3. The chill-side contains columnar grains of
the metastable bce phase, which is consistent with the textured XRD scans showing a preferred
growth direction. TEM (Figure 4) reveals small amounts of the Laves phase along the grain
boundaries and within the grains as tiny particles. Electron diffraction patterns displayed diffuse
spots corresponding to the metastable bce phase, and sharp rings corresponding to the numerous,

tiny C15 particles.
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Figure 3. Cross-section SEM of the as-received ribbon.

Further away from the wheel, more and larger
Laves particles emerge. The air-side of the melt-spun
ribbon displays a coarser microstructure of dendritic bee
and C15. An orientation relationship between the two

phases was found to be: Figure 4. TEM of the chill-side of the
(101),, | (11 Deys melt-spun ribbon. The Laves phase
- - particles become more abundant and

[1 ll]bcc [1 12](:15 o larger towards the air-side.
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This orientation relationship has also been observed in
the Nb-NbCr, system [13].

A proposed solidification path is shown in the schematic diagram in Figure 5. The
metastable extensions of the bee liquidus and solidus (dashed lines) across the plethal section is
_based upon ternary phase diagrams [12]. From the Cr-rich eutectic binary composition, a
minimum of about 0.04T,, is required to reach T, (bee-liquid, dotted line), and to promote the
extended bee solid solution from the liquid.: The initial melt was thus undercooled to some
unknown temperature below T, (line 1). Upon recalescence, the initial solid formation may have
approached partitionless freezing (vertical line 2), before partitioning of the solute (line 3). The
presence of the Laves phase on the air-side of the ribbon suggests the liquid undercooling was
' exhausted and that recalescence and solute
partitioning was directed out towards the air-side.

Upon annealing, the metastable bcc phase
decomposes into the equilibrium beec and C15
Laves phase. XRD of the annealed ribbon (Figure
Ci4 6b) shows well-defined peaks from the bee and C15
phase, as well as peaks from an additional
undefined phase (possibly an intermediate phase or
impurity). The bec lattice constant also decreases
from the as-received melt-spun condition value. As
a result of decomposition, the bec solid solution
becomes more Cr-rich and more C15 phase is

COMPOSITION produced. The annealed, arc-melted sample (Figure
Figure 5. Proposed solidification pathway| 6¢) contains the bec and C15 phases with similar
along the Cr;o9,)Nb,, Ti,, plethal section. | lattice constants as the annealed ribbon.
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Figure 6. XRD scans of CtNb,,Ti,,: (a) chill-side of as-received, melt-spun ribbon, (b) air-sid
of the annealed ribbon, and (c) arc-melted and annealed sample.

The decomposed microstructure of the annealed ribbons (Figure 7a) consists of very fine
phase distributions (on the order of microns) of the bec and C15 Laves phase. The Laves phase
(lighter contrast) is uniformly dispersed and is roughly 45 volume percent of the alloy. Figure 7b
represents the microstructure from conventional processing techniques, with about 53 volume
percent of the Laves phase. The microstructure of the arc-melted sample is much coarser and
shows primary Cr-rich dendrites. Different initial alloy compositions may account for the
different volume fractions, but the very different microstructures of the same two phases are
produced by the different processing methods.

The decomposition of a metastable precursor bce phase produced by rapid solidification
contrasts with other in sifu multiphase microstructure formation techniques (such as directional
solidification or precipitation) in that the volume fractions of the phases can be designed to
specific amounts and distributions. High-strength and adequate toughness in multiphase
intermetallic alloys may be achieved through a uniform, refined microstructure. Thus, rapid
solidification and decomposition of a metastable precursor is an effective microstructural
tailoring scheme to produce controlled multiphase microstructures.
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Figure 7(b). SEM of the arc-melted alloy
annealed ribbon, showing decomposition into annealed at 1400°C. A dendritic and coarse
the equilibrium bee + C15 phases. | microstructure remain.

Figure 7(a)



CONCLUSIONS

1.

Metastable bce was achieved in a CrNb,Ti,, alloy via rapid solidification by a melt-spinning
process. The bce lattice constants (2.939—2.926 A) were outside the ranges for the
equilibrium bce phases in the Nb-Cr-Ti system. »

XRD, SEM, and TEM revealed that the chill-side of the melt-spun ribbons contained
columnar grains of the metastable bcc phase. Small amounts of the C15 Laves phase
appeared along the bee grain boundaries and as tiny, dispersed particles within the grains.
The air-side of the as-received, melt-spun ribbons had a dendritic microstructure.

-3. Decomposition of the metastable bee phase occurred during annealing at 1300°C. A fine two-

phase microstructure (micron length scales) of the equilibrium bec phase and C15. phase
resulted.

The alloy composition processed with the conventional arc-melting method, followed by
annealing, resulted in a coarse microstructure with remnants of a dendritic structure.

Using a metastable precursor which then decomposes into the equilibrium phases offers
microstructural control and phase distributions not possible in conventional processing
methods. Such a technique allows the optimization of the microstructure and properties of-
Laves phase intermetallic alloys. '
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Microstructures of the As-Received
CrN blem Melt Spun RlbeIlS
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SEM Secondary electrdn image

Free surface beec C15

TEM Bright-field image




Microstructures of the As-Received
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Microstructures of the As-Received
CrNb,I'i, Melt-Spun Ribbons

Selected-area diffraction pattern
Metastable bce (diffuse reflections)
C1S (sharp rings)



BCC-C15 Orientation relationship
at the free surface

o .
(101)bcce

(111)C15

[111]bec, [112]C15 |
Similar to that found previously
for Nb-NbCr, and Ti(Cr)-TiCr,
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