

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405 ENG-36

TITLE A One- and Two-Dimensional Cross-Section Sensitivity and Uncertainty Path of the AARE Modular Code System

AUTHOR(S) J. W. Davidson, D. J. Dudziak, C. E. Higgs,* and J. Stepanek*

SUBMITTED TO 7th International Conference on Radiation Shielding (ICRS 7)
Bournemouth, UK
September 12-16, 1988

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

A One- and Two-Dimensional Cross-Section Sensitivity and Uncertainty Path of the AARE Modular Code System

J. W. DAVIDSON and D. J. DUDZIAK

University of California, Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

C. E. HIGGS and J. STEPANEK

Paul Scherrer Institute, (formerly EIR)
CH-5303 Würenlingen, Switzerland.

ABSTRACT

AARE, a code package to perform Advanced Analysis for Reactor Engineering, is a linked modular system for fission reactor core and shielding, as well as fusion blanket, analysis. Its cross-section sensitivity and uncertainty path presently includes the cross-section processing and reformatting code TRAMIX, cross-section homogenization and library reformatting code MIXIT, the 1-dimensional transport code ONEDANT, the 2-dimensional transport code TRISM, and the 1- and 2-dimensional cross-section sensitivity and uncertainty code SENSIBL. In the present work, a short description of the whole AARE system is given, followed by a detailed description of the cross-section sensitivity and uncertainty path.

INTRODUCTION

The AARE modular code system[1] is being developed jointly by the Paul Scherrer Institute (PSI) and the Los Alamos National Laboratory (LANL). It is based on the DANDE (Applied Nuclear Data, Core Neutronics and Depletion) code system[2] which was developed for analyses of advanced Liquid Metal Fast Breeder Reactor (LMFBR) concepts. In comparison to DANDE, AARE can be used for wider range of reactor lattice cell, whole reactor, shielding, and fusion blanket analyses. It includes additionally, the cross-section sensitivity and uncertainty and general purpose modules. Its general description is given in reference 1. As with DANDE, the data is transferred between the codes using CCCC[3] and CCCC-like[4] files. This minimizes the user's input, (and sources of errors) as well as input inconsistencies in the sequence of code calls.

The cross-section sensitivity and uncertainty path is based on that reported at IAEA Advisory Group Meeting on Nuclear Data for Fusion Technology in Gaussig, GDR [5] Since this meeting the CCCC-like TRISM[6] geometry file, GEOMTY, was incorporated into SENSIBL. The incorporation of the ONEDANT[4] geometry file, GEODST and the CCCC files NDXSRF and ZNATDN is under way. This will lead to a considerable reduction of user input to SENSIBL.

THE AARE SYSTEM

Currently AARE consists of five modules - applied nuclear data, neutronics, material depletion, sensitivity and a general purpose module. The thermohydraulics module is under preparation. A block diagram is given in Figure 1.

The **Nuclear Data Module** consists of the cross section shielding, coupling and reformatting program TRAMIX,[1] a PSI update of the TRANSD CTR code[7] and the cross section shielding

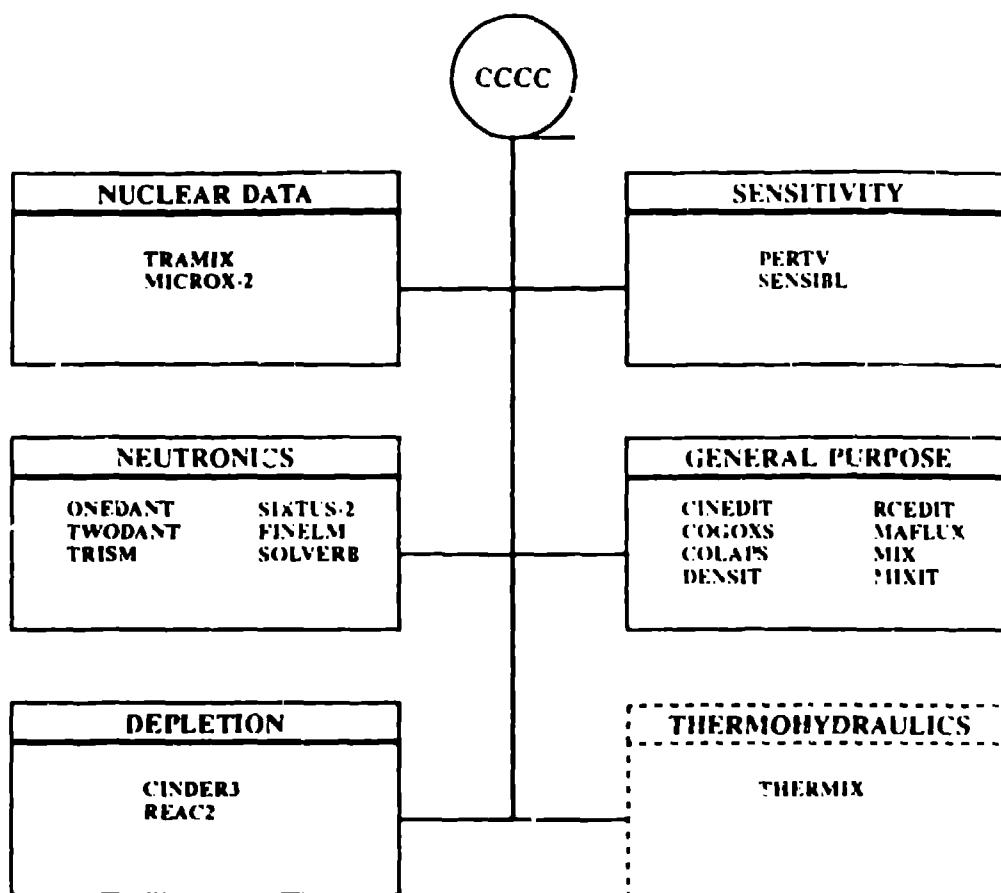


Figure 1. Block Diagram of the AARE System

The codes currently being used in the **Neutronics Module** include ONEDANT,[4] a one-dimensional finite difference S_N transport code for slab, spherical and cylindrical geometries; TWODANT,[9] a two-dimensional finite difference S_N transport code, for $x-y$, $r-z$ and $r-\theta$ geometries; TRISM,[6] a two-dimensional finite element S_N transport code for $x-y$, $r-\theta$ and toroidal geometries using triangular elements; FINEL.M,[10] a three-dimensional finite element diffusion code for $x-y$, $r-z$, $r-\theta$, $x-y-z$ and $r-\theta-z$ geometries using triangular or rectangular elements and SIXTUS-2.[11] a 2-dimensional nodal diffusion code for hexagonal geometry. A 3-dimensional hexagonal- z version is currently in preparation.

In addition to the aforementioned codes, the code SOLVERB, based on the coupled P_N/B_N method,[12] was included in the neutronics module. Eigenvalue, k_{eff} or buckling searches can be performed.

The **Depletion Module** presently consists of CINDER-3[2] with PSE updates, and REAC-2.[13] The CINDER-3 code is an enhanced version of CINDER-2. It uses explicit cross sections from the ISOTXS or GOXS file produced by TRAMIX, its own non explicit cross section file, AFEW, and the RZFLUX file produced by the core neutronics module. A total of 233 nuclides and 46 actinides in 186 chains are currently used in the CINDER-3 calculation.

For detailed material activation and transmutation calculations of fusion reactors, the depletion module REAC-2 was included into the system. This code presently uses the ENDF-6 cross section library of over 300 isotopes and 6500 reactions. All materials between $Z=1$ and $Z=92$

transmutation calculations without reverting to chaining specifications.

The **Sensitivity Module** presently consists of the two-dimensional perturbation theory code PERTV[14] and the one- and two-dimensional cross-section sensitivity and uncertainty analysis code SENSIT[15].

PERTV is a two-dimensional perturbation theory code. It computes reactivity coefficient traverses using first-order perturbation theory, effective delayed neutron fraction, neutron generation time, the inhour/ δ_t conversion factor and activity traverses. SENSIBL, an improved and accelerated version of SENSIT[15] and SENSIT-2D,[16] is a code based on first-order generalized perturbation theory.

At present eight codes are included in the **General Purpose Module**. They were designed to collapse and combine GOXS files, homogenize and/or print the cross-section sets from a GOXS file, to print and change isotopic densities on a ZNATDN file, and to print depletion history values etc. (See reference 1 for more details).

NUCLEAR DATA LIBRARIES

Four MATXS libraries based on the ENDF/B-V evaluations were generated at Los Alamos using the NJOY nuclear data processing system[17] and are only available within the USA. These are the 30n/12 γ group MATXS5, 69n group MATXS7, 80n/124 γ group MATXS6, and 187n/24 γ group MATXS8 libraries described in reference 7.

Five additional libraries based on the Joint Evaluation File/European Fusion File (JEF/EFF) evaluations[18,19] were generated at PSI,[20,21] also using the NJOY nuclear data processing system.[17] These are the 70n group MAT70, 86n group MAT86, 175n/42 γ group MAT175, 187n group MAT187, and 308n group MAT308 libraries. They are described in some detail in reference 1 also.

CROSS-SECTION SENSITIVITY AND UNCERTAINTY PATH

The cross-section sensitivity and uncertainty path consists at present of the codes TRAMIX, MIXIT, ONEDANT, TRISM and SENSIBL. The data linkage between these codes is primarily via CCCC and CCCC-like data files. Figure 2 displays the 1- and 2-dimensional flows.

TRAMIX uses the basic ENDF/B nuclear data in a fine-group MATXS library format,[7] generated from the NJOY code system.[17]

TRAMIX is able to shield resonance data in the whole energy range using the intermediate resonance absorption shielding method, (IR method),[22-24] by calculating energy- and isotope dependent Goldstein-Cohen IR-factors and energy dependent Dancoff corrections. Using these, the effective background cross-sections can be calculated. This effective background cross section is then used together with temperature for interpolation in background cross-section and temperature dependent cross-section tables [25]. Both background cross sections and Dancoff corrections are calculated using the collision probability method. An extensive tabulation of the escape and transmission probabilities is used. For a more accurate interpolation, both are represented by augmentments to their rational representation. Slab, spherical, cylindrical, pebble-bed, double heterogeneity grain, and cluster geometries are included. The method allows shielding of all zones in the system. Using the balance equation, the average fluxes are determined in all the regions, inclusive of the grains and their coatings. Using the rational expression for the flux, the background cross-section is determined for each region of the spatial system.

The density-dependent IR method is based on the recommendations of the IAEA report[26].

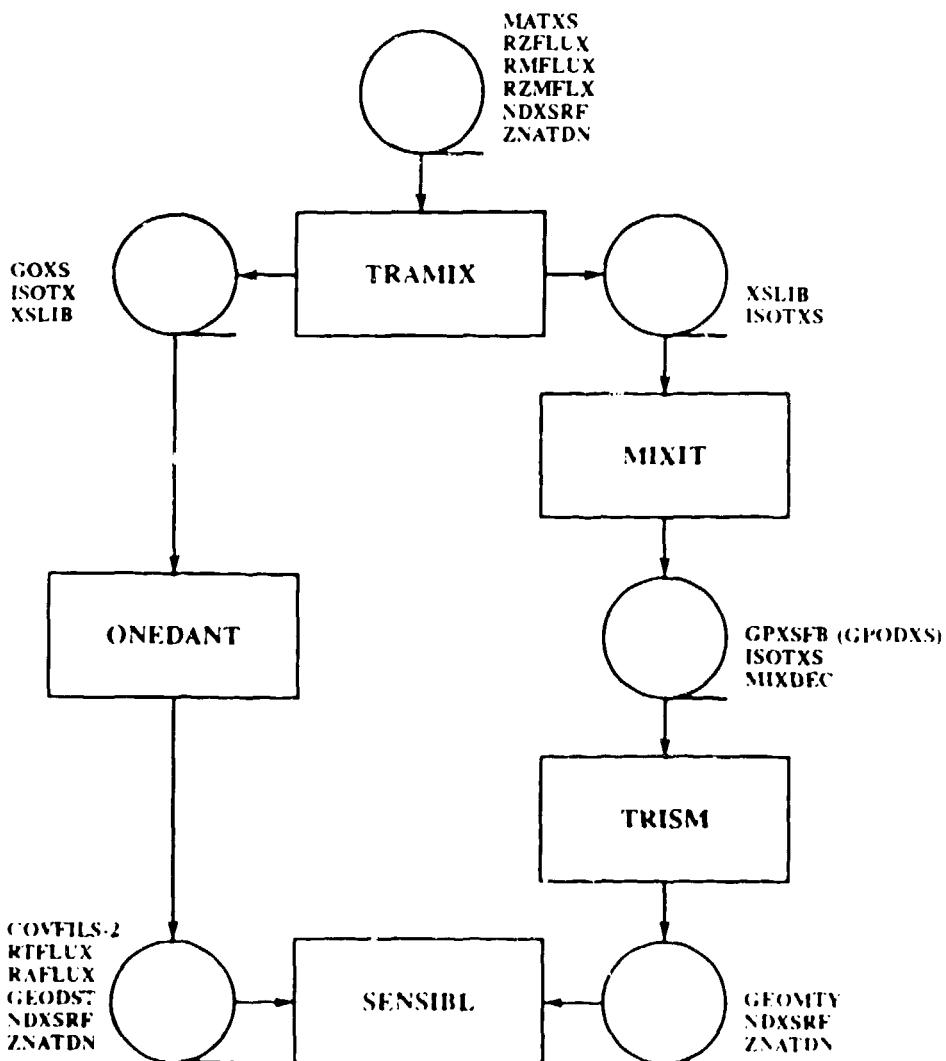


Figure 2. Flow Diagram of the AARE Cross-Section Sensitivity and Uncertainty Path

dent total and absorption multi-group cross-section tables.[1] Having those resonance parameters, the Goldstein-Cohen method[22,23] is used to calculate the IR-parameters

In contrast to TRANSX-CTR, TRAMIX also reads the NDXSRF and ZNATDN files containing isotopic density specifications, which can override the input specifications. This is especially useful during a single run with multiple calls to TRAMIX, due to material depletion

TRAMIX accurately computes fission spectra from fission matrices, corrects self scatter and the first outscatter terms of the elastic scattering matrices for differences between actual flux and library weighting flux and produces a variety of library formats which can be used in most transport and diffusion codes. Additionally, the code contains options for adjoint tables, mixtures, Doppler corrections, group collapsing, cell homogenization, thermal upscatter, prompt or steady-state fission transport corrections and flexible response function edits.

MIXIT[6] is used to prepare mixed, macroscopic cross section libraries in either BCD or group-ordered binary formats for use in transport code calculations. The BCD format is that of the XSLIB cross section libraries as used in ONEDANT, TWODANT and TRISM. The group ordered binary form is that of the GPODXS library used in TRISM. The input to MIXIT is a

either BCD card images, or from the CCCC standard binary interface file ISOTXS. MIXIT can also be used to combine BCD and ISOTXS input files into a single, and therefore much smaller, problem-dependent input file.

TRISM is a computer program for solving the two-dimensional neutral particle transport equation in rectangular ($x-y$) and cylindrical ($r-z$) geometries within a general domain having curved or other non-orthogonal boundaries. The spatial discretization is accomplished using triangular finite elements and discontinuous linear trial functions. TRISM is a follow-on version of TRIDENT-CTR[26] which includes deterministic streaming capabilities.[27] The use of this deterministic streaming option is useful in mitigating the inaccuracies due to the "ray-effect" which plague calculations for fusion systems with large internal void regions. The use of triangles in $r-z$ geometry allows a user to accurately follow curved or irregularly shaped boundaries and material interfaces of toroidal and other fusion system shapes. TRISM maintains all of the capabilities of TRIDENT-CTR but incorporates a completely new user-friendly, free-field input format similar to that of ONEDANT[4] and TWODANT.[9] In addition, several new input and edit options have been added.

SENSIBL is a code based on first-order generalized perturbation theory. It has the capability for cross-section sensitivity and uncertainty analysis, secondary-energy-distribution (SED) sensitivity and uncertainty analysis, and design sensitivity analysis. The code allows slab, spherical, cylindrical, $x-y$ or $r-\theta$ geometries and accepts group-dependent quadrature sets.

Presently, SENSIBL is intended for use with ONEDANT and TRISM. The triangular mesh used by TRISM allows unique modelling capabilities that are applicable to fusion reactor configurations, and thus SENSIBL can also analyze these configurations. The forward and adjoint angular fluxes calculated by ONEDANT and TRISM are required input to SENSIBL. Because the number of angular fluxes can be voluminous, a sophisticated data management scheme was necessary for the code to keep the execution time and memory requirements within reasonable limits.

To date the special geometry file, GEOMTY, generated by TRISM has been incorporated as an input to SENSIBL. This eliminates most of the user generated input to the code. Due to the triangular meshes used in TRISM, GEOMTY is not strictly a CCCC file. The 1-dimensional geometry file, GEODST, output from ONEDANT, together with the CCCC files NDXSRF and ZNATDN, containing density data, will soon be incorporated into SENSIBL, thus eliminating further the explicit user input.

The theoretical backgrounds are given in references 5 and 16. The code allows the calculation of the uncertainties of simple, as well as complex, responses such as kerma, displacements per atom (dpa), activation rates, or tritium breeding. The calculation is based on the calculation of sensitivity profiles in connection with covariance data:

$$\left[\frac{\Delta I}{I} \right]^2 = \sum_{\text{all } zmg} \sum_{\text{all } z'm'g'} P_{z'm}^g P_{z'm'}^{g'} \frac{\text{cov}(\sigma_{z'm}^g, \sigma_{z'm'}^{g'})}{\sigma_{z'm}^g \sigma_{z'm'}^{g'}} \quad (1)$$

In this expression $\sigma_{z'm}^g$ represents the interaction cross section for reactions of type z in material m in energy group g , $\text{cov}(\sigma_{z'm}^g, \sigma_{z'm'}^{g'})$ is the covariance matrix for the indicated multigroup cross-sections, and $P_{z'm}^g$ is the relative sensitivity profile of response I for cross section $\sigma_{z'm}^g$ as defined by

$$P_{z'm}^g = \frac{\partial I/I}{\partial \sigma_{z'm}^g / \sigma_{z'm}^g} \quad (2)$$

The relative sensitivity profile clearly can be interpreted as the fractional change in response per fractional cross section change. Note that in Eq. (1) the first two factors in each term

The sensitivity profile for the response I can be expressed as

$$P_{zm}^g = \frac{1}{I} \left\{ R_{zm}^g \varphi_m^g - \sigma_{zm}^g \chi_m^g + \sum_{\ell=0}^{LMAXIGM} \sum_{g'=g} \sigma_{zm\ell}^{g \rightarrow g'} \psi_{m\ell}^{gg'} \right\}, \quad (3)$$

The integral of the response over the volume of the "detector" (which may be the entire system) is

$$I = \sum_{i \in \text{det}} V_i \sum_{\text{all } g} \phi_{0i}^{0g} \sum_{\text{all } zm} N_{mi} R_{zm}^g, \quad (4)$$

where V_i is the volume of spatial interval i , ϕ_{0i}^{0g} is the scalar flux in group g in interval i , and N_{mi} is the local atomic density of material m in interval i . The quantity R_{zm}^g appearing in Eqs. (3) and (4) is the "response function," a response-weighted microscopic cross-section. If the response of interest is the number of nuclear reactions of type z , then R_{zm}^g is just the microscopic cross-section for that reaction. However, if the response of interest is the total nuclear heating, for example, then R_{zm}^g is the partial kerma factor (in units of eV-barns) for reaction z in material m in group g . Other complex responses, such as dpa and total helium production, can also be accommodated using suitable definitions of R_{zm}^g .

The quantities φ_m^g , χ_m^g , and $\psi_{m\ell}^{gg'}$ appearing in Eq. (3) are atom density-weighted, spatial integrals of the flux defined in reference 5.

The first term in the brackets of Eq. (3) is the direct term.[28] Note that this term is non-zero only if reaction z in material m contributes to the detector response function, so that both R_{zm}^g and φ_m^g are non-zero.

The second and the third terms of Eq. (3) comprise the indirect term. These terms are called the "loss" term and the "gain" term, respectively. Note that the indirect term receives contributions only from intervals in which the density N_{mi} is non-zero. The indirect term may be derived from the expression for the forward difference approximation, Eq. (36) in reference 29 or Eq. (17) in reference 30 or Eq. (26) in reference 31, considering a two-dimensional geometry and expansion of the scattering into Legendre polynomial series and the flux angular expansions into the series of spherical harmonics.

Presently the MATXS8[7] coupled 187-neutron/24-photon-group library based on ENDF/B-5, the MAT187[20,21] a 187-neutron-group library based on JEF-1/EFF evaluations and COVFILS-2,[32] the cross-section and covariance library, are used for cross-section sensitivity and uncertainty calculations with the AARE system. Whereas the MATXS8 and MAT187 libraries are used as input libraries for TRAMIX for transport calculations with ONEDANT and after collapsing, with TRISM, the COVFILS-2 library is the input library for SENSIBL and is used for cross-section sensitivity and uncertainty calculations.

The 74-neutron-group boundaries of COVFILS-2 library are included in the 187-group structure of MATXS8 and MAT187 libraries. This enables more accurate 1-dimensional 187 neutron group calculations with ONEDANT and, after collapsing into 74 neutron-group structure, with TRISM and SENSIBL. The 187-neutron-group libraries can be also directly collapsed in TRAMIX using the library neutron-weighting spectrum or a known, (generated in a previous calculation) neutron flux file such as RZMFLX or RMFLUX for example.

REFERENCES

- 1 J. STEPANEK and C. E. HIGGS, "A General Description of AARE: A Modular System for Advanced Analysis of Reactor Engineering", Proceedings of the 1988 International Energy Physics Conference, Jackson Hole, Wyoming, 18-21 September (1988)

2. R. J. LABAUVE, T. E. ENGLAND, D. C. GEORGE, R. E. MACFARLANE and W. B. WILSON, "DANDE - A Linked Code System for Core Neutronics/Depletion Analysis", Los Alamos National Laboratory report LA-10412-MS (1985).
3. R. D. O'DELL, "Standard Interface Files and Procedures for Reactor Physics Codes, Version IV", Los Alamos National Laboratory report LA-6941-MS (September 1977).
4. R. D. O'DELL, F. W. BRINKLEY, Jr., and D. R. MARR, "User's Manual for ONEDANT: A Code Package for One-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport," Los Alamos National Laboratory report LA-9184-M (February 1982).
5. J. W. DAVIDSON, D. J. DUDZIAK, D. W. MUIR, J. STEPANEK and C. E. HIGGS, "Recent Joint Developments in Cross-Section Uncertainty Analysis at Los Alamos and EIR", Proc. of IAEA Advisory Group Meeting on Nuclear Data for Fusion Reactor Technology, Gaussig, G.D.R., 1-5 December 1986 (LA-UR-87-219)
6. J. W. DAVIDSON, B. A. CLARK, D. R. MARR, T. J. SEED, J. STEPANEK, C. E. HIGGS and D. M. DAVIERWALLA, "TRISM: A Two-Dimensional Finite-Element Discrete-Ordinates Transport Code," Los Alamos National Laboratory draft report (1986).
7. R. E. MACFARLANE, "TRANSX-CTR: A Code for Interfacing MATXS Cross-Section Libraries to Nuclear Codes for Fusion Systems Analysis", Los Alamos National Laboratory report LA-9863-MS (1984).
8. D. MATHFWS and P. KOCH, "MICROX-2: An Improved Two-Region Flux Spectrum Code for the Efficient Calculation of Group Cross-Sections", GA-A15009, Vol 1, UC-77 (1979).
9. R. E. ALCOUFFE, F. W. BRINKLEY, Jr., D. R. MARR and R. D. O'DELL, "User's Guide for TWODANT: A Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport," Los Alamos National Laboratory report LA-10049-M, Revision 1 (1984).
10. D. M. DAVIERWALLA, C. E. HIGGS and S. PELLONI, "FINELM: A Multigroup Finite Element Diffusion Code", EIR reports 419 (1980), 428 (1981), 442 (1981) and 459 (1982).
11. J. ARKUSZEWSKI, "SIXTUS-2: A Two-Dimensional Multigroup Diffusion Code in Hexagonal Geometry", Progress in Nuclear Energy, Vol.18, No.1/2, pp 123-136 (1986).
12. J. LIGOU and J. STEPANEK, "A New Form of the B_N Transport Method", Nucl. Sci. and Eng., 53, 255-262 (1974)
13. F. M. MANN, "Transmutation of Alloys in MFE Facilities as Calculated by REAC (A Computer Code System for Activation and Transmutation)", Hanford Engineering Development Laboratory report HEDL-TME 81-37 (1982).
14. D. C. GEORGE and R. J. LABAUVE, "PERTV - A Standard File Version of the PERTV Code", Los Alamos National Laboratory (to be published).
15. S. A. W. GERSTL, "SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code", Los Alamos Scientific Laboratory report LA 8498-MS (1981)
16. M. J. EMBRECHITS, "SENSIT-2D: A Two-Dimensional Cross-Section Sensitivity and Uncertainty Analysis Code", Los Alamos National Laboratory report LA 9515-MS (1982)
17. R. E. MACFARLANE, D. W. MUIR, and R. M. BOICOURT, "The NJOY Nuclear Data Processing System, Vol I: User's Manual, Vol II: The NJOY, RECONR, BROADR, HEATR and THERMR Modules, Vol III: The GROUPR, GAMINR and MODER Modules", Los Alamos

18. J. ROWLANDS, N. TUBBS, "The Joint Evaluated File: A New Data Resource for Reactor Calculations", Proc of Int. Conf. on Nuclear Data for Basic and Applied Science, Santa Fe, NM (1985).
19. H. GRUPELAAR, "Europe Sets up its Own Fusion File", *Nuclear Europe*, 6, p.40 (Feb 1986)
20. P. VONTOBEL and S. PELLONI, "New JEF/EFF-Based MATXS-Formatted Nuclear Data Libraries." To be published in *Nucl. Sci. and Eng.*
21. P. VONTOBEL and S. PELLONI, "JEF/EFF-Based Nuclear Data Libraries", EIR report Nr 636 (December 1987).
22. R. GOLDSTEIN and R. COHEN, "Theory of Response Absorption of Neutrons." *Nucl. Sci. and Eng.*, 13, p. 132 (1962).
23. J. STEPANEK, "The Calculation of the Effective Resonance Integrals, the Resonance Escape Probability and the Doppler Coefficient in a Heterogeneous Systems," UJV 2010 (1968).
24. Y. ISHIGURO, "Exact Treatment of the Resonance Absorption of Neutrons of Intermediate Energy", *Nucl. Sci. and Eng.*, 32, p 422-425 (1967).
25. R. E. MACFARLANE, R. B. KIDMAN and R. J. LABAUVE, "The Background Cross-Section Method as a General Tool for Reactor Analysis", CONF-78040 Proc. ANS Topical Meeting, Gatlinburg, TN, April 1978, E. G. Silver (Editor).
26. T. J. SEED, W. F. MILLER, Jr. and F. W. BRINKLEY, Jr., "TRIDENT: A Two-Dimensional, Multigroup, Triangular Mesh Discrete Ordinates, Explicit Neutron Transport Code", Los Alamos Scientific Laboratory report LA-6735-M (1977).
27. B. A. CLARK, "The Streaming Matrix Hybrid Method for Discrete-Ordinates Calculations", Proceedings of ANS Topical Meeting on "Advances in Reactor Computations", Salt Lake City, Utah, 28-31 March, 1983 (Also Los Alamos National Laboratory report LA-UR-82-3602).
28. D. W. Muir, "The Direct Term for Simple Reaction Rates and for Complex Responses," Los Alamos National Laboratory memorandum T-2-M-1779 (1986).
29. S. A. W. Gerstl, "The Application of Perturbation Methods to Shield and Blanket Design Sensitivity Analyses," Argonne National Laboratory Report AP/CTR/TM-25 or FRA-TM-67 (October 1974).
30. D. E. Bartine, E. M. Oblo and F. R. Mynatt, "Radiation Transport Cross-Section Analysis A General Approach Illustrated for a Thermonuclear Source in Air," *Nucl. Sci. Eng.* 55, 147 (1974).
31. S. A. W. Gerstl and W. M. Stacey Jr., "A Class of Second-Order Approximate Formulations of Deep Penetration Radiation Transport Problems," *Nucl. Sci. Eng.* 51, 339, (1973)
32. D. W. MUIR, "COVEILS-2. Neutron Data and Covariances for Sensitivity and Uncertainty Analysis", *Fus. Techn.* 50 (3), Part 2B, 1461 (November 1986)
33. D. W. MUIR, J. W. DAVIDSON, D. J. DUDZIAK, D. M. DAVIERWALLA, C. E. HIGGINS and J. STEPANEK, "A Benchmark Calculation for SENSIBL, A One- and Two-Dimensional Sensitivity and Uncertainty Analysis Code", International Symposium on Fusion Nuclear Technology, Tokyo, April 10-19, 1988