sondy-177C
SAND--7g-(1377C.

A Graph-Based System for Network-Vulnerability Analysis
CONF-9 Q0F) Y—-

Laura Painton Swiler and Cynthia Phillips

Sandia National Laboratories R E C E i V‘ED

Albuquerque, NM 87185
JUN 0 8 1393

Abstract OSTI

This paper presents a graph-based approach to network vulnerability analysis. The
method is flexible, allowing analysis of attacks from both outside and inside the network.
It can analyze risks to a specific network asset, or examine the universe of possible
consequences following a successful attack. The graph-based tool can identify the set of
attack paths that have a high probability of success (or a low “effort” cost) for the
attacker. The system could be used to test the effectiveness of making configuration
changes, implementing an intrusion detection system, etc.

The analysis system requires as input a database of common attacks, broken into atomic
steps, specific network configuration and topology information, and an attacker profile.
The attack information is “matched” with the network configuration information and an
attacker profile to create a superset attack graph. Nodes identify a stage of attack, for
example the class of machines the attacker has accessed and the user privilege level he or
she has compromised. The arcs in the attack graph represent attacks or stages of attacks.
By assigning probabilities of success on the arcs or costs representing level-of-effort for
the attacker, various graph algorithms such as shortest-path algorithms can identify the
attack paths with the highest probability of success.

Sandia is a multiprogram laboratory
operated by Sandia Corporation, @
Lockheed Martin Conipany, for the
United States Department of Energy
under contract DE-AC04-94A185000.

MASTER
/

4

STRIBLITION OF THIS DOCUMENT 1§ UNATED.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

1. Introduction

Military, government, commercial, and civilian operations all depend upon the security
and availability of computer systems and networks. In October 1997, the Presidential
Commission on Critical Infrastructure recommended increasing spending to a $1B level
during the next seven years. The Commission recommended that this money be heavily
focused on cyber-security research, including vulnerability assessment, risk management,
intrusion detection, and information assurance technologies (Commission Report, Oct.
1997). In this paper, we describe a systematic analysis approach that can be used by
persons with limited expertise in risk assessment, vulnerability analysis, and computer
security to (1) examine how an adversary might be able to exploit identified weaknesses
in order to perform undesirable activities, and (2) assess the universe of undesirable
activities that an adversary could accomplish given that they were able to enter the
network using an identified weakness.

Ideally, a network-vulnerability risk-analysis system should be able to model the
dynamic aspects of the network (e.g., virtual topology changing), multiple levels of
attacker ability, dynamic behavior of a single attacker (e.g., learning), multiple
simultaneous events or multiple attacks, user access controls, and time-dependent,
ordered sequences of attacks. Intrusion-detection systems have attempted to monitor
abnormal patterns of system usage (such as suspicious configuration information
changes) to detect security violations (Denning, 1985; Lunt, 1993). Our system would
be complementary to an intrusion detection system. If an administrator does not want
to pay the full cost (development cost or system-performance hit) of all possible
intrusion-detection strategies, our system could suggest cost-effective subsets which
focus on the most vulnerable system components.

Probabilistic Risk Assessment (PRA) techniques such as fault-tree and event-tree
analysis provide systematic methods for examining how individual faults can either
propagate into or be exploited to cause unwanted effects on systems. For example, in a
fault-tree a negative consequence, such as the compromise of a file server, is the root
of the tree. Each possible event that can lead directly to this compromise (e.g., an
attacker gaining root privileges on the machine) becomes a child of the root. Similarly,
each child is broken into a complete list of all events which can directly lead to it and
so on. Wyss, Schriner, and Gaylor (Wyss et. al) have used PRA techniques to
investigate network performance. Their fault tree modeled a loss of network
connectivity, specifically the “all terminal connectivity” problem. Physical security and :
vital-area analyses have also successfully used PRA techniques (Stack and Hill, 1984).
Since PRA methods can measure the importance of particular components to overall risk,
it seems that they could provide insights for the design of networks more inherently
resistant to known attack methods. These methods, however, have limited effectiveness
in the analysis of computer networks because they cannot model multiple attacker
attempts, time dependencies, or access controls. In addition, fault trees don’t model
cycles (such as an attacker starting at one machine, hopping to two others, returning to

the original host, and starting in another direction at a higher privilege level). Methods
such as influence diagrams and event trees suffer from the same limitations as fault
trees.

The major advance of our method over other computer-security-risk methods is that it
considers the physical network topology in conjunction with the set of attacks. Thus, it
goes beyond the scanning tools such as the SATAN (Security Administrator Tool for
Analyzing Networks) tool that are currently available which check a “laundry list” of
services or conditions that are enabled on a particular machine. For example, SATAN
checks for the following vulnerabilities on UNIX based systems:

1. Are NFS file systems exported to unprivileged programs?
2. Are NFS file systems exported to arbitrary hosts?

3. Is X server access control disabled?

4. Is there a writable anonymous FTP home directory?

5. Is there an insecure version of sendmail in use?

but gives no indication of how these items lead to system compromise. All the
vulnerabilities SATAN finds are well known and have either bulletins and/or patches
from an incident response team or a vendor. SATAN is a useful network analysis tool
and can provide a system administrator with a set of items to patch or fix. However, it
cannot identify paths of attacks, alternative network configurations that would be more
robust, or linked attacks such that a combined sequence of attacks would do more harm
than an individual attack and it doesn’t help the system administrator set security
priorities.

Our approach to modeling network risks is based on an artack graph. Each node in the
graph represents a possible attack state. A node will usually be some combination of
physical machine(s), user access level, and effects of the attack so far, such as placement
of trojan horses or modification of access control. ~Edges represent a change of state
caused by a single action taken by the attacker (including normal user transitions if they
have gained access to a normal user’s account) or actions taken by an unwitting assistant
(such as the execution of a trojan horse). Attack graphs will be presented in more detail
in Sections 2 and 3.

The attack graph is automatically generated given three types of input: attack templates,
a configuration file, and an attacker profile. Attack templates represent generic (known or
hypothesized) attacks including conditions, such as operating system version, which must
hold for the attack to be possible. The configuration file gives detailed information about
the specific system to be analyzed including the topology of the network and
configuration of particular network elements such as workstations, printers, or routers.
The attacker profile contains information about the assumed attacker’s capabilities, such
as the possession of an automated toolkit or a sniffer as well as skill level. The attack
graph is a customization of the generic attack templates to the attacker profile and the

network specified in the configuration file. Though attack templates represent pieces of
known attacks or hypothesized methods of moving from one state to another, their
combinations can lead to descriptions of new attacks. That is, any path in the attack
graph represents an attack, though it could be cobbled together from many known attacks.

Each edge has a weight representing a success probability or a cost to an attacker (edges
with zero probability are generally omitted). This weight is a function of configuration
and attacker profile. Furthermore, each node can have local “overwrites” of these files
representing effects of previous attacker actions on configuration (e.g. severed network
connections, or changes to file-access privileges) or acquired attacker knowledge
(learning). In Section 2 we discuss possible ways to estimate edge weights.

A short path in the attack graph represents a low-cost attack. Since edge weights will
only be estimates, we consider the set of all near-optimal paths. If the edge weights are
reasonably accurate, this set as a group represents the most vulnerable parts of the
network. If one can assume independence of success probabilities, the same (shortest-
path) algorithms can find paths with high success probability. By having multiple
weights on each edge, one can represent potentially-conflicting criteria (e.g. the attacker
wishes to minimize both cost and probability of detection).

This system can answer “what-if” questions regarding security effects of configuration
changes such as topology changes or installation of intrusion-detection systems. It can
indicate which attacks are possible only from highly-skilled well-funded attackers, and
which can be achieved with lower levels of effort. ‘A business owner might decide it is
acceptable to allow a relatively high probability of network penetration by a “national-
scale” effort, but will tolerate only a small probability of attack from an “average”
attacker. Government sites, which are attacked with much higher frequency', may need
exceptionally low probability of success for a particular attacker level in order to expect
few penetrations, and they may be more willing to pay the cost for that level of security.

Finally, this system can simulate dynamic attacks and use the results to test intrusion-
detection systems. These analysis methods, as well as possible ways to calculate cost-
effective defense strategies, are explained in more detail in Section 4.

The remainder of the paper is organized as follows. Section 2 gives a more detailed
description of attack templates, the configuration file, and attacker profile. Section 3
discusses attack-graph generation. Section 4 presents analysis methods. Section 5
provides some concluding remarks. Appendix A lists some implementation details
associated with generating the attack graph. Appendix B gives a detailed example
applied to a test network we have built.

| The Defense Information Systems Agency reports that the Department of Defense is attacked 250,000
times a year. Los Alamos National Laboratories is attacked daily, with 22 proven outsider intrusions in the
last five months. From “Security Measures,” Albuquerque Journal, March 24, 1998, pp. B1-B2.

2. Configuration Files, Attacker Profiles, and Attack Templates
This section explains the inputs required for our method: configuration files, attacker
profiles, and attack templates.

Configuration files
The configuration file contains information relevant to operating system, network type,
router configuration, and network topology. More specifically, each device (i.e.,
workstation, printer, file server, etc.) should have the following information:

1. Machine class: workstation, printer, router, etc.

2. Hardware type: e.g., SUN SPARCstation™ 5

3. Operating System

a. O.S. patches that have been installed.

4. Users (Initially just the classes of users, i.e. root, normal, privileged.)
5. Configuration

a. Ports enabled

b. Services enabled

c. Any intrusion detection applications installed
4. Type of network(s) the device is on (Ethernet, FDDI, ATM, etc.)
5. Physical link information such as type of communications media

A configuration file also includes a graph of the topology of the network. Building and
maintaining configuration files by hand will be a tedious, time-consuming and error-
prone task which could seriously limit the utility of the system. Therefore, we envision
an automated tool to generate and maintain this configuration file. For example, a root-
level daemon on each network component can periodically send information to a central
server. The configuration file could be based upon the information available from a tool
like SATAN, augmented to match the conditions in the set of attack templates. We hope
the system administrator will have reasonable defenses in place to protect this data when
using the tool. For example, it may only be available online in one place while the
administrator is running analyses.

Attacker Profiles

The attacker profile contains information about an assumed attacker’s capabilities, such
as the possession of an automated toolkit, a sniffer, etc. The attacker profile also contains
an assumption about the skill level of an attacker, which is used to determine the
probability of success for particular attack methods. The attacker profile represents the
initial capabilities of the attacker in the same way that the configuration file represents the
initial state of the network. To assist the analyst, default profiles for various attacker skill
levels such as novice vs. expert could be provided. The network owner’s security
policies and strategies can be guided by the level of attacker they wish to strongly deter
and their available budget.

Attack template

Attack templates represent generic steps in known attacks, including conditions which
must hold for the attack to be possible. Each node in the attack template represents a
state of an attack, as detailed below. The nodes are distinguishable, and therefore, each
edge represents a change in state on one or more devices. Examples of state changes are:
a file was changed, a configuration setting was altered, an executable was run, an attacker
gains root privileges on a machine, etc. An example of attack templates using the
following definitions and fields is shown in Figure 1. A more detailed attack graph of
password guessing is presented in Appendix B.

Nodes have the following fields:

1. User level: Possible user levels include: none, guest (anonymous), normal
user, privileged user, root, or system administrator.

2. Machine(s): This field could specify an individual machine or set of
machines, all machines on a subnet, or all machines on multiple subnets. In
the attack templates, this field contains placeholders (variables) that are
instantiated in the attack graph.

3. Vulnerabilities: This field indicates changes to the original configuration
caused by attacker actions. When building the attack graph, the vulnerabilities
noverwrite" the relevant portions of the configuration file for a given node.

4. Capabilities: This field locally overwrites the attacker profile in the same way
the vulnerabilities field overwrites the configuration file. Possible entries
include physical access to part of the network, installation of a trojan horse,
delivery of mail or an applet with executable content, or installation of a
sniffer on an edge of the network. It can also indicate other programs that the
attacker has successfully installed or has access to, such as crack programs,
root kits, etc.

5. State: The state field breaks attacks into atomic pieces. An attack may require
several steps, each of which could fail and none of which adds a new
capability, vulnerability, etc. The states distinguish the nodes by indicating
progress in the attack.

Edges in the attack template represent actions taken by the attacker or his/her
victim/unwitting assistant. They can also indicate an event such as the detection of a
particular type of packet on a network by some hardware and/or software under attacker
control. To allow maximum detection of new attack sequences, these events should be
atomic and nontrivial (probability of success is strictly above 0). Probability-one edges
must change the environment (introduce a vulnerability, change user level, etc.). Each
edge has conditions on the users and/or machines. If all the conditions are met, the attack
succeeds with a given probability and/or cost. Our examples model this measure as
static, but it can be a function of configuration and attacker capability. If a user is only
interested in viewing the possible universe of attacks regardless of cost/success
probability, then these functions could be extremely simple. The probability-of-success .
numbers can be obtained from polling experts (assessing the best subjective judgments),
from information about the frequency of attacks on certain kinds of networks (Howard,

1997), and from experimentation. Computer-security personnel can test various attacks.
Furthermore, one can make increasingly-automated testbeds accessible from the internet
and advertise them as challenges to the computer-security community, then gather
statistics about success probability.

A number of issues are not completely resolved. There is some flexibility in assigning
conditions to the arcs (requirements for the attack) vs. the nodes (part of the state). For
example, possession of a root kit may be required for a certain attack. It can be made a
condition of the edge (hence the edge is not added to the attack graph unless the attacker
possesses a root kit) or it can be made a state of the start node (thus the attacker must
have a root kit in order for the node to be reached in the first place). In addition, one
must carefully chose levels of machine aggregation. Generating nodes for all possible
subsets of machines will be impossible even for small systems. However, we believe the
design described above can model a wide variety of attacks. For example, we have
developed a set of templates for several attacks in each of the following classes:
sendmail, ftp, telnet, Windows NT, and Java. Furthermore, the system has sufficient
flexibility to evolve smoothly as new, previously unanticipated modeling needs arise.

3. Generating the Attack Graph

In this section we describe how one might generate the attack graph from a configuration
file, an attacker profile, and a database of attack templates. Appendix A discusses
implementation issues. In general the nodes of the attack graph look like nodes of the
attack templates instantiated with particular users and machines. Edges are labeled only
by a probability-of-success (or cost) measure, and a documentation string for the user
interface. For ease of exposition, for the remainder of this section, we will call the
measure the weight of the edge. This weight is determined by an instantiation Sfunction
associated with each edge of an attack template. This function accesses the configuration
file and the attacker profile. If an edge goes from node u to node v, then we call node u
the tail of the edge and node v the head of the edge.

We now describe how the attack graph could be generated by building backwards from a
goal node. One could also build forward from a start node (to explore the universe of
possibilities) or assume both a start and a goal node. We illustrate this description with
the simple example in Figure 2. The attacker profile, which is not shown in Figure 2 for
space reasons, assumes that the attacker has physical access to B and the boot CD. We
maintain a queue of generated nodes which have not been processed. Initially this queue
contains only the goal node and nodes are added as they are created.

Start with the goal node: achievement of user-level access on machine M. The graph
generator checks the database of attack templates and identifies all edges whose heads
match the goal node. Assuming this database contains only the two templates shown in
Figure 2, we find two matches, namely the head of each attack template. Consider the
first template for an rlogin attack. Machine M matches the variable M, in the template.

The instantiation function can then generate the tail node (node N;) by generating all
(user, machine) pairs that meet the constraints (the user has an account on this machine
and M, and an appropriate rlogin file on M). Note that if machine M has rlogin disabled,
then node N, would not be generated. On the assumption that machines A and B can
communicate with M (given the rlogin file), the probability of the edge from node N, to
the goal is 1. Node N is an OR node, meaning that achievement of any (user, machine)
pair suffices.

The goal node also matches the last node of -the second template for physical access.
Machine M matches the variable X and the instantiation function creates node N,, which
in turn generates N ;. However, the attacker does not have physical access to M. Thus,
the nodes N, and N , are marked with a dotted line to show that under existing conditions,
they would not be reachable from the start state. There could be other attack templates
which would lead to physical access to M, and then these nodes would be enabled. In
this case, the capability of physical access to M is an addition (or overwrite) to the
attacker profile.

Since there are no more matches for the goal, node N, is removed from the queue and
matched against the database against both heads and tails. In principle, it can again
match with the head of the rlogin attack. However, assuming transitivity (i.e. that a user
has rlogin set up symmetrically for all his accounts), applying this edge again will give no
new information. Recognizing and preventing this in all cases is still a research issue.
Node N, also matches with the last node of the second template on physical access, which
generates node N,.

Node N, matches the middle node of the second template. The attacker profile indicates
that the attacker has physical access to machine B, but not to machine A. Since N, is an
OR node, it can be satisfied by the attacker becoming root on B. In this example, node N,
is created with a subset of the machines in node N,. Alternatively, we could have
generated an intermediate node for becoming root only on B rather than A or B. The
advantage of this is that additional paths to the goal can pass through this intermediate
node (i.e. a path unique to B cannot be built off a node which can be satisfied by either A
or B). When both goal and start nodes are specified, either method is likely to work, since
if this node is required for a path, it will be generated later. If only one of goal and start
are specified, the more verbose method may be advantageous. We recognize node N; as a
start node in this graph, and thus we do not try to match backwards from it. Although it
is not shown, the attack graph would also contain a node for A similar to N; which, like
nodes N, and N, is unreachable because the attacker has no physical access to A.

When a node is matched with a template in the database, the other endpoint could either
be generated as in the example above, or be a node already generated. Thus the generator
must be able to efficiently search the nodes generated so far. Edges created between two
nodes already generated can lead to interactions between attack templates and the
“discovery” of new attack sequences.

There are a number of implementation issues which must be resolved when the system is
tested on large datasets. These issues are presented in Appendix A for interested readers.
Appendix B presents a more detailed graph generation example, specifically a password
guessing attack on a small network. This example is more comprehensive and more
realistic, but is omitted from the main part of the paper for space reasons.

4. Analysis Methods

In this section we discuss analysis of the attack graph: determining a (set of) low-cost
attack paths, finding a set of cost-effective defenses, and simulating dynamic attacks.
Each edge in the attack graph has a weight, such as cost to the attacker. A path from a
start node to a goal node has a weight equal to the sum of the weights of the edges in the
path. In the case where weights represent success probabilities rather than costs, we can
convert to a problem of this form. By replacing each weight by its logarithm, the weight
of the path (sum) now represents the product of the probabilities, and we wish to find
highest-cost paths. Because the probabilities are all between 0 and 1, the logs are all non-
positive numbers. Therefore, if we negate all the probabilities (i.e., multiply by —1), all
weights become non-negative and the problem is converted from maximization to a
minimization problem, that of finding the low-cost paths. The structure of the weights is
critical for this conversion, because in general finding the longest paths in a network is
NP-complete (Garey and Johnson, 1979).

If one wishes to find only a single shortest path, representing the most likely or least-cost
attack, from a start node to any number of goal nodes, then any standard shortest-path
algorithm, such as Dijkstra’s algorithm will suffice. Such codes are very efficient (near
linear-time) and readily available.

However, the weights on the edges will almost surely not be sufficiently accurate to merit
looking only at shortest paths. A better method is to use the technique of Naor and
Brutlag (1993). Their algorithm computes a compact representation of all paths that are
within & of optimal for some given error parameter (the 8-optimal paths). For example,
edges that are common to many 3-optimal paths are likely to represent vulnerable points.

If edges have two weights representing different optimization criteria, bicriteria shortest-
path algorithms compute a set of paths that are (near) optimal with respect to one weight
while obeying a bound (e.g. a budget) on the second weight. Current (near) exact
solution methods involve shortest-path computations in significantly expanded graphs.
However, scaling provides a graceful tradeoff between approximation quality and the
time and space needed to compute the solution (Phillips 1993). Very recently, Tayi et al.
(Tayi, Rosencrantz, Ravi, 1997) have shown how to compute all undominated (Pareto
optimal) paths for multiple edge weights. Their algorithm runs in pseudo-polynomial
time provided the number of criteria is bounded (i.e., the exponent in the running time
depends on the number of criteria).

Given a set of possible defenses, each with a cost (financial, loss of service, etc.) and
defense budget, we would like to compute a set of defenses to implement which will
maximally decrease the probability of success (or increase attacker cost). Implementing a
defense strategy on a particular machine could have a widespread effect on the attack
graph, since it affects the weight on every edge involving that machine and an attack
affected by the defense. In its most general form, this problem is NP-hard to approximate
to within better than a logarithmic factor (by reduction from set cover). However, it is
possible that attack graphs have special structure which makes the problem easier than
this worst case.

A reasonable first question is to take the set of paths computed by the Naor-and-Brutlag
algorithm and find a set of defenses that increases the cost of each of those paths above
some threshold such as the value of the data stored in the system. The Naor-and-Brutlag
algorithm also gives the number of S-optimal paths. Therefore, one can use the
following greedy algorithm: for defense d;, let p; be the number of paths with length under
threshold whose length meets the threshold when defense d; is added. Let ¢; be the cost of
defense d.. Choose the most cost-effective defense (the one which maximizes (p; / ¢;)).
Iterate until all paths are over the threshold. Alternatively, one can modify exact set-cover
algorithms for this problem. Because one can model airline crew scheduling as a set-
cover problem, there has been extensive work in (near) exact methods for this problem.

The unweighted version of this defense problem can model the placement of monitors for
intrusion detection. The question becomes: choose a minimum number of monitor
placements such that all the near-optimal attack paths are monitored at least k times. That
is, any attempt to execute any of the attacks will potentially be observed by k (possibly
nondisjoint) monitors. If monitoring of each edge or node in the attack graph were
independent (i.e. we must pay for each monitor placed on any edge), we have the k-
hurdle problem, which can be solved efficiently (Burch et. Al, 1998). When sets of edges
are affected by a single monitor placement, the problem is still theoretically as hard as set
cover (assuming no special structure). However, it will be easier than the weighted
version in practice.

Even in the absence of automated defense-selection tools, however, the system can serve
as a defense-selection tool. A network administrator can change the configuration file to
reflect the placement of a set of defenses, and then run the shortest-paths analysis to
determine their effect. Using global search techniques, this iterative procedure could be
automated as well.

Alternatively, a system administrator could use the attack graph as the foundation for a
simulation tool. The simulation could start from the node where the attacker breaks in or
begins. The attacker could pick an edge (representing an attack), have the simulation “flip
a coin” to see if the path is successful according to the edge probability, and if successful,
the attacker continues down the path, otherwise, she backtracks. This kind of a model

10

could represent the real behavior of attackers (going down one branch, figuring that it is
too difficult to do something such as get root on a particular machine, so backing up and
trying another method). Another strategy would be that the attacker chooses his next
attack edge based on configuration knowledge of all outgoing links, plus an estimate of
the shortest path from neighboring nodes. The success probabilities used in the
simulation can change dynamically to reflect the success/failure the attacker has had so
far (ie. as the attacker learns more about the particular system). This simulation
technique would be appropriate for a graphical user interface which could show a
network designer the paths the attacker is most likely to take (for example, by lighting up
nodes with a green light as the attacker is successful, and displaying a red light where the
attacker gets blocked).

5. Conclusions

We have spoken with computer security experts, and general consensus is that an attack-
graph analysis should work well for modeling enterprise-level (commercial or military)
network risks. We would like to take this work further and develop a robust tool with a
graphical interface which is easy to use and which links to a large list of vulnerabilities,
such as the databases that commercial vendors (i.e., Internet Security Systems’ X-force
database) have created or that CERT has compiled.

This paper has presented a method for risk analysis of computer networks. The method is
based on the idea of an attack graph which represents attack states and the transitions
between them. The attack graph can be used to identify attack paths that are most likely
to succeed, or to simulate various attacks. The attack graph could also be used to identify
undesirable activities an attacker could perform once they entered the network. The
major advance of this method over other computer security risk methods is that it
considers the physical network topology in conjunction with the set of attacks. Thus, it
goes beyond the scanning tools that are currently available which check a “laundry list”
of services or conditions that are enabled on a particular machine.

The method we have presented addresses many of the modeling issues that a traditional
PRA method such as fault trees do not. Specifically, our graph-based approach allows for
modeling dynamic aspects of the network (this can be done by overwriting the
configuration file as the attacker makes system changes). Our approach allows for
several levels of attacker capability, and can capture the learning behavior of the attacker
by adding capabilities to the attacker profile as the graph gets built. It allows for the
modeling of user access levels and transitions between them, which are critical in
network security. And it represents the time dependencies in sequences of attacks. We
would like to examine the possibility of using the attack graph approach, especially the
idea of attack templates, for testing intrusion detection systems. The attack graph could
also be the basis for identifying the most cost-effective set and placement of defenses.

11

There are potential limitations with our method. We have not generated a realistic size
attack graph based on 10 or 20 templates, and we have not resolved all of the issues
associated with the matching of templates to configuration and attacker profile. Also, the
existence of attack templates and of the configuration file could be another vulnerability
in itself. If these got into the wrong hands, they would be very valuable tools for the
attacker. However, we believe that the approach we have presented is an advance in
network-vulnerability modeling and will ultimately help network security if implemented
in a reasonable way.

Acknowledgments

Timothy Gaylor, formerly at Sandia National Laboratories and currently at 3M, was
instrumental in the development of the approach in this paper. The basic notion of an
attack graph is due to Fred Cohen of Sandia National Laboratories. The authors also
thank Greg Wyss and John Howard of Sandia National Laboratories and Jean Camp at
the Kennedy School of Government/Harvard University for helpful and insightful
discussions.

References

Cherkassky, B.V., A.V. Goldberg, and T. Radzik. "Shortest Paths Algorithms: Theory
and Experimental Evaluation," Math Programming, 73, pp.129--174, 1996. Web site:
http://www.neci.nj.nec.com/homepages/avg/soft/soft.html

Burch, C., Krumke, S., Marathe, M., Phillips C,, and Sundberg, E. “Multicriteria
Approximation Through Decomposition”, submitted, 1998.

Denning, D. E. “An Intrusion-Detection Model.” IEEE Transactions on Software
Engineering, 13(2), 1987.

Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, NY, 1979

Howard, J. D. “An Analysis of Security Incidents on the Internet, 1989-1995.” Doctoral
dissertation, Carnegie Mellon University, 1997.

Internet Security Systems, Inc. 41 Perimeter Center East, Suite 550, Atlanta, GA 30346.
Creator of the X-force database, accessed via http://www.iss.net/xforce.

Lunt, T. F. “A Survey of Intrusion Detection Techniques.” Computers and Security 12,
pp. 405-418, 1993.

12

Naor, D. and D. Brutlag, "On suboptimal alignment of biological sequences,"
Proceedings of the 4th annual Symposium on Combinatorial Pattern Matching, Springer
Verlag, 1993, pp. 179-196.

Phillips, C. A., "The network inhibition problem," Proceedings of the 25th
Annual ACM Symposium on the Theory of Computing, May 16-18, 1993, pp. 776-785.

Presidential Commission on Critical Infrastructure Protection. Commission Report
“Critical Foundations: Protecting America’s Infrastructures,” October 1997. Available
at: http://www.pccip.gov/report_index.html

SATAN. (Security Administrator Tool for Analyzing Networks) tool. SATAN’s
creators, Mr. Dan Farmer and Mr. Wietse Venema, made SATAN widely available over
the Internet without cost starting April 5, 1995. It can be obtained from the web site:
http://142.3.223.54/~short/SECURIT Y/satan.html

Stack, D. W., and M. S. Hill. “A SETS User’s Manual for Vital Area Analysis,”
SANDS83-0074 and NUREG/CR-3134. Prepared by Sandia National Laboratories for the
U.S. Regulatory Commission, Washington D.C., 1984.

Tayi, G., Rosencrantz, D. and S. Ravi. “Path Problems in Networks with Vector Valued
Edge Weights.” Submitted for publication, October 1997.

Wyss, G. D., Schriner, H. K., and T. R. Gaylor (1996). “Probabilistic Logic Modeling of

for Hybrid Network Architectures.” Published in the Proceedings of the 21st IEEE
Conference on Local Computer Networks.

13

Appendix A: Implementation Issues of Attack Graph Generation

There are a number of implementation issues which must be resolved when the system is
tested on large datasets. For example, it may be useful to allow some hierarchy in the
attack graph generation. If there is a common set of attack paths that allow an attacker to
become root from a normal user account on the same machine, this could be a useful
building block. If multiple machines have identical parameters, this subgraph need only
be built once. It can be collapsed to one edge, with the option of expanding the graph for
the system administrator via the user interface.

For each piece of the configuration or attacker profile files, it would be useful to maintain
a list of edges whose probability was influenced by that attribute. This will allow quick
recomputation of edge weights if a configuration or attacker parameter is changed.
However, it is more challenging to leave such a “trail” for pieces that were missing in the
configuration file or lead to edges not existing.

Instantiation functions could become quite complicated. For example, suppose one is
searching for the universe of possible consequences from a break-in. In “spam” attacks
on networks, an attack is replicated on many machines. If one wants to predict the
number of machines compromised, the instantiation function must have an inclusion/
exclusion calculation if the weights are probabilities.

The instantiation function may generate multiple nodes if reachability is a condition on an
edge and there are multiple routers between a pair of machines (see the example in
Appendix B). The steps necessary for routing a message, telnet session, etc., are
explicitly included in the attack graph because this access is an important security
parameter. If a worrisome attack path involves going through multiple routers, the
system administrator has the option of modifying the access-control tables to forbid the
access.

There are two possible ways to represent the users and/or machines in a node: as an
explicit list, or as a list of conditions (from edge conditions). Since each condition is
associated with an instantiation function, one can go from condition lists to explicit user
lists. Both representations could be used in different parts of the attack graph during
generation depending upon the ways the lists will be refined. For example, the list-of-
conditions method may be better for matching.

Another issue is how to model attacks that require access to two different user accounts
possibly on two different machines. This could be done as a 2-step process in the attack
template. However, in the attack graph, getting access to two users' accounts is highly
correlated within the various attacks, and this correlation must be incorporated into both
instantiation functions. Therefore, obtaining access to two or more accounts should
probably be combined as a single atomic event. Since we expect most attacks to require

14

access to only a small number of accounts simultaneously, this consolidation/duplication
should not cause overwhelming graph expansion.

Matching methods will evolve experimentally. However, unification techniques used in
logic programming languages are a natural starting place. It is possible that using lists of
conditions, one can search the set of generated nodes efficiently using hashing

techniques.

15

Appendix B: Password Guessing Example

This Appendix presents an example of the graph-based vulnerability assessment method,
specifically a password-guessing attack on a small network. The network, shown in
Figure B.1, is small but has a somewhat complex topology and also has many of the main
technologies we are interested in modeling: an ATM-switched network, an Ethernet
network, two routers of differing types, a firewall to the Internet, SGI workstations, and
SUN workstations.

Figure B.2 is an attack template showing several possible ways to gain illegal access to a
machine by password guessing. For example, an attacker can use anonymous ftp to plant
a trojan horse which when executed mails him back the password file. He then can run a
password cracking program on the password file. Or, if the attacker has a sniffer and
sniffs the password, if the password is plaintext, the attacker can login as a normal user
with that password. As shown in Figure B.2, attack templates are multigraphs. That is,
there can be multiple edges between two nodes indicating different attack methods. For
example, in Figure B.2, trojan horses can lead to attacker acquisition of the password file
in three different ways. We chose password guessing because it is a common attack
estimated to be used in approximately one-quarter of attacks, based on the analysis of
incidents reported to the Computer Emergency Response Team (CERT), in the
dissertation by John Howard, 1997. This example is not meant to be exhaustive even for
password guessing. In general an assessment is only as complete as allowed by the
coverage of the database.

Attack graphs assume a start and/or goal state. For this example, we assumed that the
attacker had access to a normal user account on the Sun workstation SUN1. That is, the
attacker could be an insider with an account on SUN1 or could have gained access to
SUNI from the Internet by getting through the firewall. The file server in this network is
the Silicon Graphics workstation SGI1 on the Ethernet network. We assumed that the
attacker’s goal was to access protected data files on the file server SGII. The starting and
goal states are specified in the attacker profile. Only one of these is needed and the attack
graph can be built from that point. In this example, however, we specify both.

Figure B.3 shows the attack graph generated from the password-guessing attack template
and the network configuration information. This graph shows specific steps the attacker
would take to get the protected files. We will not step through the graph generation in
detail, but the overall idea is that the user on SUN1 is going to try to access an account on
SGI2. From there, she sniffs the password of a user on the broadcast Ethernet network
who is logging into SGI1.

This graph was generated as follows: the start node (the attacker having access to a
normal user account on SUN1) matches the conditions of the lower start node on the
password-guessing template (normal user on a machine M). From the template start
node, there are two paths, one involving email and one involving anonymous fip. The

16

graph-generation algorithm checks the configuration file to see if email is enabled
between SUN1 and SGI1. It is not, because SGI1 is configured to be a protected server
which only has privileged users who must logon for access. Likewise, anonymous ftp is
turned off on SGI1. However, SGI2 has these services. Thus, the paths of planting a
trojan horse via email or obtaining the password file via anonymous ftp are matched to
the SGI2 where SGI2 is machine B on the attack template. To access SGI2 via fip or
email, the packets must go through both the NetEdge and Cisco routers. This is
information that is in the configuration file. These show up as states in the attack graph
because they represent stages necessary to perform the ftp or email actions. (Note: this
approach can help show where it will be beneficial to prevent attack. For example, one
could configure the routers to not allow any traffic from the ATM network to the Ethernet
network).

Note that the start node did not match the upper start state in the password template based
on the sniffing route. That is because SUN1 is on an ATM network, which is a switched
packet network. It is very difficult to sniff packets on a switched network but relatively
easy to do on a broadcast network.

Follow the attack graph to the “normal user on SGI2” node. The intermediate nodes
between SUNI normal user and SGI2 normal user are an instantiation of the password
template states, based on our actual test network. Now the graph generation algorithm
examines what states on the attack template match “normal user on SGI2.” The lower
start node matches “normal user on SGI2” but it doesn’t match the subsequent nodes
because email and ftp are disabled on SGI1. We have assumed in the attacker profile that
the attacker has access to a sniffer for broadcast Ethernet networks that requires root
capability. These are publicly available; we downloaded one from the web. We have
also assumed that the attacker can get root access on SGI2 once she is a normal user on
SGI2 (there are a variety of attack templates which could outline how to get from normal
user to root on a machine, including use of a toolkit, physical access, etc.). From root on
SGI2, the attacker can install the sniffer to listen to the Ethernet traffic. So, the attacker
can sniff the password of a privileged user or the system administrator logging into SGII.
With that, she will have access to the files on SGI1.

During the attack-graph generation, each edge is labeled with the probability that the
attacker will successfully transition between the two adjoining nodes. Some of the
probabilities are based on knowledge of the frequency of events. For example, the
probability that a person will click on an email attachment and run it is fairly high. We
estimated it at .9. Other probabilities will be based on configuration information and
attacker skill level. An edge in the attack template could have several probabilities for
different conditions and attacker skill level, and these will be generated by the
instantiation function on the edge. For example, the function to generate the probability
for successfully sniffing the packet containing the password could be a function of the
number of users and the frequency of login for each user over the network. For another
example, the configuration file will indicate whether traffic going to M is encrypted or

17

]
* €
a 1 '
|
\

not. If the traffic is plaintext, then the probability of successfully guessing the password
when it is sniffed is 1. If the password is encrypted, then the edge has probability 1 if the
attacker possesses the key (as indicated in the attacker profile). Otherwise, it is set to
some probability according to the instantiation function (either a probability based on
attacker experience or financial ability, or 0 if it is assumed that the profile is complete in
regard to key possession). The probabilities we used may not be very representative:
more research is needed to obtain more accurate probability estimates. Alternatively,
“level of effort” estimates could be used on the arcs.

Finally, we used a shortest-path algorithm to find the path that has the highest probability
of success. This path is shown in Figure B.3 by the gray-colored nodes. To obtain this
path, we modified a shortest-path code that was publicly available on the web. This code
is called SPLIB, version 1.3, December 20, 1996, written by Cherkassky, Goldberg, and
Radzik. SPLIB contains codes, generators, and generator inputs for shortest-path
algorithms. We used one of the shortest-path algorithms based on the Dijkstra algorithm.
The most successful path had a probability of success of 1*0.98*0.95*0.75*0.98*1*0.95
=0.65.

We built the test network shown in Figure B.1. We found that implementing a test
network is a useful tool for understanding attacks, identifying various paths, and getting a
sense of the probability of success for various attacks by having different people attempt
them.

18

yoepne dyy snowluoue a0y defdurd) spdwexy Y dIn3g

:9)e)S

‘saniIqeIoufnA K1oy00a1p dyj sumo dy :uonpuo) -o1els pajqeus dij uoue :uonIpuo)
K1oyoa11p diy ur sapy < SaNIIqRIdUINA .,
< . ~ .
219[9p ‘a31im ‘peal :sanijiqedes suorssiuniad soSueyd JOYIENE UOHOY :saniiqedes ~
’ auryoew aunyorw

dy uoue :[3A93] 138N dyJ uoue :[3A3] 1asn

0¢

ydern yoeny

g up s19sn
11e o3ssaooe

ALVLIS TVOD

g 10 Y auIyoety
1001 :[9A3] JoSN

€ "YorN Y 195
€ "YORN I+ 1950

V YoeI ‘T 1980}

V "yoeN ¢

g 10 Y woly W 0}
urSo[I Yim s1asn [y

g wouj urSops

I 19s0)

W sutyoeiy
uo snje)s 19sn
eulou sured JoyoeH

W yoew)

g 0) ss2208
[earsAyJg:sonijiqedes
€l :ouyorW
oUOU :[OAD] JOSN

A 01 SS9008 ™,
TeasAyd :sonjiqedes

W :yoe

Josn

w

. OU{JI
[eutiou :joAd] Josn | O} SS9 | 1001 :aaa] Jasn

sajejdwd , yoeny

¥ toupyoeur | L U0 S50 X souryoew \JO U110

aooog ‘X 0
Usdaooe [eo1sAyd:samjiqeded

X :auryoew
QUOU :[OAJ] Jasn

$5220Y [eNsAY 7 ABdwa],

T W pue [N dutyoew
Uuo Sjunodoe sey Iasn.

YA saurydRW

Jeuriou
:]9A9] Josn

YA souryorw
[EULIOU :[9A3] J2SN

a[1j urSos sey Josn.
7 W uo psjqeus uidoll.

utdops : 1 aejdwa],

1001 11981 $s9008 Jeo1sAyd uoneIngyuo)) YI0MPIN
e Sey JNOENY
sulyoew XiuM] q Vou YoRA XIUM
2 pajqeus uidops
sdwexyy uonerdudn ydeirn -z aan3dig auIyoRw XIUN

pajqeua jou dy oule)
‘[rewo :uoneIngiyuo)
uruipe s£s Jo s1asn

padopianid :s1asny

1WAy IOMIDN JOWIAYIF (IOMION e
DS :orempieH DS :aremple HIOMPNIBL “1°d oh-—wmrﬂ
uone)s}IOM uoneISHIOM
ISSB[O QUIYOBIA 'SSB[O QUIYOBIA
DS [1DS

sonydouAg :o1empieH

qnH 10uIyly WLV . WLV
'SSB[D SUIORIA DHOMIN SHOMIIN
NNS . NNS
Jousotyg :a1empIey -alempleH
uoljesyIom uoneisiion
:SSB[O -SSE[D
QulyoRIA SUIYOEN
09S1)) :21eMpIBL S TNOS
I3)NOI ISSB[O SUIYORA]
1aai ouIdlg WLV
00ZXSV ‘MH
ponms WLV
o8pgIoN :oiempie SSE[0 [remalry
senox:ssejo oumpoey| ALV SuIyPE WLY :ssejo auioe | ouseyg

(44

ejdwa],
yoey)y Suissanc) paomssed g'g 21031

S3LI0)0ALP PAUMO Ajuowsod e dy ‘yeue pue 513/

Apoan10d pam3yyesiou dy uour

o[y Md 01 Joop3joeq

uo 9510
€ 10) 3]y promssed uefor], ”mnw:_smhaw
pauteiqo :sampiqede) | ’ " iygoe
yoepy | 19Bq pafiew Al Md A
o 198}

Yoeq pa,dy 21y Md

Jpel),

se yons wresgord
piomssed

Buisson8 piomssed
ssang

e un

K9y sey 1oxdene
padAious promssed

€ UO 19sN [BULIO

R
jeuuou 28N

1001 (13S0

xaurejd promssed

TVOD

10 promssed paurelqo

g yoew
uoue :10s)

¢ ssadde ued W

guodyuowe FLVLSLUVIS

W YoRA
[euLIou 1138

umouy g
Uo SR I9S

g uo Jasn
JO xoquu uf Jrew?

| pue | u2aMm3aq
paIqeuS Jlewd

[rewd ui :samiqede)
2{qeIngox? yoe
suni Josn auou :12sM)

19JJ1us sSass0dq
sanijiqeded
W :YoeN

I9JJ1Us [[RISuf 1001 305

PuIg uo W

uo st W 1.y} JouIdyy;
0] $59998 Y)im I3]JIuS
'sanniqeded

W YoeN

10011138

ALVILS LHVIS

£C

L=
plomssed

aje)s [e09

Uum L19g ojuibo

G6'=d

Jasn pabapaud
JO plomssed Jiug

=

JajIug |lejsu]

SS909E Jasn [ewiou
wloJ} sS829e. J00)
Bujuieb 1o} ayeldwa) oepny

G/ '=d
A0a1109 painbyuod Jou 414 ‘uouy

— S

\..HQ
paumo >_COEEOO >._O~O®v_=u dl14 ‘uoue pue J}3/

g'=d ‘100pyoeg

2los uo

G, =d

oeq pajews !
3oeq pajl 14 Md c6'=d
6= dld "uoue sey
juswyoeye jlews ZIos
$8)N0aXa 19sN Z|OS
—.HQ
xoquu ul jrewsa sjob
p'=d rewd sey 198N ZIOS .
a6=d Md ssang 1asn Z|9s g6 =d
weJboud saxoer) Jomppu LY woly
oyjes)| ssed
}4OM]}ON }S91 Uo
Buissancg piomssed
:ydeso yoepy

"¢'g ainbiy

M98005758
N

SAND=—2 e 1 RTAS

Report Number (14)
F_2%09 14~ —

-
e

publ. Date (11) I_‘Zﬁ_‘gfﬁl_b/——/—;——

sponsor Code (18) ’Q___’_‘_/_,’—J—X——’
uC Category (19) UC-9 00D 05_ / ZK

19980702 068

DIIC QUALITY tvarmormp 4

DOE

