LAUR 97 -5198
CONF— 900633 -~-

Los Alamos National Laboratory is operated by the University of Califomia for the United States Department of Energy under contract W-7405-ENG-36

TITLE: MULTICRITERIA APPROXIMATION THROUGH DECOMPOSITION

AUTHOR(S): C. Burch, S. Krumke, M. Marathe, C. Phillips
SUBMITTED TO: Integer Programming & Combinatorial Optimization
Houston, Tx
Sone.--dugust, 1998
DISTRIEUTICN GF THIS DOCUMENT 1S UNLIMITED VAR

By acceptance of this article, the publisher recognizes that the U.S. Govemment retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for U.S. Govemment purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

LOS AlamoOs s hamos National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.

Multicriteria approximation through decomposition

Carl Burch* Sven Krumke! ~ Madhav Marathe! Cynthia Phillips® Eric Sundberg

Abstract

We propose a general technique called solution decomposition to devise approximation algorithms with provable perfor-
mance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated
as integer linear programs. Two key ingredients of our technique involve finding a decomposition of a fractional solution into
a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such de-
compositions as oracles. The technique is closely related to randomized rounding. Our method yields as corollaries unified
solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for

a number of new problems. The particular results obtained in this paper include the following:

1. We demonstrate how the technique can be used to provide more understanding of previous results and new algorithms

for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing.

2. We show how the ideas can be extended to apply to multicriteria optimization problems, in which we wish to minimize a
certain objective function subject to one or more budget constraints. As corollaries we obtain first non-trivial multicriteria

approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.

*5000 Forbes Ave, School of Computer Science, Carmegie Mellon University, Pittsburgh, PA 15217, E-mail: cburch+@cmu . edu. Some work completed

while at Sandia National Laboratory. Supported in part by a National Science Foundation Graduéte Fellowship.
tDepartment of Computer Science, University of Wirzburg, Am Hubland, 97074 Wirzburg, Germany. E-mail:

krumke@informatik.uni-wuerzburg.de.
P O Box 1663, MS B265, Los Alamos National Laboratory, Los Alamos NM 87545. E-mail: marathe@lanl . gov. Work supported by the Department

of Energy under Contract W-7405-ENG-36.
§ Applied Mathematics Department, Sandia National Laboratory, P O Box 5800, Albuquerque, NM 87185. E-mail: caphill@cs.sandia.gov. Work

supported in part by the United States Department of Energy under Contract DE-AC04-94AL85000.
“DepanmentofComputer Science, Rutgers University, NJ. E-mail: sundberg@euler.rutgers.edu. Some work completed while at Sandia National

Laboratory.

1 Introduction

Many recent advances in approximation algorithms for combinatorial problems have formulated a problem as an integer
program, solved the linear-programming relaxation of the problem, and then used the resulting.fractional solution to guide the
search for an integral feasible solution whose objective is close to the bound provided by the linear program. One successful
approach is randomized rounding. We refer the reader to [MNR, Sri95, Sri97, ST97] for more discussion of related results.
In this paper, we propose a new general method called solution decomposition for approximating the optimal value of certain
types of linear integer programs (IP). Our technique applies to a wide variety of optimization problems, including a number of
problems for which no previous (multicriteria) approximation results were known.

To simultaneously optimize two or more criteria, we optimize one criterion while enforcing a budget on all other criteria.
That is, for a given set of solutions S, and for given criteria fi, ..., fx and budgets By, ..., Bi_1, we seek an element of §
minimizing the criterion f;, and meeting the budgets:

(GP) minimize fi(S)
fi(S)<B; V1<i<k-1
where _
Ses
This is a k-criteria problem (due to the k — 1 budgeted criteria and the single objective criterion). Although in general the
constraints need not be linear, in this paper we restrict our attention to problems for which the above is an integer linear

program (IP). That is, the feasible region is the set of variables z € Z" such that A <band x > 0, for m x n integer matrix
A and m-vector b.

The strongest type of approximation bound for such problems is to guarantee a solution meeting the budgeted constraints
and approximating the optimization ratio. Sometimes the achievable (not A"P-hard) bounds are disappointing, however; in
these cases, it is worthwhile considering how to find a solution that approximates both the budgets and the objective function.
This leads to the notion of multicriteria approximation algorithms [MRS95). Let S* be the optimal solution meeting the
budget constraints. An approximation algorithm A is called an (p1, . . ., px, B)-approximation algorithmif A outputs a solution
S € & such that f;(S) < p;B; (it p;-approximates each budgeted constraint f;) and g(S) < Bg(S*) (B-approximates the

objective function g).

1.1 Method overview

We now describe our method and give definitions needed for the remainder of the paper. The decomposition method
partitions the task of designing a new approximation algorithm into three orthogonal issues: modeling the problem as a IP,

devising decomposition algorithms, and designing approximation algorithms based on these decompositions.

Let IP be an optimization problem given by an integer program. The solution decomposition method has three steps. First
we relax IP and solve the resulting linear program LP. Then we decompose the resulting fractional solution into a convex
combination of feasible integral solutions. Finally, we choose one of the integral solutions (according to some criteria).

The second step of the general approach involves the construction of a decomposition. Let S represent the set of feasible
solutions to a collection of integer constraints. For example, S could define the set of spanning trees. In this abstract we
consider the integer program GP defined above where each f; is restricted to be a cost function, namely a linear function with
nonnegative coefficients over nonnegative variables. The constraint f;(S) < B; is a budget constraint, and B; is the budget for
fi

A decomposition for a fractional solution S (a rational setting for the variables) is a set {S(1), §(2) ... (M} ¢ S with
corresponding weights a(®) so that N | o) = 1, () > 0, and, for each cost function f;, S o) £;(S@) < p; £;(3)
We say this decomposition p;-approximates f;. We can alternately view the set {sW 5 . 5N} with the associated
coefficients o = U;ar() as a probability space; each S() denotes an event and o(®) denotes the probability that the event will
occur. We will sometimes call this the a-distribution.

A decomposition algorithm finds such a decomposition for any S satisfying the relaxed LP constraints. In general, the num-
ber of solutions N can be quite large, and so a decomposition algorithm, if it were to list each S| can take exponential time.
We restrict our study to two forms of decomposition algorithms useful for polynomial-time approximations. In a deterministic
decomposition algorithm (DDA), N is polynomial in the input size, and all N solutions are computed in polynomial time.
A randomized decomposition algorithm (RDA) samples from the (potentially exponentially large) solution space according to
the « distribution in polynomial time. In other words, for a given S satisfying the relaxed constraints for S, the RDA takes
polynomial time to produce a solution S € S such that E [f;(S)] < p; f; (5’) for each f;.

Decompositions that satisfy the inequality Zfil o) < pi for every variable x in an IP are p-approximate decomposi-
tions. We sometimes refer to 1-approximate decompositions as exact decompositions. These decompositions can be used with

any cost function.

1.2 Applications

We discuss some applications of our techniques, defining those that are leés well known.

In the Network Inhibition problem, we are given a graph G(V, E) with two designated vertices s,7 € V, and each edge
has an initial capacity ¢, , and a removal cost 7, ,, representing the cost to remove the edge from the graph. We wish to expend
up to a fixed budget B on edge removals to minimize the maximum s-¢ flow in G. Destruction is linear, so that paying ar,, , for
0 < a < 1 removes ac, , units of capacity from edge (w, v). Phillips first characterized the complexity of this problem [Phi93].

She showed the problem is strongly A"P-complete for general graphs, but gave no approximation algorithms for the general

case. In this paper we give a simple decomposition algorithm; using this result in conjunction with our the general result in
Section 2 gives a (1 + €, 1 + 1/¢)-approximation algorithm.! Rao, Shmoys, and Tardos have independently achieved similar
results for the single-budget case using a parametric-search approach [Shmon].

In the k-Hurdle problem we are given an undirected graph G(V, E) and two nodes s,t € V. We wish to find a minimum-
cost set of edges £/ C E so that every path in (V, E)) from s to ¢ crosses at least k edges in E’. The 1-Hurdle problem is
the Minimum s-¢ Cut problem. The more general question arises in physical security applications, where one would like to
place security cameras in a building so that a thief must pass at least k cameras between the entrance point and a goal site. To
our knowledge, the k-Hurdle problem has not been previously studied. The DDA we present gives a simple polynomial-time
algorithm and implies extensions to multicost versions.

In Section 3, we also consider decomposition-based approximations for multicriteria versions of the Suitcase-Packing

problem (the complement of the knapsack problem), set cover, separating & pairs of vertices, and the Shortest-Paths problem.

1.3 Comparison to related work

The work presented here is closely related to two techniques used in the past to approximate single-criterion and multicriteria
optimization problems: randomized rounding, and parametric search.

In randomized rounding, one typically formulates a given optimization problem by an integer program, relaxes the inte-
grality constraints, solves the resulting linear program, and finally rounds the fractional solutions to obtain feasible integral
solutions [RT87, MNR]. Algorithms based on solution decompositions are similar in spirit to algorithms based on randomized
rounding; but they differ crucially in the formalization. The decomposition formalization allow the development of multicriteria
algorithms using the decomposition algorithm as an oracle.

Parametric search, proposed in [KNR*96, MRS*95] can be applied to multicriteria problems where all criteria are similar.
For example, one can apply parametric search to find a Steiner tree of minimum diameter under one metric among all trees
whose diameter under another metric meets a given bound. The method requires an approximation algorithm for solving the
single-criterion problem. In parametric search, a multicriteria optimization problem is reduced to a single-criteria problem
using a weighted combination of the criteria.

A result similar to Theorem 3 applies for parametric search [MRS*95]. (Although bound (1) has not been claimed earlier, it
is easy to derive from published proofs.) This result applies regardless of the linearity of constraints, but the constraints must be
on the for similar objectives [MRS*95]. It can also be applied to problems where one has a budget for changing the coefficients
of the objective [KNRT96]).

Algorithms based on solution decomposition techniques yield similar bounds for a number of the problems studied with

!'The result is actually stronger, since we can guarantee either a feasible solution or a superoptimal solution; see Section 3 for more details.

- parametric search. It also applies to several new problems where the criteria are dissimilar. Furthermore, decomposition-based
methods scale polynomially with more criteria. We elaborate more on this in Section 2.

The decomposition algorithms are similar to two previous papers. Naor and Schieber consider using the Edmonds de-
composition (developed in [Edm73, Eve79, GM95]) for s-branchings (rooted spanning trees) to get approximation algorithms
for spanning trees [NS97]. Although there is an error in their specific application (Bounded-Diameter Minimum Spanning
Trees), the approach is still useful. Significantly, the techniques also apply to RDAs, opening the possibility of using random-
ized rounding techniques. Some other recent work by Srinivasan and Teo give constant factor approximation algorithms for
certain global packet routing problems [ST97]. Although they do not consider the general framework considered in this paper,
Theorem 4 in their paper is very similar in spirit to the work done here.

The remainder of the paper is organized as follows: Section 2 describes how decompositions can be used to obtain multi-
criteria approximations for integer programs with 0, 1, 2, or more side budget constraints. In Section 3 we give new decom-
positions for the k-Hurdle problem, Network Inhibition problem, and s-t cuts. We use these new decompositions to find
polynomial-time algorithms for the k-Hurdle problem, bicriteria approximations for Network Inhibition, and approximations

for multi-cost cut problems.

2 Multicriteria approximations via decomposition

In this section we present general general algorithms that construct approximation algorithms for (GP) using decomposition
algorithms as an oracle. We first show how to accomplish this for programs with no budget constraints, yielding true approxi-
mation algorithms. We then give an algorithm for programs with one or more budget constraints. Finally, we consider the case
when the number of budget constraints grows with the problem size.

First consider the case of a single criterion. That is, we wish to minimize f(S) such that S € S. The following theorems

(proof omitted) shows that these decompositions are powerful.

Theorem 1 If there is a DDA for S that p-approximates a cost function f, then there is also a p-approximation algorithm for

the problem of minimizing f on S.

Theorem 2 If there is a RDA for S that p-approximates a cost function f, then for any ¢ > 0 there is a (p + ¢)-approximation
algorithm to minimize f on S The expected number of draws from the RDA is at most 1 + (p — 1) /e. If p = 1, we can find an

optimal solution with a single draw from the RDA.

The one-criterion results are simple, but they are useful for determining what we can reasonably expect from a decomposi-
tion algorithm for a given S. For example, finding an exact decomposition algorithm (deterministic or randomized) for Steiner

trees would imply P = N'P.

2.1 Two criteria

In a two-criteria problem, we have a single budget constraint.

minimize f2(S5)
fi($) < B
where
Ses
Although we do not guarantee that the decomposition can meet the budget, we can guarantee that it does not exceed its budget
dramatically as shown in the following theorems. Note that the solution is either a (1, 1+ 1/v)-approximationor a (1 +v,1)-

approximation, but we do not know a priori which we will get. The parameter + biases this choice. As the budget is violated

more (up to the maximum 1 + v factor), the residual capacity is moving linearly toward zero.

Theorem 3 Given a DDA for S that p,-approximates f and p;-approximates f1, for any v > 0 in polynomial time we can

find a solution S such that

A(S) | flS))
0B Tphs T ()

where S* is the integer program’s optimal solution.

Proof. Let S be the optimal, fractional solution to the relaxed linear program. We show that some solution S given by the DDA

satisfies

() , . _1(S)

piB p2f2(S)
Since f2(S*) > fo(5), this solution will satisfy (1).

<T+7. @

Consider a random S drawn from the o distribution. We expect it to satisfy (2):

f1(5) f2(5)
E [;13 +7

E [f1(5)] 7E[f2(5)]

IN

IN
—
+

Hence one of the DDA’s solutions satisfies (2).]

Theorem 4 Given an RDA for S that ps-approximates fo and pi-approximates f1, for any v > 0 and ¢ > 0, we can find a

solution S such that

f1(S) | fa(5)
nB + 7szz(S*)

where S* is the integer program’s optimal solution. We expect at most 1 4 1/¢ draws from the RDA.

<(1+4+6(1+7).

Proof. Let S be the relaxed program’s optimal solution. The algorithm is to continue drawing until we find a solution S such -

that

f1(S) f2(5)
B +7P2f2(§)

Since f2(S*) > fo (5), outputting this solution will give the desired bound.

SA+e(l+7)

Consider a random S drawn from the distribution, and let X denote the value of

£(S) , _FlS)

piB p2f2(5)

As in the proof of Theorem 3, the expected value of X is at most 1 + . We employ Markov’s inequality to bound the chance

that a given draw is bad.

PriX > (1+6)(1+7)] < Pr[X > (1+E[X]]

1
<
- 1+4+e
On any draw we terminate with probability at least /(1 + ¢); hence we expect to take 1 + 1/¢ draws to terminate. L

A geometric view: Although the proofs for Theorems 3 and 4 are probabilistic, we can also interpret the results geometrically.
The geometric view motivates the choice of 4 and explains why one should not expect better bounds from decomposition algo-
rithms, at least if applied only to the relaxed program’s solution. We can view any solution S in S as a point at (f1(S), f2(5))
in the two-dimensional plane.

Consider the convex hull of the points for §. Because any solutionto the LP relaxation of the IP can be expressed as a convex
combination of integer solutions via the DDA, the set of feasible solutions to the LP relaxation is contained in this convex hull.
Vertices of the lower convex hull correspond to budget values for f; where the LP solution is integral. For other budget values,
the LP optimum is on a segment of the convex hull defined by two integral solutions: one that meets the budget, and another
that exceeds the budget but is superoptimal. An exact DDA gives only solutions on this convex hull segment. Consider the line
£ given by (2) with p; = p, = 1. Parameter -y controls the slope of . Line £ passes through point p = (B, fa S }), where Sis
the LP optimum, and therefore it intersects the convex hull segment defined by the DDA solutions. Since the DDA gives points

(solutions) on either side of point p, at least one of these must lie below the line, and this is the solution output.

2.2 Many criteria

The above theorems generalize to multiple criteria. Geometrically, we take the solution to a high-dimensional space.

Consider the integer program GP with which the paper began.

Theorem 5 Given a decomposition algorithm for S that p;-approximates each f;, and given weights ~; such thaty ", 1/v; = 1,

and ¢ > (), we can find a solution S such that

k

-1
fi(S) fr(S)
; B T wmfes) SO

where S* is the integer program’s optimal solution. If we have a DDA, we can take € = 0. If we have an RDA, we expect to use

1+ 1/¢ draws from the RDA.

2.3 More than many criteria

Sometimes the number of constraints & in GP grows with the problem size; in this case, the linear bound of Theorem 5 is
unacceptable. Our algorithm for this case requires a concept of union between solutions. Specifically, given {S?, ..., SNy ¢ S,
we must be able to find U; S € & so that g(U;$7) < -, g(S57) and, for each 7, £;(U;57) < min; f;(S7). This notion of union

is very powerful. Finding similar bounds for weaker notions of union is an open problem.

Theorem 6 Let S* be the optimal solution to GP, and say we have a decomposition algorithm for S that 1-approximates g and

each fi. Given a concept of union, for any v > 0,¢ > 0, we can find a solution S € S so that

and, forall1 < i<k,
2
fi(S) < (1 + ;) B; .

147 Jog k) draws.

€

If we have a DDA, we can take € = 0. If we have an RDA, we expect to use O(

In the DDA case, the proof for Theorem 6 is very similar to that of Naor and Schieber [NS97]. We prove the RDA case in

the appendix.

3 Applications

3.1 The k-hurdle problem

In this section, we give an exact DDA for the k-Hurdle problem defined in Section 1 and some generalizations. The set
of edges selected for hurdles is a form of cut, so we will sometimes refer to a solution as a k-hurdle cut. This DDA gives a
polynomial-time algorithm, which can be more easily recognized by noticing that the matrix for the integer program is totally
unimodular.? However, this DDA immediately gives approximation results for the multicriteria k-hurdle problem, and it will

be used in later sections.

2 A matrix A is totally unimodular if each square submatrix of A has determinant 0, 41 or —1. That an integer program with totally unimodular constraint

matrix can be solved in polynomial time is well-known (see [AMO93]).

In the integer program # for the k-Hurdle problem, variable z, , is 1 if edge (u,v) contains a hurdle and 0 otherwise.

Variable d, represents the minimum number of hurdles on any path from s to v.

(%) minimize Z Cuv Zun
(u,v)EE

dy < dy+ Zup Y(u,v) € E
dy <dy+ 24 Y(u,v) € E
where ds=0,d, =k

zyw €{0,1} Y(u,v) € E

| d, €{0,1,...,k} YveV

This is exactly the formulation for the Minimum Cut problem, except that we require k cuts between s and ¢. Since it
differs from the integer program for the Minimum Cut problem only in its right-hand side, it is totally unimodular, so we can
find an integer solution in polynomial time. Furthermore, generalizing to the case where some hurdles are already in place
on the edges and/or multiple hurdles can be added to an edge (at constant unit cost) still leaves the constraint matrix totally
unimodular, implying that these problems are polynomial-time solvable.

Nevertheless, the DDA for the k-hurdle problem is a building block for other decompositions and, through Theorems 3
and 5, it gives approximations for the generalization where there are secondary costs associated with placing hurdles on edges.

For example, the set of hurdles could represent heterogeneous security options (cameras, guards, etc) where there are tradeoffs

between initial cost, maintenance costs, delays to legitimate users, etc.

Theorem 7 There is an exact DDA for the k-hurdle problem which decomposes a fractional solution to the linear-programming

relaxation of IP ‘H into at most n — 1 integer feasible solutions.

The proof of the decomposition is in the appendix. Given the above decomposition and Theorem 5, bounds for the multicost
cut problem immediately follow. Given multiple costs on each edge, we wish to minimize one cost while obeying a budget
constraint on each other cost. We can also add constraints bounding from above the total weight of nodes at least £ hurdles

away from the source.

3.2 Network inhibition

In this section we show how the s-t cut decomposition given in Section 3.1 can be used to get the first approximation
algorithms for the network inhibition problem, defined in Section 1.2.

Phillips [Phi93] observes that for a particular cut the greedy attack strategy is optimal. One removes edges in decreasing
order of ¢, /7y, until the budget is depleted. Thus a solution to the network inhibition problem can be expressed as an s-¢

cut, which is then attacked in this manner.

In the integer-programming formulation for the network inhibition problefn, variables d, represent the cut. Thatis, d, = 1
if vertex v is on the ¢ side of the cut and d, = 0 otherwise. Variable z, , is the fraction of (u, v) removed through payment,
and z;; is the fraction remaining, which contributes to the residual capacity if edge (u, v) is in the cut.

If an edge (u,v) is in this cut (d, and d, differ) then we have 2, , + 24, = 1. Thus we must pay to remove the edge
(first constraint), or pay for the remaining capacity in the objective function. This integer program is related to IP # from
Section 3.1, but, clearly (from the first constraint), it is not totally unimodular. However, the decomposition given in Section 3.1

is still useful. The decomposition and proof are in the appendix.

Theorem 8 There is a DDA for the network-inhibition integer program relaxation which expresses the fractional solution as
a convex combination of at most n — 1 attack strategies that together exactly approximate the budget constraint and objective

function (residual capacity).

3.3 Randomized rounding and Suitcase Packing

Many approximation algorithms work by randomized rounding (surveyed in [RT87, MNR]). The concept of an RDA is
actually a formalization of randomized rounding, at least in its more elementary forms. Hence many established randomized
rounding algorithms yield RDAs for interesting constraint sets. These include a O(log n)-approximate RDA for set cover and
an RDA for k-pair cuts that O(log k)-approximates any capacity function [BV94].

As a simple example of using randomized rounding to get an RDA, we consider the Suitcase Packing problem. Suitcase
Packing, like the Knapsack problem asks how to pack a bag so that the total weight does not exceed a budget W, but, rather
than maximize the value of the contents, it asks to minimize the value of what is left. (We invert the problem because the
techniques apply only when cost functions are to be minimized.) Say we have n, instances of item a, each having weight w,
and badness ¢,. For each item type the integer program formulation has a integer variable x, indicating how many a’s to pack

and a variable y, telling how many to leave behind. Then our integer program is the following.
(SP) minimize Z CaYa
a
> Weka < B
where r, €4{0,1,...,n,} Va
Yg = Ng — Tq Ya
Randomized rounding yields the following RDA.

Theorem 9 We have an exact RDA for suitcase packing. It can be queried in O(m) time.

Proof. Given a solution of Z,, the RDA takes z, to be | Z,] + 1 with probability Z, — [£.] and | Z, | otherwise. The expected

value of &, then, is 2,. []

(In fact, for suitcase packing there is a simple DDA. Choose y € [0, 1], and let z, be |Z,] if |#4]| + y > Z,; otherwise,
choose |Z,] + 1. This is a randomized construction, but note that there are only n 4 1 choices for y resulting in different
packings. We can easily list all of these.)

Although one may beat the bounds this technique implies for Suitcase Packing using more sophisticated techniques, this
example illustrates the simplicity of using decompositions, which extend easily to multiple criteria. For example, we could
add constraints on volume, monetary value, or a spouse’s preferences. By using Theorem 5 we can find a reasonable solution

approximating all these bounds.

3.4 s-t paths

Exact decompositions also exist for paths between nodes s and ¢ in a graph. Using a flow formulation we can write linear

constraints @ describing an s-¢ path.

Yovev Tup =1
ZUEV Zsy =1
Zuev Tuw = D uev Tou YU F S5yt
zy o € {0,1} Vu,v €V

Variable 2, , = 1 if and only if edge (u, v) is on the path and u precedes v. The first three constraints require a single unit of
flow to be routed from s to t. Since the “flows™ are constrained to be integral by the final constraint, we will get a single path

from s to .
Theorem 10 We have an exact DDA for the above set of linear constraints.

Proof. Use the path filtering procedure in [ST97] or the more efficient procedure in the appendix. n

One can find a shortest path in polynomial time and there is a FPTAS for bicriteria shortest paths (see, e.g. [Phi93] for an
efficient scheme and a discussion of previous work). We can use this decomposition to give multicriteria approximations for a
bounded number of cost functions. There are instances where the result can be as bad as an O(k)-approximation relative to the
LP bound for k criteria. However, this seems to be primarily related to weakness of the LP bound.

The authors would like to acknowledge helpful discussions with Avrim Blum, Adam Kalai, Bruce Maggs, and Santosh

Vempala.

10

References

[AMO93]

[BV94]

[Edm73]

[Eve79]

[GM95]

[Hoc95]

[KNR*96]

[MNR]

[MRS*95]

[NS97]

[Phi93]

[RT87]

[Shmon]

[Sri95]

[Sti97]

[ST97]

R Ahuja, T Magnanti, and J Orlin. Network Flows. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1993.

D Bertsimas and R Vohra. Linear programming relaxations, approximation algorithms, and randomization: a unified view of
covering problems. Technical Report OR 285-94, MIT, 1994.

J Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms, pages 91-96, 1973.

S Even. Graph Algorithms. Computer Science Press, 1979.

H Gabow and K Manu. Packing algorithms for arborescences (and spanning tre es) in capacitated graphs. In 4th MPS Confer-
ences on Integer Programming and Combinatorial Optimization, pages 388-402, 1995.

D S Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston, MA, 1995.

S Krumke, H Noltemeier, S Ravi, M Marathe, and K Drangmeister. Modifying networks to obtain low cost trees. In 22nd
International Workshop on Graph-Theoretic Concepts in Computer Science, Cadenabbia, Italy, volume 1197 of Lecture Notes
in Computer Science, pages 293—307, June 1996.

R Motwani, J Naor, and P Raghavan. Randomized approximation algorithms in combinatorial optimization. In [Hoc95].

M Marathe, R Ravi, R Sundaram, S Ravi, D Rosenkrantz, and H Hunt III. Bicriteria network design problems. In 22nd
International Colloquium on Automata, Languages, and Programming To appear in J. Algorithms, pages 487-98, 1995.

J Naor and B Schieber. Improved approximations for shallow-light spanning tre es. In 38¢th IEEE Symposium on Foundations
of Computer Science, pages 536541, 1997.

C Phillips. The network inhibition problem. In 25th ACM Symposium on the Theory of Computing, pages 288-93, 1993.

P Raghavan and C Thompson. Randomized rounding: a technique for provably good algorithms. Combinatorica, 7:365-74,
1987.

D Shmoys, Personal communication.

A Srinivasan. Improved approximations of packing and covering problem. In ACM Symposium on the Theory of Computing,
pages 268276, 1995.

A Srinivasan. Ilﬁproved approximations for edge disjoint paths, unsplittable flows and related routing problems. In JEEE
Foundations on Computer Science, 1997.

A Srinivasan and C.-P. Teo. A constant-factor approximation algorithm for packet routing, and balancing local vs global criteria.

In ACM Symposium on the Theory of Computing, pages 636-643, 1997.

11

Appendix A: Using RDAs for many-criteria problems

Proof of Theorem 6. Our algorithm is the following. Find the solution S to the relaxed program. Begin with F = {1,...,k}.
We proceed in phases. In the jth phase we continue drawing from the RDA until we find a solution S7 so that g(S7) <
(24 7)g(S) and for at least a (1 — €) /(1 + 7) fraction of i € F we have f;($?) < (1 + 2/v)B;. We remove these i from F
and continue to the next phase until ' =). Since each phase decreases the size of ' by a factor of at least (y + ¢)/(1 +), by
the end we have at most 10g(; 1)/ (y+) k solutions. We return their union, 5.

Since for each 1 < i < k we know that one of the solutions S7 has f;(S7) < (1 + 2/+)B;, we know that their union also
estimates this constraint. Also, we know that, for each 57, g(S7) < (2 + 7)g(S5); so g(U;S7) is bounded by

Ink

] J < 51 Y v g e * .
9(U;87) < (2+7)10gﬁ_£ kg(S) < (2+7)111%%g(5)

It remains to show that the algorithm terminates. Call a solution S eligibleif ¢(S) < (2+47)g(S). We first see how often the
' RDA finds eligible solutions. We know that E [¢(S)] < ¢(S5), so Markov’s inequality bounds the chance a draw is ineligible.

1

Pr [g(5) > 2 +7)9(5)] < g

So we expect to find an eligible S at least every (2 + v)/(1 +) draws.
Now what is the probability that a given f; is (1 + 2/+)-approximated by this S? By our previous reasoning, at least

(14 4)/(2 + 7) of the draws are eligible. Because f; is always positive, we know that

B[£(S)la(S) < 2+ Me($)] < 278,

B s o
(If it were more, E [£;(S)] would be more than B;.) This allows us to use Markov’s inequality once again.

P [7(9) > 2 2B5) < 24 005)] < 1

Now we compute the probability that S is not selected. For the ith value in F', let X; be a random variable that will be 1 if
fi(S) > (1 4 2/~)B;. The expected value of each X; is /(1 + 7), so the expected value of), X is (v/(1 + 7))[F|. We
employ Markov’s inequality one last time to get the probability S is not selected.

. 1—e¢ Y
; - <
Pr [Zx > (1 1+7> |'F|] < e

So we expect the phase to end after selecting (y + €)/e eligible solutions from the RDA.

Hence we expect to terminate in

249\ (y+e Ink \ <1—{—~y2)
<1+’Y)(€)(lnl+7 =0 € Ik)

vte

draws from the RDA.]

12

Appendix B: k-hurdle decomposition

Proof of Theorem 7. Let d,, be the value of variable d, in an optimal solution to LP relaxation for IP 7, and let f, = dy— LJ,,J
be the fractional portion of d, forv = 1,...,n — 2. Define f; = 0 and f; = 1. Sort the f, and call the resulting list
0==g20<2,<...<&p_2 < Tpq1 = 1. For each z; we create a k-hurdle cut of weight o = x;,1 — ; by setting d’, to
[JUJ ifz; > fu and F“J + 1 otherwise, and setting 2%, ,, = |di, — d} |. It is easier to think about the RDA: to sample, choose
z € [0, 1] uniformly at random. We take d,, to be [J,,J ifz > f, and V"J + 1 otherwise. Intuitively, the nodes are divided
into k groups based upon the integer portion of d, (number of whole hurdles in front of v). Initially, every node in the group
is on the “¢ side”, and hurdles are placed on incoming edge. One by one, nodes move to the s side, so that as the value of z;
increases, a “wave” passes through each class.

Now we verify that d,, is a convex combination of the di.. Let z; = f, (j is the index of £, in the sorted list). Then we have

J ; n—1
Y oid, = ([dUJ +1) S (@i — mioa) + LdJ S (i - 2in)
1=0 i=j+1
= [JUJ + Z(J«‘z -Lz—l)
i=1
= |d]+e=4d,
We now verify that the LP values for the z, , variables are also exactly decomposed. That is 2, =), a'zl . The

constraints demand that z,, , be at least |d, — d,, |, and the objective function demands that =, ., be as small as possible, so we

have Z, , =]Ju - czvl. Suppose cij > dy,. Then d; > d: foralli.

n—1 n—1
Za’z}k = Za’ld;r—d;‘.]
=0 i=0
n-—1
= i -d)
i=0

The case when d; < dj. is analogous. So the LP solution is a convex combination of these n — 1 cuts. u

Appendix C: Network inhibition decomposition

Our integer program is the following.

13

(Z) minimize E Cuwlu,y
(u,v)EE

Y umyer MuaZuy < B
Zup i 2dj—di V(u,0) € B
where Cup+2up >di—dj Y(w,v)EE

d5=0,dt:1

d, € {0,1} YveV

Proof of Theorem 8. Consider an arbitrary optimal (fractional) LP solution S = (dy, Eun, Zy,v) for budget B. Sort the d,
values (distance labels of the nodes) so that d, < ds < d» << ds < d;. Then for each edge (7, j), with i < j, we have
Tij+ ;= Jj — d;. The optimal attack strategy on this fractional cut is the generalization of the integer case: attack the edge
with maximum ¢, , /7y v first, pay what it costs to remove it (up to the fraction that the edge is in the cut, namely d ;i — Ji) and
continue until the budget is expended. Thus there will be at most one (Z; ;, Z; ;) pair that does not have one of one of #; ; and
%; ; equal to d; — d; and the other 0.

Now consider the set of cuts also used in the proof of Theorem 7: s by itself, {s, v1}, {s, v1, v2}, etc.). Using the same
weights as in that proof (the cut that first includes v; on the s side has a; = Ji+1 — d;), the convex combination gives the proper
fractional values for the d;. Furthermore, edge (4,) isincuts¢,7 + 1,...,j — 1. Thus edge (¢, j) is “in the cut” by a fraction
d = d; (summing over the contributions of all the integral cuts that include it).

Consider again the fractional solution S with variables #; ; and Z; ;. These variables give an attack strategy for each of the

integral cuts defined above: for cut ¢, consider all the edges (u, v) inthe cut. If 2, , = |d, — d,|, attack the edge (2, = 1)and
if 2, » = 0, do not attack it (sz = 0). If (exactly one) edge (u, v) has fractional values for both Z, ,, and %, ., then partially

attack edge (u, v) proportionally. That is #f, , = #uv/(dy — dy) and 7, = Zy o/ (dy — du).

This setting of the :efw and zf“, variables determines a budget B; for cut i. Because the edges are attacked in order
of ¢y »/7Tuv (cost per unit capacity reduction) within the LP (otherwise S is not optimal), they are also attacked in order
for each integral cut, and therefore correspond to optimal attack strategies (for the given budget) for each of the cuts in the
decomposition. Using arguments similar to those in the pfoof of Theorem 7, the convex combination of the d’, yields the proper
civ values. Similarly the variables x; ; and z; ; are exactly decomposed. The cost is >~ «a;B;, which is B (exactly corresponding
to the attack strategy of the fractional solution) and the residual capacity is) «;C;, where Cj is the residual capacity of cut ¢
when attacked with budget B;. Intuitively, edge (7, j) is attacked by each cut that includes it by ;. Each cut expends an «;

fraction of budget B; on removing the (fractional) edges up to the B — B; point, and is left with an o; fraction of its remaining

edges to contribute to the residual capacity. u

14

Appendix D: s-t path decomposition

Proof of Theorem 10. Relax the integer constraints @ and solve the resulting linear program to get fractional values Z,, ,.
Consider the directed graph of edges (u,v) such that #,, > 0 in the fractional solution. We can guarantee that this will
have no cycles by using an objective function with positive weights on all edges. (This does not really constrain the objective
function: these weights can be chosen small enough to be immaterial.)

Since there are no cycles in this directed graph, do a topological sort and number the vertices according to this sort: s is
first, ¢ is last. (Ignore vertices that are not reachable in this graph.) We proceed through the vertices in increasing order of their
distance from the root; creating a set of paths for each visited vertex. By the property of topological sort, we would have visited
all the predecessors of a vertex before visiting it.

The path set associated with vertex v as a set of s-v paths py 1,Pv,2, - - -, Pu,q(v).- Each path p, ; has an associated weight
ay ;. We maintain the invariant that Z;’(;’l) @y j = »; &; . That is, the sum of the alpha-values associated with the path set at
vertex v is equal to the sum of the Z; ,, values coming in. The path set associated with the source is a single (empty) path p; 1
witha,; = 1.

When a vertex is processed, its path set has been computed by its predecessors (as is the case for source s). We then compute
its contribution to the path sets of its direct successors. The path set is represented as an arbitrarily-ordered list. Consider the
outgoing edges from vertex v. As stated before, we have Zj(__vl) oy j = »; & . Place the positive &, ; into an arbitrarily
ordered list. Intuitively, think of the &; , as a stack of boxes with height equal to the capacity at v and think of a similar stack
(of equal height) for the Z, ;. Now slide the two stacks next to each other. This represents a matching of incoming paths to
outgoing edges. If there is a boundary between two 2 boxes then that path is split at that point, part going on the first edge and

part on the second. The following pseudocode accomplishes this.

Py {([s], 1)}

fori <~ 0ton —1do

P10 -- set of paths ending after v;

j«0 -- current box in outgoing stack

B+ x50 -- current height remaining in outgoing stack
forall (p, @) € P; do -- for each box in incoming stack

if p ends at v; then
while a > # do
if 3> Othen Pipy « Py U{(p- ’Uj,ﬂ)}, a+—a-pF1f

JEi+L B+ ;

15

od
ifa > 0then Piyq + Py U{(p-vj,0)},B < B—afi
else

Piy1 < P U{(p, @)}

od
od

return P,

At the end of this procedure, we have a path set for ¢. The number of paths in this set is at most m + 1, since an incoming
path can only be split by the “end” of an outgoing edge in the above procedure.

We begin with a total weight of 1, which is repeatedly divided among the m + 1 final paths. When node v is processed,
edge (v, j) is given a weight exactly equal to Z, ; by construction. So in the decomposition specified by the path set for t, all

paths which include edge (u, v) have total weight equal to ., ,. Therefore this decomposition is an exact DDA. =

16

M98005726
A

Report Number (14)__\ —\\© — ~9N ‘(D\Ql@/
CONY - A0z, ——

Publ. Date (11) \O\CT% C\(Q
Sponsor Code (18) ®®(C) \YF
UC Category (19) kA (— Q\C%Qp); DOE/EQ

19980702 062

"DTIC QUALITY INSPECTED 1

DOE

