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INTRODUCTION

The boundary zone between adjacent communities has long been recognized
as a functionally important component of ecosystems (Odum 1959). The diversity
and abundance of species (Noss 1983), the flow and accumulation of material and
energy (Ranney et al. 1981), and the propagation of disturbances (Turner et al
1989, Picket and White 1985) may all be affected by landscape boundaries.
However, the spatial arrangement of different habitats and their boundaries has
received little direct study (Krummel et al. 1987, Wiens et al. 1985). It is
not surprising, therefore, that Hansen et al. (1987) have noted "...the extent
to which landscape boundaries influence ecological flows is not well known and
recent treatments of the topic remain speculative."

The difficulty in studying landscape boundaries has been due, in part, to
the variety of responses of organisms to ecotones. Therefore, definitive tests
of relationships between ecological processes and the pattern of landscape
boundaries will be greatly assisted by developing a standard against which
comparisons can be made. Neutral models (Caswell 1976) can define this standard
by producing the "expected pattern" for testing predictions against observations.
The advantages of a neutral model for testing the spatial distribution of plants
against the "expected" Poisson distribution have been well established (Greig-
Smith 1952, 1964), but a general approach for relating ecological processes and
landscape patterns must still be defined. The desirable features of a neutral
model for studying landscape boundaries are (1) the model should be simple, with
few parameters needed to describe the system; (2) the model should be general
in scope and easily applied to a variety of problems; and (3) the model should
produce results that can be extrapolated across spatial and temporal scales.

We have explored the use of percolation theory to generate neutral models



for landscape studies (Gardner et al. 1987). The analytical and computational
methods of percolation theory (Stauffer 1985) are quite general and can be easily
applied to a variety of two-dimensional arrays. Because two-dimensional
percolation arrays (1) are similar to landscape maps and can be generated by
specifying a few parameters, (2) can be used as the basis for simulating a
variety of ecological processes, and (3) are appropriately neutral to the
physical and biological processes which often shape landscape patterns, they
provide useful means of forming neutral models for relating pattern and process.

The purpose of this chapter is to illustrate how neutral models that are
developed from percolation theory can be used to address the problem "How do
ecological system boundaries influence biotic diversity and the flow of energy,

information and materials?" (Holland 1988).

Percolation Methods for the Study of Landscape Boundaries

A two-dimensional percolating network within an array of size m by m is
formed by randomly choosing the state of each of the m2 sites by a probability
of p. Figure 1 shows three example maps of size m = 20, with values of p of 0.4.
0.6 and 0.8. The dark pixels or 'occupied sites' in Figure 1 can be thought of
as locations of a habitat of interest (e.g., habitats susceptible to disturbance
or capable of sustaining populations of rare species). For large arrays, pm
sites are occupied while (l1-p)m2 sites are empty. A 'cluster' is arbitrarily
defined as a group of occupied sites which have at least one common edge along
the vertical or horizontal directions of an array but not along the diagonals.
The number, size, and shape of clusters will change as a function of p, with
rapid changes occurring near the critical probability, p,, when the largest

cluster manages to extend, or percolate, from one edge of the grid to the other.



The value of gc for extremely large arrays has been experimentally determined
to be 0.5928 (Stauffer 1985). The shape of the largest cluster, as measured bv
the fractal dimension, has also been shown to be affected by p (Stauffer 1985):
clusters are simple when p < El but more complex when p > pc

Analysis of arrays generated by percolation theory has provided a means
of applying these methods to ecological systems (Gardner et al. 1987). Results
show that when p is low, finite arrays exhibit habitats arranged as many small,
isolated clusters. As p increases, the average size of the clusters also
increases (Fig. 1). When p exceeds the critical threshold, adjacent clusters
coalesce into a large cluster which spans the map or "percolates" from edge to
edge (Fig. 1b). The relationship between the number of inner and outer edges
of clusters can be used to characterize the degree of habitat fragmentation.
Inner edges, or gaps within a habitat patch, are frequent when p is high, but
decline rapidly as p is reduced below pc, the critical threshold (Fig. 2). The
reason for the sudden change near pc is that cluster size declines as a function
of p (Stauffer 1985) and gaps within a patch are opened and become a part of the
external edge of the cluster (Gardner et al. 1987). When p declines below 0.4,
there are very few clusters with any inner edges. Percolation studies of
diffusion in two-dimensions have shown that movement is affected by the size and
shape of clusters (Gefen and Aharony, 1983), with anomalous dynamics occurring
near the critical threshold, p". (Stauffer 1985). These anomalous patterns occur
because the structure of the system shifts from diffusive flow in a disconnected
system (below p".) to convective low in a connected network (above pc, see Ohtsuki

and Keyes 1988).



Interaction of Landscape Boundaries with Disturbances

We have wused percolation methods to simulate the interaction of a
disturbance with the spatial pattern of a susceptible habitat (Turner et al
1989) . The habitat is generated at random on a map (i.e. percolation array) and
the disturbance 1is specified by two parameters which define the frequency, f,
and spread, 1i. Frequency, f, 1s the probability that a disturbance will be
initiated in a unit of susceptible habitat at the beginning of the simulation
(e.g., the probability of lightning striking a hectare of pine forest during a
particular time period). Disturbance spread, i, 1is the probability that the
disturbance, once initiated, will affect adjacent sites of the same habitat.
A simulation concludes when the disturbance 1is no longer able to spread to
adjacent sites.

The result of a series of simulations of disturbance spread where the
disturbance destroys each site (e.g., fire) have shown qualitatively different
effects when the proportion, p, of the landscape occupied by susceptible habitat
is above or below (Turner et al. 1988, Turner et al. 1989). The effects of
disturbance frequency are most important below gc because clusters tend to be
fragmented and the disturbance 1is constrained by the size and shape of the
habitat clusters. For example, when g = 0.4, an 1increase in disturbance
frequency causes a substantial increase in the proportion of habitat affected,
even when the probability of disturbance spread is low. The influence of i, the
probability of the disturbance spreading to adjacent sites, 1s most important
above go because the habitat is more continuous and a relatively rare disturbance
can propagate across the landscape. If the probability of spread is sufficiently
high (e.g., 1 = 0.75), more than 90% of the habitat can be affected by a low

frequency of disturbance. When the habitat susceptible to disturbance is rare



(e.g., g = 0.4), less than 20% of the habitat is disturbed, even when the
probability of spread of the disturbance reaches 1.0. When the susceptible
habitat is common (e.g., 2 = 0.8), even low values of 1 produce extensive
disturbance effects (Turner et al. 1989).

Habitat boundaries are also affected by the interaction of i and p, with
the total amount of edge declining as habitat 1is removed by the disturbance.
High values of i (e.g., 1 > 0.75) interact with the connectance of the habitats
(E > Ec) to cause extensive loss of habitat (e.g., == 1-0: Fig. 3), Dbut the
probability of disturbance spread has relatively minor effects on landscape
boundaries when the habitat is fragmented (e.g., E~O-'"+tn Fig 3). Inner edges,
or gaps within habitat patches, dominate undisturbed landscapes (i = 0.0) when
2 > 2c» but as habitat is destroyed with increasing levels of disturbance the
internal gaps are opened and the landscape becomes dominated by outer edges
(e.g., 1 =20.75, 2=0.6 in Fig. 3). The complex interaction between disturbance
and landscape pattern illustrated in Fig. 3 defines the region in parameter space
near 0.6 and i = 0.5 where sudden changes in boundaries are likely to be

observed

Boundary effects on ecological flows
Simple modifications of the disturbance model allow this approach to be

used to investigate the flow of populations of different species through the

landscape. If we were to substitute directly the flow of species for the spread
of disturbance, the existing model would assume: (1) that populations colonize
adjacent sites at each time step with probability i; (2) each colonized site

becomes unsuitable for continued persistence of the population at each time step:

and (3) sites cannot be recolonized during the course of the simulation. To



adapt the model for species colonization, we relaxed these assumptions by:
(1) defining a probability, e, per unit time for local extirpation of the
population (the expected residence time of a population at a site will be 1/e);
(2) defining a ©probability. h, of the habitat Dbecoming unsuitable for

recolonization after a local population has been extirpated (values of h < 1.0

implies that resources are diminished by colonization of the site); and
(3) allowing sites to be recolonized if the site remains unaltered. When h =
1.0 and e = 1.0 the "species" version of the percolation model behaves as the

previous "disturbance" model.

Simulations of the movement and persistence of populations with a variety
of different parameters were performed to examine the interaction between
different species and the spatial pattern of landscape boundaries (Table 1):
Some populations rapidly spread to adjacent sites (i = 1.0) and cause all
occupied habitats to be altered (h = 1.0) while other populations spread slowly
(i = 0.2), remain at each site for longer a time (1/e = 15) and have little or
no impact on occupied sites (i < 0.2). The percent of the simulations in which
the population reaches the edge of the map (Zedge). the number of time steps to
spread across the map (t), and the percent of sites altered or occupied (Zsite)
were recorded as a function of i, e, and h (Table 1).

The number of time steps, t, necessary for a simulated population to reach
the edge of the map is inversely related to i (compare populations 7, 13 and 19
in Table 1) but directly related to e, the probability of local extinction
(compare populations 11, 12 and 13 in Table 1). The percent of the simulations
that reached the edge of the map (Zedge)] is also inversely related to e because
values of e < 1.0 allow a single population several time steps to reach adjacent

sites (values of e are irrelevant when i = 1.0). When 1 is small (populations



14-19), low values of e are necessary for a simulated population to reach the
edge of the map (populations 16 and 19). The probabilitv of a site being altered
by a population has 1little effect when i = 1.0, but dramatically decreases the
probability of survival when 1 < 1.0. The reason is that alterations of a site
(h > 0.0) can disconnect the percolating cluster and prevent the species from
moving across the map (note populations 8 vs 11). Table 1 illustrates that
population specific attributes result in the existence of different thresholds
at which critical phenomena will be observed. For instance, alterations in e
and h result in remarkably different levels of success for populations 14 through

19.

Scaling Relationships

Studies of the relationships between pattern of landscape boundaries and
ecological processes will be most useful if site specific information can be
extrapolated to broad geographic regions. Previous studies in percolation theory
provide a basis for generating rules for extrapolating measurements across broad
spatial scales. For instance, the theory for determining scaling relationships
near the critical threshold, , 1s well established for infinite percolation
networks (see Ohtsuki and Keyes 1988. Voss et al. 1982, Margolina et al. 1984).
These authors have shown that the time, ¢, required to move across a two-
dimensional percolation network scales approximately as t md, where m is the
linear dimension (extent) of the map and d is the fractal exponent relating
space to time [see arguments presented by Stauffer (1987) Justifying this use
of a fractal dimension]. The exponent, d, can be experimentally determined for
any percolation model by simulating movement from the center of a map of size

m, and measuring the time, t, necessary for the organisms to reach the map edge



and then calculating d as [1n(t) / 1ln(mjJ

A series of Monte Carlo simulations of the disturbance model (Turner et
al. 1989) was performed to determine scaling relationships for maps which differ
in grain (the size of the individual site) and extent (m). Results show that
d varies as a function of p, the fraction of occupied sites, and 1i, the
probability of spread of the disturbance (Fig. 4). The adjustment necessary to
obtain the exact relationship for finite systems is: t = 1/k,, (m/2)d, where
is the grain size of the map (linear dimension of an individual site) and m is
the linear dimension of map. The division of m by 2 is necessarv because the
simulations were started in the center of the map. As an example, suppose that
a 100 by 100 grid is placed over a landscape map with the scale of each grid unit
equal to 10 m; the grain of the map, , 1s equal to the length of each grid unit
and the total extent of the map, m, is then 1000 m (100 X 10 m;. Thus, for this
example the time, t, to reach the map boundary will scale as 1/10 (1000/2)d.

Figure 4 indicates that critical phenomena occur as a function of the
product of p and i. When (p * i) = 1.0, then d = 1.0, and results scale as a
direct function of the extent of the map. When (p * i) < Ec, then the landscape
pattern prevents disturbance from spreading (note the break in the curve for
values of p * 1 near 0.6). Because uncertainties are largest near the critical
threshold, the disturbance parameter, i, 1s Dbest estimated when (p * i) is
greater than pc Ifd= 1.0 then (p * i) must also equal 1.0, but when d > 1.0
and p is known, then values of i can be estimated independently of the grain and
extent of the map. Similar methods can be devised for extrapolating predictions
on the spread of species (e.g., %$site, Table 1) as a function of the grain and

extent of the map.



DISCUSSION

Understanding the relationships between landscape boundaries and ecological

processes 1is necessary for advancing ecological theory (Hansen et al. 1988),

managing preserves (Noss 1983. Quinn and Harrison 1988). and understanding the

spread of disturbance (Turner et al. 1989). The simulation of interactions

between disturbance and landscape pattern shows that sudden changes in the number

and shape of boundaries may occur (i.e., p = 0.6 and i = 0.5, Fig. 3). Although

our results are based on arbitrarily selected parameter wvalues, the existence

of critical phenomena are a general property of flow through heterogeneous media

(Stauffer 1985). Therefore, differences in the characteristics of flow (i.e..

different types of species or disturbances, Table 1) do not affect the generality

of the results, but rather define the temporal and spatial scales at which

critical phenomena may be observed. For instance, species that are able to

distribute their progeny over a large region will not be affected by landscape

heterogeneity below the scale set by the average dispersal distance (Gardner et

al. in press), but will show critical changes in flows at very broad spatial

scales.

The existence of critical thresholds 1is dependent on both the spatial

pattern and the process of flow. Because the rate of flow can change suddenly

at the «critical threshold, it 1is difficult to extrapolate fine-grained

observations to broader spatial areas. However, methods developed from

percolation theory provide a quantitative basis for measuring and extrapolating

results across spatial scales. We have illustrated the utility of this approach

for extrapolation as a simple function of the grain and extent of the map (Fig.

4) . Because this extrapolation process is based on empirical information, it

provides a convenient means for comparing processes at many spatial scales. It

10



has been shown that the general properties of random landscapes compare favorably

with simulations based on actual landscape data (Gardner et al. 1987. Gardner

et al. in press), indicating that these methods can also be applied to structured

(i.e., nonrandom) systems.

Further developments in spatial modeling will be useful for understanding

the process of flow and the role of ecotones. The results presented here have

concentrated on impenetrable boundaries, but organisms respond to edges 1in a

variety of ways. The effect of gradients that exist at boundaries, the variety

of factors which affect growth and survival of competing species, and the spatial

arrangement of multiple resources should be further explored. For instance, the

effect of connectivity between similar habitat types can be examined by varying

connectivity as a function of landscape characteristics and the behavior of

organisms (see Fahrig and Paloheimo 1988, O’'Neill et al. 1988). Simulations of

this type may be important for identifying the potential response of organisms

to changing landscape patterns

The effect that relative distance (Meentemeyer and Box 1987) has on the

spread of disturbance and species abundance should also be considered. Because

relative distance metrics transform actual distances based on the unique spatial

relationships of the system (e.g., for species that are dispersed by water, sites

connected by streams are relatively closer than land-locked sites), it may be

possible to use geographical and econometric methods to address the question "At

what scale should diversity be measured and managed?" (Noss. 1983).

The availability of a general predictive theory for spatial systems is a

prerequisite for interpreting the effect of landscape boundaries (and changes

in landscape boundaries) on ecological systems. The numerical tools provided

by percolation theory and the integration of these tools with data available from

11



geographic information systems provides an exciting new area for investigating
the effects of pattern and process. Because human activities are causing new
environmental problems at 1local, regional and global scales, the need to

understand, predict, and manage these problems is more urgent than ever.
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Table 1. Ten simulations each of a series of hypothetical populations. Each
simulation was performed on a 100 by 100 percolation map with p (the fraction
of suitable sites) of 0.6. Simulations were concluded when the population went

extinct at all sites (no organisms left on the map) or movement has reached the

map edge.
Population Percolation parameters3 Simulation results3
Number = ——————m——m— e
JL e h %$edge t %site
1 1.0 1.0 1.0 90 74.3 13.6
2 1.0 1.0 0.5 50 71.8 8.7
3 1.0 0.5 0.5 80 72.0 10.5
4 1.0 0.07 0.5 90 76.4 13.9
5 1.0 1.0 0.0 90 79.3 5.9
6 1.0 0.5 0.0 60 74.8 6.4
1 1.0 0.07 0.0 70 76.7 10.7
8 0.6 1.0 0.5 0 - 0.1
9 0.6 0.5 0.5 0 - 0.7
10 0.6 0.07 0.5 70 128.9 10.6
11 0.6 1.0 0.0 60 172.5 3.3
12 0.6 0.5 0.0 80 156.1 5.6
13 0.6 0.07 0.0 100 122.8 11.9
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Table 1, continued

14 0.
15 0.
16 0.
17 0.
18 0.
19 0.
Parameters: i is

probability of local population extinction:

being altered (i.e.,

the percent of simulations that reached the edge of the map;

of time steps to reach the edge;

2 1.0 0
2 0.5 0
2 0.07 0
2 1.0 0

0.5 0
2 0.07 0

the probability

70

467.0

377.1

of colonizing adjacent

resource depleted)

or altered at the end of the simulation.

17

and h is

by the population.

sites:

the probability

Results:

e 1is the

of a site

%$edge 1is

t is the mean number

and %site is the mean percent of sites occupied



FIGURE LEGENDS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Example percolation maps of a 20 by 20 array. P is the fraction of
the array occupied by grey or black sites. The percolating cluster

is shown in black, and remaining occupied sites in grey.

The number of edges observed on a randomly generated map (linear
dimension = 100) as a function of j, the fraction of sites occupied
on the map. Edges are a unitless number found by counting the number
of surfaces of occupied sites that are adjacent to an unoccupied
site. Outer edges lie along the outside of a cluster while inner
edges are adjacent to another land use type which is completely
enclosed by the cluster. Total edges are suras of all inner and outer

edges.

Habitat edge as a function of p, the fraction of habitat susceptible
to disturbance, and the probability of disturbance spread. Each bar
in the histogram represents the total edge on randomly generated maps
(linear dimension = 100). The darker vs lighter portion of each bar

indicates the amount of inner vs outer edge, respectively.

Changes in the critical exponent, d, for scaling predictions when
E, the fraction of susceptible sites, and i, the probability of
disturbance spread, are subject to variability. The scaling formula
is: t = 1/kg (m/2)d, where kg is the grain size of the map (linear

dimension of each site) and m is the linear dimension of map.
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