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ABSTRACT

Economic and political demands are driving computational
investigation of systems and processes like never before. It is
foreseen that questions of safety, optimality, risk, robustness,
likelihood, credability, etc. will increasingly be posed to
computational modelers. This will require the development and
routine use of computing infrastructure that incorporates
computational physics models within the framework of larger
“meta-analyses” involving aspects of optimization,
nondeterministic analysis, and probabilistic risk assessment.

This paper describes elements of an ongoing case study involving
the computational solution of several meta-problems in
optimization, nondeterministic analysis, and optimization under
uncertainty pertaining to the surety of a generic weapon safing
device. The goal of the analyses is to determine the worst-case
heating configuration in a fire that most severely threatens the
integrity of the device. A large, 3-D, nonlinear, finite element
thermal model is used to determine the transient thermal response of
the device in this coupled conduction/radiation problem.
Implications of some of the numerical aspects of the thermal model
on the selection of suitable and efficient optimization and
nondeterministic analysis algorithms are discussed.

1. INTRODUCTION AND OBJECTIVE OF CASE STUDY

Thermally induced failures and indeterminacies in high-
consequence structures and systems, such as aircraft, weapon
systems, naval vessels, petrochemical processing plants, etc., put
people and engineered systems at risk. It is highly desirable to
design such systems so that the risk of fire-triggered catastrophes is
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mitigated. This requires probing the thermal robustness of candidate
designs in various credible thermal environments.

In today’s computing environment, experimentally validated
computer models of the behavior of such systems can be combined
with optimization and sensitivity/uncertainty assessment procedures
to assess robustness in a systematic manner. Answers to system- and
management-level questions are being sought from computer
simulation: What is the optimal solution? How robust is this
optimum to uncertainties? What is the level of risk involved? What
are the sensitivities and uncertainties and their implications? What
are the economics of the trade-offs?

This paper illustrates the application of some advanced
computational tools to assess the robustness of a conceptual weapon
safing device in severe thermal environments. As well as helping
expose and quantify vulnerabilities in systems, these computational
tools can be used in design and resource allocation processes to build
safer, more reliable, and economical (overall more optimal) systems.

2. PROBLEM DESCRIPTION

Safing Device Operation and Reliability Measure

Figure 1 shows a symmetric half of a conceptual design of a safing
device in a weapon system. As explained in Reference [1], the
“stronglink” component in the center of the device prevents the
transfer of unauthorized electrical signals to critical components in
the weapon system. In any operational or abnormal environment it
must serve its standoff function until other components necessary
for detonation are irreversibly neutralized. In particular, the annular
capacitor winding along the outside wall of the device must become
incapable of holding an electrical charge before the stronglink
succumbs. The capacitor is therefore also referred to as a
“weaklink”.

From a thermal perspective, failure criteria for the weak and strong
links is defined in terms of failure temperatures that can, in general,
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be complex functions of temperature history, heating rate,
geometry, boundary conditions, etc. Under thermal conditions of
worst-case heating, the status of the stronglink is deemed
indeterminate when certain elements on the underside of the
stronglink plate shown reach 1100 ° F (~600° C). For the weaklink
capacitor the failure criterion is taken to be the attainment of a
dielectric melt temperature of 480°F anywhere on the capacitor
winding.

A measure of the reliability of the safing device in any particular
thermal environment is the associated “safety margin”:

S = t failsyrongiink - Lfailweakdink, (EQ1)

where ¢_failgpnglink is the elapsed time (from time zero at the
beginning of a given thermal simulation) required for the hottest
node anywhere on the underside of the stronglink plate to reach a
failure temperature of 1100°F, and t_fail,equin is the time
required for the hottest node anywhere on the capacitor winding to
reach a failure temperature of 480° F. A negative safety margin
indicates that the device may function unreliably.

Potentially Threatening Two-Parameter Heating
Configuration

Certainly, those environments that heat the stronglink
preferentially relative to the weaklink are of concern to the reliable
functioning of the safing device, i.e., they tend to decrease
t_Jfailgyongtink Ye1ative to ¢_fail,,qppink, thus decreasing the safety
margin according to EQ 1. It is apparent that intense heating
applied to the roof of the firing set, localized to a region directly
above the stronglink plate, heats the stronglink preferentially. It is
certainly plausible that an accident occurs in which a fire irradiates
a circular spot on the top of the safing device; the rest of the device
being essentially shaded from it. For simplicity and to maximize
the localization of heating in the problem, the limiting case is
assumed where the device is completely insulated everywhere
except for a circular irradiated region that fully views the fire (view
factor to the fire = 1.0). The size and location of the circular region
of irradiation are retained as free parameters in the problem.

Thermal Model

The hydrocarbon fuel fire is modeled as a blackbody radiator at
a temperature of 1000° C (1832° F). (Work is currently underway
at Sandia National Laboratories to improve estimates of effective
fire temperatures [2].) From geometrical and heat transfer
considerations, it can be concluded that the circular region of
heating should be centered on the diametral line corresponding to
the plane of symmetry of the device. Thus a plane of symmetry
exists in the total thermal problem {geometry + boundary
conditions}, and only half of the device need be modeled. This
reduces the size of the numerical radiation problem by a factor of
about 3 for the given geometry and discretization. As it is, over
1800 conduction finite elements exist in the model, with a system
of 7 enclosures (1046 radiation surfaces total) used to account for
diffuse-gray radiant exchange within the firing set (emissivity =
0.65, representative of fire-oxidized stainless steel). The initial
temperature in the simulations is always 25°C, and the fire
temperature is ramped from 25° C to 1000° C over the first 10
seconds of the simulation (and held constant thereafter).

Because of the high temperatures involved, thermal radiation is
extremely important in the problem. Radiative transport is a very
nonlinear and computationally demanding problem to solve.
Additionally, the highly temperature-dependent properties of
stainless steel and the large temperature excursions involved
contribute to the nonlinearity in the coupled conduction/radiation
problem. Simulations required CPU times on the order of 1 hour
with a dedicated 85-mhz SUN Sparkstation 20. A more detailed
discussion of the computational nature of this heat transfer problem
is presented in Reference [1].

Example Simulation Results

Figures 1 and 2 show results of a simulation run with the thermal
model for a sample parameter set r = 1.020 inches = fire radius, and
x = 0.142 inches = distance from the center of the firing set in the
positive x direction as shown in Figure 2. These values define a
region on the roof of the device designated by the white arrows in
Figure 1. High temperatures are concentrated about the stronglink
plate, but the capacitor winding is relatively cool. This combination
of parameters results in a highly localized heating configuration
that preferentially heats the stronglink to a high degree. Figure 2
shows the relevant weaklink and stronglink temperature responses
over time. For the stated parameters, the value of the safety margin
S is approximately 56 minutes.

3. WORST-CASE HEATING CONFIGURATION BY
OPTIMIZATION ON NOISY DATA

What, if any, credible abnormal environments cause the race to
be won or nearly won by the stronglink (and thus threaten the
reliability of the safing device)? Can the worst-case environment be
identified so that the device can be hardened against it?

Optimization procedures can be used to identify heating
configuration parameters r and x that maximize the preferential
heating of the stronglink (or, equivalently, minimize the safety
margin). Reference [1] describes implementational details such as
parameterizing the heat flux boundary condition in terms of » and
x and adaptively stopping simulations when enough information is
produced. The optimization problem is complicated by numerical
artifacts resulting from discrete approximation and finite computer
precision (i.e., numerical noise in the objective function as
discussed below), as well as theoretical difficulties associated with
navigating to a global minimum on a nonconvex design surface
having a fold and several local minima as described in [1].

Several different optimization procedures have already been
applied to this problem with varying levels of success as described
in {3]. Importantly, the most successful of these have revealed the
vulnerability of the device to be an order of magnitude greater than
ad hoc searching had previously indicated. However, the
computational expense, and in many cases failure of the
established searching and optimization procedures tried!, indicates
a vital need to approach such optimizations more effectively.

! These include conjugate gradient and Newton-based nonlinear program-
ming methods, genetic algorithms, coordinate pattern-search methods, and
Monte Carlo sampling, all invoked through Sandia’s DAKOTA[4] C++
software iterator framework.



Accordingly, recent research at Sandia has been aimed at
accomplishing effective optimization in the presence of noisy
objective functions derived from expensive simulations with large
complex computer models. Some of the issues and lessons from
this work, important because such computer models will
increasingly be used for policy and decision making in the future,
are discussed below.

Characterization of Numerical Noise and Bias vs
Temporal Discretization in the Model

To begin, the simulation CPU times and numerical inaccuracies
associated with discrete time-integration and boundary conditions
in the thermal model are examined. The purpose here is not to look
at convergence of the solution per se, but ultimately to look at the
relative effects of variously converged solutions on accuracy and
computational expense in the overriding optimization problem.

Convergence parameters EPSIT and EPSIT2 control the iterative
time-stepping procedure in the QTRAN(5] thermal model. Table 1
lists values of the per-timestep iterative convergence tolerances for
the various designations ‘loose’, ‘low’, ‘xstrict’, etc. The CPU
times in the table are averages over nine QTRAN simulations run
at the parameter pairs indicated in Table 2. The parameter sets
comprise a 2-D lattice of points centered on the worst-case heating
parameters {r,x} = {1.6204 in., 0.78205 in.} identified in [1] at
xstrict tolerances. The significance of this lattice of design points
will become apparent later. The CPU times were obtained on a
dedicated 85-mhz SUN Spark20 workstation. The ‘xstrict’
simulations are on average over 17 times more expensive than
‘xloose’ simulations.

Table 1 Per-Timestep QTRAN[5] Convergence Tolerance
Settings and Associated Simulation Time Requirements

0,
EpsiT | Epsite | AVG-CPU | %of
Case time xstrict
tolerance | tolerance . .
(min.) time
xstrict 1x10* 1x10°6 174.0 100.0%
low 1x10%0 1x1072 20.7 11.9%
loose 1x10*t 1x10°! 14.2 8.2%
xloose | 1x10*2 1x10° 10.1 5.8%

Figure 3a plots a 1-D parameter study of the behavior of the
objective function versus discrete increments in the fire radius r for
various degrees of temporal resolution in the thermal model. The
study is centered about the optimal worst-case heating parameters.
Similar noise exists along the x direction (see [6]), though results
are not shown here to conserve space”.

2 It would also be instructive to investigate the nature of noise for various
levels of spatial discretization (i.e., mesh or element size), though no work
has been done toward this purpose for the current thermal model.

Table 2 9-Point Grid in 2-D optimization space, centered
on point corresponding to deterministic worst-case heating
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A significant aggregate downward shifting or “bias” in the results
also occurs as the tolerance parameters EPSIT and EPSIT2 are
loosened. This is perhaps due to a retarding of thermal diffusion in
the model under the bigger timesteps allowed by looser per-
timestep convergence tolerances. The response lag of the more
thermally buried weaklink would then increase, resulting in a lower
safety margin. Though the absolute values of the safety margins for
the ‘xloose’ runs are on the order of 20% lower than those for the
‘xstrict’ runs, the overall shapes of the parameter study curves are
fairly close, which is the important quality in optimization.

As shown later, numerical noise and bias from Monte Carlo
nonconvergence and other numerical operations arising in
optimization under uncertainty (OUU) amplifies the need to
develop and use noise-tolerant optimization strategies.

Optimization in the Presence of Numerical Noise

The spacing of the data points in the parameter study is 0.005
inch, which is on the same order as the 0.003 in. to 0.005 in.
spacing in previous parameter studies of noise in [3] and is
compatible with the physical finite-difference step sizes of
approximately 0.001 inch in the final optimization runs therein.
Therefore, the noise displayed in Figure 3a is comparable to the
noise experienced by the optimizers in the previously published
studies. As the plot shows, the objective function at ‘xstrict’
tolerances is very smooth, which allowed DAKOTA’s DOT[7]
conjugate-gradient optimizer to find the optimal design parameters.
The care taken to parameterize the heat flux boundary condition as
a smooth and continuous function of r and x is evident in the
‘xstrict” data. However, a discernable, though not directly
consistent, relationship exists between temporal discretization in
the numerical model and the spatial correlation of the data. The
numerical anomalies evident for the less strict per-timestep error
tolerances result in local sub-minima that can trap or confuse
derivative-based optimizers as was seen in [1], even though on an
absolute scale the perturbations (usually well within 10% of the



projected unperturbed results) are acceptably small for most
engineering purposes.

Optimization in the presence of “small-scale”? stochastic noise,

as may arise from finite numerics due to truncation, discretization,
machine roundoff, etc., in computational physics models, does not
appear to have been addressed much in the literature to date.
However, nontrivial numerical noise has also shown up in many
other optimization problems recently studied at Sandia (see e.g.,
[8]). We now demonstrate a simple approach to optimization in the
presence of stochastic numerical noise.

The idea is to step out of the scale of the noise by taking large
enough perturbations or optimization step sizes to get effective
low-order function approximations that locally reflect only the
relevant macrotopology in the problem. Classical optimization
techniques are then used to quickly converge to optima on the
analytic (noise-free) objective functions. If the noise level in the
data approaches the scale of the macrotopology in the optimization
problem, then the current computational model must be replaced
with a more finely discretized one in order to profitably pursue the
optimization process. This approach should be viewed as one that,
rather than operating from local gradients built from small-
perturbation differencing in the parameter space, instead samples
more broadly to build local interpolation surfaces with analytically
defined derivatives that can be quickly and easily navigated with
classical derivative-based optimization techniques. This simple
local optimization scheme is used as the innermost loop in a more
complex multi-level, iterative, adaptive, and convergence self-
assessing procedure being devised at Sandia for efficient global
optimization in the presence of noise.

“Macro curve” representations obtained by fitting quadratic
functions through the left-most, center, and right-most points of the
data in Figure 3a are plotted in Figure 3b. Despite the stochastic
noise in the lower-tolerance data, their quadratic representations
exhibit overall relative topologies that resemble very closely that of
the ‘xstrict’ data, as established quantitatively in [6]. Though the
lower-tolerance macro curves are in aggregate vertically shifted
somewhat from the ‘xstrict’ macro curve, the relative topologies
are similar, which is what is most important in optimization.
Furthermore, achieving accuracy in prediction of relative macro
behavior is fairly inexpensive; even the simulations with xloose
tolerances produce topologies very similar to those based on xstrict
tolerances, but on average take 1/17 the CPU time.

Certainly, optimization of smooth, continuous design surfaces
(which is the bulk of the applications in engineering) depends on
relative information, as opposed to absolute information. This
relaxes the demands on simulation models used in optimization
from a “strong” requirement of having to provide good absolute
information to a much weaker requirement of having to simply
provide good relative information. (Here terminology is drawn
from the finite element literature, where “strong” and “weak”
solutions of differential equations are spoken of, the later being
more easily obtainable because of reduced requirements on the

3 Of course, “small-scale” is a relative term: small scale perturbations or os-
cillations are those deviations from a clearly recognizable macro trend oc-
curing at some larger scale of interest in the design problem.

o

solution.) As we have already seen and will see more evidence of
in the following, such relative information can be obtained
relatively inexpensively with physics-based models. Therefore,
large-scale optimization with complex simulation models can be
made much more affordable by realizing the savings resident in the
weakened requirements on the simulation models. However, the
tradeoff between model fidelity (i.e., resolution and therefore cost)
vs. effectiveness in the context of optimization (i.e., smallest scale
at which macro trends are discernable above the numerical noise,
and accurateness in the trends) is a much less clear-cut issue.
Because numerical noise is dependent both upon the discrete
resolution of the numerical model and on the region of the
parameter space being operated in, the above question is not
answerable a priori. However, it may be resolvable “on the fly”
with a multi-level, multi-grid “Lattice Sampling” adaptive
optimization scheme presently being investigated (see [6]).

The potential of the suggested macroscale optimization approach
is clearly evident. Overall, this initial examination reveals that a
simple quadratic fit to very sparse and inexpensively produced data
(from xloose tolerances) can yield points very nearly optimal in the
design space. Of course, reducing the macro scale and the
coarseness of the numerical model in coordinated succession
should lead to convergence to the final “target” results {rx} =
{1.6204 in., 0.78205 in.}. This remains to be verified in future
work, with special attention to be paid to the computational
efficiency of this process vs. other optimization methods already
tried as reported in [3].

Optimization on 4X Macro Scale Biquadratic Response
Surface

For a quantitative indication of the accuracy of optima arrived at
from local low-order polynomial fits to the data, we examine the
results of a study at the 4X ““sub-grid” macro scale on which the
grid of points in Table 2 is based. The thermal model was run at
each of the nine input parameter sets at each of the aforementioned
tolerance levels. Figure 4 plots a quadratic bi-Lagrange polynomial
fit (see [9]) through the nine data points corresponding to xstrict
tolerances. (The piecewise-bilinear plot was generated by
interpolating off of the biquadratic function to get an 11x11 grid of
response-surface values.)

The “difference” plot in Figure 5 shows the differences between
biquadratic fits of ‘xloose’ and ‘xstrict’ data on an 11x11 (121-
point) grid. If the difference surface was a horizontal plane, then
the ‘xstrict’” and ‘xloose’ surfaces would have exactly the same
topologies, shifted vertically by the level of the difference plane.
The relatively small undulation (less than 0.4 minutes over the
entire range of the design space on a scale ranging from about 2.5
minutes to 25 minutes) indicates fairly similar topologies for the
two levels of temporal resolution. As expected, the ‘xloose’
deviations bound the deviations of corresponding ‘loose’ and ‘low’
surfaces (not plotted).

The effective optimization similarity of the topologies of the
biquadratic surfaces can be determined by comparing the
coordinates of their minima. The r optima for the biquadratic
surfaces at the four tolerance levels are listed in Table 3. The
optima were found with the commercial nonlinear programming



optimization package NPSOL[10] of the DAKOTA[4] iterator
toolkit. Because the biquadratic fits are analytic surfaces, partial
derivatives of any order and mixing are available analytically for
the optimization step. Only first-order analytic derivatives were
supplied for this application. Starting from the coordinates at the
center of the grid as an initial guess, NPSOL typically required
about seven iterations, converging to the optimum in just a few
CPU seconds.

Table 3 Optimal fire radius r from biquadratic safety margin
surfaces (4X macroscale)

o
optimal r | % diff. from % diff. from

Tolerance (in.) xstrict case target value of

’ r=1.62in[1]
xstrict 1.605 - -0.93%
low 1.606 0.06% -0.86%
loose 1.604 -0.06% -0.99%
xloose 1.607 0.13% -0.80%

Results are only from 0.8% to 1% different from the target r
value (see Table 3). Convergence to the target optima as the sub-
grid macroscale decreases is to be expected as long as the sub-grid
macroscale does not drop to the scale of the simulation noise from
the numerical model. A similar study reported in [6] at one-fourth
the sub-grid scale confirms that 1X macroscale results differ from
the target » value by from 0.2% to 0.7% depending on the QTRAN
tolerances of the underlying data. Considering that a factor of 4
reduction in the sub-grid macroscale translates on average to
somewhat less than a factor of 4 improvement in the result, the
average rate of convergence in the r optimum is somewhat less than
linear. However, similar results for the fire location parameter x
reported in [6] show a linear rate of convergence with decreasing
sub-grid macroscale.

The values in Table 3 reveal that the simple local response-
surface optimization technique employed is very insensitive at the
4x macroscale to the level of temporal discretization of the
numerical model. In other words, at the macroscales involved, the
optimal design parameters found were essentially the same
whether the nine-point basis was generated with 174 CPU-minute
(on average) ‘xstrict’ simulations or with 10 CPU-minute (on
average) ‘xloose’ simulations. Certainly, a model with greater
resolution is useful in the end for very local final convergence to an
optimum and for a more accurate absolute valuation of the
objective function there, but in early rounds of optimization this
degree of resolution is unnecessary and unnecessarily costly.

An Efficient? Global-to-Local Analytic Multigrid
Optimization Strategy

Global optimization might be accomplished by covering the full
parameter space of interest with many such nine-point grids and

sampling the response at each grid point with a very coarse (fast-
running) numerical model. Local optima would then be identified
from local biquadratic fits as explained above. The discretization of
the model could then be increased appropriately and the process
would be repeated. If the local optima identified at the first and
second levels of discretization differ within a specified tolerance,
then the discretization of the models is sufficient for the sub-grid
scales employed in the first round of optimization. Other rounds of
optimization are then pursued with the coarse model and the
smaller of the macroscales tested in the first round. In these
subsequent rounds, separate nine-point grids centered about local
optima identified in the first round would be pursued as separate
local optimization problems, with successive decreases in each
round of the sub-grid scales of the biquadratic fits involved. At each
round some “active” regions may be dropped from further
consideration following a relative comparison of the local optima
in the remaining regions. In this way the global optimum can be
converged on with a relatively noisy but inexpensive model. This
process can continue until the optima identified in successive
rounds of sub-grid scale reduction begin diverging, which is an
indicator that the working sub-grid scale is entering a regime where
the numerical noise of the simulation model begins to interfere. In
this case the model’s resolution must be increased if further
convergence to the optimum is desired. In the future it is planned to
compare variants of this basic strategy against other global
optimization approaches on real problems where the objective
function is comprised from noisy and expensive simulations.

4. NONDETERMINISTIC ANALYSIS

It is widely acknowledged that engineering models of systems
and processes suffer from various degrees of uncertainty in
material properties, geometries, operating and boundary
conditions, numerical preciseness, etc. Nondeterministic analysis,
which reveals the effects of uncertainties in the model, yields a
much broader picture of probable behavior than nominal point
estimates indicate. In fact, we find here that the effects of uncertain
weaklink and stronglink failure temperatures are very significant
and that a probabalistic description of the safety margin leads to a
quite different conclusion than the deterministic one does.

Sensitivity of Safety Margin vs. Weaklink and Stronglink
Failure Thresholds

A glance at Figure 2 indicates that stronglink and weaklink
failures occur in relatively flat portions of the temperature response
curves. This is more true for the stonglink than for the weaklink,
but regardless it can be seen that the safety margin is very sensitive
to the failure temperature criteria. Thus, non-negligible
uncertainties in the failure criteria of the stronglink and weaklink
will have a major impact on the uncertainty of the safety margin. In
fact, as established in [11], when uncertainty bands 5% above and
below the nominal failure temperatures are considered, the
corresponding bands in failure times indicate that the safety margin
could vary from about 34.5 minutes at best to about -25.5 minutes
at worst. Comparing this to the “deterministic” safety margin of
2.53 minutes calculated with xstrict tolerances at worst-case
heating parameters, it is apparent that the effects of uncertainty are
very important in this problem.



Calculation of Safety Margin Distribution Due to
Uncertain Component Failure Thresholds

In the following, the stronglink and weaklink failure
temperatures are assumed to be described by truncated normal
distributions with means L equal to the respective mean failure
temperatures of 593.33° C (1100° F) and 248.89° C (480° F).
Based on some experimental data [11], standard deviations O are
taken to be 3% of the means, i.e. 17.8° C and 7.47° C respectively.
The failure criteria standard deviations specified here would
certainly seem to be reasonable for complex manufactured
components like the strong and weak links. With negligible impact
on the final results, the distributions are truncated at 30 above and
below their mean values for numerical convenience.

As explained more fully in Reference [12], sets of weaklink and
stronglink failure temperatures can be generated from the above
failure temperature distribution parameters via Latin Hypercube
(LHS[13]) Monte Carlo sampling4, and then a safety margin can be
computed for each set by using the time histories of the weak and
strong links obtained from a run of the thermal model under given
{rx} heating conditions. Histogram representations of safety
margin distributions obtained for the three {r,x} parameter sets of
the middle row of Table 2 are displayed in Figure 6. The results are
derived from simulations with xstrict tolerances.

Recent work in “decoupling” the probabilistic and deterministic
portions of uncertainty problems like this with a “decoupled”
Monte Carlo technique utilizing piecewise-local finite element
response surfaces built on “Lattice Sampling” is reported in [14].
This work suggests that it is generally more efficient to use model
simulations to build a response surface than to use them directly in
a Monte Carlo simulation. Potentially then, the Finite Element/
Lattice Sampling Decoupled Monte Carlo (FELSDMC) approach
can make Monte Carlo analysis orders of magnitude less expensive
with no appreciable loss in accuracy.

Whether using a direct or decoupled Monte Carlo approach,
establishment of Monte Carlo convergence is a difficult issue.
Moreover, there is a need for numerical tools for “on the fly”
automated convergence assessment and termination of sampling
when sufficient convergence within user-specified tolerances has
been achieved. Algorithms for doing this are currently being
devised and tested at Sandia (see e.g., [15]), though robustness of
the algorithms has not yet been comprehensively tested or
established.

Certainly, other methods besides the direct Monte Carlo
approach exist for estimating probability of failure. In fact, the
simple reliability-based Mean Value (MV) method applied in [12]
was effective with only 5 samples (vs. 500 with the Monte Carlo
approach). The MV approach was adequate because the
assumptions of the method apply quite well for the current
problem: the input uncertainty distributions are normal and the
temperature histories of the weak and strong links are essentially
linear in the neighborhood of the failure temperatures (¢f Figure 2).

4 The cumulative experience at Sandia has been that the LHS Monte Carlo
method is much more efficient than simple random sampling Monte Carlo
methods —i.e., the asymptotic rate of convergence of the population mean
and standard deviation is usually significantly better.

Because the Mean Value method is not necessarily conservative
and cannot be counted upon to be accurate under more general
circumstances, other established approaches for probability and
reliability prediction are currently being evaluated at Sandia (see

[16]).

Metrics of the Safety Margin Distribution: Safing Device
Reliability or Probability of Failure

Population means and percentiles are also plotted in Figure 6 and
fitted with quadratic curves as shown. A quadratic curve
representing the deterministic’® safety margin is also plotted in the
figure. Though the deterministic curve is relatively close to the
Monte Carlo® mean curve and the median (50th percentile) curve,
significant differences do exist. For example, the mean safety
margin for the center histogram is approximately 3.16 minutes,
about 25% greater than the deterministic estimate of 2.53 minutes.
Thus, it is good news that the expected safety margin is actually
greater than the nominal point estimate. However, two caveats
exist. First, as the plot shows, the mean curve does not always lie
above the nominal curve, so deterministic point estimates are not
always conservative. Second, as the histogram shows, a very
substantial number of Monte Carlo trials actually resulted in
negative safety margins. Therefore the large spread in the results
reveals a very substantial probability of device failure or
unreliability. Indeed, a 45% chance of safing device failure exists,
corresponding to the proportion of the histogram below the S=0
abscissa line in the figure.

The sensitivity of failure probability to the variance or spread in
the weaklink and stronglink failure temperature distributions was
also studied briefly in [11]. When the standard deviations of the
input distributions were halved from 5% to 2.5% of the mean
failure temperatures (with 40 truncation), the resulting
probability of failure only dropped from 0.47 to about 0.43. That
the standard deviations of the input distributions were halved and
the probability of failure only dropped 8.5% is not very
encouraging. Thus the candidate safing device is certainly very
vulnerable to even small uncertainties in failure criteria of the
critical internal components under conditions of worst-case
heating. This has implications for robust design in the presence of
uncertainty.

5. OPTIMIZATION UNDER UNCERTAINTY

The predeeding section demonstrated the importance of
nondeterministic effects in the current application. It is, therefore,
imprudent to ignore such effects in the larger optimization
problem.

Because accounting for uncertainties in weaklink and stronglink
failure criteria results in a spread of safety margins rather than just

3 The deterministic safety margin is the single point estimate of the safety
margin obtained by evaluation at the nominal or mean stronglink and weak-
link failure temperatures 593.33 °(C and248.89° C, respectively.

6 Based upon experience gained in [11], 500 samples are more than ade-
quate for stabilized probability estimates for probabilities in the range 0.4
to 0.5. However, the number of samples required for results to stabilize is
problem and situation dependent, so the Monte Carlo results presented here
may not be completely converged.



a single value, the choice of an objective function for optimization
becomes an issue. The expected (mean) value of the safety margin
could be used, or the 25th percentile, or the mean plus »n standard
deviations, etc. Moreover, the histograms and the percentile curves
in Figure 6 show that in this region of the parameter space the
safety margin distribution changes fairly rapidly. Thus, the
optimum point in an optimization problem could be significantly
different for each potential objective function formulation. For
example, the 75th percentile curve reaches a minimum at
approximately r = 1.68 in., which is about 5.7% larger than the
mean, median, and nominal or deterministic curve minima at
approximately r=1.59 in., which is about 5.3% larger than the 25th
percentile curve minimum at approximately » = 1.51 in.

Reference [12] reports an application of optimization under
uncertainty (OUU) in this problem, where the objective function is
defined as the probability of safing device failure —i.e., that the
safety margin is less than zero. The maximum of this function then
identifies the heating configuration that is the most threatening in a
probabilistic sense —i.e., when uncertainties in information about
the system are taken into account. Thus, it speaks to the robustness
of the system in a real-world setting where exact information about
the problem is not possessed or cannot be modeled. Particular
attention is paid in [12] to how nondeterministic analysis affects the
noisiness of the objective function, which in turn fundamentally
affects the effectiveness and applicability of optimization
algorithms and therefore the user’s selection of an optimization
strategy. Figure 7 shows a parameter study of noise in the
probabilistic objective function induced by Monte Carlo and Mean
Value approaches. The ‘mc.prob.xstrict’ and ‘mv.prob.xstrict’
curves correspond to the (smooth) ‘xstrict’ objective function in
Figure 3a. The Monte Carlo process clearly induces more noise
into the objective function than the Mean Value process does. It is
currently being determined whether the Monte Carlo noise is due
to nonconvergence or not, and, therefore, how adaptive sampling
with a MC convergence-testing tool ([15]) might smooth the
objective function in OUU problems. Despite the noise, the
response-surface approach described in Section 3 was applied in
[12] to the OUU problem with very encouraging results.

6. CONCLUSION

Enabled by accelerating computational capability, a new
generation of very powerful analysis tools are becoming available
to engineers for affecting system-level decisions with multi-point
analysis. Such system analyses couple high-fidelity physics
simulations with higher-level optimization, probabilistic risk
assessment, and nondeterministic analysis drivers. Thus,
computers are being used to help answer broader questions of
robust design, probabilistic behavior, reliability, etc. Application of
these analysis methods will become routine engineering practice in
the future, but much enabling progress still remains to be made in
efficient adaptive and hybrid methodologies for effectively
handling noisy data from large simulation models and processes.
Some steps in this direction are reported on here.
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Figure 3a Numerical noise along r for deterministic objective function in the vicinity of the
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Figure 3b Quadratic “macro curves” in the r direction in the vicinity of the deterministic optimum
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Figure 4 Safety margin response surface (objective function for deterministic optimization
problem) from biquadratic fit to ‘xstrict’ responses at the nine grid points shown in Table 2.
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