ORNL/CP-97244

5 CONF-9703%2 -~

Software Tools for Developing Parallel Applications
Part 2: Interactive Control and Performance Tuning*

Jeffrey Brown
Los Alamos National Laboratory
Los Alamos, New Mexico

Al Geist
Computer Science and Mathematics Division
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

660 8050866}

Cherri Pancake _ _
Department of Computer Science g ‘

Oregon State University S Fiise

Corvallis, Oregon = l:D

Diane Rover o
Department of Electrical Engineering S 7‘ /
Michigan State University
East Lansing, Michigan

*This submitted manuscript has been authored by a
contractor of the U.S. Govemment under Contract No.
DE-AC05-960R22464. Accordingly, the U.S. Govern-
ment retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.”

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED Wi ASTER

*This work was supported in part by the National Science Foundation, Science and
Technology Center Cooperative Agreement No. CCR-8809615 and the Mathematical,
Information, and Computer Sciences subprogram of the Office of Energy Research, U.S.

Department of Energy, under contract No. DE-AC05-960R22464 with Lockheed Martin
Energy Research Corporation.

'DTIC QUALITY INEPECTED 1

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Software Tools for Developing Parallel Applications
Part 2: Interactive Control and Performance Tuning

Jeffrey Brown* Al Geist' Cherri Pancake? Diane Rover?

Abstract

This paper continues the discussion of parallel tool support with an overview of the
current state of tools for runtime control and performance tuning. Each is discussed in
terms of the programmer needs addressed, the extent to which representative current
tools meet those needs, and what new levels of tool support are important if parallel
computing is to become more widespread.

1 Runtime Tools for Scientific Applications

Our focus in this section is on runtime tools that are designed to be used by scientists
and whose purpose is to improve or enhance the way computational science is now done.
Runtime tools provide users access to information about and within running applications.
Popular examples of such tools include computational steering and interactive visualization.

Interactive visualization has become more and more important over the last few years
because the sheer volume of data generated by computational experiments requires some
method for the scientist to interactively explore the results. By moving this capability into
the runtime environment, the scientist is able to watch the evolution of the computation
and determine much earlier if the expected physics is being properly simulated.

Computational steering, which provides feedback during execution, has the potential
to revolutionize computational experiments by allowing scientists to interactively steer a
simulation in time and/or space. Computational steering helps a scientist or engineer to
concentrate more on the science and less on the computer. Through the use of interaction,
the computer becomes a more useful tool to the engineer, allowing experimentation and
real time exploration of a design space. This provides a much more flexible framework for
science that the typical simulation cycle — manually setting input parameters, computing
results, storing data off to disk, visualizing the results via a separate visualization package,
then starting again at the beginning.

Computational steering and interactive visualization tools are further complicated when
the application is parallelized and the data and computation are distributed across many
processors. Because these parallel runtime tools have the potential of being used on every
run, rather than just to initially debug or tune an application, it is important that the tools
be designed with scientists in mind.

*Los Alamos National Laboratory, Los Alamos, NM.

tOak Ridge National Laboratory, Oak Ridge, TN.

*Department of Computer Science, Oregon State University, Corvallis. OR.

$Department of Electrical Engineering, Michigan State University, East Lansing, MI. Assisted by Nayda
Santiago, Abdul Waheed, and Kenneth Wright.

2

1.1 Basic Requirements for Runtime Support

Scientists want to have computational steering and interactive visualization in their
applications. They see the advantages these capabilities bring to their ability to do science
better. At the same time they want these capabilities to be easy to incorporate and easy to
customize to the views and steering parameters unique to their application. It is important
that the visualization tool be able to dynamically attach and detach from a long running
application. The scientist also wants to make sure the incorporation of computational
steering and interactive visualization have little or no impact on the performance of the
application when the visualization tool is detached. Further, he or she wants the impact
minimized (or user controllable) when the application is being steered.

1.2 Examples of Current Runtime Tools

There is no widely-used runtime visualization tool for parallel programs. Applications with
this capability have often had to reinvent much of the synchronization and data collection
algorithms required to create time coherent views from distributed asynchronously created
data.

1.3 Looking Ahead

We present three new experimental projects to develop runtime packages that provide inter-
active visualization and computational steering capabilities to general parallel applications.
Each of these packages allows client “viewers” to dynamically attach and detach from the
running application, and all handle the details of collecting and sending distributed data
fields to and receiving steering parameters from a viewer.

Oak Ridge National Laboratory is developing a system called CUMULVS [1] which
allows scientists to easily incorporate fault tolerance, interactive visualization and compu-
tational steering into distributed applications. Built upon the PVM [2] virtual machine,
CUMULVS is portable to all the architectures that PVM runs on. The CUMULVS system
supports collaborative computational experiments through multiple dynamically attached
viewers. These viewers are independent and can be commercial packages such as AVS or
customized viewers for a specific application. All data collection and control in CUMULVS
is done asynchronously to minimize intrusion. An additional runtime feature available
through CUMULVS is automatic fault detection and checkpoint/restart in a heterogeneous
environment. CUMULVS can even reconfigure a checkpoint file for a different number of
processors if a replacement processor can not be found.

MIT is developing pV3 [4], which is a visualization software system for three dimen-
sional, distributed, unsteady, unstructured, CFD calculations. While pV3 is primarily used
in CFD applications, it is general enough to be used in a a wide range of applications.
Built upon PVM, pV3 can run on clusters of workstations as well as supercomputers. The
unique feature of pV3 is that the visualization calculations are co-processed on the parallel
computer. This significantly reduces the network bandwidth requlred for animations at
the cost of sharing computational power and memory between the visualization process
and the application process. By performing the visualization calculations in parallel, pV3
can rapidly display isosurfaces, streamlines, and other features from very large datasets.
Since the visualization processes need to take advantage of customized hardware, there is
a number of restrictions on what hardware platforms pV3 is supported on. A single client
"viewer” is allowed per application. The viewer is based on OpenGL and is supported on
DEC, HP, IBM, SGI, and SUN workstations.

Georgia Tech is developing Falcon [3], which is a set of tools and libraries supporting
runtime monitoring and steering of parallel and distributed applications. Falcon consists of
a sensor specification language and compiler for generating application sensors, local agents
for collection of event data, and steering middleware that allows multiple dynamically
attached clients to interact. Falcon uses the Openlnventor graphical display framework for
its collaboration infrastructure. Each of the clients is independent and each collaborator
can customize his views to match his interest. The Falcon software has been tested on
SUN, SGI, and IBM workstations, as well as the SP-2 and KSR.

2 Tools for Analyzing Parallel Performance

Performance analysis tools provide users with information about system and application
behavior during execution. The information comes in diverse forms depending on what is
being monitored and how it is being monitored. One of the most challenging aspects
of performance analysis is presenting the information at a level of abstraction that is
meaningful to the scientist. Moreover, tools should provide the scientist with some
insights on tuning the application. The role of performance analysis tools is complicated
by emerging computing and problem-solving environments. In this section, we consider
the implementation of an application in several environments and highlight performance
analysis tool options, particulary in support of high-level information.

As usual, the rapidly changing landscape of high-end computing systems and paradigms
complicates the process. Even before programmers are faced with navigating through
information provided by a particular analysis or visualization tool, a number of steps must
be taken to collect, store, process, and present the information. The tools available at each
of these steps impact the ability of programmers to effectively tune an application.

2.1 Basic Requirements for Performance Analysis Support

As stated by Hollingsworth et al. [6], performance analysis tools exist to provide insight to
programmers to help them understand why their programs do not run fast enough. For these
tools to be effective, they need to collect data about the application, the operating system,
and the hardware and to synthesize it in a way to let programmers concentrate on getting
their work done. Users of high-level parallel programming languages need performance
information that is accurate and relevant to the programming model and the source code.

2.2 Examples of Current Performance Analysis Tools

Most commercial parallel systems provide a platform- specific set of tools and utilities for
profiling and tracing program execution, typically including some source-level information.
Examples include: CrayTools (including MPP Apprentice and ATExpert); Silicon Graphics
SpeedShop and Co-Pilot; Hewlett Packard CXpa; and IBM UTE and VT. The environments
described in the following subsections represent a spectrum from what is presently available
to the user to what is on the horizon, in terms of support for performance information
associated with three different programming paradigms.

2.2.1 In Message-passing Environments PVM (Parallel Virtual Machine) [2] is a
widely used environment for distributed computing. The PVM package allows a collection of
computers connected to a network to be used as a single message-passing parallel computer.
It is portable across many different computers and provides users with a common parallel
programming interface.

XPVM is a graphical user interface for PVM that displays both real-time and post-
mortem animations of message traffice and machine utilization by PVM applications [2].
While an application is running, XPVM displays a space-time diagram of the parallel tasks
showing when they are computing, communicating, or idle and animating messages between
tasks. XPVM stores events in a trace file that can be replayed, stopped, and stepped to
analyze the behavior of a completed execution. The trace file written by XPVM is in SDDF
format as defined in Pablo [9]. The format also can be converted to PICL format for use
with ParaGraph [5]. Pablo and ParaGraph provide a large number of visualizations, so
the number of displays available in XPVM is small, with particular relevance to the PVM
environment. The performance of the PVM package itself continues to be enhanced by its
developers.

Pablo and ParaGraph are trace-based visualization tools for performance tuning of par-
allel applications. An alternative tool for measuring the performance of large-scale parallel
programs in the PVM environment is Paradyn [8]. Paradyn supports networks of worksta-
tions running PVM, works well with several hardware platforms (e.g., Sun SparcStation, HP
PA-RISC, and IBM RS/6000 and SP-2), operating systems, and programming models, and
measures programs running on heterogeneous combinations. Paradyn dynamically instru-
ments an application (inserting and removing instrumentation automatically) as it searches
for performance bottlenecks. Paradyn’s Performance Consultant uses the W3 search model
to assist the user in locating program performance problems on the basis of three questions:
Why is the application performing poorly? Where is the performance problem? When does
the problem occur? Paradyn allows high-level language programmers to view performance
in terms of high-level objects (such as arrays and loops for data-parallel Fortran) and maps
high-level information to low-level objects (such as nodes and messages). Paradyn also
provides a set of standard visualizations (time histograms, bar graphs, and tables) and an
interface to use displays from other sources (e.g., ParaGraph, Pablo, or AVS).

2.2.2 In Object-Oriented Environments TAU (Tuning and ‘Analysis Utilities) is
a visual programming and performance analysis environment for pC++ [7). The TAU
graphical interface represents objects of the pC++ programming paradigm: collections,
classes, methods, and functions. These language-level objects appear in all TAU utilities.
TAU uses the Sage++ toolkit as an interface to the pC++ compiler for instrumentation
and accessing properties of program objects. TAU provides profiling and tracing support.
The TAU tools act in concert, and each tool implements some well-defined tasks; a tool can
request a feature of another tool. Global features can be executed in all currently open TAU
tools. The program and performance analysis environment includes tools for accessing static
information about the program and for querying and analyzing dynamic data obtained from
program execution; it also includes interfaces to stand-alone performance analysis tools from
other sources (e.g., Pablo, Nupshot).

2.2.3 In a MultiMATLAB Environment MultiMATLAB is one of several projects
to develop a high-performance computing version of MATLAB. The analysis tools for these
environments are not yet mature. Problem-solving environments pose the greatest gap
between low-level performance information and programming abstractions. Current options
for analyzing the performance of MultiMATLAB applications are limited. One option is to
use the MPI profiling interface to provide an MPI trace library for MultiMATLAB. This,
coupled with visualization tools such as Pablo, Nupshot, or ParaGraph, lets the user view
low-level behavior. The The IBM SP-2 version of MultiMATLAB can take advantage of
IBM'’s unified trace environment (UTE) [10] or its visualization tool (VT). These approaches

5

require re-linking or re-compiling for trace generation. Michigan State University is
collaborating with the Cornell Theory Center to support high-level performance analysis
in the MultiMATLAB environment.

2.3 Looking Ahead

The advantages of high-level programming environments will be fully realized only if
programmers are able to understand and tune the performance of their applications based
on high-level performance information. In part, this will require greater integration of
compilation and performance analysis processes. Additionally, enhancements for developing
application-specific instrumentation and visualizations will assist programmers, as will
search-based tools that support performance diagnosis strategies. Tools also must support
automated analyses, for example, of multiple executions of a program or of program
scalability (without requiring users to develop extensive program and/or system models).
The closer tools come to mapping low- level performance data to abstract program
information, the closer they will be to prescribing solutions for performance problems.

3 Conclusions !

Of the four areas of tool support discussed in this paper, only debugging and performance
analysis include enough current offerings that an application programmer is likely to find
tools regardless of what parallel machine he or she uses. Even in these cases, the tools
vary widely from one machine to another, and most address only a subset of the real user
requirements. Interactive runtime tools are an emerging area of interest that is likely to
yield significant innovation over the next few years. The fourth area, support for code
development, appears to be receiving less and less attention, in spite of the fact that it
accounts for a significant proportion of user efforts.

A promising aspect of the current situation is that the tools community is beginning
to respond to user demands for greater consistency and interoperability across machine
boundaries. The increasing use of standard file formats (such as SDDF for recording
performance data) and new efforts to standardize tool interfaces (chiefly the Parallel Tools-
Consortium) reflect this long-overdue change.

Finally, the growth of the World Wide Web has made it easier to share information on
tool development and user experiences with parallel tools. These new resources include:

e http://www.ptools.org: various tool projects sponsored by the Parallel Tools
Consortium

e http://nhse.cs.utk.edu/sw_catalog: catalog of shareware, including a number of
parallel tools, sponsored by the National HPCC Software Exchange

e http://www.nhse.org/ptlib: results of evaluatlons of parallel tools, sponsored by
the National HPCC Software Exchange

e http://www.nero.net/ pancake/SSTguidelines: guidelines for writing system
software and tools requirements in procurements, results of a task force sponsored
by the National Coordinating Office for HPCC

Given the time- and effort-intensive nature of parallel application development, improve-
ments in the quality and the availability of parallel tools are important investments for the
* future of parallel computing.

6

References

1]

2]

[4]
[5]
[6]

(9]

[10]

[11]

G. A. Geist, J. A. Kohl, P. M. Papadopoulos, CUMULVS: Providing Fault-Tolerance,
Visualization, and Steering of Parallel Applications, Proceedings of Workshop on Environments
and Tools for Parallel Scientific Computing, August 1996 (to appear in International Journal
of Supercomputer Applications), http://www.epm.ornl.gov/cs/cumulvs.html.

G. A. Geist, et al., PVM: Parallel Virtual Machine — A Users Guide and Tutorial for Network
Parallel Computing, MIT Press, 1994, http://www.epm.ornl.gov/pvm.

W. Gu, et al, Falcon: On-line Monitoring and Steering of Large Scale Par-
allel Programs, Georgia Institute of Technology Report GIT-CC-94-21, 1994,
http://www.cc.gatech.edu/tech.reports.

B. Haimes, pV3: A Distributed System for Large-Scale Unsteady CFD Visualization, ATAA
Paper 94-0321, Reno NV, Jan. 1994, http://raphael .mit.edu/pv3/pv3.html.

M. Heath and J. Etheridge, Visualizing the Performance of Parallel Programs, IEEE Software,
8(5), September 1991, pp. 29-40.

J. Hollingsworth, B. Miller, and J. Lumpp, Technigques for Performance Measurement of
Parallel Programs. in Parallel Computers: Theory and Practice, ed. T. Casavant, P. Tvrdik,
and F. Plasil, IEEE CS Press, 1996.

A. Malony, B. Mohr, P. Beckman, and D. Gannon, Program Analysis and Tuning Tools for a
Parallel Object Oriented Language: An Ezperiment with the TAU System, in Debugging and
Performance Tuning for Parallel Computing Systems, ed. M. Simmons, A. Hayes, J. Brown,
and D. Reed, IEEE CS Press, 1996, http://www.cs.uoregon. edu/paracomp/tau.

B. Miller, et al., The Paradyn Parallel Performance Measurement Tool, IEEE Computer,
28(11), pp. 37-46, November 1995, http://www.cs.wisc.edu/ paradyn.

D. Reed, et al., Scalable Performance Environments for, Parallel Systems, Proceedings
of the Sixth Distributed Memory Computing Conference, IEEE CS Press, April 1991,
http://www-pablo.cs.uiuc.edu.

C. Wu, H. Franke, and Y. Liu, UTE: A Unified Trace Environment for IBM SP Systems,
http://www.tc.cornell.edu/UserDoc/Software/Ptools/ute/. ‘

A. Trefethen, V. Menon, C. Chang, G. Czajkowski, C. Myers, and L. Trefethen, MultiMAT-
LAB: MATLAB on Multiple Processors, Technical Report TC96TR239, Cornell Theory Center,
May 1996.

M9B004836
WWWWWWWWWWW

Report Nﬁrﬁber (14) IR NL/C? - - 772?4 |
caff - T Fo34d— "

Publ. Date (1) (77703 &
Sponsor Code (18) i8) /! ER; mF , X F
UC Category (19) J/C - 4’0 5 UC -0t ,1705/ T4

DOE

