UNCtASSIFIED

Courant Mathematics and Computing Laboratory

New York University

Mathematics and Computing CO0-3077-148

| CONFIGURABLE SOFTWARE FOR SATELLITE GRAPHICS

Peter D. Hartzman

December 1977 NoTICE
- . . X . This report was prepared as an sccount of work |
: . . sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
, Sub or their employees, makes
any warranty, express or implied, or assumes any legal | !
liability or respontibility for the Y, compl '
or fulb of any infi ion, , product or
process disclosed, or represents that its use would not
infringe privately owned rights.

U. S. Department of Energy

Contract EY-76-C-02-3077
UNCLASSIFIED o Ef> |

DISTRIBUTION QF THiS QOCUMENT IS INLIMITER

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

THIS 'PAGE
WAS INTENTIONALLY
. LEFT BLANK

Table>of Contents

Section
‘Introduction ‘
1. Methods of System Design

5.

7.

1.1 Language Hierarchies

Algorithmic Design Languages

SETL '

Implementing the Specification

Unfeasibility of Using a Lower Level Language
for Design oo

=
. @
b WN

Distributed Graphics Systems

2.1 Fixed Function Satellites

2.2 Variable Function Satellites
2.3 Programmable Satellite Systems

Specification of an Intelligent Satellite Graphics System
3.1 System Component Specification

3.1.1 The Command Processor

3.1.2 Display Image Maintenance

3.1.3 Asynchronous Interrupt Processor
3.2 System Implementation

Process and Communication Structures in Experimental

Graphics Systems

4.1 Overview .)

4,2 Implementation Details and Interfacing Considera-
tions)

The Application ¥
The Data Structure

Picture Development and Data Structure Manipulation

7.1 Building a Picture from Primitive Objects

7.2 Naming the Picture and Saving It

7.3 Adding Previously Defined Subpictures to the Struc-
ture ‘ ' .

4 Modification of the Picture

5 Displaying the Picture : _

.6 Multiple Virtual Structures for the Same Picture

e

1

2

Virtual Structure and Other Data Structures
Advantages of the Data Structure
An Extension for Hidden Line Removal

8.3 Other Data Structures

Results and Conclusions

Figures

Appendix

HOOw»

F
Bibli

Simple SETL Primer

addprimitive

definitionsave ‘

modifypicture : .-
Communication Formats for Data between the Honeywell 316
and the CDC .6600 .
Graphics Library Package

ography iii

55
55

63
69
74

82
82
85

86
94
94
101

102
102
104
109

114
122

144
147
148
152

156
158

165

o THIS PAGE
\ WAS INTENTIONALLY
L . LEFT BLANK .

Acknowledgements

I wish to express my‘deep'appreciation.for the
guidance,.advice, and feview of my work érovided by my.
advisors Professor Jacob T. Schwartz and Professor Thomas
Stuart. I especially want to thank frofessor Stuart for
the software support he provided ranging from the-develop-
ment of the Honerell.316 version of the LITTLE compiler to
the intercomputer comﬁunications péckage whigh was so
necessary for this work. -

I want to thank David Shields and Peter MacLean for
their cooperation in solving little,random problem§ that

occurred.

‘THIS 'PAGE-
WAS INTENTIONALLY

: 1LEFT.BLANK :

A

ABSTRACT

An important goal in interactive coﬁputer graphics
is to provide users with both quick system responses for basic
graphics functions and enough computing power for complex
calculations. Oné solution is to have a distributed graphics
system in which a minicomputer and a powerful large computer
share the work.

The most Qersatile type of distributed 5ys£em is an
intelligent satellite systém in which the minicomputgr is
proérammable by the application user and can do most of the
work while the large remote machine is used for difficulﬁ
computations. The'intélligencevof the system is a funétioﬂ
of the hardware and software gsed. | |

At New Yo:k UniQersity,-the hafdware waS'configured
from available equipment. The level of system‘intelligence
resulted almost completely from sbftware~dévelopment. |
Uniike previous work with intelligent safellites, the
resulting system had system controllCentered in the satellite.
It also had thé ability to'reconfigure software during real-
time operation.

The design of the system was done at a very high level
using the set theoretic language SETL for specifications. The.

specification clearly illustrated processor boundaries and

vii

interfaCesjwhich'helped‘to simplify interbomputer communications.
The~high levei specificatfon aiso produoed a compact,
machlne 1ndependent virtual graphlcs data structure for
) plcture representatlon. A p0551ble exten51on of the structure
for hldden line removal is. presented
The»software was wrltten in LITTLE, a'systems implementa—
tlon language. This meant that only one.set of programs was
needed for both machlnes. A user can program both machlnes
-~1n a single language. It also meant that most of_the software
is transportable to machineslwith available LITTLE‘compilers.
Tests of the system w1th an appllcatlon program indicate
that 1t has very high potentlal. The major problem w1th the
current unplementatlon is the unsatlsfactory performance of
the 1ntercomputer communlcatlons software. Replacement of
_that package would produce351gn1f;cant improvements and would
‘not affect system design. | .
A major resﬂlt'of this'work is the demonstration that
a oigantic.ihvestment im new hardware is not necessary for.

computing facilities interested in graphics.

viii

Introduction

The purpose of this‘disseftation i$ to discuss the
development of and phllosophy behind the: de51gn and |
implementation of an 1ntelllgent satelllte graphlcs system.

4 A significant problem in lnteractlve computer'graphlcs
- is to find a means to prov1de users with quick system
responses for basic graphlcs functions such as plcture
transformations and input/output and also to provide them
with the computétional.power to do more elaborate applica-
tions-briented calculatioﬁs. _AnAexpensive and impraétical-
method is to connect the graphics“terminal to a large, powerful
computer. The préblem with tﬁis approach is that»the input/
outpuf-requirements.of.the graphics terminal and the servic-
ing of trivial requests do not neéessitate‘the power of a‘
large machine and the complex computations occur relatively
infrequently. The result is an expensive waste of the
computer's power. In contrast, a minicomputer would be per-
fectly sufficient to handle the trivial processing but its
abilities-woﬁld be severely taxed by the difficult calchlations.
The solution'is to have a distributed graphics systems in which
a minicomputer and a powerful lafgé camputer shére-ﬁhe Qork.
| ih a distributed graphics system, the ﬁinicompﬁter is
.known as the satellite-computer and itihandleé the immediate

input/output processing.. The new éroblem is the division of

the reﬁaining sthware labor between the satellite and the
remote large machine. Three approachgg have been made to
the pfoblem. o

'The simplest method is to use thé minicomputer as a -
fixed funé;ion sateliite. The user's application proéram .
resides in the remote computer and treats the satellite as
a fancy'input/output device. The'satellite handles only
simple interactions and formats data for transﬁissidn tp the
remote mééhine. The large computerlstillAdoes'much Qf thé
trivial graphics processing.

The second method is to use the ﬁinicomputer aé a vari-
‘able function;satellite. The user's apblication program .
ip the remdté cdmputer can turn particular graphics functions
in the satellite off and on through subrdutine‘ca1ls}'The
remqte computer still has toldo a éiggificant émqpnt of
Qraphics procéssing. |

In the last type of system, thg user ﬁas a programmable
satellite. ‘The satellite handles most if nqt all of the
graphics functiohs and interactions while tﬁé remqté chpipe
does méjbr’calculations. The user also has the ability to
program the sateliite to do some processing for him: At th%$
point ve haVé'an intelligent satellite system. The level of
intelligence is a function of both the haf@warg and’ﬁhé
softwére.ofiihé satellité.'

Ekcept'for‘the gréphics display Qaidw;;e, the Sé£eii;§g

system built at New York~University was cbnfigured with hard-

ware already available_inlthe computing center of the
.rCourant‘Institute of‘MathematicalfScienées;‘:Except for the
.remote computer.most of the equipment left a great déa; to

be desired in termslof,inherent.gapabilitigs_and,funqtional
reliability. We QereystiLLrablg to produce a functioning :
distributed graphics system with system control centered. in ..
the satellite and the ability to do real-time‘ syétem‘
softwaré reconfiguration. . TheJideavéf using the.satgllitg Q
as a master- computer heiped'distinggiSh‘thi;isystem from
previous efféfts in which control was.exerciséa,qum the .
remote machine. |

In Chapter 1 we will discuss the tools and philosopﬁy
of our system desiéﬁ. | |

Chapter 2 will present‘the various types of sétellife
graphics system with several examples of eéch.r |

In Chaptérs 3,-4 andAS we will show how a high level-
design makes evident processor. boundaries and,ihterfaces
and thus helps to avoid complex intercompﬁter communications
in a satellite systéﬁ. We will descfibe,the structure of the
system developed at Ne& York University and'theAfunctioﬁing
of the apﬁlication implemepted on*thé system.

Chapters 6 and 7 discuss the choige of'a virtual graphics
data structurevfor picturé répresentation and how pictures are
develbped and the data structure is ménipulated‘cérrespondingly.»

- In Chapter 8 we will;speak.of the advantages of the virtual
Strucfure inclﬁding its machine independence (impértant in a

distributed system), and its compactness. A possible extension

of the structure for hidden iineé calculations will be

fr”presentéd;'“Also~éfsurVeyaof;othersdaha:struétureSLWill

- be given .for:comparison purposes -

,-Finaliy, Chépter 9 will present results, describe

' problems éncbdntered,gpropose possibléﬁfutUre improvements}

and: ‘summarize the work.

AéknoWledgements; ‘This work was supported by PHS Grant
Number NS-10072, by ERDA Contract No. EY-76-C-02-3077*000,

and NSF. Grant No. DCR75-09218. -

Chapter 1

_...Methods of System Design

_Experiehced people“agrée that in specifying a lérge
software éystem, the use of structuredﬁpfogramming'éaﬁ
produce a‘cleér‘modular design,"Here,'we'will preéent a“
top-down design procedure that results in a'sucéinct,’
well-documented spegification’makihg'imbleméntation of
the desired system eésier. This procedure necessitateé
the use of a language which ié more powerful and of higherf
.level than most of the ianguageé-used:for stfuctured'proff
gramming. Wé will use the lanquage.tq spééifyICOmﬁdnents
. of the intelligent saﬁellite graphicé system. The resulting
lhigh-level modular speéifiéation-preseﬁts a system overview
.of blocks of highly related modﬁles; "The overview will
provide a basis for minimizing the intercomputef coﬁmunica-

tions of an implementation.

1.1 Language Hierarchies

One means of encburagingA(coercing) designers to use
a top-down development pfocedure is to provide them with a
hierafchy'of languages) the highest of which is the language
- of design (Bauer, 1972; Béukens and Deckers, 1974; Dennis,
1973;.:Geiselbrechtinger et al., 1974; .Ichbiah et al., 1974).

In:this: hierarchy ofnlanguage”1evels,-the:primitives of one

language level are defined in terms of the primitives of
the, next 10Wer~level : Some of the primitlves of .the
hlgher level may be 1dentical to ones.on the lower levell
of definition;,:There are three methods of pfOVLdegia
higher level Ianguage~fot_the designet (Dennis, 1913).
One way'is:tp‘start‘withianvextensible lapguage_and to
define new Qgerations and.data,types SO.that.intetnaily
the reptesegtatioh of the higher level and the definition
" level ate_the same. A second appioach is to write a
coﬁpiler thtranslate the new high ievel language intQ‘av
lower.level language. The third’method»isbto wtitelan .
'interpreter.fot the higher'levei so that now=the higher
level is immediately exeeutaplef "We are not interested
in the particulai_method of implementation of'the'language
but in the use of the 1anguage.

'.Ideally,a design specified in the highest Levelvlange
uage results in an executiné implementation. ‘An additiopnal
benefit is that if the specification language is -at a high
enough level then the program will be machine independent
and can exeéute on any other machine that has: a language
hierarchy supporting'the same specification language.

One of the disadvantages of this technique is the
temptation for the language designers to allow the use of

low level constructs withip.a;specific.implementation

environment (Geiselbrechtinger et.al.,.1974; Ichbiah:-et al.,

1974). A language user who takes advantage of these low

~level features obscures the general abstract solution to
. his problem and dafiages its portability to another operating

environment.

1.2 Algorithmic Design Languages

An alternative to ueing a language which permits: imple- .
mentation specific details to become embedded in the design
specification is to use a non<hierarchical algorithmic

language with such‘powerful primitives and control dictions

‘that the programmer will focus his efforts on design. For

an algbrithmic.lahguage effeotively to fulfill its purpose,

it must have features that promote well-structured’design

and machine independence.

"To achieve true machine independence ih a language,

“the~conceot of using. the language'must'be Kept gquite separate'
from that of executing an algorithm written in the enviren-
1meht of a particolar computer 5ysteﬁ." Thie may'mean'

' "that the language is not a programmlng "language at all

in the sense that algorlthms written in it can be dlrectly

complled for execution on a computer" (Wells,‘1974); The

language will be invaluable. in providihg a clear and éuccinct_

‘means of - expre531ng algorlthms and in proV1d1ng good docu—A

mentatlon for use throughout the implementation.
Two very high level languages created for the purpose

of algorlthm design and specification are Madcap 6 and SETL.

Both languages have very powerful operators and use conceptsl

of computational set theory to permit the building of

very elaborate data structures (Morris, 1973; Schwartz,
H . : .

1973).

1.3 SETL

"SETL has atoms and sets as its two basic data types.
Atoms - are ihtegers, reals, boolean elements, bit strings,
character strings,»labéls, blank atoms, subrouﬁines, func--
tions, and tuples. Sets consist of unordered collections
of atoms and other sets. To make.things even easier fo;
thg designer SETL has no type declarations because a global
analysis by.the.compiler can determine which types of values
a variable takes 6n; For example, it can determiné.thaf
the value of a variable is a'"set of tuples, each having'an
integer first component, a chéracter string second
componént, and a third component which is a set of
integers" (Schwartz, 1975).' So a prograﬁmer does not need
to worry about specific data characteristics while he is in
the design process.

| The definition.of function has been expanded to include
both computational functions and éet theoretic relations.’
Sé a function can be a subprogram or a set of.tuples. As a
set Qf tupleé, a_function can be multivalued, For egample,
writing "descendants{a}" will access all those tuples in

the relation "descendants" which have a first component

of "a". Besides acting as a retrieval operator, "descendants"

can also act as a storage operator. For instance
descendants (a) = x;

adds the tuple»<a,x} to the relation "descendants" and
removes any other tuples whose first component is "a™
from "descendants"” thus making "x" thevonly'aesdendant"

of "a". On the other hang,

e
descendants = descendants + {<a,x>};,

where "+" indicates set union, also adds thé'tuple‘%a,x>A
to "descendants" but does not affect any of the other.
tuples in the relation.- These set mapping mechahisms
proQide powérfulitooLs for’stpucturing data in a mahnerA

which is both painless to the programmer and. intelligible.

‘at the same time‘becauSe of the elegant, concise syntax

derived from elementary set theory. .

‘Besides the fact ﬁhat all functibns—and subroutines
are recursiVe which is especiaily useful fo: operations on .
a tree-like or hierarchical data'strgcture, ﬁhe programmer

can also define new infix and prefix functions and subrou-

_tines if he wishes. For example, he may define the -

function

definef a factorof b; .)
return ((b//a) gg‘Q); /* b//a gives the remainder .
of b/a */

end factorof;

‘and inVoke'it as x factorof y with the result being
-t (true) if x|y and f (false) otherwise.

One feature ,thét‘uséd<to be part of the SETL speci-

fication 1language and was useful in this work was the floW_iA

block.h~The‘flqw block provided a pictorial description of
the flow Of'pfogram‘cohtrolnthrough.a decision tree and

simplified considerably the problem-bf'tracing through

Several nested if-then-else ‘clauses. - The general~$t;ucture

of a flow block is

flow - -question? .

‘'yesbranch .- ' nobranch

The question represents a booleah expression. Théi£WO
brahches ‘can reﬁréseht either more p001éan expressions or
labels of statement blocks to be executed if progﬁém
control‘takés that branch. Here is éndexamplé of a simple
flow block that ﬁight represent a deécision tree for light
pen ipPUt*proceséiné. |

/ldw' ' ligﬁtpenénébied?~
menuselection? = ighore;.
inputmenuitem, ‘tracking?
| inputcoordinates, inputpictﬁreitem;
Associated with a ﬁlgg biock is the cbnceptvof subfléw
block Which'is internalfto’a ﬁlgg block. Its ﬁse.is to
reﬁiesént multi-choice dgcisibn nodes and to serve the

purpose of a case statement.

10

1.4 Implementing the Specification

Very high level specification languages do present

drawbacks to someone who is more interested in the quick

production of an "efficient" system.' One major problem
is that real compilers for these lahguages are rare. A

second problem is that these compilers still produce

‘relatively poor code because compilation techniques have

not advanced as quickiy as 1anguage'design.

The design and specification of correct algorithms
really is ghat we are talking about when we are planning
anyAtype of softwareAsystem. The{efficiency of the lower
level code generated by a computer forla very high level |
language is a functlon of how well the lower level language
reflects the 1deas and power of the upper level, and of
howvwell the primitives of the lower level language map
ihte~machine primitives. | . |

A compiler must be able to handle general cases, but
a de51gner after completlng this spec1f1catlon will have a
good idea of how he wants and expects the program to execute
and how to handle data in the most eff1c1ent way The

de31gner may then resort to hand translatlon of the speci—

fication into a lewer level 1anguageA because the only way

to alter the object code produced by the high level language's
compiler is to change the original algorithmic design.
AlthoUghAthe need to recode is a disadvantage, an advantage

is that during the implementation phase of the project the

11

programmer has available a complete well -documented

design. To facilitate the implementation, the programmer

should use a lower level language not radlcally dlfferent
from the de51gn language in terms of features like control
dictions in order to malntaln a clear parallellsm between ,
the spe01f1catlon and the 1mplementat10n. Within this
framework a programmer will flnd 1mplementation‘to-be»a
muchzeasier task. However,’not hav1ng a good 1mplementa-
tion language does’ not preclude u51ng a very hlgh level
language like SETL In fact, a set of SELL algorlthms
becomes more 1mportant as. a de81gn document wh1ch prov1des
an 1mp1ementatlon scheme for what otherw1se is the

horrendous task of hav1ng ‘to plan and 1mplement s;multan-

eously in a poor 1anguage, the approach generally followed

1.5 -Unfeasibility of'Using a Lower Level Language‘for Design

We have discussed two alternatlves to systemAde51gn.
One alternatlve is to use a hlerarchy of nested language
levels. thls presents the danger of producing a massive
conglomeratlon of a de51gn and 1mplementat10n spe01f1c
details w1th the detalls obscurlng the ideas motlvatlng
the de51gn. The other alternatlve is possrbly to write the
des1gn in a very hlgh 1evel language which w1ll protect
the de51gn from low level detalls and preserve'lts machlne

independence, and then to.translate by hand the specifica-

tion into a low level implementation.

12,

One may ask if a compromise Between the two alterna-
tives exists, that is, whether there is a high level language
which is machine independent and also fo: which a good
compiler can be p;oduced? Why .not use a language like
- Algol 68? |

Algél 68 is a very powerful language (Lindséy, 1972),
‘but it is at a lower level thaﬁ a language like SETL. To
use Algoi 68, 6ne must have a detaiied low level design of
data formats anq any possible operators before programmihg.
A very. good example of these éogsiderations is a paper on
extension of:Alg01468 to préduqe a graphics language

(Denert et al.,.1975).- This'papér presenté a small but
déféiled samplé of defihitions énd nngssary redefinitiogs
of new modes and operators. The illustrétéd complicationé,
indicate that a designer should be wary of'ﬁsing Algol 68
for system specification because he might lull himself into
believing that he is closer to an implementation than he"
really is. On the other hand, "A SETL program may be
considered to represent an algorithm as it exists before

the detailed choices which govern algorithm realization

in a language~6f lower level (such as PL/I or Algol 68)

have been made" (Schwartz, 1975). The preceding quotati0q3.
really summarizes what we have'been trying to séy in termsi f
of top-down désign in a very high level language and the
stepwise refinement procedure which leads to a lowef |

level efficient implementation.

13

A.very high level, powerful language like SETL
provides the best médium,fbf é‘flexible, top-down design
of a software system. SETL,'being aerived~from mathemati-
cal set thebry, allows thé'élear, suécinct and precise-
display of algorithmic idéas uncluttered by machine
dependenf details, and thus makes analysis and discussion
of the algorithms easier. thzhaVing‘to worry about type
declaratioh} the désigner may.use sets and éet—theoretic
mapping meqhéniShs'in systém developmeht to.prodﬁce a
general specification of a data strubtﬁré with which he
may expefiment; AfterieXPefimentation; the designer:moré
readily can construct and specify'the:intérfaces of the
application data structure and define specific relatibpships

‘between elements in sets.

14

Chapter 2

Distributed Graphics Systems

‘In the deéign of an interactive computer graphics
system using a refresh crt, one's goals are to provide
fast responses to user commands and to provide-as rwuch
computation power to the usef as neéessary. The "ideal“‘
situatidn then is for each user to have his own dedicated
high powered computer providing graphics support. Unforf'.
tunately this approach is Highly'impractical_for a number
of reasohs, the most obvious of which is ecoﬁomics; Since
most of the work done in a graéhics systém is essentially
input/output, the dedication of a large computer to fhe |
support of one graphicé terminal, or even several graphics’
terminalé, will be terribly wéstefui 6f‘pf§cessingApower.
On the other hand, if a”miniéombuter wefehdediéated tolfhe
support of a éraphics terminal, &he user would be'loéing'a
significant amount of compﬁfation power whén he needéd it.
A compromiseﬁbetweenvthése extrémes is to usé a sateliite
configuratioﬁ.‘ |

In a sateliite system, thé;graphics.hafdware is
connected to a.minicomputef which is in tqrnvconnected to a
remote, shared ﬁaiﬁ computer. In this type of cdnfiguration,;
the basié purpose of the minicomputer is to provide graphics
support for the display terminal, and the purpose of the

remote computer is to provide the heavy computational supporé

15

of the-applicatiOns using'the graphics system The questlon '

.which naturally arises is how much of the work should each
machine do? | o |

The more work that the mlnlcomputer can do, the more
economlcal is the use of the remote machlne. However one
has to be careful not to degrade the system response tlme 7
since the mlnlcomputer S resources," such as its memory size
and speed and its instruction set, are 1imited generally
and placing alheayyfburden on lts-computational abilities
may 1mpede its efforts at maintaining the display. If too
many or the wrong tasks are’ a551gned to the remote machine
then the performance of the system may deterlorate because
of the amount of tlme needed to transmlt 1nformatlon and
A results between the two computers. The problem is to deter—
mlne which types of routlnes and comblnatlons of them can
be dlstrlbuted between the two‘machlnes.

Be51des the ba51c routlnes necessarily resxdent 1n
the satelllte computer tormalntaln a plcture on the crt
face, to serv1ce 1nterrupt condltlons from the dlsplay
processor hardware, and to handle communlcatlons w1th the
remote machlne, one has to bewconcerned w1th routlnes to
convert typed 1nput for screen dlsplay, or to convert 1lght
pen 1nput 1nto an internal structure, or to respond in an
approprlate manner to a set. functlon switch. One has to |
: determlne the locatlon of the basic command processor for

~the system and where routlnes for d01ng thlngs like

16

translation, rotation, scaling, windowing, and hidden line
calculations will be. Factors influencing the placeﬁent

of these routines are their lengths; their executién fimes,
and thg size aha types of the data structures on«which they
opefate;

The placement of routines to do simple matﬁematical
calculations for such things as graph fitting of the
initial calculations of surfaces. for display is another
problem which is a function of the amount of data to be’
processed, the arithmetic pbwer of the ﬁinicomputer, and
the transmission speed of.the data link.

In the past people have approached the problem of

‘division of software labor in essentially three ways (Foley,

1973). In these three'methods, people have used the mini-
computer as (1) a fixed function satellite, (2) a variable
function satellite, and (3) an intelligent satellite.Foley

proposed three criteria for evaluating these systems.

" These criteria are

(1) How well is the main CPU relieved of trivial processing
tasks and how capable is the system of providing a
_fast response to trivial user ‘interactions
(2) How much flexibility the application pfogr&mmer has
in dividinglprocessing and data between thé two
computers and in using speciél display processing uﬁit
(DPU) capabilities | |

(3) How easily a programmer can learn to use the system.

17

.These three conditions are sound guides for system
ide51gn except that one probably should replace "speCial
display proce551ng unit (DPU) capabilities" w1th "all system
provided capabilities" because the latter is a more machine
‘1ndependent condition than the former. One system may
perform in software the exact functlon that another imple-
ments in hardwarei The programmer should be able to make_
use of it.in’either case. |

"A fixed funotion satelliteysatisfies the needs of a
user’ who is mostly 1nterested 1n prev1ew1ng the results of
calculations before committing them to a hard copy. He
uses the satellite Simply as a faster input/output device.
The_remote machine'does most of the processing.

o A‘Variable function satellite;system allows‘a user
to‘affect the satellite's processing by subroutine calls.
This typeiof syStem can provide a user with a‘faster response
time for trivial picture manipulations by permitting him
to aSSign'through the application program on the remote
machine several of the minor housekeeping procedures to
the satellite. The satellite is stillﬂbeing USed as a
fancy input/output.devicer |

The purpose of‘an intelligent satellite system is to
try to satisfy allAthreehof Foley's criteria, but freéuently
de51gners only attempt to satisfy the first two conditions.

We w1ll now review some prev1ous and on901ng efforts.

.18

2.1 Fixed Function Satellites

A system which uses a fixed function'sate;lite is
one in which the applicétions programher‘treats_the mini—
computer as ‘a "black box" of whose internai properties and
operations he remainé blissfully ignorant. The application
programmer writes one program to be executed in the remote
computer and treats tﬁe satellite and its graphics terminal.
as any other input/output device. In this type of system,
the application programmer has_no Say in the division.of
software labor because the tasks of the.satellite are pre—.
ordained. In general, the proérammer shduld have an easy
time learning to use the syééem since he really~i§ wofking
with onlf one computer. ‘ ,

Kilgour (Kilgouf, 1971; Fbley,.1973) produged a fiked
function satellite system using a PDP-7 and an_ICt 4120
(later an ICL 4130). The PDP-7 contained only three Fhings.
It held the display file, a communications package to haﬁdle

daté transfers to and from the high speed data link, and an

 executive to handle interrupts from devices attached to

the PDP-7 such as the display, the light pen, and the tele-
type.. The ICL computer was dedicated to gféphicé and did
all-the' other processing éﬁch aS‘disélay file creation
ana modification, rubberbanding, andilighﬁ pen drégging bf
an entity. The system was able tb'fﬂnction_because of the

dedication of the ICL to graphics and the use of a high speed

19

data link between the computers. The application programmers
used FORTRAN and treated the satellite as an input/output'
device. The satellite was an input/output terminal whose
status could be read; ‘The‘user's ‘application program-was
Anever‘interrupted It had to request data from the satellite.
A Justification for using such a rigid 1nterface was that

any future modiflcations ~could be made with minimal distqrv
_bance to working programs., The user .could not affect how
the data gathering parts of the system worked.

The system was definitely easy to learn because the
only.programming a user could do was in FORTRAN The system
did. not free the remote machine from handling tr1v1al
housekeeping work and the programmer had'no flex;biliwy at
all in leldlng software between the two machines.

: The National Center for Atmospheric Research (NCAR)
produced a fixed function satellite system in which the
minicomputer looked like a card reader/line printer to}a
CDC 6600 (Gammil and Robertson, 1973) . The objective here
was to maintain the efficiencylof the batch system of the

CDhC 6600 during and after the development of the graphics

system. The bas1c des1gn goals were 51mplic1ty, compatibillty,

usability, and dev1ce 1ndependence in order to take advantage
of existing software for other devices.and to allow the use
of the new software with other devices when the'interactive
system wasvdown. The de51gn specified a high degree of

modularity and required the generation of graphics by trans-.

lation of commands for COM (Computer Output Microfilm Recorder,

20

a noninteractive device). NCAR also decided to handle all
interactions through line by iine transmission of card image
text by an extension bf namelist ihput/éutput in FORTRAN.
They built a hierarchical system in which the uéer'pfogram
was on the highest level and the satellite aﬁd the displa&

. were several levels away. The ﬁéer was not suppoéed to know
anything about the satellite software.

The software in the satellife here éan do some editing
of text and light pen inputs before transmitting-the informa-
tion to the CDC 6600, so the 6600 is spared a few trivial
Atasks. The user has no ability at all to assign software |
to the satellite prbéessor because of its treatment as a
well protected (through the system's hierarchical stfuéture)
black box. The system must be veryveasy to learn because
of the use of FORTRAN and its designed similarity to non-
interactive graphics packages alfeady évailabierat the site.
The authors also noted that they'were investigatiné the
possibility of replacing the refrésh tube with a storage
display due to the nature of most 6f the work at NCAR.

One other system that falls into the fixed function
satellite cétegoryﬁis one produced at the Research‘Laboratories
of General-Motors (Dill and Thomas, i975). The functions of
the éatellite computer are to build and modify diSplay files
on command from the host, to ‘accept light pen, function kéy
and other inputs for sending to the host, and'éommunication

with the host by teletype simulation. In this system a

21

DEC GT40 _is connected to angIBM 370/168 with a TSS‘ooerating
system.

The host is relleved of some- tr1v1a1 functlons plus
the bulldlng and modlflcatlon of dlsplay f11es. The appllca-
tion programmer though has no way of a551gn1ng more work to
the satelllte. The system is simple and the ‘authors claim
success in the tasks it was:ﬁsedhfor.' They also feel that
it could serve as a basis for an upgraded' 5ystema_.They
suggested that, in the future,controlhlogic codes oOuld be
added to the information transmitted by.the host to the
mlnlcomputer for handllng events . occurring in the termlnal
They also suggested lmplementlng a means of. saving on¢e trans-
mltted_lnstructiOns‘from the host to eliminate retransmission

of complicated menus.

2.2 Variable Function Satellites

.

In a variable function satellite~system; the user still
does not program the mihicomputer, butAhe'can control the
amount of work it does by subroutine calls. For example,
the user's program in the remote machine can cause the
satellite to take certain actions such as,turningApietufe
segments on and off when it is better for the remote oomputer
to have control over such actions than for the Satellite.

The GINO system is a variable function satellite (Woodsford,

1971; Foley, 1973).

22

‘In GINO the satellite processor performs many basic
display services such as ligﬁt pen detection of entities
and correlation of the entities to user names,Avarying'the
intensity of subpicture entities, and the ‘addition and |
deletion of subpicture parts. It can -also do rubbérbanding,
draw horizontal or vertical iines, and supply extra material
upon detection of'an entity, if'the application program has
enabled these functions. The sétellite does not immediately-

transmit every user action to the remote machine for servic-

ing. It queues actions until a "terminal" action such as

a light button detect or the entrance‘of a special keyboard
character occurs. Thus the remote computer is saved a lot
of trivial overhead work. .The satellite may interrupt the
user's program with a request to transfer data, but the
user's proéram initiates data transfers to‘and from the-
satellite. Since users write their programs in FORTRAN and
the satellite acts like an inpﬁt/output device, thé system
is éasy to_learn{ |

With almost all the systems we have discussed so fa;,
the principal user language for application pchessing is
FORTRAN. The universality of.the language means that most
users of these systems will already be acQuainted with it
énd will have to learn only the interfaces with the graphics
subroutine library. However, these iﬁtérféces are rigid
and FORTRAN is awkward so that anAaéplication programmer's

usage of gréphics facilities will generally be limited to -

23

the‘more elementdry ones or he will be forced into design-
4in§-contorted extenSions to setiSfy his needs. He also.
will not be able to extend through FORTRAN the graphlcs
'capabllltles of -the satelllte to éase the burdens of

- system control,upon the main computer,

Work at the University of Michigan has' produced.
proposals for hardware/software designs_for so called hidgh.
speed/low.cost interactive graphic sYstems'(Boardman, 1974) .
These,proposals require very elaborate hardware confiéura#
tion schemes to handle high .speed transmissions for many
terminals. Hardware 1nterfaces to data. concentrators

(m1n1computers made to look like disk units to a remote .

host) will do most of the work such as data transfer;‘chéf&é-.

- ter conver51on, and data formattlng to make the édncentfétor
1ook like a real disk. A data concentrator can transfer
information it receives from the ﬁainframe to several mini-
computers servicing graphics terminals. It can also tranés

‘fer information from a terminal to the remote coﬁputer.

Boardman does suggest using a single larigudge 1like

FORTRAN in-order to program the system (mainframe, data
concentrator, and terminal minicomputer) as if it were one
computer. Hé wants to minimize mainframe overhead in order
to service many terminals, so he speaks~of passing
subroutine parameters via the data concentrators to the

. minicomputers. from the _mainframe to free the mainframe'.

from image processing tasks. He comments that intermachine

24

| ™ T

program execution is not necessary but that the minicom-
puters should be able to do some image manipuiations and
to handle local 1nput/output either by request from the
mainframe or from the termlnal.

| The hardware here is very sophisticated and expen-
siye, despite decreasing technoiogy costs, and the‘softwere
in the satellite computers do more work than that of a
fixed function satellite but it is not clear how easy it
would be for an applications pregrammer to redistribute
more of the software to the minicomputer because of the
elaborate and weil defined interfaces necessary to handle
several terminals through the data eoncentrators. Since a
single proérammihg language will be used, one imagines
that the system will be easy to learn.

Wycherley describes a system whlch appears to be
partially in the category of variable function satellites
and partially in the next cetegory of programmable sateiF
lite sYstems (Wycherley, 1972). The system is supposed to
allow for three types of users. The first type is the user
who is simply interested in a "black qu" to handle graphics
input/output. The second type of user is one who will
approach the system as a variable function satelllte system,
The thlrd type of user is one who w1ll write spec1al programs
for execution by the satellite. Wycherley does not'specify
the type of programming language, formula oriented er

assembly, used to program the satellite.

25

‘The satellite proeessor can service three terminals
so.its usoftwareAis reent;snt.ahd each terminal,gets time
sliees fe: processingf |

| The user writes'en applicetiOn?proéram-in a highe;
level 1an§uageAtovreside~in.the héstféomputer; The prbgram
communicates with the.operater's console throUgh~calls to
the Host Graphics Package; The package allows the user to
build ahd‘modify pietutes:op thé screen and t0<pbtain infér*
matieh about the operator's”actiohs. The Host G:aphics
Package transletes the subroutine calls into command$ to
the setellite in Director Cede format. The_Director Codes
are commands for picture building, commands to COntrel the
method by which the operator's actions are pfocessed,,ahd
commands to the satellitehto return informatien on aetibﬁS‘
haVing occurred previously. |

In otdet to'handlehinteractions, the user program
in the hOSt’machihe must tell the satellite in aavahce’what'
optiohs the operator.has and how to'respond to the input
from- the user; that 1s, whether to process the 1nput locally
or transmlt 1t to the host for processing. These 1nstrucé,
tions are put 1nto an Actlon Table. 1n the satelllte. The
Actlon Table entries contain 1nformat10n such as ‘which
”routlhe_does the next phase of the processing,, A "black
box" uset will use the_system supplied. Action Tabies;

.A varlable functlon satelllte user .can define his own

Action Table of calls on system supplled processes.

26

A really sophisticated user can write his own Action subroutines

to be called from the Action Table. However, based on this
article, one views this as, .at best, a variable function
satellite system. Even the"black box" type of user must
understand the logical structure of the display file

because it represents the logical structﬁfe of his picture.
The writing of new software has to be more difficult. The
Action Table entries are very complicated for describing
input handling and phase transitions. New Action subroutines
for the satellite must be on a low level, which meaﬁs the
usef must ‘be bilingual becausé he writes his host application
in a high level language.: Systém modification must be
extremely difficult because of all the low level details
that have tb be considered. The competition among the users
of the three terminals attached to the satéllite fdr the
satellite's resources such as space and time, would limit
tﬁe‘amount of software customization by any of them. The
satellite relieves the mainframe of triVial tasks involving
the light pen, text'editing,'and kéyboard iﬁputs.~It does
not transﬁit operator interactions to the remote machiﬁe
until a ﬁterminal" action Occﬁrs. But the remote machine
still does a major share of the work. It initially builds
the display fileé'and it initiates processeé at the satellite.
The éase- of learning the system is a function of the extent

to which one wishes to use its facilities.

27

2.3 'Programmable Satellite Systems

Finally we come to programmablevsatéllite systems.
fhese are systems in which the user mayhalso'program the
' mihicompdter to perfofm tasks in.supéort of his_applica-‘
‘tion besides just' providing mainten;ﬁce of the display |
and. acting as-an input/output terminal fo; the remote
machine. ' |

The Graphics-2 system deveioped at Bell Léboratories
was one of_the'earlier<attemp£s.at this type of system
(Christensen and Piﬁson, 1967; Van Dam et al., 1973, 1974;"
Foley,‘l973). The hardware for_fhe prbposed system was
a Honengll 645 mainframe connected to an 8K PDP-9 satel-
lite Jvia.a 2000 bps communication"link. Tﬁe two CPUs were
to work asynchronously, althoﬁgh all data Base modifications
in'the éatellite would be done automatically in the remote
machine,Awhether or not the user wiéhed this to occur. The
reason was that the programmer wrote a single progrém in
GRIN-2, a graphics‘interactioh language for data structure
manipulation and the handling of real-time inputs, for
campilations for both machines and the version for the
PDP;7 automatically queued all inputs and data base modifi-

cations for transmission to the remote machine. This way the

two CPUs appeared to be one to the user. The programmer used

GRIN-2 to do interaction handling, data structure interroga-

tion, and data structure display; The analysis program for

the application ran on the 645 and was written in the language

28

of one of its compilers. This meant that the programmer had
to be bilingual which made the sysfem more difficult to learn.
The analysis progfam interféced with the GRiN—Z program
through subroutine calls'for accessing the hierarchical data
structure in the main CPG. -The application program had to
decode requests only for analyses to bé'performed and not
for updating the data base. Apparently the system was not
successful enough so that the satellite ﬁas beiné used in
a stand alone mode. | | |

. A system similar to Grapﬁiés—Z was déveloped by
.UNIVAC.for ah 1108 linked to a 1557 display controller
acting as the satellite cdﬁpute:. A 1556Adis§lay console
was connected to the satellite computer (Cotton and
Greatorex, 1968; Van Dam et al., 1973, 1974; Foley, 1973).
‘The user programs the satellite with an in£erprétiye |
language called ICT (Interactive Conttél Tables). It is
an assembly-like language and can be used to provide_usér
feedback and any kind of interaction; In ICT one can moaify'
the déta1struc£ure, perform computations, call subroutines,
and fdrma£ meésages for transmission to a remote computer.
Bécause the language is so powerful a lot of work canlﬁe
done on the satellite's data structure withoutlany help
from the remote machine. The application program oﬁ the'
1108 is written in FOﬁTRAN; A larger copy of the hierarchi-
cal data structure, called the Entity’Tables, is kept in

the 1108. It, or subparts of it, can be easily transformed

29

and transmitted to the satellite by subroutine calls. The

application program decodes messages from the satellite to

'determine if it is- to transform the data base or to perform

an analys1s. The satellite can continue serVing the user.

while the 1108 transforms its data base because the satellite

has already performed the translormation on its own copy of
'meduabue. '

Among the advantages of the system are that the
ability to dynamically load new satellite programs allows
for run-time changing of the.system environment and that

the amount of work the satellite can do allows-fast‘ﬁser -

'response. The two major disadvantages of this system are

‘that the programmer must-be bilingual and that unlike the

Graphics-2 system he must always be aware that he is deal-
1ng with two computers. |

Van Dam reports very briefly on Kulick's THEMIS system
which is a distributed processor graphics system (Van Dam
et al., 1974).-The system allows the applications programmer
to vary the work load nondynamically between the processors
through the use of tthe languages, a host interaction

. N .
language, a host data base language, and a terminal inter-y

action language. The review comments that the run-time

system is quite complex due to the three languages. The need

to know three languages makes use of the system more

. difficult.

Two much more ambitious efforts at producing systems

30

which are flexible in solving the division of labor problem
and also easy to program have proceeded at Brown University

and at the University of North Carolina (Van Dam, 1971;

' Van Dam et al., 1973, 1974; Michel and Van Dam, 1976;

Foley, 1973; Hamlin and Foley, 1975; Hamlin, 1976). Both
universities have tried ﬁo reduce the programﬁing problems
through the use of a single language for the remote and

the satellite systems. Brown initially used the Language

for System Development'(LSD) but later switched to a version

of:Algol—W, and North Caroiiné used a subset of PL/1 with
a preprocessor to handle added statements for specifying
éonfiguration infbrmétion.

| At Brown, the hardwa:e of the system'is"mdre elaboérate
than elsewhere with a great deal o% emphasis on microprogram-
ming. The belief here‘is that the satelliﬁe system should
poséesé "critical intélligence". This means thaf thé
saﬁellite should have'énough computational power to be ablé
to handle more than 50%Aof thé processing required for
graphics and.to-be able to act-as a géneral purpbse compﬁter

for any user. This is_essentially the argument that Brown

Vemploys to. justify the uéelofumicroprogramminé as a means of

compensatlng for insufficiencies in the archltecture of the

mlnlcomputer. These 1nsufflclenc1es 1nc1ude mlnlmal core

and/or an inadequate'instruction sqt. Frequently used blocks

of code or procedures can be microprogrammed and made part
of the instructioh set. The hardware for the Brown University

Graphics System (BUGS) consists of a local processor, a

31

) display processor, a Super Integral MicrOprogrammed Arith-

metlc Loglc Expedltor (SIMALE), and an 1nterface to an IBM
360/62 under{CPG?/CMS .The local processor ‘and the dlsplaya
: processor replace'the 51ngle satellltevcomputer. Both of
these processors are. mlcroprogrammable Dlgltal Sc1ent1f1c
Meta 4 computers., The local processor has been glven a
360 like 1nstructlon set through m1croprogramm1ng The |
dlsplay processor rS'devoted to serv1c1ng a Vectbr Geheral-“
terminal. The purpose of the SIMALE unit is to,do homogen-‘
eous'transformations,.windouing}fand clipping to_improVe
the,performance ofAthe satellite.systeh.l Comﬁuuications)
between the remote‘machihe and the satellite system are
'handled through high level Subprogram calls 'processed.hy‘
the’operating:system.so thatpthe application. programmer
does not have to worry about protocols, timing; or inter-
face characteristics. The most ideal feature in terms of
the flex1b111ty in d1v1d1ng ‘the software labor is that

the system allows interprocessor communication and real-time
recohfiguration,of thehsoftware.v The operating systems allow
the callihg of routines residing in the other machine and
the'passing.of parameters between machines.

| Thus'the.Brown system was deiiberately designed and
configured.in order that the satellite components of the
.system would do most of the}processing such as real-time
transformations and clipping, providing prompts_and feedback,
local attention handling, and data baseAediting. It has

32

great flexibility in dividing software labor'becausé of.thé
ability to reconfigure software while the systém is operéting.
Allocation of-procedures in the application is delayed until
execution time. The éystem is easy to learn becaose the

" programming for the host and the local processor is done
now in'Algol,W,.altﬁough'the first applicétion, HUGS r—'a
two dimensional drafting package, was written in a macro
assembler 1anguage‘common to the host and the local ptocessor.
The people at Brown found from theif studies of.the applicé—
tion that‘groups of procedures with a lot of‘interéction ‘

" migrated from the host to-the satellite as'host availability

decreased. They were studying how to automate the initial

cohfiguration of software. _

A major dlsadvantage in applying the methodology
'deQeloped at Brown to other 51tes is the economlc cost of
configuring a hardware system similar to the.one there.

In his 1971 article on micr0pro§ramming, Van Dam estihatéd
the cost of theoBrown system at $145000. Not many'plaoes |
could afford a hardware investment of that size.

People at the University of North Carollna produced
a system for Configurable Applications for Graphics Employ—

ingASatellites (CAGES) . Although Foley had previously doneA

modelino studies of computer gtaphics systems in which

‘perfofmance was a function of the capabilities of the

- graphics hardware and the computational‘requirements of -

the application (Foley, 1971), the hardware was not as

33

extraofdina;ylas that assembled at Brown. The satellite
_cpmputef’is}a:éDP 11/45 and-thé'hosﬁ computer is an IBM
360/75;‘-The emphasis'at’North‘Cafoiina has been to'déVelép
a PL/l based_coméiléfisysﬁem that will produce configurable
softwa;e énd to_pfoduce an operating system that alloﬁs
either cpmputerlto>call*a subroutine resident in thé ther,
" to pass pafameters té the other machine, and fo'access
global variables currently residing in the other‘machine.
In'érder_for thesé things to occur efficiently, the preproces-
sor to the PL/l compiler -has to analee the whole system. |
- of programs to determine when any sor£ of ihtercomputer'
céﬁmunication will take place. One type of optimization is
. to obtain access to global variables at the beginning of a
subprogram to assure their availability rather than have
several intercomputer transmiSsions;durhmjthe eXecutibn of .
the subprogram. The system also uses prepaging to take
advantage of the time spent in accessing information in the
other machine>and thus»reduges the amOunt‘of useless idle
time.

Among the goals was the desire to permit an applica-
tion"progfamﬁer to write a program capable of running on
one machine, thus any programs which might run on the satel-
lite 'cdmputer had.to be written in a subset of PL/1 called
PLCD. Also a goal was the ability to "tune" the division.
. of software labor based on the performance of and use of

facilities by programs. Originally it was thought that the

34

programmer should write his software as iflit were to run
on one machine, but results indicated that applications
performed better when initially designed with distributed
*ekecution in mind. Another goal nas that the programmer
should not have to Qorry about intercomputer communication.
Finally, by using a language like PL/1, possibilities for
system portability were improved.' |

An interesting feature of this system is‘that global
-variables belong to no particular computer,but‘move AbaCk |
and forth as they are needed. This means that before |
accessing a global variabie both cOmputers have'to checko
for its presence.‘ |

North Carolina;implemented,two applications
- and studied them in different configurations and applied
a network flow ana1y51s algorithm to them. ' One application
was an interactive curve fitting program to fit a function
to a given set of 1nput data p01nts. The other application
was a program for creating and manipulatlng block diagrams.'
They found that an application should be analyzed during
the de51gn phase so that its structure could‘be-modified
to accommodate llkely configurations. Certain ~optimal
configurations were not possible because of hardware
restrictions. Also the application programmer should design
a modular structure carefully and choose an lnltlal configura-‘.'

tion.

35

.Thelmajor_drawback with the system is that in order
*to.reoonfigure the software between computers.aii the
programs: have tolbe reCOmoiled,“This_ishneceSSary because
of‘the'anainis done by the preproceSSorlto optiﬁizejinter*‘
A computer communication. Another problem lS the syntax
differences ‘between the PL/l compilers for the two machines.
The compiler for the satellite is more restricted than that
for the host. One of the conclu51ons of the North Carolina
. study was that a 51ngle language With_distinct code generators
woﬁldvsimplify-the task. :

One feature cofimon to both the Brown system and ‘the
North Carolina system was the ability to redistribute |
particular routines instead of Whole-prOCesées consisting-of
related routinesf Both studiesbverified<the obvious coifi-
clusion that a group of highly connected routines would
tend to move instead of individual routines diiring reconfigura-
tion. |

A niajor‘ drawback in using the work at either Brown
or North Carolina as a model for development at other sites
is the extensive amount of time, effort and financial
investment needed for the.deveIOpmeﬁt of new operating
systems to handle intercomiputer comninications. To start
from the beginning-in deveioping these systems requires an
enormous design and programming effort 6utside of that‘of
the graphios system.. A further drawback of the Brown method

is the large initial hardware investment to give the satellite

processor enough computational power to achieve "critical

intelligence". 36

Chapter 3

Specification of an. Intelligent Satellite Graphics System

We will use SETL to provide~a nign‘level deslgn of
ﬁ.components of an intelligent satellite.graphics system. -
We will apply SETL to describing command processing)
display image maintenance, and asynchronons interrupt
processing. Later we will also use it for data structur—
ing,picture construction, and segmented’display file

generation.

3.1 System Component Specification

One of the advantages,of this specification is that
.it provides a means of descrlblng the blocks of routines
which make up the components of the system. An early
knowledge of these blocks makes 1t possible to‘implement
an intelligent satellitelsystem which has.a-simplified,
‘minimal form of 1ntercomputer commun1cat10ns.~AA block‘
con51sts of all those procedures that should be in the
same computer to execute eff1c1ently. Later,llmplementa-»_
tion details may bind certaln processesdto a.particular.
machine out of necess1ty but in the de51gn ‘pPhase, these
blocks are machlne 1ndependent and are capable of mlgrat—i;’
ing between computers., In the 1mp1ementatlon, we av01ded

_the ‘highly complex operatlng systems of the Brown Unlver51ty

37

and,University,of North Carolina systems (Michel and
 Van Dam, 1976;. Hamlin, 1976) which had to take care of |
intercomputer procedure inﬁdcatioh and'the aSsociated

parameter descrlptlon and data transm1551ons. Having

component blocks made it p0551ble to restrlct 1ntercomputer

communlcatlons to statements.aqd requests_for service
from'the‘satellite>to'the remote host and to answers from:
.the host to the satellite. |
The system consists of-three main processors. One
is the interrupt.processor, the secomd is the display'
maintenance processor, and the thlrd is the command
processor. The first two are bound to the satellite and
v the third is d1v1ded between the two computers although.
most of its work is performed in the Sateliite. " On the
satellite, all three processors function as coprocessors
in order to maintain a picture for the useriwhiie_a command
is processed. The display maintenance routine keeps'track
of time for refreshing the pieture and queoes graphic-
segments for output to the display terminal. The command
processor naturally processes commands but it contains
compohente tozadd to, modify, extract information from
and to save the descrlptlon in the graphics data structure
that descrlbes the current display. Other components
handle system testlng, computer communications, and the
appllcatlon programs. Some of these routines will be

described in SETL algorithms later. The interrupt processor

38

l

operates asynchronously handling interrupts from the"
display terminal and input/output between the'éompﬁter
and the terminal. |

The toﬁal length'of these algOrithhs.as specified

in SETL is approximately one-third the total length of

the Corresponding routines written in the language of

implemenfation. The obvious advantage to a reader is the
relative ease of understanding the programs without the
need of Setting ub a menfal filter to block out the low
level detail "noiée” and housekeeping procedures necessary
in an actual implementatioh.

The main routine of the command processor is
commandprocedupe, It transfers control to subprograms
which process the input from the keyboard. These sub-
programs will then, in turn, call on routiﬂes to build
and modify the data structure which describes the display.
Aftervregaining control from these routines,‘the'command'
subprocessors will call another program to create graphics
segments corresponding to the changes in the data structure.

"Now Qe will describe the three broceésors.and present

the SETL specifications of their algorithms.

3;1.1 The Command Processor

The Satellite's executive routine will regularly call
commandprocedure to determine if any keyboard input'from.

the user is waiting for processing. If input is waiting,

39

the rout1ne w1ll determlne based on a prev1ously set flag

whether to treat ﬂualnput as an attempt by the user to
;'enter a new command or as a contlnuatlon of proce551ng
- for thel;ast commandrentered, S

Ifhthe input is a,new'command‘attempt,.commandprbcedure
checks;subprocess,VaAfunction which maps commands:intoithef-
ﬂames of the-routines,which prccess,them.' If the command
is illegal, an undefihed mapping;Aan error message is
displayed tc the user and the rcutine returns control to
the executive procedure. |

If the command is legal or the 1nput rs a contlnuatlon
of the previous command then the map machtneof is checked.
to determine_whether the satellite computer. or the remote
| host processes the command. If the satellite processes
the command, the'rcutine kbinputhandler will call the
appropriate'processor,

When-commandprocedure regains control from kbinput-
handler, it can reset its parameters to allow a new command
to be entered; or it can output a message, possibly an
error message, and reset its parameters for more processing;
or it can output a cue to the user to help him continue
entering information for the command. For example, the
command "SCALE" will produce the cue "SCALE=", and the
command "TRANSLATE" will producepsuccessively the cues
"DX=",‘"DY=", and ."DzZ=",. |

The algorithm mhich follows uses a glgy block to

describe the control logic of the procedure.
40

The definition of a token representing a decision node.

in a flow block is of the form
question := expression

The final value,of.the expression is boolean althougb

it may have other effects. The node
legalcommand: subprocess(command) ne

checks to aetermine'if the mapping subprocess‘is defined for
the "command".

The other tokens in the flow diagram are labels for
statements or groups of statements to be executed if a

partlcular decision is made. These labels are defined as

label: {<statement>}?

If‘a "+" follows a label then after execution of the label's
statements, program control passes to the decision node or |
statement group below it. If a "," follows the-label then
the program exits the flgg block after executing the label's
statements and processing continues with the statements
follewing tbe flow block wunless a "return” is executed
| within the bloek. |

' The subprogram kbinputhandler demonstrates how éETL's
mapping mechanism can be used to invoke subroutines. In
a 51ngle statement, we can execute a subprogram which is
itself the value of a function of a: parameter. The designer
can easily change the capabilities of the qommand‘proceSSQr
by simply modifying the subprocess without‘recoding

41

~ commandprocedure or kbinpathhandler. An implementation

language_with this feéture would be very pdwerful;and

well adapted for system tasks.

42

define7commandproceduré; ' | /*
if kbmsgpr 1t 0 '
then) : /*

a subroutine which processes crt keyboard
A commands */

there is,né input ready for processing */
return;
end if;
flow - | newcomménd?

/* multiline input command */

- incommand+ " machinechoice?

1877

legaltoken? - sat,
B - -legalcommand? comerror, |
machinechoiceé? comerror,
sat, - remote;
newcommand := comflg ne multilinegood 4 /*
or comflg ne multilinebad

'legaltoken := A.ype‘gg3alpha ;'A) /*

legalcommand = »subprocess(command) ne Q /*
machinechoice := machineof(command) /*

eq 'sat' A

remote,

are we currently proce551ng a multlllne
‘nput command? */

is the token that represents the command
alpha-numerlc? */

is the command defined? */

is this command processed by the satellite*/

or the remote machine */

144

incommand. : comptr = 1;

nexttoken (kblinbf, comptr, command,

cominth, type) ;

-sat[;-kbinbuthandler(command)7
Temote : transcommand(command,kblinbf) ;

‘comerror:. mvhresp(illegal -command');

rcdmflg'=’badcommand;

~return;

end flow;

/x

/*
/*

set pointér“to the first position in the
keyboard llne buffer,’ kbllnbf */
plck up the first token of the llne, it */

should be the command with ~number'of charac-

" acters equal comlnth and type equél alpha*/

/*

/*

call the‘keyboard input handler to call the

process1ng routine correspondlng to the
. command */
transmlt the input line to the remote

machine. for proce551ng */

IS
w

if comflg eq badcommand | A

then

mvhresp('illegal parameter');
end if; '
if comflg ne-multilinegecnd

or comflg ne multilinebad

then

kblinit; : /*
kbmsgpr = -1; /*
returh; |
else . . /*
cueget; . A
kbmsgpr = -1; /*
‘kbin = -1; /*
return;

end if;
end commandprocedure;

determine response to user after command
has been processed */

initialize the keyboard input line to accept
_ more input */
reset message processing flag */

more information to be input */-
pick up the user cue */
reset message processing~flag */

reenable keyboard input */

. 9%

define kbinputhandler(command),

subproceSs(command)(),

return;.

end kbinputhandler;

/* this routlne calls subprocess(command) */
/* subprocess is a set of- ordered palrs where
A,the second element is a character strlng
~wh1ch 1s the name of a command subprocess.
Subprocess(command) returns ‘the string and
the second pa1r of parentheses forces SETL
to - treat the strlng as a subroutine call.
this formulatlon allows easy addltlon and

deletlon of subprocessors to- the system */

3.1.2 ' pisplay Image Maintenance

The display maintenance processor's task is to check
the display ¢ontrollerfs frame clock counter, .incremented
by the interrﬁpt routine, to determine if the display needs

refreshing. If the display needs refreshing, then the

counter is reset and all the graphics segments are queued

up for output. If the system has a response message to a
user's input, the message is also added to the queue for
outputting. Finally, the input line also has.to be refreshed
so it is added to the queue. The routine?clock'represents
this processor in a simplified form.

The following progrém iliust:#tes,the use of a tuple

as a first-in-first-out (fifo) queue.

47

" define clock;

if fclock 1t .0
’then'returh;

end if;

fclock = -interval;

© (3<=¥s<=fgstr)
seg = gstr(s);
if seg ne n&

then

queue=queue+seq;

end if;
end V¥s;
if userresponseseg

ne n?

o ;/*

this subprogram checks the frame
clock counter set by '‘the lnterrupt

- routine’ to determine whether the

.

/.*

/*

/*
/*

/*
/*

then queue = queue /*

+ userresponseseq;

end if;
queue = queuet+kblinbf; /*
return;

‘end clock:

48

crt display needs refreshlng. if

‘it does, the clock counter is :°

reset and the display and trans-
formation. segments are queued for
output */ .

is it tlme to output */

no */

reset the clock */

segment has not been deleted ?/ -

add it to the queue */

is there a response message to */
a user command */

yes */

refresh the user input line */

3.1.3 Asynchronous Interrupt Processor

The interrupt processor runs asynchronously and
steals time from either the command processor or the -
display maintenance processor whenever necessary to service

interrupts from the display terminal. The processor handles

' signals indicating the end of transmission of a graphics

segment, the display's frame clock cycle, light pen .input,
function switch status, and a‘keyboard character waiting
to be input. The processor acknowledges any interrupts and
does any appropriate processing. If graphics segments are
in the output queue and the display terminal is not busy then
the processor will transmit a segment to the terminal. The
processor is described by the routine interrupt.

Here we have speeified the functions of a low level -
routine in a very high level language.

The expression of an interrupt processor at such a

~high level has a couple of benefits ‘even if the actual

implementation is significantly different. First of all,

it i;lustrates the type ef processing that is necessary

and does 'so in a machine independent manner. It is also-

a good teaching tool beceuse it does not burden students
withAthe need to know particular bit configurations or speciel
hardware instructione. ‘It also.demonstratee that an interrupt
processor is a special subroutine which first must recdgnize

the state of the hardware before proceeding with its work

49

and afterwards restore that state before relinquishing control.

defihe interrupt; o /*this routine is called by the
' ' - hardware. it checks for. hardware
~ interrupts caused by the sending
of the last data item of a
display ‘'or transformation segment;
- the graphics terminal frame clock;
or_the input of a keyboard charac-
ter. it also outputs a display or
transformation segment waiting in
" an output queue if the graphics
terminal is ready to accept output?*/
savestatus; g , : /*save hardware status and then
’ determine source(s) of interrupts*/
T if displayinterrupt'gg t /*dld last item of segment go out */
then ‘ N ' /*yes */
acknowledge(display), /*Signal‘hardware an acknowledgment?*/
displayinterrupt=f;
end if;
if frameelockinterrupt eq t /*ftamevc10ck */
. then '
acknowledge (frameclock) ;

' fclock = fclock+l; /*increment clock */

frameclockinterrupt_ £;
end if; '
if lightpenihterrupt eq t /*beam output detected by pen */
- then
acknowiedge(lightpen);
<£px,2py>=<beamx,beamy>;/*read beam coordinates*/
lightpenihterrupt=§;

end if;

50

e

if keyboardiﬁterrupﬁ eq t /* keyboard char for input*/
then ' |
acknowledge (keyboard) ;
keyb=keyboardcharécter; /* éave the character */
keyboardinterrupt=£;
end if;
if functionswitchinterrupt eq t /* function switch(es)
: ‘ ' depressed */
then
acknowledge(functionswitéh);
switches=swi£chstatus; - /* read switch status */

functionswitchinterrupt=f;

end if;
/* if,the‘diéplay is not busy,
' check to see if a segment is
waiting for outputting */
if not displaybusy /* hardware status flag check */

then
if queue ne nult

then - /* queue is‘not'the null tuple so
_ . a segment is waiting*/
segment=hd queue; /* dequeue the segment */

" queue=tl queue;

transmit (segment); /* transmit segment to display

‘ ' terminal -- hardware sets
displaybusy status flag to t*/
end if queue; : : ‘

end if;

restorestatus;
return;

‘end interrupt;

51

3.2 ‘,SYStem Imblemehtation»

. Once the hlgh level spec1f1catlon of the system is. -
:complete, the designer: has to worry about 1ts 1mplementa-
itlon.l If. space and time con51deratlons are not 1mportant‘_
ahd the'only 1nterest is in studylng'the algorlthms, he
‘can eompile the speCification to get an object pregram to
Arﬁn. If efficiencytalse mattersland the language of speci-
fication is on'the same level as SETL then the designer must
do a hand translation of the design into a lower level
language. :In the»case of the satellite graphics system.just
described, we have a'real?time-applicatioh which is to
~operate mostly in a minicomputer,iso we definitely are
interested in an efficientbimplementation.

Be81des hav1ng an awareness of the operatlng environ-
memt, a programmer can do several other things to contrlbute
to the e££1c1ency Qf an 1mplementat10n. For example, he

can design interfaces carefully and consistently so that any

future modifications will not cause havoc and a major recoding

effort or the appearance of a "kluge"”. He can also specify
data structures and formats early in a detailed but flexible

way as an aid to interfacing. Still another contributing

factor to efficiency is to write modular well-structured code,

but this should be relatively easy if the original high level
specification was done in that way.
One means of promoting these efficiency contributing

events to occur is to select a low level languagé which has

52

primitivesAthat can implemeht several'of‘the primitives
of the design language and which has a subset of the control
structures of that language. We also want to preserve the
machine independence and portability of the design so this
- suggests using a language that is machiné oriented but also
on a high level. |

For our work, we used thé system implementation
language called LITTLE. This ianguage, like SETL, has
developed under the supervision of Professor Jacob T. Schwartz.
It producés efficient, machine indep=ndent code thch is then
translated into the assembly language of the target machine.
The machine independence results because the language is
designed for an unknown machine and.therefore cannot permit
references to registers or machine addresses nor allow
embedded assembly lanéuage to‘appear as do minicomputer
languages like BLISS-11, PL516, or ALIAS. The lahguage has
' macfos and conditional compilafion directives which make
coding easier and also provide a high level way of allowingi
for machine dependent characteristics such as word size and
charactér-size. Defining new sets 6f macros or compiling a
different group of statements make the portability of programs
to other machines much easier. LITTLE has a wide range of
control dictions which encourages structured programmipg.
It has bit, field and character operaﬁors so that a shift
operator is not needed. Its only data types are bit and

character strings and real numbers so that any operation can

53

be performed on any quantity (Stuart, 1975).

At the.startﬂof the LITTLE implementation"wevproduCedA

. a detailed but flex1b1e macro spec1f1cat10n of the data

formats and structures. Thls produced well deflned 1nter—
faces and permltted us to avoid many prOblems durlng the
wrltlng of subprograms or modules.v Although at one point
we needed to significantly'revise part of the data,structure
~design, it did not require much of a-reprogramming effort
because the'design was very modular and the macro facility
provided-a Very‘easy means of redefining formats.

One of the important advantages of . wrltlng a very
h1gh level spec1flcatlon is that the binding time of parti-
cularhlmplementation dependent interfaces is put off. |
The basic algorithm is always available during experimenta-

‘tion with different'strategies.

54

Chapter 4

Process and Communication Structures in

Experimental Graphics Systems

4.1 Overview

At the Courant Institute of Maﬁhematical Sciences at
New York University (NYU) we have also attempted to produce’
a configurable graphics system in which the division of

labor problem is more easily solved, but we have used a

slightly different approach and philosophy than those of

the Brown and North Carolina groups. We agreed with Van
Dam that the processing powér of a minicbmputer was a
functioﬂ of ité'instruction set and architecture, but,
perhaps out 6f the reélization that we had no fﬁnds to |
replace or upgfade the minicomputer available fo us, we
determined to take édvantage of the minimal'proéessing

power available. We emphasized the principle that software

"should be written as if it were going to run on only one

machine by assuming, whether rightly or wrongly, that all
the software would run on the satellite cbmputer. In spite
of the truly limited computational power‘of our satellite

computer, this philosophy proved successful as new software

‘was addéd.»

The hardware we have consists of a Honeywell 316
computer, a teletypewriter, a disk, a link to a remote
CDC 6600 and a Vector General display with a keyboard.

55

.The Honeywell 316 computer used as our satellite does not

meet the standards.of the "critical intel;igence" defini-
Ation"(Van'Dam, 1973). :'it has almostvno intelligence at all.-
It has a 51ngle accumulator and one 1ndex reglster Also,
llt lacks hardware 1nstruct10ns for both multlpllcatlon |
andgd1v151on and thls significantly increases the ‘cost ;n‘
'terms or time and space of many programs such'as image
transformatlon routines and appllcatlon programs d01ng
real arlthmetlc.

Even though the satelllte lacked "cr1t1cal 1ntelllgence"
‘we wanted it to do more than just act as an input/output
' dev1ce between the user and the remote machlne.' We wanted
1t to do nontr1v1al.loca1 processing such as performing
image transformations,'providing feedback and prompts to the
user, and modifying the data base. We have succeeded in
having-it do image transformations such as rotation about
the coordinate axis,'translation, scaling and real-time
continuous'rotation. Thebterminal user receiwes text cues .
and nessages and he can create and save new pictures and |
thus modify the data base. He can retrieve previously
created display files from the remote machine. We also
want the terminai user to be able to run as much of his
application as possible on the satellite. He has the
ability to experiment with shifting the appllcatlon processes
~during real -time w1thout the need for recompllatlon.

Our success in satlsfylng these requirements with an
extremely primitive machine suggest that Van Dam's defini—

tion of "critical intelligence" puts too much emphasis on
56

the basic computational power of the hardwa:e. However, our
. results show that a lack of~hardware'"iﬁtelligence"' can be
compensated for by software "intelligence". The Van Dam
philosbphy might‘be labeled "genetic".intelligence whereas
We demonstrated that "environmental factors" (software) can
be an effective substitute. |

One of the major goals of the effort is to be able to
implement new software modules as easily as pessiblez The
LITTLE compiler permits this. Using one set of maero defini-
tions for the satellite computer and another set fOr-the
remote computef allows the samevLITTLE program tolexecute
on both combuters. Hence we were able to use the CDC 6600
to check out almost completely the correctness of the soft-
ware modules to run on both'maehines without haviné to worry
about real-time complications. With7most:qf the errors
removed during debhgging tuns on the CDC 6609, it took only
four compilations for the'setellite computerAto have a major
part of a stand alone system operating sdccessfully inAless'
than two days. The plug-in capability due to the machlne
independence of the LITTLE source code fac111tates the deter-
m1natlon of the best location for a new module relatlve to
the test of the software. -

Unlike the system de51gns at Brewn and North Carolina
whlch permlt expllclt 1ntercomputer subroutine calls, our
de51gn does not permit this amount of flex1b111ty whlch makes
intercomputer communication much more complicated than

necessary and either as in the case of North Carolina

57

requires a compiler ~ pPreprocessor- to optimize the

input/dutput between qomputefs or as in the case of-Brown A
requifes”the runftime-mdnitqr‘tovdb procedure.CaLi resolﬁf'.
tion'énq maintain symbqlvtabieiinformatipﬁ for parémete;
-formatting; .Another design difference isiﬁhéftihstead'of
permitting eithéf‘thé ferminal'uger' prAthe5femote'machine'
to initiate an operation at the satellite, our design takes
the view'fhat the terminal user initiaﬁes operatiqns, and
if necessary the'sétéllite will .initiate an pperétion_at~
the remote computer to provideAsome_cdmpUtatiOnal subport
to the satellite-or to execute some anélysis_for‘the appli-
cation. This'view is consistent with'the goal of writing
all the software as if it were to run on one machine, the
satellite comphtef. The SOftware which can mové.betWeen
maéhines is the command Subproceséors of the application
and théir reiated'support-routines._ The very high levei
modulér desi§n described earlier in this paper makes it
eésier to conceive of the blocks of processes that may
migrate between machines. |

No software modules ére actualiy transmitted between.
machines. Compilations are done for:both the satellite and
the remote,machine on the 6600 aﬁd those command subprocessors
which can execute in either machine appear in:both éompi1a-
tions. If a user decides a particular command ought to be
procéssed,in a pgrticular maqhine,:hé cén enter a command
. at the keyboard terminal to assign that command's processor
to é particular machine. He simply can enter

ASSIGN commandname: SAT
or .

58

~ ASSIGN commandname: MAIN

.where the first statement assigns "commandnaﬁe" for

proce551ng on the satelllte and the second statement
assigns it to the remote machine. The net effect of one
of these commands as far as the sYstem is ‘concerned is
that one bit in the command tables is either reset or set.
The system does not have to reset aﬁy linkages nor does
it need recOmpilation, "

As in all intelligenf satellite’systems, a main éoal
is to minimize communication transmissions between the
two computers and‘to minimize thé amount of workAdone by’
the remote 'computer in support of the display terminai.
We feel that maintaining the center of system control in

the satellite is the best method of hinimizing the demand'_

on the remote computer. One of the users of the Brown

systeh has made the point that a system should be inexpen-

. sive to use so that the user does not feel that he is

working under pressure (Strauss; 1974) . ~Obviously, the
remote machine is the more expensive one to use. because of -

its power and peripheral utilities, and its moré elaborate

~accounting proceduré for billing: its customers. Hence one

would want to use it the least and’ only when necessary
whlch means that as many command subprocessors as possible
should execute on theminicomputer.

Although ‘intercomputer subroutine calls are not

allowed, the user will not have to worry about e;aboréte‘

59

prétécqls'or any of the other hassles associated With.
infefcomputer comhunication. The t:ansmiséiéﬁ:monitor
routine will take care of.thé formatting ér intefb:etihg;
the'dgta, The current impiemehtatioﬁ‘calls for ail
fransmiss}ons\to the CDC 6600 to be in the form. of ba£cﬁ.
"JOB“ streams. One reasbh_ for this was that it permitted 4
us to take advéntage Qf software already written_which
allowed the'Honeywell 316 to be used as a remote~job entry
terminal. Second, since we wanted to minimize use of the
CDC 6600 aﬁd bécause in most cases we did not need to use
_the full graphics system to do processing at the remote site
we hoped to get better responses by submitting short jobs
for érocessing than by.trying to keep a cooperating program
éxecuting while the graphics terminai was in use. The
»CDC 6600 is too buéy with other tasks and the operating
system too complicated to be modified while the éurrent
work was in progréss to allow for special graphics handling
for the termina;. Another advantage was that by sending

a job control stream we could easily use the file system

of the 6600. Later, the system must be modified so that

the satellite would 1qok like a terminal in the time-sharing
system as a meané of improving performance. .

‘ All transmissions,from the CDC 6600 to the Honeywell

316 are binary blocks with six word headers. The trans-
mission monitor in the satellite will interpret the informa-

" tion in the headers to handle the block appropriately. A

description of the communication formats appears in Appendix E.

60

More bloék typés canlbé defined if the need arises; At the
moment, only blocks 6f type 0 and type.4 are implementéd.
These are the block typés which représentrdisplay files:and
messages to the user.CUsers will not.need‘to know -anything
about communication férﬁéts.- .” | |

The disk attached to the sateilite compuﬁer pe;ﬁits the
creation of an overlayAlibréry and serves as a storage deviée
for display files corresponding to definedrpictures and for
other information. The overlay library ehlarges the pumber
of routines which cén'executé on the satelliﬁe. Thg oberlaYS'
for the basic gfaphics systemAare in five groups: progréms
ﬁsed for creating and dispiaying pictures; programsvﬁéed.for
saving picture definitions; programs‘ﬁsed for doing subpicture
transformations; programs used bylfhe system proérammer for
examining and testing the system;'and programs used for

communication with the‘remotéAcomputér.'The application pro-

‘grams require one or more additional overlays.

Since one of the main goals of‘any gfaphics system is
to be as efficient as possible, we.made’a stréng.and |
reasbnably successful effort to eliminate fedﬁndant .or
similar cbde'sequénceé and to make single ”routinés serve
many pdrposes. Because LITTLE dbestnot‘permit multiple
entry pointé in its subroutines, many routines became finite
state automatons with a state inaicator éhd/Or a switch
setting describing the path of ifs procéssing. This means.

that the overlays become libraries containing related

61

: routines and that w1ll help. to reduce the amount of dlSk
'Qinput/output ,For'example,.thewuse of»one transformation'f
iprocessor implies the use of another transformation proces—
Vsor. Both of these processors use many of the same -

. subprograms so’ that all transformation related routines

can .be on the same overlay.- Another example is the building

of pictures from primltive eleménts and previously defined

‘subpictures. Picture building routines form another overlay.

Those routines common to both picture7building and picture
transformation appear 1n the graphics system root.

The addition of new command proces51ng software to_

the system is fairly 51mple. New compilations contain the

" new software with a new entry describing the command added

to the command table. The first routine of the overlay of
which this processor becomes a part has an invocation

statement for the processor added to it. The object code

of the compilation then replaces the old overlay;

As mentioned earlier, one of the purposes in develop-
ing a top-down very high level design and using a system
implementation langnage like LITTLE is to write machine
independent programs. In reality many programmers face the
"problem" of knowing the characteristics of the machines
for which they are mriting.code. This causes them to try

to take advantage of certain machine characteristics or to

- attempt to avoid certain machine 1nsuffic1ences. For example,

the lack of hardware multiplication or lelSlon instructions

62

and poor manufacturer supplied routines for the Honereiia
v computer; forced: us to'writéwcustomized:anithmetic.routines
:'formour.calculations. A nice: characteristic of LiTTLE is
that by using its macro facilities we can eliminate thesé
machine dependent calls by supplying macros which‘change
a subprogram call to énvexplicit caléulation.
' Finally, a user can write his wholé_épplication in
_ LITTLE because he has available the equiValént'of a large

-portion of the FORTRAN -library.

4.2 Implementation Details and Interfacing Considerations

To be more specific,about the éctual impleméntation
let us consider the procedure for adding | subprocessor
mbdules and the means of system‘interfacing in more detaii.
First, an entry in the command table has the following

format:

16 1

STRING

‘ , | . R|OVLY| N

| | - M|a |~ ADDR

where STRING is the command name .(left justified and blank
.filled); N is the number of characters in the name (up to

ten Vector General ASCII characters); OVLY is the index
63

number of the overlay that contains.the processor for this
command R is'1 if the satellite does or 0 if'it does not:
7expect the remote computer to reply w1th data when it
processes the ‘command; M is 0 if the command is a551gnedyto
,the satellite or 1 if ‘the command is a531gned to the remote
computer for proce551ng, A 1s l if the command can be a551gn-
ed to elther machine for processing and 0 otherwlse; and
" ADDR is an index for the command;,When a new processor is
added to the sYstem, this type of entry has to be included

in the command table.

The command subprocessor must be able to read the
keyboard input llne and also be able to issue messages to
the user. - Global variables associated with these abilities
are kept in LITTLE namésets called COMINF and KBLINE.
Naifieséts in LITTLE are like COMMON areas in FORTRAN. For
the Honeywell machine, all global namesets are compiled |
with absolute origins so that they are uniform for all the
overlays. The terminal user's typed input line is in the
array KBLINBF in the nameset KBLINE. The scanner nxttoken
'is used for reading the line. It picks up the next avail-
able token in the array being scanned. The token may be
an identifier, an integer or a real or an o¢tal (O'n...n')
number, a string enclosed in quotes, a single character used
4s a punctuation mark or an operator; or the end of text'
character. Thé variable COMPTR in the nameset COMINF indi-

cates the character position in KBLINBF where the next token

search will begln.
64

The variable.COMFLG in the nameset COMINF is a state

indicator ‘of. the command system. Before a subprocessor

returns control to the system it sets COMFLG to indicate

. the status of processing. If processing is complete and

no error was detected .the value is 1. If one .Or more errors

were found, COMFLG is set to 2. If processing is complete .

but the subprocessor wants to issue a specific error message,

warning, or information message to the user, the indicator

is sét to 3. .For'a command which requires m@ltip1e lineS

of input, CdMFLG_takes on tﬁe‘vélues,4, 5, apd 6A£o indicate

no errors foﬁnd, an error detected, and a meSsagé'issuedr

WhenACOMFLG takes'on'oﬂe of the last thfeé'values; the new

line of input will be processed by thé same subprbéeséor}
A subprocessor may issue a heséagé.to the user by

caliing the routine mvhﬁ%p witﬁ a LITTLE’éharécter‘string

as the argument. To issue.cues:to:fheiﬁéer'fbr a mulfiline~

input coﬁmand the programmer writes |

CALL H2CRT (TEXT,CUEOUT,LNCUE) ;

where TEXT is a LITTLE character string and CUEOUT and LNCUE

are global variables in the nameset CUEHOLD. COMPTR is set

‘equal to 1 plus the string length of TEXT to indicate_the
first possible position in the input line where the user:
.may;enter information, The routine h2ert converts a LITTLE.

" character string on the Honeywell éqmputer to.diéplay:Char-

acters for the Vector General. The system has programs for

converting integer, real, and octal number tokens returned

65

by the scanner fo binary formats. It also has programs
for performing thé.inverse opefations. ‘All of theSe
prbgfamé éré.available;to‘the application progfammer.

| ’Thé implementatipn closely folloWs the highAlevel
SETLispecification giveh fdr éohmandprocedure in Chapter 3.
Each coﬁputer has a version of the commandprocedure 'ana['
both invoke KBINHNDL (kbinputhandler in tﬁe SETL.specifiqa%
tion) as a first sﬁep in executing a resident command
subprécéSsor; - The two machines have different versions
of KBINHNDL. |
| Ipitially when the system was small enough to fif
entifelf Vithin the memory of the satellite both computeré
had the same KBINHNDL‘but_as the system grew an ovérlay

library'had to be created for the satellite and a different

mechanism for invoking command subprocessors adopted. In the.

remote computer, KBINHNDL uses the value in the ADDR field

of the command table entry as an index to a list of invoca-

tion-statements for the subprocessors. In the satellite
version the ADDR field is uéed slightly differently.
In the satellite, all overlays start loading at the

same memory location. Each one begins with a routine that,

through‘maéro definition, has the name LAYOVER. If an over-

lay has more than one command subprocessor, LAYOVER has a list

of values of the ADDR fields from the command table entries

. for the subprocessors it can execute. When LAYOVER is called

it is sent an ADDR value. The value's position in the LAYOVER

list is the index to the subprocessor invocation by LAYOVER.

66

In the sateilité KBINHNSL checkS<£6 see if the
overlay éurrently4re§idént in memory is fhe oﬂe which con- -
tains the subproéessbr. If itvis, then KBINHNDL calls
LAYOVER. 6théfwisé thé appropriate overlay_ié read in and
thén LAYOVER is calied. | | |

When a user decides'to'recoﬁfigure the.application'
software and uses the ASSIGN commaﬁd,:the subprocessor fqr
ASSIGN first examines--the A field in the coﬁmahd table entry
for the command to be .reassigned to determine if the change
is-permissible. If it is, then the M field is. set to 0 if
the subprocessor will execuﬁe'on the satellite or to 'l if
the subproéessor will execute on the remote machine;

When,théveommandprocedure in'theAgatellite determines
that a subérocessor-executes in the rémote'machine,'it
checks to see if the comﬁunicétiqﬁs:'overlaYnis in memory .
If the overlay is not ﬁfesent then it'is_read,in.and LAYOVER
is called. LAYOVER then calls MAINTRANS whigh'formats-the'
keyboard input as a card imagé for~transmiSSionAto'the remqté
computer. MAINTRANS makés.sure.the line is up'betweeh the
two computers and fhen_transmits a batch job for%pxocessing'
'by the remote machine. The fifstbthree cérd images involve
necessary accohntihg ihformation. Thé fourth cérd is a
call on a.procedure file at,ﬁhé CDC 6600 which ;oads énd
executes the.graphiés.prOCessor.'Two procedure files are
, aﬁailable; .Oﬁe féﬂusedwif‘the satellite expects data to be

returned by the remote machine and the other is used if no

67

Adata is to be returned‘ "The flfth card 1mage 1s‘an ,

END OF RECORD the 51xth is the formatted 1nput llne, and f
. the seventh 1s an END OF FILE. If a response is expected,
-a message 1s issued to the user to 'CHECK FOR OUTPUT FROM
-6600'; If a response is expected a semaphore is bumped

To retrleve the data, the user enters
. CDC PLT,XXXX

where‘XXXX is a<system‘suppiied user hash‘code. Wheh the
information has been received, the‘semaphore isddecreased‘
and the block is interpreted If the block is a display .
1lst the routlne PROC66 issues a message’ to the user saylng
so. The user may - then type ‘tadd’ whlch will put the dlsplay
on the screen. 1If the block 1s a user message -from the
remote machihe, the message will automatically appear on the
screen. - | | |

When the remote machine recelves a request for proces-
sing from the satellite, - the card 1mage is input as a
LITTLE character string in BCD»format. The string is converted
tolthe Vector General ASCII format and placed in KBLINBF so
that the same programs which process it on the satellite can
process it in the remote machine.

Professor Thomas. Stuart was respoasible for the software
for overlay input;AinterCOmputer communications, and display
list storage on and retrieval from the disk. Mr.'Peter MacLean
'was responsible for the low level assembly language disk pack-

age which supported the overlay and display list software.
68

Chapter 5

...The Application _ . L

The distributed application which was implemented

was a simple economic¢s model of a rent distribution function

for a city with a'Central business‘district (Sclow) '1573).
The reasons for choosing this particﬁlar application were
that (1) it was easy to implement quickly; (2) it could
serve as a prototYpe for a more complex eccnomic ﬁcdel;

(3) other'features'of the graphics sYstemisuch as‘real—time
rotation could be used'with it; and (4) its calcﬁlaticns
were simple enough so that the intercomputer comﬁﬁpications
would be the principal system feature tested;'v

The goal of the model is to maximize, relative~to_a

constraint, a utility function which is an attempt at Quanti-

fying the quality of life for a family in the model of

the city. The,constraint is that the wage less a worker's
' transportation costs is equal to the sum he pays fcr. |
consumer goods and housing. One good is produced in the
cityvat a‘given price and all workers have the same wage.-
One’wants to find the distance from the center of the'city
beyohd which the cost of transporting the‘gooa to‘the city
center consumes too much of its‘price; The distance is
also the closest point at which a worker can live without
consuming too much of his wage and thus decreasing the
quality of his life.’ | |

In the application program, the user can piot the
69

TS

‘rent function

rx) = coyMBw - i) (0FB)/B

where
c = a‘hérﬁéliéation,constént
8 ='elast§ci#y of the utility::function with respect to
'Aiapd as’a'good; it measures thé dégreg of ieéponsive-
ness‘of thé utility to a percentage éhange‘inlthe
amount of land.‘)
o = elastiéity of éhe utility fupctioh with'respect to
a thelpfodﬁged'pfoduct as a good.
W= ﬁon#hlf wage 6f é: worker

f(x): a workeiﬁs total‘Atrangportati6n~cost between the
jéb'and hoﬁé“
MR i L
L (a+3)a+5

In the prqér;m we take T(x) = = for the transportatién
fuﬁction.. As parémétefs the user may vary o, B, W, T, and e.
The program prévi@es:a quick.waf of studyiné the behavior
of the fuﬁction r(x) as the'parametérs vary.i If o and B are
chqsén sucﬁ that’afg =,;'then the ﬁtili;y function is a Cobb-
ﬁoﬁglaés funcfion.

_Thg basic_operqéions}the user can perform are (1) to

plot the rent function, displéy an axis, and output the

current parameter list; (2) to display only the rent function;
- (3) to display several copies of the curve around the rent-

axis to produce a surface; and (4) to draw an axis and list
. : 26 ‘

the parameters only.

The first alternative is useful as a previewing
method of curve behavior before more.calculations»are
made 6i a hard copy plot is prodtced. The secona.choice
allows a user to Quickly display several curves produced
by different parameter choices ‘in the séme area for easy
comparison. The third possibiiity présents a visual idea
of what total rents in the city éré at particular radii.
The fourth alternative allows the user to superimbose
an-axis on choicdes two and three as a means of refefence.

Once the user has the picturés, he may operate on
them as he wishes. He can translate, rqtate, or scale
them with the surface picfure, a feal-time‘rofation will
emphasize the three dimeﬁsidnal aspects of the piéturé.
The pictures can also be saved on disk.

The problem of whéthervﬁhe é?plication sﬁall execute
on the satellite or the remote compﬁter is a funétion of
the work load of the remote computer and the type of work
the user wants to perfofm. The séteilite can do all the

calculations involved in the application and can present

the results to the user in less time than the user can

retrieve the results from the remoté machine. The average
time for the satellite'to'calculate_é function and display"
it with an axis is 4.2 seconds. The time between the

entering of ‘a command and'the display of only the curve

is about 2.6 seconds. The time needed to produce-a surface

71

» is‘about 2.9 seconds. The remote machine can of course do
the calculations much more quickly. .686, .067, and .074
seconds respectively. But among the problems with using

the‘remote machine are the transm1551on times to send the

request for serv1ce and to retrieve the results; the fact

that the current communications software treats a request
‘as a batch]Ob which means that it must spend time in an
input queue before being serv1ced and that it ‘may be rolled

out while executing, and the current communications soft-

ware requires that the user enter another command .to retrieve

the results from the remote machine.A

The communications software has the above drawbacks
- because it was much easier and faster to modify ex1st1ng
remote job entry terminal software than to produce a new
communications package at this time. The user receives a
message from the system that he must enter a retrieval
command tovobtain the results._ This is a.relatively minor
inconvenience. iThe major problem occurs when the remote
machine has a moderate to heavy work load and the request..
for service is not processed 1mmed1ately. While waiting, .
the user can do other work In a 51tuation in which the
remote machine has long delays in serv1c1ng, the user can
Stlll effectively use 1t if he has many different plots he
wants to make by entering the commands one after the other.
Before he has entered the last request the first set of

results should be ready for retrieval.

72

AN

In the event that the user has only a few examples
to work out, he will get much quicker results if he uses
the satellite for the calculations.

The partlcular model used here is falrly 51mp1e but

it 1llustrates the potentlal usefulness of a dlstrlbuted

graphlcs system for economic model analy51s. More para- -
meters mlght be ‘added to make the model more complex. . Changes
in the various parameters would reflect changes in social

pOllCleS and the changes in the rent pattern could be |

‘studled

73

Chapter 6

- The Dbata Structure

In des1gn1ng a graphlcs system, one has to determlne

falrly preclsely what the requlrements of the system are. .

-Also useful is the ab111ty to ant1c1pate what future requlre-

ments may_be_ln order to allow for thém in the design.'One
advantage of'using a very'high»leVel specificatiou 1anquage

for’design is thatAimplementation details can wait. However

one cannot ignore the decisions. concerning the basic informa-

tion to be found in the.data structure.
If the sole use of a system is by a particular’appli-

éation, then the data structure Will be very application

oriented and can be part of the appllcatlon data base This .

'type of structure, however, is generally not sultable for
usé by other appllcatlons, If the graphics system is to be
for general use then the data structure must be independent
of any particular application. Interfacing routines between
the applieation and the graphics systeu will hide this inde-
pendence from the user.

In the implementation of the data structure, several
other factors need consideration. A specific structure

topology has to be chosen. The SETL programs which we will

présent to describe the data structure manipulation algorithms

use sets but for an implementation.the data relationships

74

have to be precisely defined. The data base may con31st of
blts, rings, trees, hlerarchlcal structures, or a hybrld
combination of}two or more of these.

Another factor is the language of.impiementation;

As already mentioned one of the goals in designing a graphics
system and 1ts ‘data structure is to allow enough flex1b111ty
in the initial de51gn so that satlsfactlon of future requlre—v
ments is not difficult. To use assembly language would make
this goal impossible. A major advantage in using the system
implementation language LITTLE for‘our intelligent satellite
graphics system is that a routine that'may run on either

the satellite m1n1computer or the ‘remote host computer has

to be coded only once. Another: advantage is theAportablllty
ofithe graphics system software to another computer.system
with a LITTLE compiler. Languages suchdas LSD, BLISS
(Bergeron etdal.,.1972),'SYDEﬂ (Garwick, l972f, PtSiG
(Wichman, 1972), SPL (Klunder,'1§72), and XPL (Horning, 1972)
permit the embedding of assembiy ladguage instructiOns'which
can prevent eventual software portabrlity.

Also importaht iﬁ data structure design is the hard-
ware available. A bulky data structure 1n a small mlnlcomputer
will be a disaster because it w111 consume valuable memory
. that can store useful processrng programs. Even in a V1rtual
- memory system, the time needed to page programs and data

back and forth between core and aux111ary storage degrades

75

the performance of the display proce551ng routines. Our
hardware conflguratlon consists of a Honeywell 316 computer
w1th 32768 16 bit words, a teletypewrlter, a dlSk and a .
11nk to a remote CDC 6600 The graphlcs dmsplay hardware
consists of a cathode ray tube, a keyboard

and a dlsplay controller . with hardware reglsters

to perform subplcture scallng, translatlon and three
dimensional rotatlons.

Finally, based on the original requirements of the
system, we have to determine what data has to appear in the
'structure and the related llsts,.tables, and data bases SO
that it is reasonably easy to generate a dlsplay flle.AIn
an interactive system, we must be sure that data 1s easily
~and quickly retrievable from' and storabhaintoaourﬁgata
structure. |

To make the system appropriate forfmore\thah,one
type of application,.we must use a virtual graphios,data
structure;that is- both application and display processor
independent. - Interfacing routines permit the user ;é
relate his data to the graphics objects_descr;bed in the
virtual structure. The independence of the virtual structure
from the display‘processorlmeans,that from the.data,of the
structure one can generate display commands for different
‘graphlcs dev1ces without reprogramming the whole system.

To achieve this independence we consider our drawings or

76

pictures in terms of three basic primitive objects, lines,

~arcs, and text strings.

A fourth type of image that we can display is that
of a "special object". A "special object"” may be a

point list, an edge list, a polygon list, or a subpicture

‘which is never going to be modified and thus can be saved

in its display file form only. The purpose of having special

objects is to contro; the size of the VIRTUAL étructure
and the table of subpicture definitions, DEFTAB. If each
subpictqre had to have an entry in the VIRTUAL table for
every line in its image, then-complicatéd pictures would
soon fill up computer memory. ‘The,special object category
helps to restrict core usace. |

The néxt decisionvis the.choice'of thé topology of
the structure. Many topologies are possible but the one
chosen for the implementation is a ‘tree-like hierarchical
structure. For the purposes of . the SETL algorithms, the
structureb is a tree (Figure 1). Each node represents a

éubpicture, Each subpicture is defined in terms-of'the

- nodes and leaves below it. A leaf has no nodes or other -

leaves below it and represents a Erlmltlve object such as’
a llne, an arc, a_ text string, or a special object.
The basic reason for choosing the lower structure

is that the header describing the subpicture relationships

’of.each node and léafﬁwill have a fixed format which will

.77

save both calculation time for accessing information and
compute time for moving data arodnd when subpicture
modlflcatlon occurs and for doing garbage collectlon on
holes., Concern over exce551ve bookkeeplng calculatlons
is justified if we want to as51gn to a satelllte mini-
‘computer with a limited instruction set and'a slow core
memory as many -of the software tasks asfpoesible'ih order
to optimize the'performanceland response time of the
graphics. system. |
 Let us consider the data neceSSary for each element
of the VIRTUAL'strudture. First if we examine the lower'
structure- of Flgure 1, we see that a node needs
| 1. .a p01ntergto the node's "left" or "first" son,
2. a pointer to thefnode's'parent, ‘and
4}3.,‘a pointer to ‘the node's,brother.'»

In order to define a picture in terms of its sub-
pictures, the son field in the node'that repfesents the
picture points to a chain of nodes and leaves representlng
the subplctures., | .

In a leaf we reélace‘the son pointer with a field
that describes the leaf type. For a spec1a1 object this
field p01nts to a table contalnlng more 1nformat10n about
the object |

In order to quickly propagate an iadication?of a
modification ‘made on a subpicture and thus oh all'thé

subpictures it helps define and whose nodes are‘higher

78

in the VIRTUAL structure, each.node and leaf has a pointer
to its parent. |

The bfotﬁer pointer ié a link in the chain of sub-
pictures which define the neXt higher level subpicture. This
linkihg method makes memory management and structure
handling easier. through the use of fixed size node and
leaf entries.

We have defined the mechanisms thrqugh which one
element of the VIRTUAL structure is re1a£ed to anotherelement.
We can speéify now the data associated with thié element |
and the'sﬁbpiétﬁre which it defines.. . |

For a ﬁode, the data is |

1.‘ itsvpositiqn or displacement in the main picture,

2. its éngulaerriéntétion in the main picture, and

3. 1its scale. /

In Figure 2, the illugtrétion of the-fields cf.a
node for the SETLvalgorithms, "véenﬁer",."vrotmat", and
"vscale" represent this data. Tﬁe field "vcenter" is
réally a triple cdnsisting of x, y,vénd z écordinates
specifying the center of the subpictﬁre.'These coordinates
are functions of the coordinates, anguiar orientation, aﬁd
scale of the parént of this node énd the original défini-‘_A
tion-of this subpicturé. | |

The field "vrotmat" is aruné elément' rotation matrix

which defines the angular orientation of the subpictures

~ that define this subpicture. The rotation matrix is a function

79

of the rotation matrix of the node's parent and its own
‘Aoriginal definition. |

The field "vscale" is the scale of the subpictures‘
that are descendants of this node. The scale is a- function
of the scale of the parent node and the scale in the node S
original definition.

Since each subpicture in the VIRT&AL structure has
'its location, orientation, and scale specified in the
coordinates of the main picture, we need a way of referring
'back to the original definition of the subpicture in its own
coordinates.' The pictureid" field permits referral to the
original definition of the subpicture in the DEFTAB This
definition ‘can be conSidered the master instance (Newman
and Sproull 1973) of the subpicture in its own local
coordinates (Figure 3).

The leaves of primitive objects are represented invthe
same type of element. The contents of some of the fields
will be different or undefined For a line, the data will
be the coordinates of the two endpoints. For an arc,_the
start and stop angles and major and minor radii replace the
rotation matrix and the scale. A text string will have
information on character orientation (vertical or horizontal),
character Size, the number of characters in the string, the
location of the string in the computer, and the location
'of the string in auXiliary storage. Figures 4 5,'and 6

illustrate these leaves.

80

The leaf type for a special object will point to an-
array which describes.the object and points to more informa-
tion about it. The rest of the information for this leaf

will be'like'that of a node.

. 81

_Chapter 7

Picture Development and Data Structure Manipuletion

In thlS sectlon, we w1ll present 'some s1mple examples

~of plcture development and modlflcatlon and the SETL algo-

rlthms which descrlbe ‘the more complex data structure

manlpulatlons.

data structure. are

A,

7.1

addprimitive
definitionsave o

picturebutild

modifypicture

- virtualtographics

The basic routlnes which operate on the

adds pr1mt11ve graphrcs objects

to the virtual structure

creates a master instanCe of e
picture from the uirtual structure

adds a specific instance of a

'previously defined subpicture to

the virtual structure

performs trausformationsAon the
virtual structure

maps the leares of the virtual.

structure into graphicés segments

Building a Pic¢ture from Primitive Objects

The top node of the'VIRTUAL structure represents the

picture on display and is defined in terms of the nodes and

leaves on the second level of the structure. If the screen

82

is.blahk, the top node will have no descendants. The

addltlon of ‘a new object or subplcture to the dlsplay should
affect only the deflnltlon of the top.node and therefore the.
representatlon of the new addltlon as a node or a leaf V
should be .added only,at the second level of the structure
and not elsewhere. -

: Suppose we start with*a.blank screen and wish to

build up a picture from: primitive elements. The subprogram‘

which makes the corresponding additions to the VIRTUAL

structure is addprimitive. For lines -and text‘the,routine

creates leaves‘which define the objects. For - an arc it

adds a node w1th position, angular orlentatlon, and scale

1nformatlon, and a- leaf entry spec1fy1ng start and stopen@lesand

nlnor and - ajor axis 51zes,It also adQS each leaf to a

.llSt to faCrlltate .the generatlon of graphlcs segments by

vzrtualtographzcs. The SETL spec1f1catlon of thls program
1s 51mple and appears in Appendlx B.
| If_we entered at the keyboard the command
| | SHOW LINE .5, .5,0 .5,.5,0
a line with end pointS‘(—.S,.S,O) and (.5,.5,0)" would appear
on the screen and a leaf would be added to the VIRTUAL |
structure. |
Similarly,vthe commands
-SHOW LINE -.5 .5 : .5 =.5
SHOW LINE .5 -.5 0 -.5 ~-.5 and

SHOW LINE ~-.5 -.5: -.5 .50

83

will add the lines [(.5,.5,0), (.5,-.5,0)1,0(.5,-.5,0),
(-.5,-.5,0)], and [(-.5,-.5,0), (-.5,.5,0)] to the screen -
to produce a square. At the same time, the VIRTUAL structure

gets three additional entries.

To inscribe a circle inside the square, we use the

~command

SHOW CIRCLE 0,0 RADIUS .5

which places a circle at (0,0,0) with radius of .5. The
VIRTUAL structure gets an entry describing the circle.

In order to add a character string to the display,

“we first type

STRING -.1,0 H 3

which says that beginning at (-.1,0,0) Qe'want a horizontal

string of character size 3. The system will then respond

by providing a blank line for entering the text. We can type

HOLE

and it will appear on the screen and an entry will be added.

to the VIRTUAL structure.

; Each of the entrles in the VIRTUAL structure is a

" new 1tem so its "pictureid" field is’ set to zero to 1nd1cate'

that the itemzis not defined in the'definition table, DEFTAB
The rest of the node or leaf has the appropriate 1nformat10n
for the subplcture it represents. Figure 7 111ustrates the
effects the above sequence oOf .commands has_on the display

and the‘VIRTUAL Structure. Figure 8 illustrates the data in

84

o

each of the entries. The nodes and leaves are numbered in

the order in which they'are»createdr

7.2 Naminé the Picture‘and.Savingfit

If we decide we may Waut to refer to the-picture we
just created'at a later‘time’without reconstructlng lt step
by step,hwe‘can'name the picture and save a master instaﬁce
of it in the definition'table, DEFTAB The procedure for
sav1ng a p1cture by transforming its VIRTUAL structure into

'a master 1nstance is defznztzonsave ThlS procedure takes

. the absolute values whlch are in the’ flelds of the VIRTUAL

| structure and for .each 1tem in the structure converts them -
~to values relative to those of the 1tem's "parent"" This
method allows the same subset of nodes -and leaves to deflne '
several instances of a subplcture. ln order to understand
'the procedure for plcture,deflnltlon, we mustddefine three
tables.‘ |

‘ Thelfirst table is DEFTAB. An entry here contains
data which corresponds to that in either a node or a leaf ln
the VIRTUAL structure. .In?pEFTAB however, lnformatioulis
in termspof local‘coordinates. The ‘examples 1in Figures 9,
10, 11, and 12 indicate the elements are similar to those
of the VIRTUAL structure. The first field in a DEFTAB entry
for a node points to a chain in DEFTAB which defines the |
subpicture. A primitive element has its leaf type in this
field. The last field liuks an element to a brother which
contributes to.the definition of the next higher level sub-

picture. 85

The second table is a hash table for hashing a
picture's name, and the third table holds the picture

names, -pointers to definitions in DEFTAB and links for

. picture name hash collisions.

The definition of a VIRTUAL node is saved by

- making entrles for its sons in DEFTAB making an entry for

it, linking the sons together through thelr DEFLINK flelds
and then settlng its entry to point to this definition chain.
The cpmmand

SAVE PICT1

will save the picture under the name 'PICT1'. If we assume
that the picture we have constructed is the first one we
want fo save then the definitién will be formed as illustrated
in Figure 13. The SETL épecificatiqn of definitionsave
appears in Appendix C.

‘When we wish to refer to a subpicture and retrieve
the master instance to build a picture, we go thféugh a

pointer chasing sequence as illustrated by Figure 14.

7.3 Adding Previously Defined Subpictureé to the Structure

;Suppose we decided to add another copy of the picturév
to the display at a different position with a different scale.

We may type the command
SHOW PICT1 .25 .25 SCALE .75

which will cause the creation of a node in the VIRTUAL

86

|

structure. In the node, the position, the angular orientaF,

tion, and the scale of the subpicture are functions of the

.values 1nput w1th the command and the values in the DEFTAB

entry referred to by the table contalnlng the plcture S ‘name.
The "parent" of the node is the highest node in’ the VIRTUAL‘
structure: Next the linked 1list of entries in DEFTAB whlch

deflnes the subplcture is used to build nodes and leaves on

‘.the next lower level in the structure. Each node is deflned

in terms of leaves and lower level nodes ; The structure of
the subplcture 1s complete whéen leaves are the only free

elements w1thout descendants in the VIRTUAL structure.

' Flgure 15 lllustrates the addltlon of a subplcture to the

VIRTUAL structure. " As each leaf . is generated it is added-

to a llst for easy reference‘by virtualtographics.

The ‘program whose purpose is to add - ‘a spec1f1c instance’

of a prev1ously deflned subplcture to the VIRTUAL structure

is. pzcturebuzld Its SETL specification follows. (Note:

in a flow block, a single statement may replace -‘a block

" label.)

e

88

define picturebuild;

picSearch(ppic,eflg);

"if elfg ne 0

/* a routine to add é préviously defined subpic-
ture to the virtual grapﬁics structure */

/* check to see if the picture has been defined */

/* if the picture is defined, ppic haé a positive
Value and eflg ié zero */

/* picture undefined */

then mvhresp('undefined picture'); /* message to user */

return;

end if eflg;

Xc = deltax;

yc déltay;

zc = deltaz;

alpha = deltaalpha%

beﬁa = deltabeta}

‘gamha = deltagamma;
= deltétau;

tau

/* initialize the orientation parameters of the new
picture */

/* diéplacemént of the picture */

/*_angles of rotation,*/

68

_scale = deltascale; Y 4
- vptr = max v1rtua1 + 1;

rotatlon(top)—rotmap(alpha beta,gamma

componentid. = vptr; - - R /%

scale-of'shbpictureA*/l

tau)h /* the rotation matrix for the'

-glven ahgles is qalculetedhby‘notmep*/

componentid is a global variable whose

ﬂvalue the.user'asSociates.With'the subpicture

‘he is adding */ -

.‘4/*

buildvirtual (idptr (ppic) ,top); =~ = o/

rotation = nf; - f | /*

_return;

end picturebuild;

now build”the virtual'Strueture'by feferenc—
1ng the plcture s deflnltlon in the deftab
set and u51ng the recur31ve routlne
bulldv1rtual */ |

1dptr(pp1c) is- the 51ngleton subset of deftab

~wh1ch_conta1ns¢the flrst level of definition-

of the subplcture */

release the space requlred for the rotatlon
matrlces */'

06

define buildvirtual(definition,vnode);

(Vdefptr € definition)

flow
vnodeinit+
whichprimitive? 4
pline, paré,pmess, pspec;
whichprimitive:

linelt,

/* definition is a subset of entries in deftab
which provide the 1lst level of definition of vnode*/

isprimitive?
makenodeentry+ | _
(buildvirtual(idpt(defptr),vnethode);),

subflow (linelt, arcelt, messelt, specelt)

isline?

isarc?
arcelt, ismess?

messelt, specelt;

isprimitive := type idpt(defptr) ne set

isline := idpt(defptr) eq lline
isarc ~ := idpt(defptr) eq arc
ismess := idpt (defptr) eg message

makenbdeentry: vnextnode = max virtual + 1;

virtual = virtual with vnextnode;

if vnode eq top

then pictureid(vnextnode)
= <nf, defptr>;

 .élse pictureid (vnextnode)
: = defptr;

end if; .
_son(Vnextnode) = nk;

/* is the picture at 2nd level of structure */

/* indicate instance of a previously defined =*
' /* picture */

/* reference to definition */

16

‘tcenter = trot(rotation(vnode)., L

‘parent (vhextnode) = wnode: _ ‘ .

son(vnode) = son’(¥Ynode) with - : %*-céléulate'thejvcenterlvnéxtnodé? from :*/ :
Vvhextnode;. . ' t*:VCenter(Mnode)s‘lecaltceﬁter;fdcenter(ﬂefptr),

in the ‘deftab .entry; the rotation matrix, -

- rotation(vnodé); -and vscale(vnode) */

-dcenter(defptr)); ‘trot is é matrix VeC§or mul;;pl1cat;on function*y

vcehterﬁﬁnéthqde) = Vcenter(vnode) fggg
(tcenter vescal ‘vscale(vnode)); . | S |
viotmat'(vnextnode) ;fmatmul(rotation%ande)q'/facélcdlate'the rotation matrix for this */
‘drotmat (defptr)); - _ ‘ "-4:1\ A .4 | i > _ ' _'T/?‘entry'*/
rotation'(vnextnode) = vrotmat (vnextnode); /* matmul is afmatriX‘multipiication.function*/
vscale(vnextnodé)=dscale(defptr)*VScale(vnode);‘= ' ’ ' '
/* ‘initialize -a leaf ientry in the virtual
vnodeirits. S : - C structure*/
vleaf = max wvirtual + 1;
virtual = virtﬁal'EEEEEVieaff
pictureid(vleaf) = defptr;
parentKV1eaf)‘= vnode;
leaftype (vleaf) = idpt(defptr); A _ _ S .
.pline: =~ = - S /*'ééiéurate‘the.endhpbints * /
‘tend = trot (vrotmat (vnode), | I o
© - dendl(defptr));

vendl(vleaf)=vcenter (vnode) tadd .
(tend vescal vscale(vnode));

c6

parc:

tend = trot (vrotmat (vnode) ,
dend2 (defptr));

- vend2(vleaf) = vcenter (vnode)

. tadd(tend vescal vscale(vnode)); ,
~tlist = tlist + <vleaf>; . /* add this leaf to the list of leaves of the
' | ' Structure for quick reference */.

vcenter (vleaf)=vcenter (vnode) ;
dstart(defptr); /* start angle of arc */
dstop (defptr) ; /* stop angle of arc */

vstart (vleaf)

]

vstop(vleaf)

vminor (vleaf) dminor (defptr); /* minor radius */

vmajor (vleaf)
tlist = tlist + <vleaf>;

dmajor (defptr); /* major radius */ .

pmess: o ' o /* calculate starting position of text */

tstart = trot(vrotmat(vnode),
dcenter (defptr)); :

vcenter (vleaf) = vcenter (vnode) :
tadd(tstart vescal vscale (vnode)) ;
‘vtext(vleaf) = dtext(vleaf); /* copy text */.
tllSt tlist+<vleaf$;~ /* add to 1eaf list */
pspec. /* thlS leaf represents some type of optlmlzed

display file. first calculate”the center -

coordinates */

£6

tcenter =<trot(rotation(vnode),'
dcenter (defptr));

vcentef(vleaf)—Vcenter(vnode) tadd.
(tcenter vescal vscale(vnode)),

/* calculate the . rotatlon matrlx for the display

. ’ *
vrotmat (vlieaf) = matmul(rotatlon(vnode),4 o S : file */

drotmat (defptr));

;vscale(vleaf) '= dscale(defptr)+

vscale (vnode) ; . '
tlist = tlist + <vleaf>; /* add to leaf list */

. if vnode eg top then

pictureid(vleaf)=n{;;

end Vdefptr;
return;

end buildvirtual;

definef a vescal b;
if #a e eq 1

then return <hd a =* ‘b>;

end flow;

/* this functlon multlplles the vector a by the
S scalar b */

else return <hd a * b L a vescal b>

end if;
end vescal; -

7.4 Modification of the Picture

Supéose that we have defined a picture and‘established
its data structure (Figure 16a). If we wanted to transform
the subpicture represented by node 5 and its leaves 6 and 7
' by'a rotation, trénslation of scaling then we have to modify
-the VIRTUAL stfucture to reflect the change.- The parameters
in the node and leaves have to belrecomputed but also the
relationships among nodes has changed. The subpicture
described by node 3 no longer includes node 5 as part of
its description. The "pictureid" field of node 3 is modi-
fied to indicate it no'longer represents a previously defined
picture but is now é new subpicture. Node 1 is now defined
in terms of leaves'2 and 10 and nédes 3 and 5. Leaves 6
and 7 have not changed relative to node 5 so its definition
remains the same. The new structure appears in Figure 16b.
The program modifypicture performs the modifications on
the VIRTUAL structure that reflect the usef's.désiredichanges
to the picture. The SETL specificatiqn for the progrém

is in Appendix D.

7.5 Displaying the Picture

Once we have' a VIRTUAL structure, we can generate
display segments from its leaves. From the way we build
the structure, the leaves contain or point_to all the

information necessary.to build a display list containing

94

the aetuel drew,jpositiOning, and transformationfinstfuch
‘:tions necessarY'toegene;ate an imageton the display. :As
an exémple,_eonsiderfa leaf thétlfebresents*; previously
.defihed picture;A Tﬁe;leaf'hasvall the rotation, displace-
'ment,'endAscelinélinfermatiqn neeeesary for'displeyiné the
‘instance of the picture. L | ‘
.,To speed ﬁp aeeess to the information in the ;eaves,

- we maintein a list ef pointers to them as we Build the
VIRTUAL §tructure.AThis 1iet'seves Ls the bothe:~of travers- -
_.ing the §tructufe'again1to find the leaves.

AA segmented diepley list whose structure is parallel
to the leaves makee.reflection'of'a change in the.ViRTUALt
strdctdfe easy andﬂaQOids reCthutetion of the whole iist

. The purpose of vzrtualtographzcs ‘is to convert the
VIRTUAL structure 1nto a segmented dlsplay file. It uses
the data in the leaves to produce graphlcs-transformatien
and display segments. |

virtuaitographiés produces five basic types of
segments. - The first type is a transforﬁation segment{

This segment contains information on the coordinate scale,

the displacement, and the rotation of any subpictures pro-

duced by display .segments which follow these transformation

“values, Only another trénsformation segment will change

the trahsformation applied te succeeding display segments.
The second type of segment is a display segment

which produces a Single line between two points. The last

95

transformation '~ segment preceding this display Segment
mgét be an identity transformation segﬁent; that is,‘a

' sgaﬁent with £ﬁ2”§o¢f§§§a£e 'séale éél to full, tha dis—i ”
placement set to zero, and the rotation matrix set to-the_
identity. | ‘

The third type of segment is a diéplay segment which
produces an arc by approximating it with short straight
lines. A transformation segment with the arc's scale,
center, and rotation precedes the display segment;

The fourth type of segment is one which displays
text characters. Like the line segment, the text segment
must follow an identity transformation.segment.

The final type of segment is the special object
segment which has four subtypes. The firat tﬁree subtypes
constructed from point lists, edge 1ists, and polygon iists{
require a preceding transformation segment while the fourth
subtype is an optimized display list consistiﬂé of a mixture
of transformation and display segments. This fourth subtype
is built when a user decides to save a constructed picture
‘whose subparts are never going to be modified in the
future. These segménts are kept in auxiliary memory until
needed. |

The SETL specification’ of virtualtographics follows.

96

!

definé'vixtuéltographics;

regsw = 1;

. if tlist eq nf

then
action=0; return;

end if; .

if tent eq O
then

gstr = <nl,n&>;

gstr(l)'=A#gsti

gsptr = #gstr + 1;

end if;

/* after the virtual structure has had ‘a

" . subpicture added to it; this routine

' © converts the data in the ‘leaves to

graphics display segments;iiffno graphics .

‘ segment-is added to théxdiSPlay'listv

then action=0 is returned, otherwise

'.actiqn =1 %/

e

/*

/*

S*

/%

/*

97

this_flag will'force a frénsférm#ﬁion
Ségh;nt‘sétting thé codrdihaﬁg-s?ale
register (CSR) ané the fptation registers
of»the hardware controller ﬁo‘full scale

and the identity matrix if .a single line -

‘or text segment is to be displayed after

a previous segment has changed the

registers */

nothing tb display */

is this a completely new set of segments*/
yes, initialize graphics tuple */

first component is length, second will be

name if tuple is saved later */

pts to end+l of current tuple */

(tcnt+l < Vtindx < #tlist) /* the next three statements transform the
leaves of wirtual to_display segments */

tnvptr = tlist(tindx); /* get leaf in virtual structure */ .

seglist,= seglist + géptr; /* add to the segment list a pointer to the.:

beginning of the neW'segﬁent'*/

flow - _ . whichleaf? 4
checkorient+ garc, checkorient+ gspec,
gline, ' ' gmess;

. whichleaf: subflow(linelt,arcelt,messelt,specelt)
isline?
linelt, : o isarc?
"arcelf, ismess?
messelt, specelt;
isline = ‘leaftype(tnvptr) eg lline
isarc = leaftypé(fnvptr)‘gg arc
ismeés_ := leaftype(tnvptr) eq message’
checkorient: A . /* do we need a segmenfbto reset the scale
to full, the displacements to zefo and
the rotation ﬁatrix-to the identit&? */
if regsw eq 1 |

then -) /* yes */

gstr=gstr+createtrans(identitytrans); /* add a segment respesent-

ing the identity t ransformation to the string */
regsw = 0; : /* reset switch */ S :

-seglist(tindx)= {#gstr+l) is gsptr; /* correct'séément list'*/
gstr(l) = #gstr;

e

98

gline: , '_ . /* create a segment to draw a linel*/

'~agstr=gstrﬁcreétécommand(tindx;
tdrawline;endpoints(tnvptr));

‘gstr(l) = #gstr;
'gsptf = #gstr + 1;

garc: /* create a transformation matrix */

k=parent(tnvptr);.

gstr—gstr+createtrans(vscale(k),
vcenter (k) ,vrotmat (k)) ;
gsptr = #gstr+l;

seglist(tindx) =‘dspt?;

- gstr= gstr+¢reatecommand(tiﬁdx,
- drawarc,vstart (tnvptr) ,
vstop(tnvptr),vmlnor(tnvptr),
. .vmajor (tnvptr)) ;
gstr(l) = #gstr; regsw=l;
gsptr = #gstr + 1;
gmess: - - /* genérate text command-segment */
gstr=gstr+createcommand(tindk,text,
vcenter (tnvptr) ,vtext(tnvptr)) ;

gstr(l) = #gstr;
gsptr = #gstr+l;
first determine what type of special

segment this is */

specindex=message-leaftype (tnvptr) ; /*caléulate index of. descriptor
of segment */

if:sptype(specindex)=sdfilé /* 1is this a special optimized file */

gspec: ‘ ' /*

then /* yes */

dfretrleve(specara,spec1ndex), /* copy the segment from auxiliary
. memory and leave it in specbuf */
gstr=gstr+specbuf; /* add the segment to the list of segments*/

gstr(l) = #gstr;
gsptr = #gstr+l; .

99

‘else

gstr=gstr+createtrans(Vscale(tantr),

vcenter (tnvptr) ,
vrotmat(tnvptr));

dfretrieve(specara;specindex);

' gstr = gstr + specbuf;
gstr(l).= #gst£+1;
gsptr = #gstr + 1;

end if;

regsw = 1;

end flow;

end VYtindx;
return;

end virtuaitographics;

100

/* .generate a transformation segment */°

/* copy the segment next */

7.6 Muitibie VIﬁTuAL»structures fbr.the Same PiCture
wEarller we made ‘a draw1ng of a. square en01051ng a’
.c1rclerandﬁa text strlng by u51ng the prlmltlve geometrlc
objects of the system.' Flgures 7 and 8 iilustrate the
propertles of the VIRTUAL structure for the commands. which
bu11t thls plcture. |
If we had dec1ded beforehand to‘deflne a plcture

called "square" as an unalterable special object, we could
have éonstructedAau.exactly_similar appearing picture with
the commands. | |

. SHOW SQUARE QCALE 1.

~ SHOW CIRCLE RADIUS .5

.STRING ‘-51, o H 3

- HOLE
whiéhzuould hHave ‘produced the VIRTUAL strudturé illustrated
if Figure 17.. The leftmost son of the top node is a
épeciai objéct-184f which represents the square. Next comes
the node and leaf containing information about the circle,
and finally comes the leaf for the text string "HOLD".

Other ways of producing different -VIRTUAL structures

répresenting the sarie picture exist.

101

- Chapter 8

The VIRTUAL Structure and Other Data Structures

In this'sectiqn we will discuss the advantages of

the VIRTUAL structure and a possible extension of it for

hidden line computations. We will also briefly survey

previous data structure design efforts.

8.1 Advéntages of the Data Structure

The VIRTUAL graphics structure has several basic
advantages. The first good point is that it is relatively
compact whichvis important when a minicomputer uses it.

The structure containéionly the information necessary to
generaté a display and has a hierarchy to allow the user

to refer-toAsubpicturesvof the display. It is not bogged
doﬁn with a huge core consuming ring structure and auxiliary
tables make reference of subpictureé easy and éuick.

Modification of subpictures and changing the topology"

- of the structure is very easy. Referring directly to a node
" or leaf makes reference of subpictures fast, and the modifi-

‘cation of the VIRTUAL substructure representing the sub-

picture is straightforward. A pointer to any leaf that is

modified in the VIRTUAL structure is added to a list of ‘leaves

which must have their cbrresponding display segments -
altered. A list of pointers to the display segments for the

leaves makes 'quick modification of these segments possible.
' 102

A. thlrd advantage 1s that the VIRTUAL structure is

easy to traverse., Each node and leaf has av p01nter to its o
:parent.4 All nodes and leaves ‘on=the. ‘Same level of a sub-
picture structure are llnked together through the brother-
p01nter field. Each node has a p01nter to a flrst son
iwhlch is at the head of the brother chain. This system of'z‘-
pointers permits changes~to a:subpicture to.propagate down—v
wards in'the.structure and to be indicated in higher levels
. of the structure quickly. | |

jA fourth point is that- the VIRTUAL graphics structure‘
.can be used in other graphics'systems also. It can be used
to descrlbe plctures for plasma screens, dlrect v1ew srorage
tables, or cathode ray tubes. It serves the purpose of a

pseudo dlsplay flle (Newman and Sproull, 1973) A segmented

'or non—segmented dlsplay file can be generated from its
leaves, or a series of subroutine calls with the information
in the'leaves'as arguments can be used.to‘generate a display
on a storage tube or piasma'panel. The structure does not
have to. be traversed to produce a picture. 1In a bigger com-
puter more 1nformat10n can be added to a node to make proces-
sing easier. The macro facility of LITTLE makes it easytto
define more fields of information or to redefine old fields.

A fifth advantage is that all elements in the VIRTUAL
data structure are the same size and therefore bookkeeping o
is simpler.

The only real .-disadvantage to this structure is the

103

searching that occasionally may be necessary along a brother
‘chain. This occurs when ausubpi¢tuxe is being modified and
its level in.strugtufe,is changed.to‘level two as a reflec-
tion that the system is dealing with a new picture. The

brother chain of which the picture is currently a member -

must be searched to find the picture's immediate predecessor

.)
so that the brother pointer of the predecessor may be

changed. In general this will not happen too often. Most
changés occur at the second level of.the structure where no
structural modifications are requifed. Otherwise the search

is usually a short one.

8.2 An Extension for Hidden Line Removal

Besides the information~necessary to display a. picture,
more iﬁformation can be added to the structure. Information
that might Be added in the remote machine could. be data
for doiﬁg'hidden liné calculations. 'This data could be
the maximum and minimum x and y coordinates .of a subpicture.
These coordinates would give winaow boundaries around sub-
pictures and can be calculated at the samé tiﬁe the VIRTUAL
structure is'built.

Hidden line aléorithms can be divided into two general
cétegories.' Oﬁe category includes algorithms like those of
Roberts and Loptfelv in which.each object is comparéd to
évery other object. The second category inclﬁdes aigérithmé

like that of Warnock in which an object is compared to a

104

:screen‘w1ndow and 1f the w1nao&lconta1ns no v151ble objeetf
ﬁlt-ls dlscarded- otherw1se the w1ndow is subd1v1ded until -
ﬁsoﬁething-can be;dlsplayed The design’ of the VIRTUAL '
'istructure suggests a modlflcatlon of the Warnock algorlthm
- If two subplctures at the same level 1n the data
1structure are-surrounded by two nonmlntersectlng wingows,
then we know that their‘subpictures dO'not-have to be
eompared because*the parents‘do not overlap. If an overlap
- occurs, the subplctures -at the-next level wiil_have‘tq'
‘be put lnto d1$301nt sets if possible. This broeess con-
.tlnues until all that 1s left is a collectlon of dlSJOlnt
- sets, contalnlng 1eaves Wthh have to be compared for inter-
.sectlng or hidden 1mages. Only leaves in the same set have
to be COmpared. A ' _ |
" Thus the idea of ‘the algorithm is to do object
comparisons only in the. screen areas where wihdews inter-
sect. On any’other part of the screen no conflict exists
and neither does a need for any cemparisons. The windows
described here seem to be analogous to the instance rectangles
used in two dimensional transformation systems (Newman, 1975).
After the disjoint sets of leaves are formed, a
modified Warnock algorithm can then be applied to the objects
represented by the leaves to generate a display file with

the hidden lineés removed.

105

define hidden; /* a routine to eliminate hidden linésAby
means of a modifiéd Warhock algorithm */

leéfconflicts = n; /* this is a global tuple whose
components represent the sets of'those_leaves
which need an application of the Warnock algo-
rithm to eliminate lines */ |

conflictfinder ({topl}); /* find the conflicts in the'

subpictures of the top node */

maxorder (leafconflicts); /* order the tuple components in

decreasing:order of humber of elements in each

éomponent */ |

- maxsubsets (leafconflicts); /* remove from leaf conflicts

.those components which are subsets of other

components */ |

| dispfile'; <2,n8>; /* initialize the display file */

/* apply the modified Warnock algorithm to eaéh set of

leafconflicts and generate thé‘appropriate display -
segment *x/ | _

(1 <= Vi €= #leafconf;icts) Wafnock(leafcoﬁflicts(if);;

return;

end hidden;

106

.idefine conflictfinder(conflictset), /* thlS routine determines o
;;thef» conflicts -among the subpictures of the elements o
'in:themconflictset,-a-high-level.set of pictures-

n-hav1ng hidden line problems */ |

'fa1190551bleconflicts'= {descendanteson[conflictset]}

| - | h , + {leafEconflictset]leaftype(leaf)ne Q}'
/* build a set of all p0531b1e conflicts in
the substructure under the conflictset */
if allp0551b1econflicts eq conflictset |
then /f this is the lowest level of resolution forli
this routine */ |
 leafconflicts = leafconflicts + <conflictset>-
A return; |

. end if;

:/* for each node in allpoSsinleconflicts'form a. set of
potential conflicts and initialize a set of actual
.conflicts to ng */ |

(Vnode‘e allpossibleconflicts)
'pOtentialconflicts(node) = allpossibleconflicts less node;
conflicts(node) = ng;
end ¥Ynode; | |
/* now for eechvnode in allpossibleconflicts, determine

its actual conflicts from its set of potential conflicts */

107

(Ynode € allpossibleconflicts)
(¥Yv € potentialconflicts (node))

if node overlaps v /* overlaps -is an infix function

which returhs a value of true if the windows

of node and v intersect. If the windows are

disjoint then it returns a value of false */

" then
conflicts(node) = conflicts(node) with v;
=« end if;
o /* remove a redundant check */

‘potentialconflicts(v) = potentialconflicts(v) less node;
end Yv; |
cénflictfinder(conflicts(node) with node);
end Ynode;
return;

end conflictfinder;

108

8.3 - Other Data Structures

We,will now<eXamine.somenother possible datadstruc-.l.
tures. We will.discuss three of:the;main exaﬁbles-surueyed'
inh(Williams, l??l);'plus'another_structure.whichh'are
comparable:to.the one we presented.’ |

Graphics 2 a graphlcs system developed at Bell
'Labs; (Chrlstensen and Plnson, 1967; Wllllams,v197l) has
a hierarchical data structure cons1st1ng of node blocks,
leaf blocks, and branch blocks. - The node blocks represent
"subplctures; the leaf blocks hold graphlcal 1nformat10n,
and the branch blocks contain plcture transformatlon informa-
tion.. A r1ng connects all the branches 1nto a- node and
another'rlng connects all the branches out of»a node. The
system usées.a PDP-9 computer as-a.terﬁinal'connectedlto a“
large time?shared aneywell 645 computer. The whole data struc-
ture is kept in the 645 vhlle a ver51on w1th fewer p01nters
is kept in the PDP-9 to save on storage. The storage saving
has its priCe though because unless the user;adds his own
pointers and rings, searching the data Structure for objects
is very time consuming. |

In the General Motors Graphics System (Joyce and
Cianciola, 1967; Williams, 1971) the data structure consists
of three‘sets of rings,for data elements,-entity blocks,
and display buffer data. The rings of the data.elements and

the entities are bidirectional and there are two-way connec-

109

tions between a data element and its corresponding entity

block and between an entity block and its display. buffer
data. A time-shared IBM 360/67 is connected to ‘a
regenerétion buffer, iBM 2840;11. The display console,’
an IBM ZZSO-III; has some display controller logic. The'A
entity blocks contain graphics display’property'informaﬁion
such as object intensity and light pen selectability. All
the pointers make response time. very good, but they also
- make the data structure very bulky and only suitable for a.
large machine. Also some information in the entity block'
seems to be too display dependent and perhaés should have
been kept in the display,daté buffer.
In the Univac Graphics sysfem (Cotton and Greatorex,

1968; Williams, 1971), a hierarchical data structure is
used. Copies of this structure exist in both the largé
remote computer and the satellite computer which acts as
the terminal. The main data base is called the Entity
Table which has all the data within the system. A pirectory
in the form of a ﬁash coded reference tablé«allows rapid
access to major structural entities in the table, and an
éxtérnalldirectory relates user supplied names fo the
internal codes in the Directory and Entity Table.

- The basic structural element in the Entity Tabie is
the group. A group is made up of items and ﬁseé of"othér
'grdﬁps. This‘6rganizati0n.allow5»for subroutining in the

data structure. Because a group definition can be used

110

repeatedly to deflne other groups there is a danger of
"recur51ve deflnltlon which .will: not be . caught untll the
"~ structure 1swprocessed‘for transm1551on 4to_the satellite.

An item COntains the graphical’informationfnecessary
for display. An item is a logical combination of pointsr
-lines, and text which are'called'components. An item '
cannot be used more than once but a single item‘group can be.

In the Entity Table, a group has a pointer to a chain .
of uses and'items, pointers to associated data, and a pointer
to the uses of this group. A use entry has a pointer to.
the next entry within the structure of its parent group,'

a pointer_to,the nent_use of the group, a pointer to-the
component ring (COntains information like a,positioning
vector and_transformation matrix) for this use, and'a.
pointer to associated managerial data. "An item entry has
b‘a p01nter to a component ring hav1ng 1nformatlon about
points, vectors, and,text. TheAEntltles also'have‘attrlbutept
information aboutvdisplayability, external naﬁes,'and
,llght pen detectablllty.
The satelllte computer has three data structures.
i It has a copy of theiEntity Table for the picture being
‘displayed; It has a'display file consisting of item blocks
that are3rea11ycgraphic subroutines. Finally it hasxan '
ordered dlsplay llSt which contains p051tlon1ng and llght
pen detectability information and the order in whlch the -

item blocks will be exécuted. The display decoding hardware

111

must execute a complete pass throﬁgh the picturé organization
on each refresh cycle. | R

The drawbacks in the Univac system are the very large
data elements for the satellite computer'aﬁdAthe appareht
need for‘display hardwére that can process the item blocks
as subrputines and execute jump instructibnsvbetweeh blocks.

In the Pictorial ENCoding Language, PENCIL (Van Dam
and Evans, 1967), the data structure is of a hierarchical
tree form. Piétures consist of subpictures, points, and lineé.
In the structure an item contains linkages to all its
subpictures and lines, a transformatién for each subpictﬁre,
énd a transformation matrix for the whole picture. Lines
and points .are the terminal nodes of thé tree of a subpicture.
A drawback to this system is that fhe picture tree must be
walked-each time the picture is output. For the implementa-
tion described in the paper, this is not a problem since
output is to a printer, but it is a hindrance to a refresh
device. Also, items in the structure are of variablé size
- with many pointers, and so a well -thought out memory manage-
ment scheme is necessary.

A reiteration of the advanﬁagesvof the VIRTUAL

structure is

(1) it is compact which is beneficial for use in a‘
minicomputer;

(2) - fixed format noaes make memory ménagement easier;

(3) it is extensible in é computer with greater processing
power;

112

'f 4)
(5

(6)

(7)

1nformatlon in a node 1s machlne 1ndependent,'

-a separate 1eaf llSt ellmlnates structure traversal
for p1cture dlsplay,

:the data in a node or leaf 1s absolute so. 1t reduces

the need for. extra sophlstlcated dlsplay hardware to
perform transformatlon concatenatlon and graphics
subroutining on the fly;‘ . -
referenc1ng a dlsplayed subplcture is ea51ly done

by referrlng to its correspondlng node in the

structure.

113 .

Chapter 9

Results and Conclusions

This work has demonstrated that in a distributed
graphics systém‘the sateliite cbmputér can serve .as tﬁe
center of systeﬁ conErol aﬁd do a significaht amoun£ of
the nontrivial ' processing required by an éppliéation
without recourse to the faéilities ofAthe remote computer.
When interaction between computers occﬁrs, it'isﬂinitiated
by the satellite unlike other diétributed systems in which
the remote machine is the master. In addition, the user
through commands to the satellite computer easily can recon-
figure the system during realjtime and transfer applica—'
tions processing capabilities between machines. Also we have
showed that the satellite computer does not have to bé é
machine with an extensive instruction repertoire.

'This was accomplished by beginning design work from
a very high level. We were able to envision the basic
processor blocks more easily which helped to keep intercoﬁ—4
puter communications simple. The top-down design method
strengthened the aséumptioh that all software should be éble

to execute in the satellite and that the satellite would be

‘the center of system control. A useful by-product of the:

design was a machine indépéndent virtual'graphicS'structure
which could be used with other display hardware and in non-

distributed systems.

114

-The_use of the systems implementation language LITTLE
permitted';he ﬁfiting oflaﬁsiﬂgie get‘bf | pfograms cabablé
o£ rUnniﬁg on bpth computers,lbutJperhapélméfe importantly
in our own pafticdlar éituatioﬁ; it:EIIOWed the lowering
of the level of Jériﬁiéal.intelligence"Adefined by'Vah Dam.
'Throﬁgh softwaré; we "éducated"-or "trained" the pfiﬁitive
. Honeywell machine so it could:perform most of the same tasks
as better endowed, in-terms of harGWare, minicomputers. Its
| level of intélliéence is 'high enbugh' 'lnow that through an
‘.édditional, finite programming effort its level of intelli—
génce can be further lifted so.thatvalmoét anything that can
be done on the remote CDCIGGOO'can'be done on the Honeywell
sétellite, The disadvantage is that és the layefébof soft-
ware increase, ﬁhe e#ecution‘time fora task lengthens so that
processing by the remote.madhihe, the CDC 6600, may étill
be preferable. | | |

We did a linear programmipgAanalysis of the implemented
rent distribution function processor and it gavé the obvious
answer for machiné.IOCation. It said the procéssor should be
iccated on the machine that had the higher ratio of (commands
proéeSsed per unit time/cost of processing one comménd).

We found that although the CDC 6600 could process a command
forty to fifty times faster than the HoneyWeil sateliité, it
was in geneéral still bettér.té do the calculations on the |
.satellite in order to provide results to the user more quickly.

The reason for this was that our approach to intercomputer

115

communications was inadequate and this increased the cost
of processing and lowered the above‘ratio for the CDC 6600.
One problem with the communication softwafe'in the

satellite was that it was oriéinally written to make the .
ﬁOneywell a remote job entry terminal for the CDC 6600.
Originally it was poorly written and it became a morass
as it was modified. Unfortunately, a lack of person power}
funds, and time required that it be modified again for our
puréoses instead of thrown out and rewritten explicitly for
our project.

" A related problem was the excessive transmission fime
for sending data between the two computers. There is a 9600
bits/second line between the satellite and a similar machine
serving as a front end for the CDC 6600. Unfortunately, the
effective transfer rate is only one-thifd to one-half the
line rate. A major bottleneck is the CDC 6600's having to
send the data through the front end instead of directly to
the satellite. Tests indicated that the average tranémission
time for returning a display file to the satellite was 4 sec-
onds with a best time of 2.1 seconds and a worst timé‘of
A6 seconds. Thése times alone arerf the same magnitude as

those for doing all the calculations and displaying the

results on the satellite.
A third significant problem was our having to submit
requests for processing by the remote machine as batch jobs;

This meant that we were running graphics at a lower priority

116

than a standard time shéring'job! One of the consequences
of .running- batch jobs is that they_hadAtp paéS'erough an

" input queue before prbcessing‘éould'begin.'»In'bne set of
tests, tﬁe'averagg éta& in the input gqueue was 26;8 séconds;
The range wéntff?oﬁAOJSeConds to 136 seconds.' In a second
. series of'tests We;imprOVed on this by chahging the time~and
initial hemory;size parameters to6 give the feéuests higher.‘
priority. The'avetégé time was .48 seconds and the Worst
time was 3 sécohds,

'After escape from.the'inpuf_queue, the néxtlproblem‘
twas"tl"le_amptin,t_,of time bétween fhe bégihning of processing
and-the point when ﬁhe‘displaybfiielhas been:;Outed back to
the sateilite;' Undér_very light CDC 6600 dsage, fhe
situa#ion was bérely tolerable. The average duration of
proceséing was 11.8 seconds with a'best.time of lOlseconds
aﬁa a worét time of 17 seconds. In the medium‘and heavy
>usage'periods the results Were‘ridiculoué. Under medium
6600 usagé, the“average‘processing time was 51.9 secqnds in
a range éf 12 to.126 seconds. Under heavy usage} the '‘average
processing time was 297 seconds in a range of 21 to 706 sec-
onds. We examined these times some more and found ﬁhat the |
major time loss»occurred between the;point when actual program
execution began and:wﬁen it ended. ‘For-CPU executidn timeg
of .06 tb .09 seconds, the shortest time was 3- seconds and
the longest was 697 seéonds. These times indicate that
under batch prgcessing, operating System Eequests ingrease

117

processing times by many orders of magnitude over CPU execu-
tion timés and that under heavy CDC 6600 usage, the short
graphics jobs can be rolled out of memory almost indefinitely.

A further problem cauéed by the'presént commuhications
software is that the user‘in addition to the original command
requesting application processing by the remote machine muSt
enter a command requesting the return of the resulting |
display list. Again, the reason for this is that the
oriéinal'communications software is so poorly written that
the system needs to bring the package into memory as an
overlay because of its size. It is too large to keep
resident while the user is doing other processing, so a
new reqﬁest forAdisplay list retrieval is necessary to
return .-the package to hemory.

There are several possible future;m;hs for upgrading
the iﬁterdomputer communications in order that the graphics
system be used to ité.full potential. If we were to obtain
more memory for the Honeywell 316 we could keep.ﬁhe,entire
communications package résident all the time. A small backQ
ground loop couid check for data waiting at £he remote
computer.and initiate its transmission so the user‘would.f
be free of that.résponsibiiity. In practical terms though,
providing the Honeywell with more:memory is impossible..
It-would have'ﬁo be’repléced by a bettef computer.‘This
‘'step is not as drastic as it sounds because LITTLE compilers

have been written for other machines such as the PDP-11 and

118

most of the software would be transferable.

"An. alternatlve that is also a. part of almost any’ other
change is. to completely rewrlte the communlcatlons software
with the sole purpose of satlsfylng only dlstrlbuted graphlcs
needs.: Thls would make the package smaller and more eff1c1ent.~
It would be part. of the satelllte system root and. could work
in the background , | .

A third‘approach is~toireprogram communicationsmfrom
the front end: to the cDC ‘6600 so that it could read and wrlte
flles at- the CDC 6600 d1rect1y 1n order to shorten trans—'
m1551on tlmes. |
o Another con31deratlon would be to produce new systems :
r programs for the CDC 6600 whlch would glve Very hlgh prlorrty
to. graphlcs serv1c1ng.‘

A The most llkely approach to produce the qulckest
4 results and 1mprovements is to prov1de a new hardw1reo -
line between the satellite and the front end of the remote | ,A
o machlne-and handle graphlcs as part of the tlme-sharlng
system.. A~cooperating.program in the remote machine would
execute when a graphics request was received .from the
satellite and the results would immediately be returned.

AOne problem that did not arise with the particular

application implemented is a shortage of buffer,area in
the satelllte computer. Because~the:Honeywell 316 is such
a leW'processor, most‘system data concerning picture defl-

nition and creation is kept in buffers in memory so that it

0119

is quickly retrievable. The rent application does not fill‘
up these buffers because the pictures it generates are
comparatiyely simple. A more complex application with

. more structured pictures coula rapidly fill these deta
areas if the usef was not careful; A more reliable disk
system would be an aid in preventing this problem. The major
part of the structure information for defined pictures COula
then be saved on disk and thus eliminate not only fear of
buffer overflow but the buffers themselves.

A program that did lengthy, complex calculations and
genereted a lot of data would be impractical to run on the
satellite at any time because the system would lose its
interactive characteristics. The computing power of the
remote machine would be better suited for this type of problem.
An example of such a program is one.that generates many
different views of a complex object. The user could run
his view generator at the CDC 6600 and save each of thel
scenes on disk at the satellite as they were.returned.

A similar programsmight generate a‘sequence of'movie frames.
Again the major bottleneck for these types of applications
would be'iﬁtercomputer communications. Communicatiens via
the time-sharing system would not be feesible for such4lerge'
amounts of data. A faste; communications path such as e
hard-wired channel to a peripheral processor.would be'necesf
sary. cherwise, for short streams of data the time-sharing
system weuld not produce any appreciable delays through

transmissions. ‘
120

In conclusion,ywe have‘presented an approach-to
distributed;graphiqs;systems that‘uproducesAan easlly-
‘programmahle.and'real—time reconfiéurable. intelligent‘
satelllte graphlcs system Its hlgh level de51gn is clear
and 1ts actual processor 1nterfaces and boundarles arei
well deflned,<rThe ma1n'drawback_of~the current 1mplementa-
tion is the method‘of intercomputer communications due to a
lack of suff1c1ent personnel and funds to 1nsure parallel
and complete development-of all system components.‘ We have

.shown though that a functioning dlstrlbuted graphlcs system

',can be conflgured from avallable, prlmltlve components.

A major 1nvestment in new computlng power 1s unnecessary,l

A large software 1nvestment is needed but.thls 1s-pract1ca1
to prov1de because computlng fac111t1es already have software
support staff members. Flnally, an upgradlng of the inter-
computer communlcatlons w1ll prov1de a system of very hlgh.

"'potentlal.

121

LITTLE Version

Figure 1. Virtual Structure.

122

pictufeid‘» pictureid

parent_‘“' ‘parept.

brother

son .
' son

VX

vcCenter I vy

vz

ey,

V2

" vrotmat - | . . . ,
| - ' VIi3

Vr'21

vr

22

vr23

Vr31
VI3g

vr33

. vscale _ | . vscale .

Figu;e‘Z.AFields of a Node.;' " 'Figure 3. Virtual Node Entry.

123

pictureid -

parent

brother

line

V¥y

VZl

VX9

VY,

vz
2

Figure 4. Line Leaf.

pictureid

parent

brother

arc

vX

vy

vz

start angle

stop angle

minor radius

major radius

]

Figure 5. ARC LEAF

pictureid

parent

brothe:

text string

vX

gr

sz .

humber of characters

text address

text's disk
address

Figure 6. Text String Leaf.

124

:,- ’ ’ . - : . - ’

' (a) 131ank Screep{.'

(b) Show Line =-.5,.5,0: .5,.5,0

Figure 7. Building a Picture.

125

(c) Show Line «5,.5: .5, =-.5

(@) Show Line’ .5,-.5,0: -.5,-.5

Figure 7 (Continued)

126

|

(£f) Show Circle 0,0, Radius .5

- Figure 7 (Continuéd)

©127

72

_/

Fiéure 7

(Continued)

128

HOLE .
pap

1.

i

FigureABbs Line Leaf 2.

129

.0

S 1

2

LINE - -

.5

A:o-5

0

.5

-.5
‘0

Figuré 8c. Line

Figure 8d. Line

LeafA3f

Leaf 4.

Figure 8e

Line Leaf 5.

L) e | o

o
.

l L d ‘

1.

Figure 8f.

Node: 6.

130

ARC

0 . ‘

0.

Ao.

0.

360.

Figure 8g. .Arc Leaf 7..

0

1

-0

TEXT STRING

=.1

0.

0.

H

4

text address -

Figure-8h. Text String
Leafls.-' :

idpt . , A arc
{ dax . _ ‘ : ©oax
ay - ay
dz . ' . dz
erl ‘startvapglez
dr12 stop.angleA;
<) minor radius
dr, 4 +HOS :
~ : major radius
dr21 , 4
dr22 defl;nk
dr23'
ar, | o
—— —eed . - Figure-1ll. Arc Entry
dr32- : : : in DEFTAB.
dscale
deflink
Figure 9. Node Entry iﬁjDEFTAB. N text string
| dx
line
. . dy
dxl e
. . dz
dyl :
dz. ' H - sz .
dz, | or v| }
dx., humber of characters:
dy2
disk address
" deflink deflink
Figure 10. Line Entry in DEFTAB. Figure 12. Text Entry

in DEFTAB.
131 .

Figure '13.

't entry for line leaf 2

r entry for line leaf 3‘

. t entry for line leaf 4

Steps for Saving a Picture in DEFTAB.

132

DEFTAB

1 line

2 |0 1ine

3 | line

4 | . line.

D - entry for line leaf 5

DEFTAB

'i'v . iinev "

2 | . line

3 © . line

5 | ' arc

. : entry for arc leaf 7

Figure 13 (Continued)
' 133

DEFTAB

line

line .

line

arc

v j o

Figure 13 (Cohtinﬁed)

134

t entry for node 6

DEFTAB

line

'texf string

PO ' } entry for text string

léaf 8

~;Eigure'13 (Continued)

135

DEFTAB

line

text string

T o Eentrf for top node 1

Figure 13 (Continued)
136

HASH ' ‘ ’
TABLE PICTAB DEETAB

Figure 14. Pointer Chasing in Retrieving

‘a Picture's Definition from DEFTAB.

" 137.

(a) Current Structure.’

Figure 15. Adding a'Subpigture to the Virtual Structure.

138

(b) New Struétureﬁ

Figuré'ls (Continued)

139

Figure 16. 'Modifiéation of aAPicturé's Virtual Structure.

149

vFigure 17. ' Virtual Structure in which Leaf 2
‘ Represents the Square. v

L] .

-
.

Figure 17(a). Top Node Entry.

141

0 .
1
. | s
'& (deftab entry ptr)
4
1
0.
3 0.
-n (index.of sguare) 5
Ol _‘
l.
0. :
0'
0. 0.
l. .
0.
0‘)
l.
0. 0.
0. 0.
1. i : 0.-
0. T _
1.
'00
. 1.
0'.‘
1. _ - -
Figure 17(c). Node for Circle
.5 ' '

Figure 17(b). Special Leaf for Square.

142

[2

Figure 17(d).

arc

0.

4‘0. .

0.

360.

.5

‘1

0 .

text string

-.1

.d

.0

4

-address in machirne

disk address

143

' Leaf for circle.

S

Figure 17(e). Leaf for Text String.

Appendix A

Simple SETL Primer

Atoms
integer 3, -71
real o 2.0, -3.1E-14
character strings A : 'aeiou', nulc (nuli string)
logical constants 't (true), £ (false)
label (of statements) , ,label:A,-<labe1:?

blank (created byvfunctionfggﬁgg)

.0 o undefined
subroutine
function

Operations for Atoms

Integers: arithmetic: _ +, -, *, / ; // (remainder)
cdmpariéon: - eq, ne, 1lt, gt, ge, le
:other: ' max, min, abs

Reals: above arithmetic operations except //

plus'exponential, log, and trig functions

Booleans: logical: and (or a), or, exor,

implies (or imp), not (or n)
- Strings: , '+ (concatenation), # (size)

Set Operations

€ (membership teStY;IE&A(empty set); 5 (arbitrary element);
(number of elements); eq, ne (equality tests);

with, less (addition and deletion of elements)

" e.g. {a,b} with ¢ is-{a,b,c}; {a,b,c} less b is {a,c}
' {a,b} less c is {a,b}

+ (set union), * (intersection).

144

|

|

Tuples

tuple former: if X,Yse-.,2 aren SETL objecté
t =<x;y;.,.,2> is an n-tupie
#t - is the numﬁér ofACOﬁponents of t
t (k) is.ﬁhé kth. component of t
‘ t(i:ji.'is the~tupie whose ¢omponeﬁts,'for 1ikij,'are t (i+k-1)
hd t is 't(l)A T
E<‘is L(23)

+ - is the concatenation opefatOr for tuples

Set Definition

by.enﬁherétion: {a,b,;..,é}'
set former: {é(x poee e Xy), xl 17 x2€e (x),...,

x Se (xl,...,xn 1) l C(XyreenrX))}

- Loop. Control

(while cond) block;

(whlle cond d01ng blocka) blockb°‘ is the same as
(while cond) blockb blocka; |

(Yx € s) block; .means for all elements'of the set s
éxecute the block | |

(i'i Vx-i n) block; means for all integers between i and n
execute block (éqnivalent to a DO-loop in PL/1)

Existential Quantifier

Hx € s | c(x) means pick the first x in the set s such that
¢(x) is t

max >‘3x > minlb(x) means ple the largest x such that
b(x) is true
Slmllarly for min < 3x <max, a <3x < b ete.

If there exist no x then the value of the expression is Q.

145

Subroutines and Functions (always recursive)

to call:

sub(paraml,...,paramn);
or o -
or infix: pl ggg P,

prefix: sub Py
to define:

subroutine: . ,
- define sub(pl,pz,...,pn); text end sub;

returh; to return from subroutine
or . _
define Py insub P,i text end insub;
: or : :) ‘ '
‘ : : define presub p; text end presub:
| S : . . ’
| function:
: definef fun(pl,...,pn);.text end fun;
return val; to return from a function
or ‘ , » :
- definef p, infun p.,; text end infun;
or ' 1 =—"2 - T

definef prefun p; text end prefun;

Operator with Special Side Effects

expn is x has same value as expn and

‘ assigns this value to x.

146

Appendix B
qddprimitive

deflne addprlmltlve(entry), /* a routlne to add a. prev1ously
undeflned llne, arc, or text entry to the v1rtual set */
vptr = max v1rtua1 + 1; ,
virtual = .virtual w1th vptr,:‘ o
son(top) = son(top) w1th vptr; /* add to sat of first
generatlon descendants of main node of structure *x/

parent(vptr) = top," plctureld(vptr) = g&,

£low isarc? . '
enterarc, : (tlist = tlist+<vptr>;)+
isline?
: enterline, entermessage;
isarc’ :=lleaftype(éntry) eq nf)
isline . := leaftype(entry) eq lline
enterline: vendl(thr) = endl (entry) ;
o vend2(vptr) = end2(entry),
"entermessage vcenter(vptr) = center(entry),
' vtext (vptr) = text(entry),

enterarc:. vcenter (vptr) center (entry) ;

vrotmat (vptr) = rotmat(entry); /* ang. orientation*/‘
vscale(vptr) = ascale(entry); -
vieaf ='max virtual + l
) virtual ' = virtual w1th vleaf'
son(vptr) = vleaf;

vcenter(vleaf) vcénter(vptr);,

_vstart (vleaf) 'start(entrY);

vstop (vleaf) stp(entryi;

vmajor (vleaf) mjr (entry) ;

vminor (vleaf) mnr(éntry);

parent (vleaf) vptr;.
‘ plctureld(vleaf)—nl-
tlist = tlist + <v1eaf>-
| | | end flow;
return;

end addprimitive;
: 147

-Appendix C

definitionsave

define‘definitionsave, /* a routlne to name and save the
virtual structure that represents the current picture
display. the definition is added to deftab. the defining
positional values of each node are relative to the node's
parent. in many.cases the same subset. of nodes can define
several instances Of‘the subpicture in this way */

picsearch(ppic, eflg); /* is the picture already defined */

if ‘eflg eq 0
/* yes */ then mvhresp(' 1llega1 picture name, p0551b1e
double definitlon),
retdrn;
end if eflg;
if delsw eq 0 and #son(top) eq 1
/* if the current picture has not been modified and it

consists of only one subpicture then just record the new

then namerec(pictureid(son(top)))7 name*/
' return;

“end if;

definition = nk; ~

(yvptr € son(top))builddef(top definition vptr) ’
/* build the defipition of top in deftab recursiveiy */
deftop = max deftab+l; ,deftab'= deftab with deftab;
dcenter (deftop) = vcenter(top); /* center.of_picture *x/
drotmat (deftop) = vrotmat (top) ; /* rotation ﬁatrix */
dscale(deftbp) = vscale(top); /* scale */

1dpt(deftop) definition,'

namerec (deftop); /* record name and definition in pictab */
pictureid (top) = deftop; ‘

/* now make this newly defined picture a subpicture

and create a new top node */

new = max virtual + 1; virtual = virtual With»new;
pictureid (new) = n&;
parent (new) = ng;

148

son (new) = {top};

. veenter (hew) =<<0,0,0>;

. vrotmat (new) = 1dent1tymatr1x,
vscale(new) = 1;

parent (top) = new;
" top = new;

return;

end deflnltlonsave,:

define bullddef(father deflnltlon,vptr),

/* a recur31ve routine to translate the virtual. structure

into a subpicture definition in deftab */

/* check to see if this node or

whether it or one or more of

modified */.

if pictureid(vptr) ne ng

then /* it is defined so add

definition
return H

end 1f°'

'/* thls node or. leaf 1s undeflned

149

= definition with

-leaf, thr, is defined or

.its descendants has been

to definition */°
pictureid (vptr);

so it must be defined

first */
flow ‘isprimitive?
wh1chpr1m1t1ve° 4 " definenode,
: dline, darc, dmess, dspec; - '
4 whichprimitive: subflow(linelt, arcelt,~messélt, specelt)
' ' | isline? A
linelt, isarc?
arcelt, ismess?
messelt, specelt;
-isprimitive := leaftype(vptr) ne Q '
isline := leaftype(vptr) eq 1lline
isarc - := leaftype (vptr) eq arc
ismess = 1eaftYpe(vptr) gg_message

definenode: défvptf = nf&; /* initialize definition set for vptr*/
(Yv € son(vptr))
builddef (vptr,defvptr,v);;
/* calculate relative values for definition */
<tx,ty,tz> = (vcenter (vptr) tsub vcenter (father))

vescal (1/vscale(father)) ;-

defnode = max deftab + 1; deftab=deftab with defnode;

drotmat (defnode) matmul (matinv(vrotmat (father)) ,vrotmat
. ' (vptr));

trot(matinv(vrotmat(father)),<tx,ty,tz>);

dcenter(defnode)

dscale(defnode) = vscale(vptr)/vscale(father);
idpt (defnode) = defvptr;
pictureid(vptr) = defnode;

dline: /* calculate relative values for definition * /
defleaf = max deftab + 1; o
idpt (defleaf) = 1lline;
<tx,ty,tz> = (vendl(vptr) tsub Vcenter(father))
) vescal (l/vscale(father));
dendl (defleaf) = trot(matinv(vrotmét(father)),<tx,ty,tz>);
<tx,ty,tz> = (vend2(vptr) Egggivcentér(father))-'
L 'vescal (1/vscale(father));
dend2 (defleaf) = trot (matinv(vrotmat (father)) ,<tx,ty,tz>);
pictureid (vptr) = defleaf;
deftab = deftab with defleaf;
darc: defleaf = max deftab+l}
. idpt (defleaf) = arc; .
dcenter (defleaf) = <0,0,0>;
dstart (defleaf) = vstart(vptr);

dstop(defleaf) = vstop(vptr);

dminor (defleaf) = vminor (vptr);

dmajor (defleaf) . vmajor(vptr);

pictureid (vptr) defleaf;

deftab = deftab with defleaf;
dmess:defleaf = max deftab+l;

idpt (defleaf) = message;

150

/* calculate relative start of message */
| <tx,ty,tz> = (vcenter (vptr) tsub vcenter (father))
Vescai(l/vscale(father));
dcenter (defleaf) = trot (matinv(vrotmat (father)),<tx,ty,tz>);
pictureid (vptr) = defleaf; ' o
dtext (defleaf) = vtext(vptr);
deftab = deftab with defleaf;
dspec: defleaf = max deftab+l;
idpt (defleaf) = son(vptr);
/* calculate relative wvalues . */ . }
<tx,ty,tz> = (vcenter (vptr) tsub vcenter (father))
vescal(l/vscale(father));
trot(matiny(vrotmat(father),<tx,ty;tz>);
mathl(matinv(vrotﬁat(father)),
' vrotmat (vptr)) ;

i

dcenter (defleaf)
drotmat (defleaf) -

dscale(defleaf) = vscale(vptr) /vscale(father);
"pictufeid(vptr) defleaf; ' ‘
deftab = deftab with defleaf;

‘end flow;-
definition = definition with pictureid(vptr);
return; - ’ ' o
end builddef;

151

Appendix D

modifypicture

define modifypicture(changes); /* a .routine to reflect in
the "virtual" set changes desired by the user in the
picture display. "changes" is the set of elements in
"virtual" which are to be modified ‘*/
/* calculate a rotation matrix rmat based on the direction
angles deltaalpha, deltabeta, deltagamma, and -angle of
~ rotation deltatau */ '
rmat = rotmap(deltaalpha, deltabeta, deltagamma, deltatau),
(Yvptr € changes) .
if vptr ne top /* are we modifying the whole picture */
then ' /* no */
i =Amodvlinks(vptr);
if i egq 'no' /* was this nak;élready in sdn(top) */
then . /* no, mark'it and its ancestors. as
no longer being defined in deftab */
tnvptr = parent(vptr); |
'pictureid(vptr)‘='n2;
parent (vptr) = top;
(while tnvptr 7= top doing tnvptr—parent(tnvptr))
pictureid (tnvptr) = n&;
end while; ' _
son(top) = son(top) with vptr;-
end if i eq 'no';
end if vptr;
/* now modify the components of the node */
modvirt ual (vptr); |
‘end Yvptr;
‘return;

end modifypicture;

152

definef modvlinks(node); /* a function. which checks to see
if parent(node) eg top. .. if so,,it,returns‘a value of
'ves' indicating that node. is already an immediate
descendant of top. if parent(node) Eg-top then nqde
is removed from set -of descendants of its parent and
; the value 'no' is returned */
cvptr = node;
- (while parent.(node) ne top)
tnvptr = parent(node);
if #son(tnvptr) gt 1 /* more than 1 son */
then -/* remove from set */
- son(tnvptr) = son(tnvptr) less node;
if leaftype(cvptr) ne arc . '

then node cvptr; .

parent (cvptr) ;

else node ,
/* no need for undefined ancestors */
end if; |
return 'no';
else
node = tnvptr;
~end if;
‘end while;
return 'ves';
end modvlinks;

153

define modvirtual(vptr); /* a subprogram which modifies the
components of the vptr entry of the virtual set
according to values in the deltaset. if vptr has any -
descendants, modvirtual recursively modifies them */
flow isprimitive?

(tchng=tchng with vptr;)+ modnodeentry+
whichprimitive? 4 ((YvE€son (vptr) Jmodvirtual(v);;),
‘'mline, marc, mtexf, mspec; ' _'
whichprimitive: subflow (linelt, arcelt, messelt, specelt)
‘ isline? . |
linelt,- ~ isarc?
| arcelt, ismess?
messelt, specelt;

isprimitive:= leaftYpe(vptr) ne Q

isline := leaftype(vptr) egq lline
isarc := leaftype(vptr) eq arc
ismess . = leaftype(vptr) eq message

modnodeentry: /* calculate rotated displacement */
<tx,ty,tz> = vcenter (vptr) tadd <-rx,-ry,-rz>;
/* <rx,ry,rz> is the origih of the axis about which
the rotation occurs */
<xX%,y%,2%2>= trot(rmat,<tx,ty,tz>)
tadd <rx,ry,rz>;
/* now scale and add in displacemeﬁt */ '
vcenter (vptr) = (<x&%,y%,2z8> vescal deltascale)‘gggg
‘ '<deltax;deltay,deltaz>; A
/* modify rotation matrix */
vrotmat (vptr) = matmul (rmat, .vrotmat (vptr));
mline: /* change line endpoints */
<tx,ty,tz> = vendl(vptr) tadd <-rx,-ry,-rz>;
<x%,yL,28> = trot(rmat,<tx,ty,tz>)
tadd <rx,ry,rz>; »
(<x%,y%,28> vescal deltascale) tadd
<deltax, deltay, deltaz>;
vend2 (vptr) tadd <-rx,-ry,-rz>;

vendl (vptr)

<tx,ty,tz>
<x%,y%,28>

trot (rmat,<tx,ty,tz>) tadd <rx,ry,rz>);

154

vend2 (vptr) = (<x%,y%,z8> vescal .
‘ deltascale) tadd <deltax,deltay,deltaz>;
marc: /* an arc has the same transformed center as
' its parent */
vcenter (vptr) = vcenter(parent(vptr)),
mtext: /* transform position of start of text */
<tx,ty,tz> = vcenter (vptr) tadd <arx,-ry,?rz>;
<xf,y%,z8%> = trot(rmat,<tx,ty,tz>) tadd <rx,ry,rz>;
vcenter (vptr) = (<x2,y%,z8> vescal deltascale
‘ B tadd <deltax,deltay,deltaz>;
mspec: .. /* transform center, adjust scale; and
rotation matrix */

<tx,ty,tz> = vcenter (vptr) tadd <-rx,-ry,-rz>;

<x%,y%,2z8> = trot(rmat,<tx,ty,tz>) tadd <rx;ry;rz>;

vcenter (vptr) = (<x&,y%,z8> vescal deltascale)

tadd <deltax deltay deltaz>-
vscale(vptr) = vscale(vptr) * deltascale;
vrotmat (vptr) = matmul (rmat,vrotmat (vptr)) :
| : | end 5122;'
return:7 ‘ . |
end médvirtual;

"aefinéf’a'ﬁgggfb;',/* this function does comp0neﬁ£ addition
S ' of ‘tuples a and b */
if $a eq 1 A ‘
- then returh <hd a + hd b>-
else return <hd a + hd b, t a tadd tg b>;
end if; R
end tadd;
definef a vescal bf, /* thlS functlon multlplles the vector a
L ' by the scalar b */
if #a eq 1 . , .
thén return. <hd a * b>;
else retufn <hd "axb, t2 a vescal b>;
end if;
end vescal;

155

Appendix E

Communication Formats for Data between the Honeywell 316

“and the CDC 6600

Fram the CDC 6600 to the Honeywell 316

All blocks from the CDC 6600 will have a six word
header which is consistent.with the format of a display file.-
The -first word of-the header will have the total ﬁumber df
words in the block. The right byte of word 6 will describe -

the type of the block. At the mament, ten types are

assigned.
Type | _ 'l 9222. e
0 o : A*sfandard aisplay file"
1 | A display segment for a point list
2 A display segment for an edge list
3. | . A display segment for_aApolygon_list
4 i A Veétor General ASCII message for
display to the user ‘
5 A-point lisf'
6 " an edge.list
7 A polygon list
8 ' - A part of the VIRTUAL structure
9 ' A leaf list and thé gonreéponding seg-

ment list. It precedes a block of

" type 0.

156

In blocks of types 0 - 3, words 2 - 5 may have a one
to eight character name.

In a user message block (type 4), word 7 contains the
number of words in the messaée which begins'in word 10.

In a p01nt list block (type 5), word 7 contalns the
number of p01nts in the llSt.A If word 7 is negatlve the
points have two dlmen51onal coordlnates, otherw1se they have
three dlmen51ona1 coordlnates. After word 7 comes flrst the
list of x coordlnates, then y coordlnates, and then p0551b1y
z coordlnates.

In an edge list block (type 6),‘word 7 contalns the
number of edges in the list. Next comes the list of points
which are the first end p01nts and then the list of p01nts
which are the second end p01nts of the edges. Flnally comes
the point list which is of the form described for block 5.

In a polygon list (type 7), word 7 contains the number
of polygons. Next for each polygon comes a word with the
number of edges in the polygon and a list of the edges. After
all the lists of the polygons' edges, comes an edge list in
the form of a list from a type 6 block.

Blocks of types 8 and 9 will not be defined here because

there will be no immediate implementation.

From the Honeywell 316 to the CDC 6600

Currently, all transmissions to the CDC 6600 are in the
form of batch "JOB" streams or are queries aboﬁt or requests
for data from the CDC 6600. The only data concatenated to a
"JOB" stream would be a text string representing the command for

processing. 157

Appendix F |

GraphicstLihrary Package

In order to make graphlcs programmlng‘easy for an
appllcatlon de51gner, a llbrary of graphlcs subroutlnes
has been prov1ded The llbrary has routlnes whose calls
. are 51m11ar to those of tne programs prov1ded in a CALCOMP

Apackage for a plotter.‘

Plot Initialization'

. Béfore a user can create a dlsplay llst he must call

the plot 1n1t1allzatlon routlne

- CALL PLTINIT(FILENAME}ANGLES,USERSCALE,USERORIGIN,PLOTDIMS);

where FILENAME is a self-defined string of at most eight.
character57WhichAwiii'he the hame of the file}.ANGLES is

‘a real arfay of fqurfelements representing the four-direc-

" tion angles,'a,fB, &, and t; . the USERSCALE is .the maximum
real value to be diSplayed- the USERORIGIN is a real array .
of plcture dlsplacements, dx, dy, (and dz); PLOTDIMS is
elther 2 or 3 to’ 1nd1cate a two or three d1mens1onal drawing.
If the FILENAME is the empty strlng then the flle is given .

the name 'NAMELESS'.

158

D;awing Routines

',x;Inﬁondgt to dxawzé tWo.dimensional picture,. the user
"y¢anywpitenaQsequenc¢:of commands of the form '
CALL PLT2D(X,Y,BEAM);
- -where X, Y .are real user: coordinates of the new point and
the value of BEAM. determines the'type of line drawn.’
" BEAM = 1; the beam draws a solid 'line-as it moves
= 2; the beam draws a-dashed line as it moves

the beam draws a dotted line as it moves

I
w
~ .

= 4; the beam draws an end point only at.
the end of a move
< 0; the beam moves without drawing.
In order to draw a three dimensional picture, the
programmer uses

CALL PLT3D(X,Y,Z,BEAM);

where X, Y, Z are the real coordinates of the new point and -

BEAM takes on the valués indicated above.

~ Positioning tgg_Bgaml.!

'_ATo position the béam on the Z = 0. plane, the
,progfammér intes - . | | N
 ‘1¢§$;'ﬁovéD§$,¥);

-~ where.X,Y :érefréélwuser;coordinatés:for4the.beam poéition,

' To position the beam in three space, one writes

159

. .CALL MOVB(X,Y,Z);

where X,Y,Z are real user coordinates for the beam position.

Establiéhing a New Origin

To establish a new absolute origin for two dimensioﬁal;

plotting one uses
CALL ORIGIN2D(X,Y);

where X,Y are the user's real absolute coordinates for the
new origin.
In three space, one uses
CALL ORGIN(X,Y,Z);
where X,Y,Z2 are real absolute coordinates. In either case
the origin is noncumulative. The coordinates are relative

‘to the center of the screen.

Graph Plotting

To draw a graph that plots ailist~ofbpoints, the

programmer can use
VCALL GRAPH(XARRAY,YARRAY,NUM,CYCLESIZE,BEAM;SYMBOL,XSCALE;YSCALE);
where XARRAY,YARRAY are real arrays of X and Y coordihates;

NUM is the number of points to be plotted; CYCLESIZE is

the repeét‘cycle of -points gfaphed; 1 + I * CYCLESIZE for

I = 1 to NUM; BEAM is the mode fof the graph; SYMBOL ‘is a - |

special ASCII symbol to mark points; XSCALE is the real scale €

160

factor for the x eoordinates; and YSCALE is the reél scale
;fattbr;fbr'the:y;cbbrdinates; If SYMBOL =0 then.no special’

*;Symbol;markS‘the pbints,

Solid of! Revolution
1VjToApfodueela solid of revolution about the Y-axis'

AAfrem a'curve"in the'x,ylplane,fthe“user can -call the routinef

MAKESOLID.

CALL MAKESOLID(XARRAY,YARRAY,NUM,CYCLESIZE;BEAM,SYMBOLf

' XSCALE , YSCALE) ;

where the parameters are the same as those for GRAPH. The

-.original.two dimensiohal'Curve is repeated at forty degree

intervals around the y—axis.

Axis Drawing
To produce a horizontal or vertical axis with labels,
_ the user can call the routine AXIS.-

CALLHAXIS(X,Y,TEXT,CHZ,LENGTH,ANG/ASTART,DELTA,DIV,XSCALE;YSCALE);

.where X”f afe.user ..eebrdinahes fof the:start of the'éXis}
TEXT is a self deflned strlng for descrlblng the ax1s,-

,CHZ is the character size (1-4) of TEXT; LENGTH is the length
wof.tne .axls; ANGelsJOf or190, to ;.descrlbe‘the‘dlrectlon

. of:the:akis;yASTART;ie:theereel:vélue“tOpbefwritten'at’the
start:-of the-axis; DELTA is the change.in value for AXIS

numbering per division; DIV is the number of division marks

161

on the axis; XSCALE is a .real scale factor for the x coordi-

nates; and YSCALE is a real scale factor for the y coordinates.

Text

In order to write a string of text on-the display, the

programmer may write

CALL SYMBOL (X,Y,Z,TXT,CHZ,ANG);
where X,Y,Z are scaled user coordinates whose magnitudes'are
less than or equal to the user scale defined in the plot
initialization routine; TXT is the character strirng to be
plotted; CHZ is the character size (1-4); and ANG = 0..0r . 90..

for either horizontal or vertical text.

Real Numbers

To format the first N characters of a real number in - ~

ASCII for the display device,.a programmer uses
CALL FORMFLT (VALUE,ASC,N);

where VALUE is the real number; ASC is the array that holds

‘the ASCII; and N is the number of characters in ASC.

ASCII CHARACTERS

WhénAa user formats an ASCII character block in an

array, he can add it to the display list with
CALL CHARBLOCKADD(BLOCK,LENGTH,SIZE,DIR);,

where BLOCK is the array containing the characters (2 charac- "

162

ters/word); LENGTH is the number Qf>words.in the BLOCK;
"SIZE is the character size (1-4); and DIR is 0. or 90. for .
a horizoﬁtéi 6r'vertiéal directiqn.uAThévroutihe adds ér
éharéctef'ihétfﬁétiéﬁ‘aﬁd the éhéfactér‘bloék'tq the display

file and makes sure the block terminates properly.

Two Dimensional Rotation

To. change - the rotation matrix from the original
setting in PLTINIT, the user may write
CALL ROTATION (THETA); .
where THETA is a real number in degrees. The rotation matrix
is reinitialized to the value calculated from the THETA

about the Z-axis.:

Misce llaneous Routines

The routines which follow would probably not be used
by most users.

To load any rnumber of display address registers (in
the CRT éontroller)

- CALL LOADR (DAR,VAL,NVAL) ;

" where DAR is the first display address register; VAL is an
array of values; and NVAL is the nunber of values to be
loaded.

io determine the current position of the beam in user

coordinates tunless the previous command produced text, use

163

CALL WHERE (X,Y,Z);

- where X,Y, and 2 contain the last user coordinates.
' To decide. whether plotting is permissible, one can

invoke the functiQn
GRPHSTAT (X)

_'Where X is a dummy argument to determine the system status.
If GRPHSTAT is nonzero then plotting is permissible,

otherwise it is not.

Plot Termination

To terminate a plot,
CALL PLOTFIN; °

On the‘Honeywell 316 this just terminates the last command.
On the CDC 6600 it also packs the display 1list into 60 bit
words and then writes a file. .This file can be routed-to

the satellite computer.

164

Bibliography

Bauer, F. L. (1972)‘ "Software Englneerlng , Proceedlngs

of the IFIP Congress 71, edited by C V Frelman,

North Holland pPP. 530-538.

Bauer, F. L. (ed.) (1973). Advanced Course on Software :

Engineering, Sprihger-Verlag.

Bergeron, R. D. et al. (1972). "Systems Programmlng

Languages", Advances in Computers 12,.pp. 175-284.

Boardman, T. L., Jr. (1974). "Hardware/SoftwareADe51gn

Considerations for High Speed/Low Cost Interactive

Graphic Communication Systems", Proceedings AFIPS

1974 National Compﬁter Conference, Vol. 43, AFIPS

Press,;pp. 273-278.
Beukens, J. and'Deckers; F. (1974) | "Chief, An Exten31ble
Programmlng System r in (van der Poel, 1974), pp. 129-148.
Christensen, C. and Pinson, E. N. (1967). "Multifunction

Graphics for a'Large Computer System", Proc. AFIPS 1967

FJCC, Vol. 31,VAFI?S Press, pp. 697-711.

Cbtton, I. and Greatorex, F. S., Jr. (1968) . "Data Structures

ahd}TeChniques for Remote Computer Grapﬁics“, Proc.AFIPS
1968 FJCC, Vol. 33, Pt. 1, AFIPS Press, pp. 533-544.

Denert E. et al. (1975) "GRAPHEX68: Graphical Language

Features in Algol 68" Computers$ and Graphic¢s, Vol. 1,

APergamon Press,_pp. 195-202.

- 165

Dennis, J. B. (1973).' "The Design and Coﬁstrﬁction.of

| Software Systems", in (Bauer, 1973), pp. 12-27.

" Dill, J. C. and Thomas, J. J.'(1975). "On the Organization
. of a Remote Low Cost Intéiligept Satellite Gfaphics

Terminal”, Cdmputer Graphics 9, 1, pp. 1-8.

Foley, J. D. (1971). "An Approach'to the Optimum Design
of Computer Graphics Systems", CAC: 14, 6, pp. 380-390.
Foley, J. D. (1973). "Software for Satellite Graphics

Systems", Proceedings ACM 1973 Annual Conference,

- pp. 76-80.
Gammil, R. C. and Robertson, D. (1973) . "Graphiés'and

Interactive Systems-Design Considerations of a Software

System", Proc. AFIPS 1973 National Computer Conf-
~ erence, Vol. 42, AFIPS Presé,'pp. 657-662. A A
Garwick, J. (1972). "Sydel", in (van der Poel, 1974),
 pp. 519-524. |
Geigelbrechtinger, F. et ai. (1974); "Language'Léyers,.
Portability, and Program'StructuringW, in (van der Poel,
1954), pp. 79-99. | o
‘Hémlin, G. Jr. and Foiey, J.{D.V(1975). "Configurable
Applications for Graphics Employing'Sate;lites;(CAGES)"}.

Computer Graphics 9, 1, pp. 9-19.

Hamlin, G. Jr. (1976). "Configurable Applications for

Satellite Graphics", Proc. of the Third Annual Confer-

e

ence on Computer Graphics, Interactive Techniques and

Image Processing - Siggraph '76, ed. by U. W. Pooch,

pp. 196-203.
166

Horning, J. J. (1972). ﬁxpL", in (&aﬁ der Poel, 19?4),

pp. 529-531. |
Iéﬁbiah,iJ.'D;"et,élf (1974{._ ”The fw§ LevéliApproach to

| Daté Indepéndent»Prograhminé;in:the LI$ SyStem,Imp1e-:i'
Ameﬁta#ionALahguageﬁ,'in'(van dertPoel, ;974), pp. 161-169.
‘ JQYée,-J.“D. énd_cianciq;o, M. J. (1967). _"Reactive Dis-

.A plays;:.Improving-Man—Machine Gr@phical'Communicatiqn",

Proc.AFIPS 1967 FJCC, Vol. 31, AFIPS Press, pp. 713-721.

Kilgour,;A. C. (1971). "The Evblﬁtion_ of a Graphics-System

er.Linked,Computers",'Software-Practice~ and Experience

Vol. 1, pp. 259-269.
Klunder, J. (1974). "Experience with)SPLS,'in (van dér Poel,
1974), pp. 385-393;
“'Lindsey,,c. H. (1972) . "Algql 68 with Fewer Tea;s”L-QQmEuy.vJ.:
_ 15, 2, pp. 176f188; | ‘
Miéhél, J. and van Dam, A. 11976); "Experience with: .
| -Distributed Processing on'a.Host/Saﬁellite'Graphics“”.~

System", Proc:'of thg.Third Annua1 Conf. on Computer

Graphics, Interactive Techniqueé, and Image Processing =-

vgéggfgph‘ﬂ7§,: ed. by U. D. Pooch, pp. 196-203.
Morris; J,ﬁB; (1973)... "A Comparison of Madcap:and SETL?,
Los Alamos Scientific Lab., U. of California, Los Alamos,
"~ . New Me#ico.

Newman, W. M. and Sproull, R. F. (1973). Principles of

Interactive Computer Graphics, McGraw-Hill Book. Co.

167

Newman, W. M. (1975). "Instance Rectangles and Picture

- Structure”, Proc. of the Conference on Computer

Graphics, Pattern Re¢ognition, . and Data Structure,

May 14-16, 1975, pp. 297-301.

Schwartz, J. T:. (1973). On Programming: An Interim

Report on the SETL Project, Installment II (now

combined with Installment I): The SETL Language‘and

AExamgles of Its Use, Courant Inst., New York Univ.

Sch&artz, J. T. (1975). "“"Automatic Data Structure Choiée
in a Language of Very High Level", Comm. ACM 18, 12,
pp. 722-728. | ‘ |
Shields, D. (1976).' "Guide to the LITTLE Language", Courant
Inst., NewVYork Univ. '

Solow, R. M. (1973). "On Equilibrium Models of Urban

Location", Essays in Modern Ecomomics, ed. by J. M.
Parkin, Longmans, pp. 2-16.
. Strauss, Charles M. (1974) . "Computer-encouraged Serendipity

in Pure Mathemétics",tProc..of the IEEE, 62, 4,

PP. 493-495. '
Stuart, T. (1975). 5Adapting Large Systems to Small
Machines ", Courant Inst., New York Univ. |
Stuart, T{ (1976). "A Minicomputer System Language ",
Courant Inst., New York Univ.
Van Dam,'A. and Evans, D. (1967). "A Coﬁpact Data Stfuctﬁre
’~for~Stofing, Retrieving, and Manipulating Line’

Drawings ", Proc. of SJCC, Vol. 30, Thompson Book. Cd.)

pp. 601-610.
168

Van ﬁém, A. (1971). :“Microprogramming for Computer Graphics",

SIGGRAPH, 5, 4.

~ Van Daﬁ, A. and Stabler, G. M. '(1973) “Inteiligent Satel=-

lites for Interactlve Graphlcs i+ Proc. AFIPS Natlonal

Computer Conference 1973, pp. 229~ 238.

Van Dam, A. et al., (1974).»‘"1nte;11gent Satellites for

IhteractiVe Graphics", Prec[,of:the IEEE, 62; 4, pp.
483-492. |
van def Peei, W. L. and Maarssen, L. A. (1974). Machine<'

Oriented Higher Level Languages, American Elsevier.

~ Wells, M}-B;m(1974)@.fﬁAlgbrithmic Lahguages and Machine
‘Oriented Tasks", in (van der Poel, 1974); ép, 49-65.
Wichman, B. A. and Bell, D. A. (1974): "PL516", in '
" (vah der Péei,-1974); pp. 501-508.

Awilliams, R: (1971): "A Survey of Data Structures for

Computet Gfaﬁhic’éy5temé"r Computing,suﬁyeys 3, 1,

PP- i=21{ H | | . | |
Woodsford, B: A. (1971). "Design and implementaﬁion of

thevGiNQ 3ﬁ Gréphics Software Package", Software-

Prastice and Experience, 1, 4, pp. 335-366.

Wycherley, R. D. H. (1972). "An Interaction Hahdling

Technlque for Satelllte -Graphics", Proc. of the IFIP

Congreéss 71; C. V. Freiman (ed.), North Holland,

pp. 435= =439, -

169

This report was prepared as an account of
Government sponsored work. Neither the-
United States, nor the Administration,
.nor any person acting on behalf of the
Administration: ‘

A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of.
the information contained in this report,
or that the use of any information, L
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages .resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used 1n the above, "person acting on behalf
of the Administration" includes any employee
.or contractor of the Administration, or »
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.

170

