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MODE SPECIFICITY IN UNIMOLECULAR REACTION DYNAMICS
BOYD ALAN WAITE

ABSTRACT

Theoretical studies on mode specificity in unimolecular reaction
dynamics are presented, based on essentially exact quantum mechanical
wethods (viz., the complex scaling method), a semi-classical m-lti-
channel branching model, and classical trajectory methods. The prin-
cipal aim is to discover the relevant factors governing whether a
unimolecular system exhibits mode specificity in its individual state
rate constants, l.e., whether quasi-degenerate metastable states
decay with significantly different rates. Model studies of two non-
linearly coupled oscillators (one of which can dissociate) demonstrate
the effects of varlous features of potential energy surfaces on the
character of the rates (e.g., degeneracy of modes, reaction path
curvature, frequency modulation, etec.). These results and those
obtained for the Henon-Heiles potential energy surface indicate an
apparent absence of correlation between the quasi-periodic/ergodic
motion of classical mechanics and the mode specific/statistical
behavior of the unimolecular rate constants.

A different type of mode specificity, i.e., a symmetry-induced
mode specificity, 1s demonstrated for systems possessing some degree
of symmetry along the reaction path. States belonging to different

irreducible representations may display significantly different rates,
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even though there may be statistical-like behavior within a given
representation.

In order to deal with the question of mode specificity in more
realistic polyatomic systems, a semi-classical multi-channel branch-~
ing model is developed, with dynamical approximations based on the
reaction path Hamiltonian and the semi-classical perturbation-infinite
crder sudden approximation. The model is applied with success to a
state-specific unimolecular decomposition system, as well as other
polyatomic dynamical processes.

Finally, a study of the formaldehyde unimolecular decomposition
is presented, with attention focused on the unique role of the out-
of~plane bend in determining the mode specific character of the decay
rates. Results indicate that both symmetr)-induced mode specificity
and dynamical mode specificity (s..e., within a given irreducible

vepresentation) are present in this system.
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I. Model Studies in Unimolecular Reaction Dynamics

The modern theories of unimolecular reaction rates have their
.1
foundations in the famous Lindemann Mechanism™, first proposed in

1922, which has the following kinetic scheme:

*
A+ M - A+ M (activation) (1.1a)
* d
A+ M - A+ M (deactivation) (1.1b)
* k(E)
A - products (reaction) {1l.1c)

The molecular species to undergo unimolecular reacticn is represented
by A, its internally excited (or activated) form by A* , and M
represents some colliding partner. The rate coefficient k(E) in
Eq. (1.1lc) depends on the total internal energy E and (in the
general case) the initial distribution of that energy among the
internal states.

Theoretical interesc2 has focused on the third step (Eq. 1l.lec),
where an activated molecule undergoes energy redistribution until
sufficient energy is localized in the relevant reacrive mode,
whereupon reaction occurs. The nature of the theorerical treatments
or models describing the process in Eq. (l1.lc) has taken various
forms.2 The most successful of these2c have been founded upon sta-

tiscical theorles, similar in spirit to those employed in conven-



tional transition state theory3 for bimolecular collisions. In fact,
this statistical approach (i.e., the RRKM theoryz) for treating
unimolecular reactions can be shown to be the microcanoni;al en~-
semble analogue of transition state theory.A

For the process (Eq. (l.lc)), the RRKM expression for the rate
coefficient k(E) has the following form:5

N(E)

k(E) = ————— (1.2)
2R Ng(E)

where N(E) and NO(E) are the integral demsities of states for the
transition state (or activated complex) and for the reactant mole-—
cule, respectively.

When thils expression is incorporated into the overall mc hanism
of Eq. (l.1), experimental results are reproduced with very great
success for many polyatomic systems.6a This success has led many
workers in the field of unimolecular reactions to the conclusion
that, at least for most polyatomic systems, th2 underlying assump-
tions of the RRKM theory are valid,6b these assumptions being that
(1) internal energy of the activated molecule is redistributed among
all the internal degrees of freedom on a time scale fast compared to
unimolecular reaction, and (2) all internal states of the molecule
are accessible and ultimately lead to products.7

It has only been in recent years that experimental technology
has allowed for direct testing of the validity of these assumptions.

For instance, the possibility of exciting the molecular species in



the activation step (Eq. (l.la)) to some specific state (e.g., via a
local mode overtome excitatiom with a laser) might lead to some type
of mode specific behavior. The assumptions of the RRKM theory pre-
clude the possibility of such behavior in that the excited system
must immediately lose its memory (due to rapid intramolecular relaxa-
tion) as to which particular mode was initially excited. In other
words, within the RRKM picture, the rate constant k(E) for the
process in Eq. (i.lc) can only depend upon the total internal energy,
and not upon the initial distribution of that energy. Throughout
the remainder of this work, such behavior in the rates will be refer-
red to as statistical behavior.

If a molecule is excited in a specific way, as is possible with
a laser, and if we consider an isolated, collisionless molecular
system, then the basic question to be addressed is whether or not
unimolecular chemistry (i.e., product formation) will occur before
intramolecular relaxation processes destroy the specificity of the
excitation. Stated another way, one asks if the rate of the reaction
(Eq. (1.lc)), or other characteristics of the reaction such as product
distributions, depends not just on the amount of excitation energy
but on the specific way this energy is put into the molecule, i.e.,
on which modes are excited.

As an extreme example of unimolecular behavior, consider the
formation of Van der Waals complexes in a molecular beam.9 For a
glven amount of vibrational energy in I2 ** ° He , for example, it

is clear that the rate of decomposition depends on whether the energy



is initially in the vibration of the I2 molecule or in the weak
Van der Waals bond., Such a system would be sald to exhibit mode
specific character in its decay rates. For more normal molecules,
however, such obvious characterization of the rate behavior is not
possible, and it has been commonly assumed that mode specific effects
are unimportant for such systems. Several recent experimental
studies,10 however, claim to have observed such mode specific
effects in "typical' unimolecular systems (e.g., allyl isocyanide

isomerizationloa).

A, A Phenomenological Example

Recent theoretical work related to mode specific chemistry has
taken two directions. One approach11 has been concerned with the
question of ergodicity as it relates to intramolecular dynamics,
there being a seemingly natural connection between the ideas of
chaotic behavior and the statistical assumptions of the RRKM theory.
Many attempts have been made at establishing a connection between
classical and quantum mechanical ergodicity in hopes of being able
to describe the relevant features of the intramolecular dynamics.

A second approach, the one to be followed in this presentation, con-
siders more directly the dynamics of the unimolecular reaction. That
this approach should be more fruitful in dealing with the question

of mode specificity in unimolecular reaction uynamics is seen in the

following phenomenological example.



Consider an elementary two-state model of unimolecular reaction,

whose kinetic scheme is as follows:

in
1 E 2 (1.3a)
in
1+t products (1.3b)
kZ
2 »+" products (1.30)

"

The rate of intramolecular transfer between "states” 1 and 2 is k

in’
and "states" 1 and 2 react at rates k; and k, , respectively.
Solving for rhe eigenvalues of the resulting set of master

equations yi-lds the following intriansic reaction rates:

) )2
rate = (k +k, )/2 ¢ Z (1.4)
2
kln +~\/kin + R kl - k2 2
(L2

This system is ergodic by construction, i.e., it spends the same
amount of time in each of the states 1 and 2 due to the equal
rates of hopping back and forth between the states. The statistical

rate, i.e., kl + kz /2 , however, is obtained only in the limit

which, of course, corresponds to the standard RRKM assvmptions. In

the opposite limit the system is mode specific with rates given by



k. or k, , even though the intramdlecular dynamics is ergodic. The

1 2
relevant result of this simple phenomenoclogical example is that the
approach of considering only the {ntramolecular dynamics may lead
to erroneous conclusions regarding the unimolecular dynamics. In
other words, whether the intramolecular dynamics is formally ergodic
or not in the infinite time limit does not seem as relevant to mode

specificicy as does the rate of intramolecular energy transfer com-

pared to the rate of the chemistry of interest.

B. A Model for Unimolecular Decomposition

The simplest model of unimolecular decomposition is a system of
two coupled oscillators, one of which can dissociate. The object in
studying such a simple model would be ro calculate the unimolecular
reaction rates associated with it, and then, by varying the relevant
parameters of the potential energy surface, see which are most impor-
tant in distinguishing between mode specific and statistical behavior.
Past studiesl2 of such coupled oscillator systems, however, have shown
that for energies above the classical threshold for reaction the
molecule decomposes too fast for any amount of coupling between the
oscillators to yield the purely stalistical limit. In order to over-
come this difficulty inherent in two oscillator models, it is necessary
to choose the dissociative oscillator to have a potential barrier to
dissociation 50 that the reaction must proceed by tunneling., By

varying the size of h (which is arbitrary for a model system), one



can thus slow down or speed up the rate of dissociation without
significantly affecting the intramolecular vibrational dynamics.

Thus one might be able to find a system of two oscillators which
exhibicrs the necessary balance between intramolecular relaxation rates
and unimolecular reaction rates necessary for statistical behavior

in the cverall decay rates.

The Hamiltonian for the two-oscillator system to be considered

is

2
P
. X ¥ 1 2 2
H T + - + vl(x) + meyy +Vc(x,y) (1.5)

where Vl(x) is a potential function as shown in Fig. 1, and Vc

is the interaction which couples the two oscillators. Such a system
has only metastable or quasibound vibrational states, which are
characterized by complex energies, Er - il'/2 , as is well known

from resonance scattering theory.13 The real part of the complex
energy Er is the energy of the metastable state, and the imaginary
part is related to 1its lifetime T and the unimolecular decay rate k

by
k = 1/t = T/h (1.6)

The determination of the state specific unimolecular decay rates for
such a system would consist of calculating the complex energies for
all the quasibound states. iInspection of the resulting decay rates

congidered as a function of energy would then indicate whether the



system was mode specific or statistical in its rate behavior.

To demonstrate this scheme for evaluation of unimolecular
systems, it is illustrative to consider first the uncoupled case, i.e.,
v = 0 in Eq. (1.5) . The complex enevgies are then characterized

c
by a quantum number for each oscillator and are additive:

@
[}

( € " iFn /12) + €, 1.7
X’y X b3 y

Note that in this uncoupled limit, only the enexgy of the x-mode is

complex. The energy E and the rate constant k for the quasibound

state with quantum numbers n and ny are then

E = € + € (1.8a)

k = T /h (1.8b)

This represents the extreme of mode specificity; the energv,
once deposited in a given mode, remains isolated in that mode. The
rate of decay depends only on the quantum number (and thus the energy)

of the x-mode. By plotting the individual state rate constants kn n
x"y
versus total energy En n * 3s in Fig. 2 , this mode specific or

’

b3
non~statistical character is dramatically evident. For a statistical

or RRKM-like system, k should be a smooth monotonically increasing
function of the total energy E , and the present uncoupled system

depicted in Fig. 2 is clearly the opposite extreme.



An interesting observation connecting this uncoupled (or weakly
coupled) picture to standard RRKM rate expressions can be made as
follows. Consider the limit of many closely spaced energy levels in
an uncoupled system (as in Fig. 2) and compute the average rate

constant at energy E ,

k S(E-E )
- x’ny M v
k(E) = nx,ny (1.9)
E : 8§( E - E , )
n_,n ¥y
Xy

where in actvality the & - functions should be broadened so that at
least several quasibound states have energles within their width about
energy E . Such an average may be significant, even for very weakly
coupled systems, if the method of activation of the molecule is rat
state specific.

By invoking the separability of the energy (Eq. (i.8a)) as well

as the semi-classical approximation 14 for Pn , i.e.,
X

r = P( € ) (asn /anx)/ 2m (1.10)
X X X

where P( € ) is the one-dimensional tunneling probability for the
x
x-mode, and by going to the continuur limit

Z > f dn_ (1.11)



it is easy to show that the average rate of Eq. (1.9) is just

1 .
k(E) = ——r——— P(E-e_ ) (1.12)
2 mh p(E) Z Ty

n
y

10

which is recognized as the RRKM rate expression including tunneling:!'5

(Note that p(E) , in the denominator of Eq. (1.12) , is just the
density of quasibound states.} Thus, the average rate constant at
total energy E 1is just the RRKM statistical rate even in the case
of no coupling between the modes. Even if there is coupling between
the modes, it is still possible to define an average rate k(E) for
a given total energy by averaging the individual rate constants over
some energy interval.

The scheme outlined above for describing unimolecular reaction
rates, therefore, is to construct decay rate profiles such as that of
Fig. 2 for systems in which Vc is not zero. The fundamental ques-
tion with regard to mode specificity is, when coupling between the
modes is ilntroduced, do all the points in Fig. 2 move and fall along
a single smooth monotonically increasing curve (i.e., the curve k(E)
of Eq. (1.12)). In other words, are there systems for which the
unimolecular de;ay rates of each individual quasibound state depend
only on their total energy. To iavestigate the extent to which this
does or does not occur is the purpose of the model calculations

described in section I.C.



To be more specific, the particular functional forms used for
the potentitals in the Hamiltonian -of Eq. (1.5) are
2

X

: _1_ 2.2 -
Vl(x) = Jau x e (1.13a)

2 2
2 -x muw' o3
Vc(x,y) x e ( V2 y - n . Yy ) (1.13b)

The potential energy is harmonic near the bottcs of the well with
frequencies wx and wy , and rhrough cubic anbharmonicities it is
identical to the well-studied Barbanis potential.l6 Thus, results
of calculations for this system should give some clues as to whether
the classical ergodic features of the system (which the Barbanis
system is known to possess) are relevant to the mode specificity of
the unimolecular rates.

The coupling interaction in Eq. (1.13b) has two terms. The n
coupling serves to dilute or wodulate the transverse frequency as one
moves along the reaction path from reactants to products. Its effect
(which is typical in many chemical systems) is to effectively widen
the valley leading to products in the transi-ion state region, i.e.,
the region of loosely bound complexes. The V2 - type of coupling
of Eq. (1.13b) introduces curvature in the reaction path, i.e., the
path of steepest descent down from the saddle points. These are the
two types of coupling present in real systems, and one would like to
ascertain which is most closely assuciated wirh mode specific or

statistical behavior. Finally, by varying th. degree of degeneracy

11



between the two modes, i.e., by varying the fraquencies wx and wy )
it should be passible to determine the effect on the mode specific
character of the decay rates of resonant versus non-resonant intyra-

molecular energy transfer.

C. Quantum Mechanical Calculations

1. The Complex Scaling Method17

The quasibound states associated with unimolecular decomposition

are characterized by complex energies
E.-iT /2 (1.14)

where Er is asso¢ «ted with the energy of the state and T is,

as discussed in section TI.B , related to the decay rate or inverse
lifetime of the state. That this is the case is seen most directly
by noting that the time dependent Schrodin:er equation f{or complex

energies
10 D gy, = € - 1072) bixe) (1.15)

leads to probability distributionms

2 2
| vx,0) | = | wix,0 | e Te/Mm (1.16)

which decay exponentially with rate coefficient T / h.

12
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The complex energies of metastable states are defiped rigorously
as the poles of the analytically continued Green's function,l3 or
equivalently of the S -~ matrix (i.e,, by considering the metastable
states to be resonance states in a scattering situvation). These
resonance states give rise to resonance peaks in a scattering experi-
ment measuring total cross sections, the width of the peak being
associated with the imaginary part of the complex energy. Finally,
and perhaps most directly, the complex energies are defined as the
eigenvalues of the time independent Schrodinger equation with boun-
dary conditions imposed on the wave function of out-going waves only.18
Since such boundary condition constraints give rise to non-Hilbert
space type of wave functions, the Hamiltonian operator is no longer
Hermitian, therefore giving rise to complex eigenvalues.

Over the years, there have been many approaches to calculating
these complex energy eigenvalues, both by approximate methods19 and
by essentially exact quantum mechanical methods.l8 Recently, several
new methods have appeared which apply variational methods similar to
those used for ordinary bound state calculations. For example, the
Siegert eigenvalue approach,18 which applies the out-going wave
boundary contition directly, has been used with some success in treat-
ing electron-atom resonances.20 One of the difficulties associated
with this approach, however, is that each metastable state for the

system must be obtained separately. For a unimolecular decomposition

model such as that given in section I.B , where many quasibound
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states exist, such a procedure would be prohibitive computationally.
The complex scaling method,l7 which is closely related to the
Siegert eigenvalue approach, is more convenient for the purposes at
hand since it permits the calculation of many eigenvalues simultan-
eously. Though the mathematical justificationsl7 for the method are
beyond the scope of this work, the physical idea underlying the
method is clear, First, a transformation of the Hamiltonian is made

by scaling the coordinates x by a complex factor:
~

x + x exp(i 8 ) (1.17)

so that

it
o]

H(x ) + H(xexp(if )) = a (1.18)
Note that the kinetic energy operator scales as d2 /dx2 +

exp(-2i6) d2 /dx2

Such a transformation has the following effects on the spectrum
of energy eigenvalues: (1) bound state eigenvalues (if any) are
unchanged, (2} continuum eigenvalue, are rotated down in the complex
energy plane by an angle 28 , and (3) metastable complex eigenvalues
(1f 2ny) are unchanged except that for sufficiently large angles of
rotation, they are now resident upon the first energy sheet, having

been effectively ''uncovered" due to effect (2) above (the continuum
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1
energies form the branch cut separating the two Riemann sheets™ ),

One then proceeds to solve the Schrodinger equation

Hyx = (E. - 1T/2)x (1.19)

by conventional bound state techniques, i.e., by expanding the
wave function ¥ in a suitable basis set and diagenalizing the
resulting complex symmetric matrix. In essence, the complex scaling
method transfers the non-Hermiticity of the system from the boundary
conditions on the wave function to the Hamiltonian operator itself,
thereby allowing one to expand the new wave function in a more
convenient bound state type of basis set.

Recent work22 on the complex scaling method has shown that in a
system with both dissociative and bound degrees of freedom it is
only necessary to scale the coordinates associated with the dissocia-
tive degree of freedom. That this should be the case is seen by
considering the fact that the complex scaling factor introduces
oscillatory character into the basis functions, a correct feature for
dissociative wave functions, but not so appropriate for the bound
degree of freedom wave functions.

By employing the transformation (Eq. (1.18)), the Hamiltonian

for our model system becomes

2 2 2 .2
n? 246 4 1wl g i
Hog = -~ e 2 T am g T V(xe
dx dy

8 , ¥ ) (1.20)



16

where V 1is the potential energy function of Eqs. (1.13) ., For
the calculations to be presented in section I.C.2 , the wave func-

tion ¥ 1s expanded as follows:

X = DG b E W (1.21)

where ¢n (x) and En (y) are harmonic oscillator basis functions.
x Yy

(Other types of basis sets were tried, including a coherent states
basis 5et23, with no significant differeuce in convergence properties.)
All matrix elements were computed using double precision word
size so as to insure stability sufficient to obtain resonances with
widths as small as 10720 . In addition, all the computations repor-
ted in section I.C.2 wused 40 basis functions for the dissociative
degree of freedom and four basis functions for the bound degree of
freedom. Truncation of the basis set expansions leads to slight
dependence of the complex eigenvalues on the angle of rctation ©
Typically, regions of stability of angle trajectories have been
sought be either graphical methods or complex Hellmann-Feynman
theorems,24 whereas in these computations the imaginary parts of the
eigenvalues were found to be stable to at least three significant
figures (some to as many as eight) over at least five degrees of

rot: ion. This broad band of stability enabled all the complex eigen-

values (i.e., all the quasibound states) to be obtained simulcaneously.



17

2. Calculations and Observations

The object of the calculation of metastable state decay rates
for the model system (Eq. (1.5)) is to ascertain the effects of
various types of intramolecular coupling on the mode specificity of
the decay rates. Table I gives the values of the various coupling
parameters investigated, results of which are presented in the fol-
lowing paragraphs.

Zeru Coupling Limit. Fig. 2 is the system with zero coupling
as discussed in section I.B ., This represents the extreme limit of
mode specificity.

Frequency Dilution and Curvature. Figs. 3 and 4 illustrate the
effects of the two types of coupling (frecuency dilution for Fig. 3,
curvature for Fig. 4) taken separately. It is clear from both systems
that neither type of coupling alone results in significant statisti-
cal behavior. There is some tendency of the individual rates to
coalesce along a single monotonically increasing curve, but these
two systems are still highly mode specific. Fig. 5 presents a system
combining the two effects, with the same strengths as for the systems
of Figs. 3 and 4 separately. It is obvious from Fig. 5 that their
effects on the rates are non-additive, i.e., their combined effect
1s to produce a system which is substantially more statistical than
elther of the two taken individually.

Intramode Degeneracy. Figs. 6, 7, and B illustrate the effects
of intramode degeneracy upon the energy randomization process. In-

creased degeneracy between modes is expected to enhance the resonant
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energy transfer between modes, thus resulting in greater randomization
and "equal weighting"” of all contributing states (see section I.B ).
Fig. 7 represents the highest degree of degeneracy of the vrhree
systems (taking into account the anharmonicity of the x-mode), and
along with the couplings present leads to a strikingly statistical
rate constant profile.

Effects of Ergodicity. An interesting observation of these
quantum mechanical systems discussed thus far is that there seems to
be no energy requiremernt for statistical behavior in the unimolecular
rates. In other words, for these quantum systems, statistical behavior
is seen to occur at low energies to essentially the same extent that
it occurs at higher energies. Classically, these types of coupled
oscillator systems are known to often exhibit a definite transition
from quasi-periodic trajectories to chaotic (or ergodic) trajectories
as energy increases., This apparent disparity in quasi-periodic/
ergodic and mode specific/statistical behavior between classical and
quantum mechanical treatments is even more clearly illustrated by the
system of Fig. 9, which was chosen to be one that exhibits a well-
defined classical stochastic transition. Fig. 9 shows, as for the
other systems, the specific rates as a function of energy. The
vertical dashed line at the lower energy indicates the onset of the
classical stochastic behavior (as determined from Poincare Surfaces
of Sectionzs), and the line at the higher energy indicates the top
of the barrier. The specific rate constants show no more (or less)

mode specific character below the stochastic transition than they do
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above it. In other words, there appears Lo be no specific correlation
between tl.e classical behavior and the character of the quantum decay
rates,

That these two approaches to characterizing the unimolecular
dynamics are actually monitoring different phenomena is seen frowm the
following discussion. For the ciassical case the lifetime is infinite
-5 matter what Us & L pe.chlie (5L LOUE a. L5 below the
classical threshold), i.e., the system has an infinite amount of time
to decide whether or mot it is going to be ergodic at all energies.

In considering unimolecular decay of the quantum system, on the other
hand, even though the rate of intramolecular energy transfer increases
with increasing energy, so does the rate of unimolecular decomposi-
tion, so that the system has less time to randemize its internal
energy before dissociation. [t is thus not unreasonable for the
degree of statistical behavior in the unimolecular rates to be

similar for all energies, and for the systems depicrted irn Figs. 2--9,

this is approximately the case.

D. A Classical Trajectory Approach

The quantum calculations presented in section I.C are, of course,
the exact results for the given model systems. Such calculations
would aot be practical, however, for real molecular systems, which
have more than two degrees of freedcm. Therefovre, it is of consider-

able interest Lo develop simpler apprcaches that, although less



accurate, can be applied ro more general types of -hemical systems.
Classical trajectory methods26 have been developed extensively
such that nowadays such simulations can be carrtied out routinely for
small polyatomic molecules (provided a potential energy surface is
available). With reference to unimolecular dynamics, classical
trajectory simulations can only be useful at total energies above
the classical barrier height for dissociation, and many such calcu-
lations have appeared.27 The object of this development is to combine
the classical trajectory method with an approximate semi-classical
tunneling model in order to extend the conventional trajectory
methods to the energy region below the classical barrier height, as
is the case for the model.studies presented in section I.C. Not
only does this model serve to compare with the quantum results, but
it also will be directly applicable to such unimolecular processes
as formaldehyde decomposition, which is postulated to proceed via
tunneling based upon some experimental resulrcs and other theore-
tical considerations.
1. Probability Branching Model
The basic physical idea of the approach is very simple: A
classical trajectory is begun inside the potential well, and since
the energy is below the barrier height, it will oscillate in the well
forever. Each time the trajectory hits the barrier (i.e., experiences
a classical turning point along the barrier direction), however, it is
allowed to tunnel through it with a probability computed from the

local properties ~¢ the trajectory at that time. The probability that

20
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by time t the particle has not tunneled out, i.e., the survival

probability, is

Ps(t) = (l-Pl)(l—Pz) s (I_PK(t)) (1.22)

where Pk is the tunneling probability for the kth time the particle
hits the barrier (or barriers if there is more than one decay channel,
as for the potential well in Fig. 1), and K(t) 1is the number of
hits that have occurred by time t . Eq. (1.22) states that the
net probability of not having tunneled out by time ¢t is the proba-
bility of not tunneling out each time the particle hits the barrier.
The survival probability of Eq. (1.22) 1is for a single trajec-
tory, and this must therefore be averaged over uan appropriate distri-
bution of trajectories (i.e., initial conditions). This averaging
procedure is described in detail in section I.D.2 . Such an
averaged survival probability ¢ Ps(t) > should decay exponentially,
and the unimolecular rate constant k 1is obtained as the negative
slope of a plet of fn ¢ Ps(t) ) versus t
For small tunneling probabilities, i.e., Pk << 1, Eq. (1.22)
is difficult to evaluate directly (because, for example, 1 - 10—14: 1

on a computer), so it is useful to compute first the cummulative

tunneling probability P (t)
run

Ptun(t) = 1- Ps(t) (1.23)

which can be shown to be given by
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K(t)
P () = Z P (1-P, ) (1P, ;) *++ (1-P,)(1-P))  (1.24)
k=1

In this expression, if P, << 1 , then the cummulative tunneling

probability simplifies to

Ptun(t) = Z Pk (1.25)

and this causes no computaticnal difficulty. This quantity is then
averaged over appropriate initial conditions (see section I1.D.2 ) to
give ¢ Ptun(t) } , and then the averaged survival probability is

obtained simply by
{ Ps(t) Y = 1 -« Ptun(t) ) (1.26)

The key to this probability branching model is how the tunneling
probabilities Pk are computed. The most rigorous semi-classical
approach30 would be to integrate the classical equations of motion
along the complex time contours for which the particle tunnels
through the barrier. Such zn approach, however, is known to be very
difficult to apply in practice, largely due to instabilities which
arise in the propagation of the complex valued trajectories.3l Approx-—

imate versions of this rigorous approach based on the assumption of



23

vibrationally adiabatic motion through the barrier are much simpler
to implement, and in the calculations presented in section I.D.3 ,
the simplest of these approximations is used, i.e., the vibrationally
adiabatic zero curvature (VAZC) approximation. 2 Other forms of
vibrationally adiabatic approximations were attempted (e.g., the
Marcus-Coltrin approximation32b), but results showed little or no
sensitivity to the level of vibrationally adiabatic approximation
used.

Within the VAZC approximation, the classical Hamiltonian used

to describe the tunneling is
1
H(p_,s,n) = T + Vo(s) + (n + 5) hw(s) (1.27)

where s 1is the reaction coordinate (the steepest descent path

down from the saddle point), n 1is the vibrational actiern variable
(i.e., the quantum number analogue) for the transverse vibration,
Vo(s) is the potential energy along the reaction coordinate, and
w(s) is the transverse vibrational frequency, which is a function

of the reaction coordinate (thus maintaining the effects due to
frequency modulation). The classical trajectories for intramolecular
motion are computed using the full classical Hamilionian in Eq. (1.5),
the approximate Hamiltonian of Eq. (1.27) being used only for the
purpose of determining an approximate tunneling probability for the
branching model. At time tk , the kth turning point for motion

along the s direcrion, the current value of the vibrational action
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variable e is determined by energy conservation and Eq. (1.27)

E - V (s)
° (1.28)

hw(s) ‘s=s(tk)

The tunneling probability is then given within the VAZC approximation

by the semi-classical tunneling expression

b - e ) a4 e 0 (1.29)
where
s
Ok = ds \/Zm( Veff(s) - E) (1.30a)
5<
Vel = v (s) + (o +1) hus) (1.30b)

2. Initial Conditions
In order to make the connection to the quantum mechanical decay

rates, it is necessary to choose initial conditions which most close-

1y .ourrespond to state specific preparation, i.e., the metastable
states. This is accomplished by computing the survival probability,

anl thus the unimolecular rate constant, corresponding to a definite

total energy E and a specific initial value for N the zeroth



order quantum number for the bound degree of freedom. Since ny is
only an approximate quantum number for the -oupled system, this type
of made specific preparation of the system is vot precisely equiva-
lent to that produced hy the quantum calculations of section I.C ,
but is an approximate simulation of the true situation. Most impor-
tant, for our purposes, it does give the same kind of informaction,
i.e., now the rate for a given total energy varies if the energy is
initially distributed in the molecule in various ways.

To specify the average over initial condltions corresponding to
a given energy E and initial LI it is convenient to specify the
bound covrdinate and momentum ( y , py ) in terms of their harmonic

34
(2n_ + 1 )h
_ sin q (1.31a)
ﬂ'n)y a

action angle variables
y

py = \[(Zny + 1) hmwy cos qny (1.31b)

For state specific preparatiom, ny is set initially to an integer

<
[}

(the initial vibrational quantum number for the bound oscillator) and
a9 1s to be averaged over. The average over qa, is carried out

y 26 y
by standard Monte Carlo methods, i.e., q, is chosen as 2n£i

for the 1ith trajectory, where Ei is a random number uniformly

chosen in the interval (0, 1)

25
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The x motion is always started at a classical turning point X,
defined by the condition Py = 0, with x, being determined from

energy conservation

H(px=0.py,x>,y)=E (1.32)
The average over the phase of the x motion is effected by averaging
over time t for rhe first period of x oscillation. To see how this
is accomplished, consider the function P(l)(t) , the function P (t)
tun tun

of Eq. (1.24) for the ith trajectory whose initial conditions are

2iven by

a, = mey (1.33a)
y

ny = given integer (1.33b)

P, = 0 (1.33¢)

X = x, (from Eq. (1.32)) (1.33d)

Let { :é‘) } and { Pél) }, k=1,2, *+- denote the times of the
x turning points and the tunneling probabilities at these times,

respectively. Fig. 10a sketches the typical form of Péi;(t) . The

explicit expression for Péil(t) is

o

Py = Z Plf“ h(t—tlﬁi)) (1.34)

tun
k=1
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where the quantity Pﬁl) is defined by

(1) = ) y_p W)y pt)y oL plE)y e p(D)
Py = p Q-P 000 A-RLY) (1-P," ) (=P (1.35)

and h is the unit step function

1, x>0

ne = oL g (1.36)

Combining the time average and the Monte Carlo average over transverse

vibrational phse yields the desired averaged tunneling probability

' i

RN S
(1) J( dt Ptun(t+c )y (1.37)
1

0

m
Z |

(Ptun(t) >E,n

o

¥ i

1]
—

where N 1s the number of trajectories run (i.e., the number of

Monte Carlo selections of a, ). The time average in Eq. (1.37) can

y
be carried out explicitly by introducing the following function
(i)
‘1
(1) = 1 ' ' (1)
Q (¢) = t(i) dt' hit + ¢ Ty ) (1.38a)
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0, t < téi) - til’
={ 1+ (t—tlii))/tl(i) , téi)— t{i) <t < téi) (1.38b)
1, t > téi)

N
-1 (1) (1)
C P e T W Z Z PCT Q. () (1.39)

As previously described, Eq. (1.26) then gives the averaged

survival probability for this mode specific preparation

( Ps(c) >E,n = 1 - A Ptun(t) >E, (1.40)

the exponential decay of which gives the state specific rate constants

ko ()
y

Though this model has been developed so as to treat classically
forbidden unimslecular decay processes, it is easy to show that these
same equations reduce to the standard classical prescription for
computing the survival probability when the total energy is above the
top of the classical barrier height. This is accomplished by setting
the tunneling probabilities Pk to either 0 or 1 (depenaing on

whether or not the classical motion passes over the barrier). One
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needs only to note the time ¢t(i) at which trajectory i passes over

the barrier, and the above equations reduce to

N
_ 1 (1)
P (®) >E’ny = X Z Q" (e) (1.41)
i=1
where tii)
) . N €3)
Py = i(i) ] dt’ bt +t' - 7)) (1.62a)
£
1
0
0 t< t(i) - t(i)
1
=1+ (c—c(i))/cl(i) , c(i) - tfi) <t < c(i)
1 t > t(i)
(1.42b)
Here, as before, tii) is the time for the first oscillation in *the

x potential well.

3. Results and Observations

An illustration af the typical exponential decay of the survival
probability. from which the rate constant k is obtained, is shown
‘in Fig. 1Qb. For the separable case (Fig. 2), the VAZC approxima-
tion for the tunneling probability is es_entially exact, and the

classical (plus tunneling) rate constants are in excellent agreement



(within 10%) with the quantum results. Fig. 1l shows a typical
comparison when there is coupling between the modes. The points are
the quantum results from Fig. 7, which show a high degree of
statistical character. The solid curves are the results of the
classical model, plotted as a continuous function of E (i.e., no
attempt was made to quantize the x-mode semi-classically).

An interesting feature of this classical model for unimolecular
decomposition is that it enables one to investigate the effects
of the classical motion more directly than from the quantum mechanical
perspective. Consider, therefore, a trajectory initiated in the way
prescribed in section I.D.2 , which is quasi-per.odic in its motion.
Due to its quasi-periodicity, the region of the total energy-allowed
phase space (or configuration space) covered by this trajectory will
be restricted. As a consequence, the region of the barrier which
it hits as it oscillates back and forth will also be restricted more
than if the trajectory were chaotic. The average of the tunneling
probabilities within this restricted hitting region will be different
than the average of the tunneling probabilities for other types of
trajectories, thus giving rise to mode specific behavior as a conse-
quence. Extension of this reascning to the case of chaotic trajecto-
ries, however, is not straightforward due to the competing effects
of intramolecular relaxation and unimolecular rzaction, as discussed
in ~e~ri~-- T.A

In any event, the classical (plus tunneling) model yields rates

in very reasonable agreement with the quantum values, even with the

30
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relatively primitive VAZC approximation for the tumneling
probabilities. Therefore, it seems plausible that this model (which
is no more difficulr to implement than standard classical trajectory
methods) can be applied with suc:ess o uore realistic polyatomic

unimolecular systems.
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TI. The Henon-Heiles Potential Energy Surface

. .11

There have been a number of theoretical studies on the classi-
cal intramolecular dynamics of model systems, such as those described
in section I . A particularly striking feature of these studies is
the existence of classical meotion which is quasi-periodic at low
energies, but which becomes ergodic (or stochastic) at higher ener-
gies. A mathematical theorem of non-linear dynamics, the KAM

36 R s . .
theorem™ , attempts to relate this transition in the iutramolecular
moticn to the properties of the system, e.g., the potential. Many
. . : . 37 .

such related topics are currently being investigated in the
mathematics and physics communities.

Another question which has spurred much interest among many

: 38 .
chemical dynemicists concerns the correspondence between classical
ergodicity and quantum ergodicity. Sirce non-linear systems of
chemical interest (e.g., polyatomic molecules) actually obey quantum
mechanics, it would be interesting to discover whether such a corres—
pondence indeed exists, and if so how it is manifest in the quantum
mechanical description. At present, many quantum mechanical features
have been onsidered as probes of this correspondence, including cthe
sensitivit: of individual energy levels to small perturbations of the

Jia " " " 0t .

potential , the "localized" or "extended" distribution of coeffi-
cients of asis functions used to expand the wave function , the

, 38¢
nodal patt rns of the wave functions , the overlap of true wave-
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functions with degenerate subspaces corresponding to separable
HamiltoniansBad, etc. All of these approaches do indeed show
quantum mechanical features which qualitatively correlate with the
quasi-periodic/ergodic character cof the classical mechanics.

Of central importance to the work at nand, however, is how these
approaches relating to intramolecular relaxation bear on the question
of wode specificity in urimolecular reaction dynamics. A naive
expectation would be that quasi-periodic classical motion would lead
to mode specific behavior of the rate constants and that ergodic-like
classical motion would correlate with statistical behavior of the
rates. As shown in the results of secion I[.C , however, very Little
correlation of this kind was observed for the mcdel systems studied.
For some potential surfaces for which rhe classical motion was quasi-
periodic (see Figs. 2-8, section I.C.2), the rate constants showed
strong mode specificity, and for others they did not.

To pur.ue further this questicn of the correlation between the
quasi-periodic/ergodic classical behavior and the mode specific/
statistical behavior of the unimolecular rate ccnscants, a well-
characterized system, the Hencn-Heiles potential energy surface39, was
investigated. This model system consists of two coupled oscillators
\as do cthe systems considered in section I.C ), and it possesses three
barriers to dissociation. At low energies, the classical motion is
quasi~-periodic, but at higher energies it becomes chaotic, these two

14

regimes being separated by a strikingly snarp critical energy, £



which lies slightly more than ha'f way up to the barvier height. The
aim, therefore, is to determine whether the quantum mechanical decay
ra2s exhibit any sort of transition from mode specific character to

statistical character, analagous to the classical motion.

A. Quantum Mechanical Calculations

The quantum mechanical Hamiltonian for the Henon~Heiles system

has the following form:

—h2 62 2 1 2 2
H = 72 ;—2 + -, ) + oW (x"+ vy )
X dy
i
+ 3 (- % o+ x v ) 2.1

Such a coupled oscillator system can be thought of as a collinear
triatomic molecule in its cencer of mass frame. This Hamiltonian is

transformed to a more standard form by introducing a reduced Plaick's

constant
2
., _ hax
h z k—'j—_b (2.2)
now
and a reduced energy unit
m3 w6
£ = (2.3)

34
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In these "nits, H becomes

a2 2 52
G - G
2 2 2 2
ax dy
- %—x3 + 'S yz (2.4)

in Cartesian coordinates. In polar coordinates ( r, 8 ) , the

potential energy has a form that more clearly depicts its C3v

symmetry,

3 cos(36) (2.5)

[

V(r,0) = g— -

Note that this potential has three equivalent saddle points at the
positions (r,8) = (1,0), (1, 27/3), and (1, 4m/3), with the value

of the potential at the saddle points being VSp = 1/6 . For
clarity in notation, h' will simply be referred to as h , and by
varying this parameter the system will become more or less quantum-
like (i.e., large h is more quantum-like, small h 1is closer to
the classical limit).

The classical mechanical investigationsll of the Henon-Heiles
system demonstrate that for energies below a critical value EC = 0.11,
all trajectories are quasi-periodic, but above this value an increasing-

ly large fractirm of initial conditions in phase space leads to ergo-

dic type trajectories. Very near to the classical barrier height,
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essentially all phase space points give rise to ergodic trajectories.
(This is not true in general, as demonstrated by studies of Hase, et
albo.)

Though no classical trajectories can ever dissociate for energies
below V__, quantum mechanically the system has no bound states, there
being only metastable states that decay by tunneling through the
barriers. As for the model systems ol section I.B , che complex
scaling method17 (see section I.C.1 ) was used to calculate the
complex eigenvalues corresponding to these metastable states.

The C symmetry of the Henon-Heiles potential gives rise to

3v
states corresponding to different irreducible representations, Al’

Ay and E. The basis set used for expanding the scaled Hamiltonian

was of the form (in polar cocrdinates)

@n,m(r,e) = exp(~3n r2/2} eime (2.6)

which is similar, but not identical, to the staandard two dimensional
. . L 41 , -

harmonic oscillator basis ~. The exponential coefficients, an N

allow for extra diffuseness for large values of n , enabling the

calculations to be stable using smaller basis set expansions.

For this basis set, the three irreducible representations corres-—

pond to the following grouping of func ns:

A e cos (mf) , m = 0, 3,6, +++ m<n (2.7a)



A, : sin(m8) , m= 3,6,9, - |, m< q (2.70)

E : Elm@ , m={

lml < n

where the two groups of m wvalues for the E states give rise to
the double degeneracy of these states.

In polar coordinates, the radial coordinate must be scaled as
iB

1
r > re

and the angle © remains real. The transformed Hamiltonian H has

the form
2 2 2
-2 h P ?
N TP e e B
r dr r- 36
+e21B2 L B 35 (38 ) (2.8)

which is to be expanded in the irreducible representation basis
sets of Eq. (2.7) and diagonalized.

Figs. 12, 13, and 14 show the unimolecular decay rates versus
energy for values of h = 0.C4, 0.03, and 0.02, respectively. The
value of h 1is chosen to make the system more (larger h) or less
(smaller h) gquantum-like, and to speed up or slow down the tunneling

rates. The number of states up to energy E for two degenerate har-

37
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R . . 42
monic oscillators is

NE) = F B (2.9)

and so the approximate number of states in the Henon~Heiles systems

up to the energy of the saddle point ( 1/6 ) is
N = ( — 5 ) (2.10)

A valiue of h = 0.04 (see Fig. 12 ) thus produces about nine classi-
cally bound states, and a value h = 0.02 leads to about 35
classically bound states. Since the larger the number of states to

be obtained requires larger basis set expansions, the value h = 0.02
represents a practical limit for the presenr problem in obtaining
satisfactory quantum mechanical results. Indeed, for the case h = 0.02
only the Al and A2 states could be obtained, the E state basis

set being about twice as large and computationally intractable.

B. (QObservations

1. Symmetry-—induced Mode Specificity

A particularly striking feature of Figs. 12-14 1is that the Al
and E type of states display significantly different rate profiles
than the A2 states. More specifically, for a given energy, the A2

states decay more slowly than the A1 and E states. This symmetry-

induced more specificity is readily understood by realizing that Ay
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states have a nodal line from the origin through each sa. .e point
(due to the factor sin{(mb ), m = 3, 6, ..., in the wavefunctions
for A2 states, Eq. (2.7b)). This means that the vibrational states
of the "activated ccmplex" (i.e., the local vihrational modes at the
saddle points of the potential energy surface) must be odd.

The microcanonical transition state theory rate coustant expres-—

: . .15,
sion {i.e., the RRKM rate expression), including tunneling,” is

K(E) = 3 x {2nhp(E)}L Z P{E-(n + —;—)h«j} (2.11)

n=0

where p(E) is the density of states of the reactants at energy E,
and P(Et) is the tunneling probability with energy Et =E -(n + %)hw*
in the reacti.n coordinate direction. The factor of three is due to
the three equivalent saddle points of the Henon-Heiles potential
surface.

In the tunneling region, where only the lowest state in the sum

in Eq. {2.11) contributes significancly to the rate, transition state

theory implies that

+
kA (E) = (frequency factor) x P(E - %hw ) (2.12a)
1
3 %
kA (E) = (frequency factor) x P(E - Ehm ) (2.12%)
2

where P 1is the one-dimensional tunneling probability. This is due

to the fact that the A2 states must be odd with respect to reflec-
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tion across the reaction coordinate, and the lowest state of this
symmetry contributing to the sum in Eq. (2.11) is the state for which

n =1 . This implies that

K, () = K, (B - hw) (2.13)

¥
where w is the vibrational frequency at che saddle point for the

transverse mode. For the Henon-Heiles surface,
+
w = V3 (2.14)

and Figs. 12-14 do indeed show that the rate constants for the Al and
A2 states are displaced in energy by approximately hu)i = \/5_ h

2. The Classical Limit

Within a given irreducible representation, the rate constants
show essentially no mode specificity, i.e., within each symmetry class
the rate constants appear to be = smooth function only of the total
energy. For these systems, the striking classical transition from
quasi-periodic to ergodic behavior at the energy Ec = 0.11 is not
observed. 1In fact, only among thr E states is there any hint of
mode specificity, and this only occurs at higher energies.

To verify whether the rate constants obtained from the quantum

mechanical calculations correspond to the statistical rates more
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quantitatively, the RRKM plus tunneling modells was used. This
model has been used for several molecular systems of physical interest
in attempting to ascertain the importance of tunneling in certain
unimolecular reactions.é3 The density of states p(E) in Eq. (2.11)
is

p(E) = E/ K? (2.15)

and the one dimensional tunneling probability P 1s given semi~classi-

cally33 by
PE) = el 0ED)TE (2.16a)
L —————
8y = ¢ [ wvVi@G -E) (2.16v)
X<
V(x) = x2/2 - x3/3 (2.16¢)

The barrier penetration integral B(Et) is well approximated for this

cubic barrier case by

ST (lopyeS (Ll p,2,38,1 ;)3
BED =g g -E) + 1,05 - ED" + 550 - ED7} (2.17

The solid curves in Figs. 12-14 show that the rates of the Al and E
states are reasonably well described within this simple statistical

model, i.e., even the individual metastable states of these two sym~
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metries have coalesced to the statistical limit. The fact that the

A states decay more slowly at a given energy could be described

2

by the statistical model by excluding the even vihrational states
in the sum in Eq. (2.11) from the activated complex.

Though the results shown in Figs. 12-14 are the essentially
exact results for these values of h , there is still one final ques-
tion which must be resolved before any conclusions about the classical/
quantum mechanical correspondence can be made. It is possible that we
have not allowed h to become sufficiently small for any underlying
classical structure to emerge in the quantum rate constants. The pure-
ly classical limit (h = 0 ) 1is far beyond the reach of the quantum
mechanical! approach employed here.

It is possible to extrapolate to the classical limit ( h - 0 ),

however, by noting that in the form for the statistical rate constant

k(E) = (frequency factor) x (tunneling probability) (2.18)

the frequency factor has a classical limit which is independent of h

The tunneling probability hus the limiring form (semi-classically)

tunneling probability = exp{ -20(E)/ h } (2.19)

where 6(E) 1is the classical action integral given for the Henon-
Heiles system by Eqs. (2.16) and (2.17). These focts imply that the

quantity
h €n k(E)
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should have a classical limit given by

-2 9(E) (2.20a)

lim b €n k(E)
h - Q

or

1im h log k(E) = -2 B(E) log e = -0.87 6(E) (2.20b)
h -0

Figs. 15 and 16 show the quantity §’ log k(E) for h = 0.02, 0.03,
and 0.04, for the Al and the A2 states, respectively. Also shown
is the RRKM plus tunneling approximation to the classical limit of
this quantity, Eq. 2.20b. It appears that (1) the quantum rate con-
stants are approaching the h + 0 limit in a smooth manner with no
evidence of any new classical structure emerging, (2) the simple
RRKM plus tunneling model is a reasonably gecod approximation to the

f + 0 1limit of the quantum rate constants, and (3) both the Al an.
A states converge to the same h » (0 limit (as is implied by the

2

approximate relation inm Eq. (2.12)).

C. A One-barrier Henon-Heiles Potential
The existence of three equivalent barriers to dissociation for
the Henon-Heiles potential in Eq. (2.5) precludes the possibility of

energy being trapped in a mode which does not significantly project
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onto one of the dissayciative channels, even for energies where the
classical motion is completely quasi-periodic. To test whether this
effect might be responsible for the lack of mode specificity for the
Henon-Heiles surface, similar calculations were carried out for a

one-barrier Henon-Heiles-like potential energy surface,

V(r,9) = X r2 -1 r3 cos 6 (2.21a)
2 3
1, 2 2 1 3 1 2
= Fx"+y" ) - Fx - Fxy (2.21b)
The one sadd.e point for this system occurs at {r,8) = (1,0) and the
barrier height is still Vsp = 1/6.

For this system, the states divide into two symmetry classes,
even and odd with respect to reflection abcut the x-axis. Fig. L7
shows the unimolecular rate constants as a function of energy (obtained
by the complex scaling method) for h = 0.03 . As opposed to the three
barrier case of section II.B , there is substantial mode specificity
even within the same irreducible representation.

The classical behavior for the one-barrier Henon-Heiles system
was studied by generating the Poincare surfaces of section25 for
several energies. This system possesses only quasi-pericdic trajec-
tories for all energies up to the top of the barrier,

This potential surface, therefore, does mhow the expected corre-
lation, i.e., the classical mechanics is quasi-periodic for all energies
(below the top of the barriler), and the quantum mechanical unimolecular

decay rates are highly mode specific. No conclusions can be drawn,
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however, with respect to the statistical/chaotic correlation or the

transition from one type of motion to the other,

D. Discussion

1t appears, based on the results of sections I.C and II.B, C
that there is not necessarily a correlation between the quasi-periodic/
ergodic classical behavior and the mode specific/statistical behavior
in quantum mechanical decay rates for unimolecular systems. Some
examples seem to show a correlation (see section 1(.C ) while others
tend to show no correlation (see section I.C)

Since many of the studies in intramolecular dynamics relating
classical and quantum feature538 do succeed in showing a qualitative
correspondence (e.g., in nodal patteins of wave functions, etc.), it
seems unlikely that the lack of correlation spoken of in the preceding
paragraph should be due to a quantum/classical non-correspondence of
some sort. Rather, it seems clear that the two approaches talen are in
fact monitoring different phenomena, and therefore need not show any
particular correlation, as discussed in detail in section I.B .

Another relevant factor, illustrated by the examples of the
Henon-Heiles and one-barrier Henon-Heiles systems, is the coupling
of the intramolecular motion to the reaction producct channels. It
seems clear that mode specific reaction dynamics requires not only
mode specific (i.e., quasi-periodic) intramolecular dynamics but also

mode specific coupling to the reaction prc¢ cts. For the three barrier
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Henon-Heiles system, the three exit valleys effectively provide
statistica’-1like coupling to products since there is no mode (i.e.,
direction 1 the x-y plane) which does not project significantly onto
a reaction coordinate for at least one of the exit valleys. The one-
barrier He on-Heiles system, however, does possess a mode (e.g.,
motion in *e y direction) which effectively avoids the saddle point

leading to lissociation.
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ITTI. A Semi-classical Multi-channel Branching Model

Quantum mechanical calculations such as those presented ir
sections I and II are the rigorously correct wayv to characterize
state-specific unimeclecular decay. Unfortunately, however, such an
approach is not feasible for systems with more than two or three degrees

of freedom. For example, the unimolecular decomposition of formaldehyde
co »~ H, + CoO (3.1)

has six vibrational degrees of fraedom (we are ignoring rotations for
the present) and is thus beyond the capabilities of these rigorous
quantum mechanical approaches.

As discussed in section I.D , an alternate approach to the
characterization of state specific unimol-cular decay is the use orf
classical mechanics, via either the srraightforward trajectory simula-

) 26 . . .
tion approach or an apprvach, as in section T.D, incorporating such
quantum features as tunneling. There have been many such calculations

L 27 . ) .

for unimolecular systems , and in many situations such an approach
has been shown to describe the process correctly. For the example of
Eq. (3.1), hcwever, the energy region where the reaction proceeds may
, . 28,29 .
involve tunneling and a standard classical approach would be
IV oo L

ihay, cnas pao N - e

in section I.D.
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Furthermore, there may be cases for which the unimolecular decay,
though energetically possible classically, simply does not take place
via classical mechani s. Hasedo, for example, has observed quasi-~
periodic trajectories which have enough energy to dissociate classically
but which do not for some unimolecular systems. HellerAQ has discussed
such dynamiéally fort dden processes under the term "dynamic tunneling."
Simple classical mechanics would give zero for the rate of unimolecular
decomposition for suc a system, whereas the true {quantum mechanical)
rate in non-zero.

The classical trsjectory (plus tunneling) approach of section I.D
provides one way of qu litatively characterizing the mode specificity
cf unimolecular reacti is. However, even this approach is not capable
of reliably determining state-specific decay rates, due to the difficul-
ties associated with qu.tization of non-separable systems.A Yet
there are situations for which a quantum mechanical description of the
. imolecular decay rates ~ill be necessary. Therefore, the purpose
of this section is to dec:ribe and illustrate an approximate quantum
mechanical model for dete mining state-specific unimolecular decay
rates, one which is capabl - of being applied to polyatomic molecular
systems of interest, such s the formaldehyde system of Eq. (3.1).

The model to be presern ed is related to several methods developed
in recent years, as well as to several old ideas. First, it is a
multi-chunnel version of a s mi-classical branching model that has been

shown to describe unimoleculs decay in one-dimensional systems cor-



.
6 . .
rectLy.q The multi-channel aspect of the model is what enables it
to be applicable to systems consisting of several degrees of freedom.
The dynamical approximations incorporated in the model include the
. . . : 47 .
reaction path Hamiltenian of Miller, Handy, and Adams and a semi-
classical perturbation-infinite order sudden approximation developed
; . 48 . ;
by Miller and Shi. The reaction path model describes the molecular
dynamics as motion along a reaction coordinate which is coupled to
transverse locally harmonic vibrational modes. The semi-classical
perturbation-infinite order sudden approximation (SCP-IOS) allows
for vibrational inelasticity in the transverse viprational modes as

the system moves along the reaction coordinate.

A. General Development of the S-Matrix

Instead of considering the unimolecular decomposition in terms
of the out-going wave boundary conditions (i.e., the half-collision
process) of section I.C, the multi-channel branching model is deve-
loped in terms of an overall scattering matrix, the poles of which
will :orrespond to the energie of the metastable states associared

13

with e system. Consider, therefore, the nonreactive scattering
on a poteatial energy surface for which the potential energy along
the reac “ion ceoordinate s 1is as depicted in Fig. 18. For such a
scatteri : process, the system begins as s = + ® | moves to the
left, collides, and eventually returns to s = + ® , If there are F
total number of degrees of freedom, there are F - 1 vibrational

degrees of freedom orthogonal to the reaction coordinate (we shall

neglect rotations for the present).
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The aim of this development is to construct an appruximate

S-matrix for the total energy E ,

§(E) = S_ .} (3.2)
which are the amplitudes for transitione between an initial state
n = ( Ny, My, el g ), and a final state E' = ( ni, né, R n%_l)
of the transverse vibrational modes at s = + ® ., The central idea
of the branching model is to approximate this net amplitude g as
a sum of amplitudes constructed from the different "trajector;es”
which can arise from tunneling through the barrier in Fig. 18. The
most straightforward way to construct these "amplitude trajectories'
is demonstrated in Fig. 19, where the first three are depicted. The
first is reflected by the barrier (at the classical turning point,
say) without tunneling, the second tunnels through and makes one
oscillation in the well before tunneling back out, the third tunne’s

through and makes two oscillations in the well before tunneling back

out, and so on. The amplitude associated with first 'trajectory" is

IRV
?out ¢ % ? ) gin ’ (3.3a)

- P + 5 P * S (3.3b)



and that with the third trajectory is

D ?out

and so on. In these expressions, Sin is the S-matrix (i.e., matrix

of transition amplitudes) associated with the incoming motion from

s = + = to the outer turning point s = Sq (see Fig. 18). S is

the S-matrix for the motion in the interior well from s = s, to s

and back to Sy - And Sout is the S-matrix for the outgoing motion
from s = Sq back to + « . P is the matrix of tunneling proba-

; /2 s ) . 1
bilities (i.e., P is a tunneling amplitude matrix, and (1 - P)
is a reflection amplitude matrix). WNote that Sin and Sou: are

in general rectangular matrices since there are in general a differeat
number of transverse vibratjional states that are enorgetically open
at s = 53 and 8 = + ® . Thus, in the matrix element

for example, n' refers to transverse vibrational states at s = + @

S(inz ,
n,n

. t . <o -
and n to those at s = Sqs while for Ssoz,) the identifications are
reversed. (By symmetry, in fact, Souc is the transpose of Sin')

S is a square matrix, the indices of which refer to the transverse

vibrational states at s = sy - It is clear that the physical

ut

meaning of the matrices Sin and SO is that they describe

vibrational inelasticity in the region outside the barrier, whereas

S0 , the S-matrix per oscillation in the well, describes vibrational

inelasticity in the region of the potential well. Although it is not

51
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necessary, the matrix P is assumed to be square (i.e., the same

number of vibratioual states are open at s = Sy and S5 ), and for

the applications presented in section III.D it is even approximated
as diagonal (i.e., the tunneling proceeds adiabatically). All of

the matrices are functions of the toral energy E, i.e., Sin

§in(E)’ etc.

The net amplitude S is obtained by adding the amplitudes for

all the trajectories of the type described in Fig. 19, i.e.,

B 1/2
§ N §out ( } - ? ) ~in
+E (—1)ks -Pl/Z'S'[(l-P)l/ZS]'Pl/gs‘
out  ~ ~0 ~ ~ ~0 ~ ~in
k=0

(3.4)

The general kth term in Eg. (3.4) has the direct mechanistic inter-
pretation by simply reading the various factors from right to lefrt:

the system evolves from s = + = to Sy ( Sin ), tunnels through

5

the barrier ( Pl/" ) , cscillates in the well ( k+1 ) times, not
- 1/2

/)

s

tunneling out each cime it is reflected at s, (C1-P)

P1/2 y

tunnels out through the barrier ( and finally moves from

S back out to s = + = ( Sout ). The factor (-1)k enters because
of the extra reflections involved in the kth trajectory.

The geometric series in Eq. (3.4) is easily summed (remembering

to keep track of the order of matrix multiplications) to yield

52
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1/2
§ §out ( } - F ) §in
+ CeMZ s o v (1-pa s th et 2 g
~out ~ ~0 ~ ~ ~ ~0 ~ ~in
(3.5)

Eq. (3.5) is the general result for the S-matrix given by
this semiclassical multichannel branching model, as applied to a
scattering system such as depicted in Fig. 18. Applications to
other types of scattering systems (see section III.E ) are similar
to the above development. The semi-classical aspect of the branching
model is that we have used it to construct a probability amplitude.
Other branching models have constructed probabilities,49 and
these would be referred to as classical branchi models (see also

section III.E.2 ). The multichannel aspect of the present model is

that the quantities S , F, S, , § are matrices in the trans-
~0 ~ ~1n ~out
verse vibrational states n = (nl, Doy - nF l), and as such it

is necessary to maintain the correct order of the matrix products

in Eqs. (3.4) and (3.5). The matrix products, which involve sums
over intermediate transverse vibrational states, are a manifestation
of the quantum principle that one sums over all intermediate states

5
that are not observed.

B. Application te Unimolecular Decomposition
Though the general result of Eq. (3.5) gives the overall

S-matrix for the collision process depicted in Fig. 18, it is also
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possible to extract from the result information regarding the
unimolecular decay of the system. The connection lies in consi-
dering the collision complex (i.e., when the system is in the
well region of Fig. 18) to be a prepared unimolecular system,
which reacts ro yield products (i.e., goes tu s = + ®» in Fig. 18).

As before, the individual metastable states are characterized by

complex energy eigenvalues

E = Er -ir/2 (3.6)

the real part of which is the energy of the state (Er) and the
imaginary part of which determines the width of the state, [ (see
Eq. (1.6)).

The complex eigenvalues of the metastable system (i.e., the
collision complex) are defined rigorouslylj as the poles of the
S-matrix §(E) . Therefore, the approximate full S-matrix of
Eq. (3.5) ;5 used to determine these poles. By inspection of the
form for the scattering matrix, it is clear that poles of §(E)

occur at values of E for which the inverse matrix in the second

term in Eq. (3.5) is singular, i.e., values of E for which

det| 1 + [ 1 - P(E) A SB[ = 0 (3.7)

where it is emphasized that P and SO are functions of energy.

Eq. (3.7) essentially serves to quantize the quasi~bound states

of the system, and hence is the desired equarion for determining



the state specific energies and lifetimes of the metastable system.
As one would expect, the equation involves only the interior §-
matrix, So , and the tunneling probabilities, and not the exterior

S-matrices Sin and Sout . Of course, if one desired to determine

product state distributions 6f unimolecular reactions, it would
be necessary to include the effects from these external S-matrices
via the full scattering S~matrix, Eq. (3.5).

In applying Eq. (3.7) to one-dimensional systems (i.e., no
transverse vibrational modes), E and §0 become 1 x 1 matrices,
i.e., simple numbers. The semi—;lassicai (WKB) approximaticn

for them is

s, (E) o Li0(E) (3.8a)

-28(E) -26(E)
e

P(E) /(1 +e ) (3.8b)

where ¢(E) is the WKB phase integral across the well

S
2
s =k f asV2(E - V(D) (3.9)
51

and B(E) is the barrier penetration integral

5
3
9(E) = hl f ds /2 (s) -~ E) (3.10)

S2

35



The condition for determining the poles of the S-matrix then takes

the form

-28,1/2

1+ e2i¢/ (1 +e °7) 0 (3.11D)
which is equivalent to

8E) = (n+z)m-ten 1+ (3.12)
In the tunmneling region (i.e., when 2—26 << 1 ) the expression

Eq. (3.12) can be expanded in a Taylor series about the real part
of the complex energy, Er -1iT / 2, then equating real and
imaginary parts. This gives the usual WKB eigenvalue equation

for the real part of the complex energy
8(E) = (n+3)m (3.13)
r 2 :

and a width given by

28

I = (dE_/da)/2n e (3.14)

. . 46
which is the well-known semiclassical result for the one-
dimensional case ( dEr/dn is the semiclassical expression for the

frequency of oscillation in the well).

Finally, although the construction of the S-matrix in Eq. (3.5)

has referred to the situation shown in Fig. 18, where there is an

actual barrier to dissociation, this is not a necessary condition.

56
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Suppose, for example, that the reaction coordinate profile of

potential energy is actually a Morse potential:52

v (s) = DI e2alsms) oy alses ) (3.15)

For energy E the classical turning points, defined by Vo(s) = E,

are
s=s ~~fa(1+ JI+ED) (3.16)

For E < 0 cthere are two real turning points, as expected, while
for E > 0, the "+" sign in Eq. (3.16) gives the real inner

turning point,

s, =5 - l"Zn (1+v1 N E/D ) (3.17)
1 o a
and the "-" sign gives a complex outer turning point
s, = s - l-Qn (1 -V1+E/D) (3.18a)
2 o a )
or
o= os, - sIrED -1) = ar/a (3.18b)
2

The tunneling probability matrix P for this situation will consist

not of normal tunneling probabilities, but rather of transmission
probabilities of passing into or out of the well from the outside
(even though for real s there is no physical barrier that iden-

tifies the "inside' and "outside”). To be more specific, ¢(s) in
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Eq. (3.9) is replaced by

Re Sy

ds V2( E - V(s) )

E 4

and 8(E) in Eq. (3.10) is replaced by33

+
Sa

hi /ds[\/Z(E—V(s))[

S2

which 1s negative., For increasing energy above the barrier, the
transmission probability (Eq. (3.8b)) approaches unity, i.e., the
continuum limit, as indeed it must. This "above the barrier"
situation is extended to the multi-channel case in the obvious

straightforward manner, as discussed in section III.C.

C. Dynamical Approximations

The principle aim of the multi-channel branching model is to
provide a quantum mechanical approach (though approximate) which
can be applied to real polyatomic systems. It is therefore neces-
sary to utilize relatively simple dynamical approximations in
constructing the matrices §° and E in Eq. (3.7). It should be
emphasized that the Eqs. (3?4) and (5-5), describing the overall
S-matrix, are general, and any one of a number of dynamical approxi-

mations could be implemented. The one chosen for this particular



study is the semi-classical perturbation-infinite order sudden
approximation (SCP-10S) discussed recently my Miller and Shi.48
The SCP-10S approximation makes use of the reaction path
Hamiltonian of Miller, Handy, and .»\damsl'7 for wodeling ...e
molacular system. LE (s, Py ) are the mass-weighted reaction

),

coordinate and its conjugate momentum and ( n, q ) = ( nk s 4y
k =1, ..., F-1 are the action-angle variables for the transverse

vibrational modes, then the classical Hamiltonian has the form

F-1
o1 - JaT o
Hip s, 0y g 2= 5 lpg - } Bk,k.(s) (an+l)(2nk.+l)
K, k'=1

X dmk,(s)/wk(s) sin q, cos a4y ]2

F-1
x [ 1+ Bk,F(S) \42<k+1)/mk(5) sin q f‘
k=1
F-1
— : i
+ Vo(S) + 2 tn, ?) uk(s) (3.19)
k=1

where Vo(s) is the potential energy along the reaction path,
mk(s) are the locil harmonic fr quencies of the transverse v b-
rational modes along the reaccion path, and the matrix elemerts
Bk,k'(s) couple the transverse vibrational modes to each ot er

and to the reaction coordinace (labeled as mode k = F ). _.he

mar.aer in which rais Hamiltonian is constructed from ab i: itio
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guantum chemical calculations, and the nature of the coupling
elements is described elsewhere.43’47
Since the action variables n,  are the classical counterpart
= -ibrational quantum numbers, this Hamiltenian provides a con-
venient framework for implementing the branching model as developed
in section IIL.A
Construction of the interior S-matrix, §D(E) , within the
SCP-~I0S approximation is a relatively simple a;aptation of the
form for the scattering matrix given by Miller and Shi for scat-
tering situations (the interior S-matrix is an amplitude transition
matrix for one oscillation in the well). Employing units such that
h = 1, the expression for SO is

2w

s () = o / dq exp [-idn-q + 130(q)]

0 (3.20)

wnere 4n = n' - n and
2
@O = @D(n,s) = 2 / dsy2( E - va(s) ) (3.21)

S

1

S

F-1
a¢(q,n,E) = Z 2 sin q f ds V(E-V_(s)) B, (s
k=1
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x \/(an+1)/mk(s) cos Gk(s)

F-1 s,
E cos{q,-q, ) - ‘/-‘__—"_—
{ k Tk / ds Bk,k'(s) (2n,k+l)(2r1k,+1)
k,k'=1 s
1
X\/mk,/wk sin(rSk - ok,)
2
+ +q, )
cos (qy*qy . f ds B |1 (s) \/(an+l)(2nk,+l)\/wk./wk
1

x sin(Sk + dk,)}
(3.22)

In Eqs. (3.20), (3.21), and (3.22}, the term 6k(s) is given by

52
wk(s)
6k(s) = ds —m——— (3.23)

v2( E—Va(s) )

The term Va(s) is the vibrationally adiabatic potential
Vis) = v(s) + Y (n, 4w (e) (3.22)
a o e K 2 k

and it is recognized that the quantum number index n 1is to be

renlaced everywhere by the average of the initial and final quantum

53
aumbers, i.e.,
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(3.25)

=}
¥
M
—~
a
+
2
~

One recognizes the zeroth order phase f{ the above S-matrix, DO(E),
as the vibrationally adiabatic WKB phas¢ integral back and forth
across the well. The phase term A¢ ar.ses because of couplings
between the various modes and thus gives rise to a non-diagonal
S-matrix, i.e., to vibrational inelasticity. The central modifica-
tion of the scattering si.uation expression for the S-matrix of
Miller and Shié8 lies 1in replacing the limits of integration
corresponding to scattering conditions by the furning point limits
of integration corresponding to the bounded moticn inside the well.
The transition amplitude matrix, §O(E), is a probability
conserving matrix, i.e., the system wili be found in one of the
transverse states n both before and after the oscillation. Such

a matri: 1s, by definition, a unitary matrix, i.e.,

(3.26)

e
Y]
n
Lin
W
3
—

The approximation to So given by Eq. (3,20) however, will not

be exactly unitary, and for the applications intended for this
model this would cause serious errors. [t becomes important,

therefore, tec unitarize the approximare matrix, S , in some
N

fashion. Difficulties associated with unitarization have been

, 54 :
encountered previously, and various methods exist for unitarizing

. ; A . 55
matrices. One way to accomplish this is via an R-matrix procedure.



In general, an R-matrix and an S-matrix are related by

§ = <L-ig>-(}+iR)' (3.27a)

(3.27b)

=
"
l
.
—~
L
1
%]
~
o~
=
+
tn
~
1

[

If S is unitary, then is Hermitian, and vice versa. Thus, if

S is not unitary, then given by Eq. (3.27b) will not be

tem o

Hermitian. One can make R Hermitian, however, by simply taking

its Hermitian part:

Ry = (3.28)

R —
PN

-]
+

Iy
N

Thus, the prescription for unitarizing an approximate S-matrix
emploved in this study is to use Eq. (3.27b) to construct the
corresponding approximate R-matrix and then "Hermitizing'" this

approximate R-matrix via Eq. (3.28). When RH is then put back

into Eq. (3.27a) in place of R, a unitary S-matrix results. 1t

is easy to show that the unitarized S-matrix, SU , is given in

rerms of the approximate S-matrix by

s, =l s+ 974 é-(} + 5)_11

S R S

1, -1

] (3.29)
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where

ttn
L
~
[%2]
~

This prescription for unitarizing an approximate S-matrix is, as
mentioned, not a unique prescription. However, if the S-matrix
resulting from a particular unitarization scheme is very sensitive
to the scheme used, then the original S-matrix is probably far
from unitary, which would cast doubt concerning the dynamical
approximations employed.

Finally, the matrix of the tunneling probabilities, E , can
also be obtained within the SCP-I0OS apprcximation . A ;implified
form for the matrix elements will be a reasonable approximation,
however, if the coupling elements Bk.k' are small in the tun-
neling region. WNeglecting the effecr of these coupling elements
results in an SCP-IOS approximation which is equivalent to the
vibrationally adiabatic approximation. 7The matrix E is diagonal

and of the form

P ' = § , e (3.30)

where H 1is the vibrationally adiabatic barrier penetration integral

$3

g = Q(E,lj) = ds V2¢( Va(s) - E) (3.31)



Eq. (3.30) is valid only for small tunneling probabilities, the

46
more generally valid expression ~ being

P, = 8 .o+t (3.32)

¢33

1=

2
t3

Use of the expression Eq. (3.32) can be extended so as to include
energies above the top of the barrier, or for situations where
there is no actual barrier to dissociation, as discussed in

section IIT.B for the case of a Morse oscillator reaction coordi-
nate potential. Using the turning points in Eqs. (3.17) and (3.18),
the barrier penetration integral S(E’E) can be analytically

continued33 and is of the form of Eq. (3.18d).

D. Calculations for Model Unimolecular Systems

As a rest of the model developed in sections III.A,B,C , one
of the simple two oscillator models of section II was chosen for
investigation. The particular example chosen is the one-barrier
Henon-Heiles potential, the quantum mechanical results for which
are discussed in section II.C. The potential function for this

simple oscillator system is (in Carresian coordinat.s)

1 2 2 1
Vix,y) = 3 (x"+y" ) - % x3 - S'x y (3.33)

In order to apply the branching model to this system, it is

first necegsary to cast the potential into the form of the reaction
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7
path Hamiltonian,A Eq. (3.19). For this example, the reaction
path is straight (the x-axis) and the reaction path Hamiltonian

thus takes the relatively simple form

HOp_, s, 0, @ = 31 p +%%;—(n+-§—)sin2q]2
v U (s) + (at D) wls) (3.34)
where
V() = s7/2 - $/3 (3.35a)
wis) = 1 - 2s/3 (3.35b)

Since the complete potential in Eq. (3.33) is already quadratic
in the transverse degree of freedom (i.«¢., the y direction), the
reaction path Hamiltonian is actually the exact Hamiltonian for
this example.

The interior S-matrix, §o , and the tunneling probability
matrix f were constructed a; outlined in section TIII1.C. The
vibratio;ally adiabatic approximation was made for the tunneling
matrix, which was therefore diagonal. By finding the various roots
of the secular determinant equation, Eq. (3.7), the various meta-
stable state eigenvalues were found. These eigenvalues, in an
approximate way, correspond to the eigenvalues obtained from the

exact quancum mechanical methods emploved in section II.C. Figs.

20 and 17 show the results given by the present model, and the
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rigorous quantum mechanical values, respectively. As discussed
before, this system shows quite pronounced mode specificity in its
decay rates. More important for this study, however, is the fact
that the multi-channel branching model rzproduces the correct
results quite well, for all energies of interest. In Fig. 20,

the states corresponding to energies above the barrier were obtained
by utilizing the methods outlined in section IIT.A and by Egs,
(3.31) and (3.32). Even for these 'over the barrier” states,

the agreement with the exact quantum results is excellent.

E. Other Applications of the Branching Model

1. Energy Levels in a Multi-dimensional Double-well Potential

The overall S-matrix given by Eq. (3.5} is specific to the
type of scattering situation depicted in Fig. 18. It is possible,
of course, to apply the ideas of the branching model to situations
other than that one, and thus be able to describe other types of
dynamical phenomena. The object of this section is to demonstrate
how the ideas of the bramnching model can be used to describe the
energy levels of a multi-dimensional double-well potential.

Consider first inelastic scattering on a potential surface for
which the potential along the reaction coordinate is as depicted
in Fig. 21. The analysis of section IIL.A can be generalized to
treat the present case (which possesses two interior wells, sepa-
rated by a barrier) or any other more complicated sequence of wells

and barriers.



Consider the entire region of well
as the "inside" region that is separate

region by barrier 2 (see Fig. 21). I

a , barrier 1, and well b
d from the 'outside'

f SO is the S-matrix

which characterizes this complete "inside” region

b and barrier 1), then Eq. (3.5)

S-matrix as

=

S(®)

S e ¢

+ S

.
~out

S
~out

where S, and
lin

for the "outside' region in Figi 21 and P2 the mat

neling probabilities for barrier 2 To determine

SO (3.36), i.e., the S-matrix for walls

rated by barrier 1, one recognizes that this complex

in Eg. 4

region is equivalent to the scattering system in Fig

identifies the externmal scattering region of Fig. 18

of wel. b in Fig. 21 . %Fhus, SO in Eq. (3.36)
by Egq. (3.5) ,
172
§o §b,out'( % - gl ) §b,in
1/2 1/2
* ~b,out El § ( } + ( % N gl ) §a]

{(wells a and

applies as before to give the

are the incoming and outgoing S-matrices

rix of tun-

the S-matrix

and b, sepa-
“inside"

. 18 if one

with the region

is itself given
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where S is the S5-matrix for motion back and forth across well a

(s1 -+ S5 + sl Y, §b,in is the S-matrix for inward motion across
well b (sA + 83 ), §b,out the S-matrix for outward motion

across well b ( S3 * 8, ), and f the matrix of tunneling
probabilities for barrier 1 . Th; final expression for the S-
mattix for the system of Fig. 21 is obtained by imserting Egq. (3.37)
for §0 into Eq. (3.36). It is straightforward:to extend this
proce;ure inductively to generate the S-matrix for the case of
arbitrary number of wells and barriers.

The S-matrix given by Eq. (3.36) 1is the general one for
the scattering situation of Fig. 21. If one is interested in
bound state energy levels, however, it is necessary to modify che
potential profile of Fig. 21 1in the obvious way. Equivalent to
making this modification is to "switch off" the tunneling
through barrier 2 by setting 22 = 0, and look for the poles
of the S-matrix §(E) . With thzs modification, Eq. (3.36) shows

that the poles occur at values of E for which

det | L+ s (B) [ = 0 (3.38)

with S0 given by Eq. (3.37). Appendix . of reference 56

demonstrates how expressions of this form correspond to the bound
state eigenvalues calculated from quantum mechanical perturbation
theory. (It is easy to show that for So unitary, the roots of the

Eq. (3.38) will be vreal, thereby corresponding to true bound state
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eigenvalues.)
Inserting the expression for S0 given by Eq. (3.37) into

Eq. (3.38), vields the following determinantel equatioun:

1/2 1/2
det I % + §b,out ( } - ?l ) §b,in + §b,out gl §a
1/2 -1 1/2
( { + ( } El ) §a ! gl §b,1n ] 0
(3.39)

This can be put into a more useful form by multiplying it from the

| and from the right by det | S

lefrt by det | §b,in 5b ouc

This results in the expression

1/2
dec | 8 + 5 (1-%) 3y
e b2 V. I VI
Syt By TSl 1 (L= P)TTes ] iRy s = 0

(3.40)

for determining the bound state eigenvalues. In Eq. (3.40), Sb s

the S-matrix per oscillation in well b ( Sy 7 8, ~ Sy ) is given

by

5 = Sbia" Sb,out (3.41)

Note that the indices of Sa refer to trarsverse vibrational states

at s, and those of Sb to transverse vibrational states at 53 .
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and since Pl 1s assumed to be vibrationally adiabatic, all the

matrices in Eq. (3.40) are thus square matrices of the same dimen-
gion. Finally, by simple matrix manipulation, it is easy to cast

Eq. (3.40) into the following more symmetric form

-1/2 -1

det | [ 5 7 + (1-P )77 QP m s, T+ Q-]
+ pll/z | =0 (3.42)
which demonstrates that wells a and b enter the eigenvalue
equation on equal footings, as expected.
Recent quantum mechanical calculations of Bowman, et al 37 , of

the splittings in a symmetric double well potential, coupled to one
transverse vibrational mode, provide an interesting example with
which to test the branching model results of Eq. (3.42) . Again,
the SCP-I0S approximation of section III.C was used to coastruct

Sa (which is equivalent to Sb for this example) and F. Table II

shows results obtained from Eq. (3.42) for the splittings of the

nearly degenerate doublets, the most sensitive quantity for such
systems, compared to Bowman's quantum mechanical results. (Splittings
for higher energy levels were not attempted since in this case Bow-
man's model potential has more than two wells.) Again, the multi-
channel branching model appears to provide a good description of the

phenomenon.
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2. Reaction Probabilities in Complex Formation

As a final application of the multi-channel branching model,
consider the phenomenon of complex formation in molecular collisions.
Such a system is characterized by the potential energy surface for
which the potential along the reaction coordinate is sketched in
Fig. 22. Reaction corresponds to motion from regicn a (s + - »)
to region b (s> + ), and as before, the ( F-1 ) transveise
vibrational modes are not indicated in the figure.

To proceed, it is convenient to define §a , §0 , and §b as
transition amplitude matrices for the interval; ( —~m v Sy ):
( Sys Sy }, and ( Syr t @ ), respectively. These matrices are to
be considered as transition amplitudes for a single pass across the
well, not as a complete oscillation in it, as in section II.B.
Another feature of these matrices is that they are in general rec-
tangular since the number of transverse vibrational states that are
energetically open at s = -=@ | S1» Syr Sgu S, and + = are in

general dirferent. Pl and P2 are the tunneling probability mat-

rices for motion across barriers 1 and 2, which can be considered
to be diagonal square matrices (via the vibrationally adiabatic
approximation) as described in section III.C.

The branching analysis for constructing the net scattering

matrix, S is similar to that presented in section III.A

~net’

The first trajectory (i.e., amplitude branch) which contributes
to the a + b reaction process for the system in Fig. 22 corresponds

to goilng strailght across the inside well, with ampiitude
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- P 5 -p N (3.43)

The next trajectory corresponds to making one extra oscillation

back and forth across the inside well, with amplitude

) 1/2, . 1/2 .tx, /2, . ., 1/2,
St B Sl s T p) T s p s,
(3.44)
Note that the matrix §;r , the transpose of §0, - the amplitude

for going across the inside well in the negative di «ction. By
including all of the amplitude trajectories which + atribute to the
Teactive process a * b , the net amplitude (or matrix) for the

reaction is

© = s-pY%s . 1+ (1-p. ”-si‘-(l-?)

172
§b+a

(3.45)

By calculating the matrices in Eq. (3 S) by some dynamical
approximations such as those described in ection III.C , one would
have an approximate state-to-state veact" ve transition amplictude,
along with other dynamical information. For example, the energy
dependence of the net matrix §net(E) #11l in general show the
complicated resonance structure corr: ponding to the formation and
decay of metastable states (i.e., ¢ lision complexes) in the inside
well region. The energies and 1if _imes of these individual meta-

stable states are given, as in se tion III.B , by the poles of the

S—matrixl3, which from Eq. (3.4:) are the complex energies E for



which the following determinantal equation is satisfied:

(3.46)

For many applications, however, one is interested in a some-
what less detailed level of experimental measurable, e.g., in an
energy averaged reaction probability. This is equivalent to aeg-
lecting all the cross terms in constructing the reaction probabi-

lities

r, >, = | (D % (3.47)

The branching model (now a classical probability branching modelAg)

for this average reaction probability thus becomes

= .- P . - .
gb+a gb £2 gu ?l Ea
tr
+ . . - - . . - . . «
S S P S P2 P SN
+ .. (3.48)
where the rectangular matrices P‘, PO, and Pb are defined by
2
®) = |6y . (3.49)

~a'n,n “a‘n,n



etc. Eq. (3.48) 1is a geometric matrix series that is easily

summed to give

Eb*a = gb <2 -o

Such a result as Eq. (3.50) has no resonance structure in its
eniergy dependence, for rbis detail of information is lost when the
interference between the differeat trajectories that contribute to
the a + b reaction Is neglected.

The analysis in Egqs. (3.48) - (3.50) 1is actually a mulci-
channel version of a result which has been given previously, Ynown
as the unified statistical model.58 In fa~c, in the limit of one
dimension, the result of Eq. (3.50) can be shown to be equivalent
to the results of the unified statistical model. Therefore, the
multi-channel branching model has provided . way of extending the
results to include the effects of vibrational inelasticity as one

moves along the reaction coordinate, which is certainly a more

realistic model when dealing w th real polvatomic collision svstems.

75
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IV. Mode Specificity in Formaldehyde Decomposition

Results of exact qus tum nechanical calc-lations of metastable
state decay counstants for model systems (see sections I, II ) have
demonstrated two types of mode specificity. First, some systems
manifested a dynamical mode specificity, by which is meant that the
intramolecular couplings are such that energy redistribution among
the vibrational modes of the molecule is very slow (though not
strictly zero) compared to reaction rates. If there are certain
symmetries in the Hamiltonian for the system, a second type of mode
spacificity can exist, i.e., a symmetry-induced mode specificity,
Here if the molecular system possesses a definite symmetry through-
out the entire course of reaction , it is possible to find decaying
states velonging to different irreducible represencations which
therefore cannot transfer energy to each other (a sort of intra-
molecular dynamical selection rule). This second type of mode
specificity has recently been discussed59 in detail in the context
of transition state theory, including application ro the forma.dehyde
unimolecular decomposition reaction.

To this point, such detailed dynamical studies as these have been
restricted to model systems possessing only two dejrees of freedom.
Section III proposes a mecthod which can, in principle, be applied
to more realistic polyatomic unimolecular systems with semi-quanti-
tative accuracy. Though such an approach may prove to be inevitably

necessary, it still retains much ot the computativnal intractability
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associated with the exact quantum approaches. An alternate approach
would be to somehow reduce the dimensionality of the system being
investigated so as to retain the essential dynamical information
being sought. Such approximations with application to scattering

6
systems have recently been reported.

The unim~ 2cular decomposition of formaldehyde represents a
particularly interesting example of a polyatomic system to be
investigated. Though it has received extraordinary attention over

. . . 61
the past several years, both experimentally and theoretically,

there remain many unresolved questions as to the details of the

6
overall photochemical mechanism, 2 grossly depicted in Eq. (%.1}):

*
HZCO + hv - HZCO (Sl) (4.1a)
H,CO (51) - H,C0 (s) (4.1b)
Hzco‘ (5 ) - Hy + €O (4.1c)

The interest of this study, of course, focuses on the last two steps

of the above mechanism, especially on the unimolecular decomposicion

step (Eq. (4.1c)) which occurs on the ground electronic (SO) surface.
The radiationless transition from the Sl electronic surface

to the So surface 'prepares" the formaldehyde system in some

high energy ro-vibrational state which can then dynamically evolve

ro eventually yield molecular products, H2 and CO . The question

to be addressed is how the individual! metastable states (correspond-
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ing to different initial distributions of energy among the modes
of the molecule) behave in their decay rate constants, i.e., whether
they exhibit mode-specificity, be it dynamical or symmetry-induced.
The unique role of the out-of-plane bending mode has also been
the subject of some interest63 in regard to formaldehyde photo-
chemistry. The Sl electronic state geometry, being non-planar,
gives rise (in the Franck-Condon sense) to significant population
in the planar ground electronic state's out-of-plane bending mode
initially. Since this is the only out-of-plane motion among the
ground state vibrations, it is clear from symmetry considerations
alone that energy cannot be directly transferred into or out of this
mode from the other modes of the molecule (at least for small ampli
tude vibrations), with the exception of the mode corresponding to
the reaction coordinate (which obviously cannot be harmonic). A
pertinent question, therefore, revolves around how the out-of-plane
bend couples to the reaction cocrdinate motion, and whether just
considering these two degrees of freedom should yield rrlevant
information about the mode-specificity of the full-dimensional
system. In other words, are the indirect couplings between the
other modes and the out-of-plane mode (via the reaction coordinate)
negligible so as to allow them to be separated out of the problem?
Such a separation would, of course, allow a more rigorous treatment

of the dynamics, 1l.e., a quantum mechanical treatment as described

in sections I and II .
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Such dynamical studies as these require the determination of
the potential energy surface for all relevant configurations of the
nuclei in the ground electronic surface, So . To this end, the
reaction path Hamiltonian method of Miller, Handy, and Adams (see
also section III.C ) was employed to construct the Hamiltonian for

~he decomposition process
H,CO (So) - B + CO (4.2)

The basic idea, as previously discussed, is to follow the gradient
path (in mass weighted Cartesian coordinates) on the electronic
surface from the saddle-point (or transition state) to both
reactants and products. At each point along the gradient ({or
reaction) path, a projected force constant matrix is diagonalized,
vielding normal mode frequencies for the vibrations orthogonal

to the reaction path. These frequencies, of course, are dependent
on the position along the reaction coordinate, and along with their
corresponding eigenvectors give rise to the couplings between the
various modes as one goes from reactants to products.

Gnee the Hamiltonian for the process has been obtained, it is
possible to perform various types of dynamical calculations using
various levels of theory, e.g., classical or quantum mechanical. The
aim of this study of formaldehyde decomposition is to investigate
the mode specificity of the individual decay rate constants, and

therefore the more rigorous quantum mechanical approaches are required.
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Sections IV.A, B will describe the Hamiltonian used for this svstem,
as well as the justification for neglecting all the vibrational modes
except the out-of-plane bend and the reaction coordinate mode in

ascertaining the mode specific character of the decay rates.

A. The Hamiltonian

The potential energy surface for che So electyonic state
of formaldehyde leading from reactant to molecular products has
been characterized previously at various levels of approximation.
Calculation of electronic energies at enough points on a grid
the six degrees of freedom for formaldehvde by ab initio te.hni, _es
to yield a surface amenable to dynamics calculations is “osrmidab -
However, by emplpying the methodology of the reaction path Ham.. -
tonian of Miller, Handy, and Adams,47 one can generate the surface
for all geometries surrounding the rele ant reaction path with m.ch
less computational effort. The general form for the reaction sath
damiltonian is given 1in section III.C, and 1s reprcduced bel -w
the specific example of formaldehyde (i.e., six vibrational J.gr.es

of freedom, neglecting overall rotation):

.

2
1 2: . - -
H(ps.s,ri.g) = 3[ P, - B (s V(2n, +13(2n, 1)
K k=1

2
/ i 5
x V/;k"wk sing, cosq . )

5
w Ute 208 om0/ (5) sing, T

k=1
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5
V() + Z (n, + 3 u () (4.3)
k=1

Here s represents the reaction coordinate (or position alor. the

gradient in mass-weighted Cartesian coordinates), P is its con

. . . 34

jugate momentum, ( n, g) are the action a.gle variable= Lot

vibrational modes t-.insverse to the reactinrn coording

the s-dependent frequencies of these transverse vibraticnal od

and Bk kv(s) is a matrix = coupling functions det »d in ‘etai’
»

in reference 47.

For this calcuiation, the transition stats ome - oca. 'a .

4 .
by Schaefer, et al6 , was used. All evaluations of elc_tro

energies, energy gradients, and second derivatives .re Jon @
SCF level (self-consistent field), with double zet VNS -
basis sets. The vibrational frequencies at the tran. fon ¢ -= .d
at the equilibrium formaldehyde geometr. as well as naoLler
height at the transition state, are given in ruple = ' 4101 w
the bast estimates for these quantities from highe vels f

. 64 . .
theory or from experiment. The calculated 'inction .si1s) cor-es

sonding to the out-of-plane bend is shown in Fig. .J, and th

potential energy profile VU(S) is shown in ¥ig. o The other

frequency functivns as well as the corpling funci.ons Bk L s) m
not presented here since thevy do noct ter directiv my o i
calculation. to be presented late: Thte ot the e

for the out-of-plane ovend ha:u beer scalec o tn
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from higher level of theory, and the function Vo(s) has been

adjusted to give the best barrier height estimates as well as the

ima inary frequency of the transition state. Similar results

have been reported previously by Fukui, et 31,65 for the formaldehyde

sv=tem, but no coupling functions are included in their werk. The

smooth curves hown in Figs. 23 and 24 were obtained by fitting

the discrete geometrry points witn one-dimensional gpline functions.*
The Hamiltonian of Eq. (4.32) (including the fits i.r the

functions w(s), b(s), and Vo(s)) cauld . in principle, be used

directly in dynami;al calculations, fuch as classical trajectory

or semi-classical studies. Even if the dimensionality of the system

were tractable, however, rhe Hamilconian (Egq. (4.3)) would need to

be transform:! if quantum mechanical calcuiations were to be carried

out.66

A principle feature of the resulrs for this system is that the
reaction coordinate (and hence the functions w(: bl Vo(s)) is
symmetrric ..sout the equilibrium geometry (s = . This is most

easily visu-:lized by noting that there are two equivalent transicion
states obta 1ed by reflecting through the principle axis ot the

64 . . .
mole« le. Thus, there are two ~quivalent barriers to reaction

fo. .nis dissociation process.

*
Note: The calculation of the rweaction path Hamiltonian described
above was «arried out by Dr. 5. K. Grav ’h . thesis, Department

of Chemistrv, University of Calit .rnia, Berkeley, berkeley, Calif.)
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B. Dynamical Results

Quantum mechanical calculations on the full six-dimensiona.
Hamiltonian (with total J = 0) of section IV.A are, at prvesent,
not computationally feasible. However, careful consideration of
the coupling functions ?(s) rzveals that a reduction in the number
of degrees of freedom (f;om six to two) 1is a reasonable approxima-
tion.

The out-of-plane bend (shown in Fig. 23) has strictly zero
direct coupling to all other transverse modes, i.e., BS,k =0 for
all k # 5. Thus, in any dynamical calculation, energy could never
be transferred directly from the out-of-plane bend tu the other modes
of the molecule, except to the reaction coordinate mode. Further,
the direcc coupling to the reaction coordinate occurs not through
the function B5,6(S) (which is also zero), but through variation
of the frequency w(s) as one moves along the reaction path (see
Fig. 23). Of course, all modes couple indirectly (via the reaction
coordinate) to the out-of-plane bend, but if such indirect couplings
are weak, it should be reasonable to neglect the other modes entirely
and still retain the pertineut features of the dynamics, i.e., the
mode specific character of the system should still be exhibite? as
it would be for the entire full-dimensional system.

The Hamiltonian used for the two degrees of freedom is thus

of tha form

2
p

Hip,s.m,0) = 35 + V() + @+ wis) % 4
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where it is also assumed that the term w'({s)/w(s) 1in the kinetic
energy expression of Eq. (4.3) 1is negligible.

For purposes of computation, the functions (3) and VO(S)
were fit (by non-linear least squares fitting procedures) to poly-
nomials in 52 (recall the symmetry of the Hamiltonian about s = 0),

of the following forms:

s + a,s (4.5a)

]
P

v, (s
2 4 6 8
w(s) = bo + bzs +Y5%,s5 + b,s + bBS + blos (4.5b)

Values for the coefficients in Eqs. (4.5) are given in Table IV,
and the functions are depicted in Figs. 23 and 24 for comparison
to the ab initio functions. The purpose of re-fitting the functions
. 2 . .
in powers of s is to allow for analytical evaluation of the
quantum mechanical matrix elements necessary for application of the
complex scaling method.

In addition, calc: lations were most easily carried out 1n

Cartesian (mass-weighted) coordinates, the Hamiltonian being given

by

p I
= - / + == : (4.
H(PS,S,PX,X) 7 * \10(5) 7t 3 X (4.6)

with ( Py s) as before, and ( x, px) being the out-of-plane

position and conjugate momentum, respectively.
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Calculations of the metastable state decay rates for this
simplified two dimensional system were performed by the complex
17 S1 s ;
scaling method, described in detail in section I.C. The scaled

Hamiltonian for this system has the following form

he 2ia 2° o,  n’at
H = -3—e —y FV (se’) -3 —,
a < ds ° “ 9x
2 ia
+ w (se ) x2 .7

2

The basis set used for expanding the Hamiltonian of Eq. (4.7)
was related to the simple harmonic oscillator basis set for each
degree of freedom. Results of the calculation for the formaldehyde
system are shown in Fig. 25. Only states above 70 kcal/mole total
energy were obtainable due to precision limitations as well as basis
set size limitations. However, the states obtained in rhis energy
region (near the classical threshnld) are the relevant ones ex-
perimentally.28’29

The Hamiltonian (Eq. (4.6)) possesses C2v symmetry, the

states corresponding to it therefore rfalling inte one of four

irreducible representations: A A2, B and B,. In addition,

1’ 1’

the Hamiltonian possessed a reflective symmetry with respect to

the reaction coordinate at every point in space, therefore giving
rise to an eveaness and oddness in the out-of-plane bend vibrational

states which is preserved all along the reaction coordinate. As
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discussed in detail elsewhere,59 this gives rise to a symmetry-
induced mode specificity, which can easily be seen by inspection of
Fig. 25. Out-of-plane bending states only couple with other out-of-
plane bending states with the same evenness or oddness, even-odd
coupling being strictly zero because of the symmetry of the
Hamiltonian about the reaction path (i.e., the line x = 0 ). Meta-
stable states with "even'" out-of-plane contributions have faster
decay rates because they lead to a build-up of probability density
at the critical barrier region. Metastable states with 'odd" out-
of-plane contributions have slower decay rates because of the relative
lack of probability density at the barrier regions. Even if the
formaldehyde system exhibited onlv statistical behavior (i.e., if
there was no dynamical mode specificity), this symmetry-induced

mode specificity would still cause states with different irreducible
representations to decay with different races.—

Fig. 25, however, demonstrates that for this formaldehyde
decomposition system, even the dynamical mode specificity is signifi-
cant, there being several states (within the same irreducible repre-
sentation) with almost the same energies having significantly dif-
ferent decay rates (differing by up to two orders of magnitude for
the states shown).

It should be noted that the reported calculations include from
0 to 7 quanta in the out-of-plane bending mode, and therefore fall

28
well within the range of experimental interest.
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Classic . trajectory studies25 for the system whose Hamiltonian
is given by Eq. (4.6) reveal that there does exist a transition
in character from quasi-periodic to chaotic as one goes from low
to higher energies. It is interesting to note that this system
displavs a significant degree of dynamical mode specificity in its
decay rates, yet classically exhibits chaotic intramolecular dynamics.
All of the states shown in Fig. 25 lie well within this classical

erzodic region.

<. Effects of Oui~» Modes

The significance of the results presented in section IV.B depend
directly on the validity of the approximation of reducing the
problem from the full dimensisnality of the formaldehyde surface.
By including a third mode (e.g., an HCH rocking mode), this

approximation can be tested. The Hamiltonian used has the form

2 2 N 2
# = Ps 4+ vis) + Px + &wi(s) 2 Py
5 [} o X X + 5=
2 2 2
2
2 2 4
+ JV(S) yZ + Ay (s" -8B 50 ) (4.8)

2

where the new mode (with coordinate v and womentum pv) has been
included. By inspection, there is no direct coupling between modes
x and y, but the third mode can couple indirectly (via the reaction
coordinate, 5) to the out-of-plane bending mode. Also, note that

the third mode contributes to the curvature of tne reaction path
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through the term

2 4
A_V(S‘-'Bsq) (4.9)

At least qualitatively, this is representative of the type of
coupling present in the full-dimensional formaldehyde Hamiltonian
of section IV.A.

So as to be able to perform the exact gquantum mechanical
calculations for this three degree of freedom system, the effective
value of &t in Egq. (4.8) had to be increased so as to include
fewer states in the metastable well (per degree of freedom).

Results are shown in Figs. 26, 27, and 28. Fig. 26 shcws results
holding the frequency W, comstant (i.e., no coupling to the
y-mode), Fig. 27 has the frequency w ~ constant (i.e., no coupling

to the x-mode), and Fig. 30 shows the full system of Eq. (4.8)

where modes x and y can couple indirectly via the reaction coordinate.

The main result is that there appears fc be no noticeable
effect on the mode specific character of the two node svstem of
section IV.B by inclusion of the third, indirectly coupled, mode.
This therefore apoears to indicate that the degree of mode specifi-
city (both dynamical and symmetrv-induced) exhibited in Fig. 25 will
carry over for the full-dimensional Hamiltonian (Eq. (4.3)) for

formaldehyde decomposition.

D. Discussion

Jt 1s interesting to compare the exact dynamical results of

section IV.B with results obtained oased upen statistical theories



of unimolecular reaction rates, i.e., the RRKM thecry, Even by
taking into account the effects of symmetry in the statistical
treatment (see reference 59 for an example), it is seen that the
dynamical results are much more complex {due to dynamical mode
specificity) than previously expected. Whether or rot this
apparent mode specificity of the formaldehyde system can be raken
advantage of or obtserved remains a verv difficulc experimental
question. Preparaticn of the formaldehyde sysiem on the ground
electronic surface in a particular vibrational energy distribution
among the mndes is complicated due to the indirectness ot the
mechanism, Eq. (4.1), as well as non-adiabatic =ffects which still
influence the dynamics of the system once it has reached the SO
surface. However, as pointed out by Hlller,jg such a preparation
should at least lead to some preservation of the evenness r 2ddness
of the out-of-plane bending mode states, thus ecabling experimenta-
lists to take advantage of the svmmetrv-induced m le spe-itf:ci'y
possessed bv the system.

Of c¢rurse, preparation of the high energy wvibraticpnal srates
directly (wichout reccurse to a second electroric sucface) weuld
ideally serve to test the theories and results presented here.
Jhether or 2ot such preparations can be acnieved fur the tformaldehvde
ivstem is still a question of seome inceres:,67 not only fnr the

formaldehyde system, but for other wcimolecular systems as well.
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Table I. Potential Parameters®

b
Figure W wy wy n v
2 14.14 14.14 14.14 0. 0.
3 14.14 14.14 7.27 2.0 0.
4 14.14 14.14 14.14 0. 20.
5 14.14 14.14 7.27 2.0 20.
6 14.14 8.94 4.60 2.0 20.
7 14.14 11.05 5.68 2.0 20.
8 14.14 17.89 9.20 2.0 20.
9 14.14 14.14 14,14 0. 170,

aFor the potential function of Eq. (1.13).

bThe local frequency of the y-mode at the saddle point on the

potential surface.
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Table II. Energy Level Splittings in a Two-Dimensional

Symmetric Double Well Potential.

Splittings (cm—l)

Transverse Branching Exact
Quantum No., n . Model Quant
Y Results Results
0 0.91 0.95
Lowest
1 1.23 1.28
Doublet
2 1.68 1.77
First Excited
0 47.2 44,4

Doublet

aPresent results (see section III.E.1)

bFrom reference 57.
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Table III. Potential Parameters for Formaldehyde

Decomposition to Molecular Products

Frequencies of Hzco

Equilibrium Geometry SCF-D2Z
(cm-l)
wl 3315.
W, ~ 3223,
g 1878.
w, 1585.
wg 1324,
we . 1349.

Frequency of
-1 23201
Trangition State (cm )

Barrier Height (kcal/mole) 113.7

%From DZ + P CI calculation (reference 64)

3009.
2944,
1764.
1563.
1191.

1287.

21241 2

92.

b .
Best estimatea (non-zero point corrected), reference 64.



Table IV. Coefficients for polynomial fits to w(s) and V(s)

2 4 6 8 1
w(s)C= by *bys” b5+ bes  +bgs +byos O (s inJ/am &)

100

bo = 1191, b ~511.755 bh = =-343.317

b6 = 520.867 b8 -159.227 b10 = 14.186

V(S)d = azs2 + a4s4 (s in Jamu A)

a, = 93.87755 a, = -23.94835

€ w(s) in cm_l

d V(s) in kcal/mole
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Figure Captions

Profile of the potential energy Vl(x) for the reaction

coordinate motion; the exact functional form is given

by Eq. (1.13a).

State-specific decay rates, k = ['/h, for the quasi-
bound states of the two-oscillator system with Hamil-
tonian defined by Eq, (1.5), with zero coupling between

the modes (Vc =0).

Same as Figure 2, except that now coupling is included.

See Table I for parameters.

Same as Figure 3. See Table I for parameters.
Same as Figure 3. See Table I for parameters.
Same as Figure 3. See Table I for parameters,
Same as Figure 3. See Table I for parameters.
Same as Figure 3. See Table I for parameters.

Same as Figure 3. See Table I for parameters. The ver-
tical dashed lines indicate the energies of the onset

of classical stochasticity and the classical threshold,

respectively.



Figure 10a.

Figure 1Cb.

Figure 11.

Figure 12.

A schematic representation of the cumulative tunneling
probability for a single trajectory. { e }  indicate
the times at which the trajectory "hits'" the barrier
(i.e., experiences a classical turning point), and

{ Pk } are the tunneling probabilities for these "hits."

A typical example of the averaged survival probability,

(P (¢} , defined by Eqs. (1.34) - (1.40). Note
s E,n
¥

that the probability decays in an exponential fashion.

Rate constants as a function of total energy, for the
same potential parameters as for Figure 7 (see Table I).
The poeints are the quantum mechanical values, and the
solid curves are the classical plus tunneling model
results for the rates kn (E) , obtained as outlined

y
in section I.D.

Quantum mechanical rate constants versus energy for the
metastable states of the Henon-Heiles potential energy
surface (Eq. (2.5)), with h = 0.04, Solid points zre
Al states, squares are A2 states, and circles denote
E states. The solid curve is the statistical (RRKM +

tunneiing) rate defined in Eqs. (2.11), (2.15), and

(2.16).
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Figure 13.

Figure 1l4.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.
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0.03.

Same as Figure 12, with h

Same as Fipure 12, with h = 0.02., Note that the E
states were not obtainable due to computa "1, 1 intrac-

tability.

Plot of the function h fn k versus energy for various
values of h , for the Al states. Points are the
exact quantum mechanical values (connected with solid

lines). The h = 0 solid curve is the h = 0 limit of

the RRKM + tunneling rate, Eq. (2.20b).
Same as Figure 15, for the A2 states.,

Same as Figure 12, for the one-barrier Henon-Heiles
potential of Eq. (2.21a), for h = 0.03. The solid
points denote even transverse states, the circles denoic

odd transverse states.

The potential energy profile V(s) for the resonance
scattering situation of section III.A. Sp1» Sp» and Sq
denote the classical motion turning points associated

with the analysis leading to the S-matrix.

The first three "amplitude trajectories' which contri-
bute to the overall scattering process. The amplitudes
agsociated with them are given by Egs. (3.3a), (3.3b),

and (3.3c), respectively.



Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

State-specific unimolecular decay rates as a function
of energy, as calculated by the branching model, for
the one-barrier Henon-ileiles system. Solid points
correspond to even states with respect to reflection
across the x-axis, circles correspond to odd states,
See Figure 17 for a comparison to the "exact' quantum

mechanical results.

The potential energy profile V(s) for the scattering
situation leading to the determination of double-well

potential energy eigenvalues.

Potential energy profile V(s) for the situation

giving rise to complex formation in molecular collision

processes.

Formaldehyde's out-of-plane bending mode frequency, w,

as a function of displacement along the reaction coordi-
nate, s, as computed via the reaction path Hamiltonian
formalism. Solid curve is the scaled SCF result, dashed
curve is the polynomial fit used in the complex scaling

calculations (see Eq. (4.3b)).

Potential energy profile Vo(s) for formaldehyde decom-
position to molecular products, H2 and CO. Solid curve
is a scaled SCF result, dashed curve is a polynomial fit

(see Eq. (4.5a)).



Figure 25.

Figure 26.

Figure 27,

Figure 28.

105

Rate constants as a function of total energy for the
metastable states associated with the reduced two-dimen-
sional formaldehyde system, Eq, (4.6). Solid points
denote even out-of-plane bending states, circles denote

odd out-of-plane states.

Rate constants as a function of energy for the three
degree of freedom system of Eq. (4.8), holding wy

constant (i.e., no coupling to y-mode).

Same as Figure 26, but holding w ~constant (i.e.,

no coupling to x-mode).

Same as Figure 26, but for the fully coupled system.
Note that by superposing the results of Figures 26 and
27, the results shown here are reproduced almost identi-

cally.
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