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MODE SPECIFICITY IN UFIMOLECULAR REACTION DYNAMICS 

BOYD ALAN WAITE 

ABSTRACT 

Theoretical studies on mode specificity in unimolecular reaction 

dynamics are presented, based on essentially exact quantum mechanical 

methods (viz., the complex scaling method), a semi-classical milti-

channel branching model, and classical trajectory methods. The prin­

cipal aim is to discover the relevant factors governing whether a 

unimolecular system exhibits mode specificity in its individual state 

rate constants, i.e., whether quasi-degenerate metastable states 

decay with significantly different rates. Model studies of two non-

linearly coupled oscillators (one of which can dissociate) demonstrate 

the effects of various features of potential energy surfaces on the 

character of the rates (e.g., degeneracy of modes, reaction path 

curvature, frequency modulation, etc.). These results and those 

obtained for the Henon-Heiles potential energy surface Indicate an 

apparent absence of correlation between the quasi-periodic/ergodic 

motion of classical mechanics and the mode specific/statistical 

behavior of the unimolecular rate constants. 

A different type of mode specificity, i.e., a symmetry-induced 

mode specificity, is demonstrated for systems possessing some degree 

of symmetry along the reaction path. States belonging to different 

irreducible representations may display significantly different rates, 
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even though there may be statistical-like behavior within a given 

representation. 

In order to deal with the question of mode specificity in more 

realistic polyatomic systems, a semi-classical multi-channel branch­

ing model is developed, with dynamical approximations based on the 

reaction path Hamiltonian and the semi-classical perturbation-infinite 

order sudden approximation. The model is applied with success to a 

state-specific unimolecular decomposition system, as well as other 

polyatomic dynamical processes. 

Finally, a study of the formaldehyde unimolecular decomposition 

is presented, with attention focused on the unique role of the out-

of-plane bend in determining the mode specific character of the decay 

rates. Results indicate that both symmetr>-induced mode specificity 

and dynamical mode specificity 0.,e., within a given irreducible 

representation) are present in this system. 
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I. Model Studies in Unimolecular Reaction Dynamics 

The modern theories of unimolecular reaction rates have their 

foundations in the famous Lindemann Mechanism , first proposed in 

1922, which has the following kinetic scheme: 

k a * 
A + M •* A + M (activation) (1.1a) 

A + K •* A + M (deactivation) (1.1b) 

k.(E) 
A •* products (reaction) (1.1c) 

The molecular species to undergo unimolecular reaction is represented 
* by A , its internally excited (or activated) form by A , and M 

represents some colliding partner. The rate coefficient k(E) in 

Eq. (1.1c) depends on the total internal energy E and (in the 

general case) the initial distribution of that energy among the 

internal states. 
2 Theoretical interest has focused on the third step (Eq. 1.1c), 

where an activated molecule undergoes energy redistribution until 

sufficient energy is localized in the relevant reactive mods, 

whereupon reaction occurs. The nature of the theoretical treatments 

or models describing the process in Eq. (1.1c) has taken various 
2 2c 

forms. The most successful of these have been founded upon sta­

tistical theories, similar in spirit to those employed in conven-
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tional transition state theory for bimolecular collisions. In fact, 
2 this statistical approach (i.e., the RRKM theory ) for treating 

unimolecular reactions can be shown to be the microcanonical en-

serable analogue of transition state theory. 

For the process (Eq. (1.1c)), the RRKM expression for the rate 

coefficient k(E) has the following form: 

N(E) 
k(E) = (1.2) 

2-rrS N'(E) o 

where N(E) and N (E) are the integral densities of states for the o 
transition state (or activated complex) and for the reactant mole­

cule, respectively. 

When this expression is incorporated into the overall nu hanism 

of Eq. (1.1), experimental results are reproduced with very great 
6a success for many polyatomic systems. This success has led many 

vorkers in the field of unimolecular reactions to the conclusion 

that, at least for most polyatomic systems, tha underlying assump­

tions of the RRKM theory are valid, these assumptions being that 

(1) internal energy of the activated molecule is redistributed among 

all the internal degrees of freedom on a time scale fast compared to 

unimolecular reaction, and (2) all internal states of the molecule 

are accessible and ultimately lead to products. 

It has only been in recent years that experimental technology 
Q 

has allowed for direct testing of the validity of these assumptions. 

For instance, the possibility of exciting the molecular species in 
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the activation step (Eq. (1.1a)) to some specific state (e.g., via a 

local mode overtone excitation with a laser) might lead to some type 

of mode specific behavior. The assumptions of the RRKM theory pre­

clude the possibility of such behavior in that the excited system 

must immediately lose its memory (due to rapid intramolecular relaxa­

tion) as to which particular mode was initially excited. In other 

words, within the ERKM picture, the rate constant k(E) for the 

process in Eq. (j..lc) can only depend upon the total internal energy, 

and not upon the initial distribution of that energy. Throughout 

the remainder of this work, such behavior in the rates will be refer­

red to as statistical behavior. 

If a molecule is excited in a specific way, as is possible with 

a laser, and if we consider an isolated, collisionless molecular 

system, then the basic question to be addressed is whether or not 

unimolecular chemistry (i.e., product formation) will occur before 

intramolecular relaxation processes destroy the specificity of the 

excitation. Stated another way, one asks if the rate of the reaction 

(Eq. (1.1c)), or other characteristics of the reaction such as product 

distributions, depends not just on the amount of excitation energy 

but on the specific way this energy is put into the molecule, i.e., 

on which modes are excited. 

As an extreme example of unimolecular behavior, consider the 
9 formation of Van der Waals complexes in a molecular beam. For a 

given amount of vibrational energy in I ' He , for example, it 

is clear that the rate of decomposition depends on whether the energy 
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Is initially in the vibration of the I_ molecule or in the weak 

Van der Waals bond. Such a system would be said to exhibit mode 

specific character in its decay rates. For more normal molecules, 

however, such obvious characterization of the rate behavior is not 

possible, and it has been commonly assumed that mode specific effects 

are unimportant for such systems. Several recent experimental 

studies, however, claim to have observed such mode specific 

effects in "typical" unimolecular systems (e.g., allyl isocyanide 

isomerization ). 

A. A Phenomenological Example 

Recent theoretical work related to mode specific chemistry has 

taken two directions. One approach has been concerned with the 

question of ergodicity as it relates to intramolecular dynamics, 

there being a seemingly natural connection between the ideas of 

chaotic behavior and the statistical assumptions of the RRKM theory. 

Many attempts have been made at establishing a connection between 

classical and quantum mechanical ergodicity in hopes of being able 

to describe the relevant features of the intramolecular dynamics. 

A second approach, the one to be followed in this presentation, con­

siders more directly the dynamics of the unimolecular reaction. That 

this approach should be more fruitful in dealing with the question 

of mode specificity in unimolecular reaction uynamics is seen in the 

following phenomenological example. 
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Consider an elementary two-state model of unimolecular reaction, 

whose kinetic scheme is as follows: 

k. in 
1 £ 2 (1.3a) 

in 

1 •* products (1.3b) 

k 2 
2 •+ products (1.3c) 

The rate of intramolecular transfer between "states" 1 and 2 is k. , 
in 

and "states" 1 and 2 react at rates k1 and k ? , respectively. 

Solving for the eigenvalues of the resulting set of master 

equations yi'lds the following intrinsic reaction rates: 

k l ~ k 2 2 ( - 2 ) 
rate = ( k + k 2 )/2 ± • fl.4'1 

k. +,/k 2 + k - k, , in \/ in , 1 2.2 V (. ; ) 

This system is ergodic by construction, i.e., it spends the same 

amount of time in each of the states 1 and 2 due to the equal 

rates of hopping back and forth between the states. The statistical 

rate, i.e., ( k1 +• k~ )/2 , however, is obtained only in the limit 

k. » | , k l " k 2 , in ( 5 ) 

which, of course, corresponds to the standard RRKM assumptions. In 

the opposite limit the system is mode specific with rates given by 
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k or k, , even though the intramolecular dynamics is ergodlc. The 

relevant result of this simple phenomenological example is that the 

approach of considering only the intramolecular dynamics may lead 

to erroneous conclusions regarding the unimolecular dynamics. In 

other words, whether the intramolecular dynamics is formally ergodic 

or not in the infinite time limit does not seem as relevant to mode 

specificity as does the rate of intramolecular energy transfer com­

pared to the rate of the chemistry of interest. 

B. A Model for Unimolecular Decomposition 

The simplest model of unimolecular decomposition is a system of 

two coupled oscillators, one of which can dissociate. The object in 

studying such a simple model would be to calculate the unimolecular 

reaction rates associated with it, and then, by varying the relevant 

parameters of the potential energy surface, see which are most impor­

tant in distinguishing between mode specific and statistical behavior. 
12 Past studies of such coupled oscillator systems, however, have shown 

that for energies above the classical threshold for reaction the 

molecule decomposes too fast for any amount of coupling between the 

oscillators to yield the purely staListical limit. In order to over­

come this difficulty inherent in two oscillator models, it is necessary 

to choose the dissociative oscillator to have a potential barrier to 

dissociation so that the reaction must proceed by tunneling. By 

varying the size of ft (which is arbitrary for a model system), one 
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can thus slow down or speed up the rate of dissociation without 

significantly affecting the intramolecular vibrational dynamics. 

Thus one might be able to find a system of two oscillators which 

exhibits the necessary balance between intramolecular relaxation rates 

and unimolecular reaction rates necessary for statistical behavior 

in the cverall decay rates. 

The Hamiltonian for the two-oscillator system to be considered 

is 

2 2 
Px Pv 1 2 2 H = ^ + TJ- + V(x) + i mi y + V (x,v) (1.5) zm im 1 /. y c 

where V.(x) is a potential function as shown in Fig. 1, and V 

is the interaction which couples the two oscillators. Such a system 

has only metastable or quasibound vibrational states, which are 

characterized by complex energies, E - iT/2 , as is well known 
13 from resonance scattering theory. The real part of the complex 

energy E is the energy of the metastable state, and the imaginary 

part is related to its lifetime T and the unimolecular decay rate k 

by 

k = 1/T = r/fi (1.6) 

The determination of the state specific unimolecular decay rates for 

such a system would consist of calculating the complex energies for 

all the quasibound states, inspection of the resulting decay rates 

considered as a function of energy would then indicate whether the 



system was mode specific or statistical in its rate behavior. 

To demonstrate this scheme for evaluation of unimolecular 

systems, it is illustrative to consider first the uncoupled case, i.e 

V =• 0 in Eq. (1.5) . The complex energies are then characterized 

by a quantum number for each oscillator and are additive: 

E = ( e - ir /2 ) + e (1.7) n ,n n n n x y x x y 

Note that in this uncoupled limit, only the energy of the x-mode is 

complex. The energy E and the rate constant k for the quasibound 

state with quantum numbers n and n are then 

E = e + e (1.8a) n ,n n a x y x y 

k n n = I" / h (1.8b) 
x' y 

This represents the extreme of mode specificity; the energy, 

once deposited in a given mode, remains isolated in that mode. The 

rate of decay depends only on the quantum number (and thus the energy) 

of the x-mode. By plotting the individual state rate constants k n ,n x 
versus total energy E , as in Fig. 2 , this mode specific or 

nx'"y 
non-statistical character is dramatically evident. For a statistical 

or RKKM-like system, k should be a smooth monotonically increasing 

function of the total energy E , and the present uncoupled system 

depicted in Fig. 2 is clearly the opposite extreme. 
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An interesting observation connecting this uncoupled (or weakly 

coupled) picture to standard RRKM rate expressions can be made as 

follows. Consider the limit of many closely spaced energy levels in 

an uncoupled system (as in Fig. 2) and compute the average rate 

constant at energy E , 

E k <5( E - E ) n ,n n ,n 
k(E) = n ,n x y " x y (1.9) 

_2 1 

X) 5< E - En ,n > 
x y 

n ,n ' 
x y 

where in actuality the 6 - functions should be broadened so that at 

least several quasibound states have energies within their width about 

energy E . Such an average may be significant, even for very weakly 

coupled systems, if the method of activation of the molecule is rot 

state specific. 

By invoking the separability of the energy (Eq. (i.8a)) as well 
14 as the semi-classical approximation for T , i.e., 

x 

r = P( e ) (3e /3n )/ 2TT (1.10) n n n x X X X 

where P( e ) is the one-dimensional tunneling probability for the 
x 

x-mode, and by going to the continumr. limit 

/
dn 

X 
(1.11) 
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it is easy to show that the average rate of Eq. (1.9) is just 

k(E) = V * P(E-e ) (1.12) 
2 ir h p(E) *—' ny 

n 
y 

which is recognized as the RRKM rate expression including tunneling. 

(Note that p(E) , in the denominator of Eq. (1.12) , is just the 

density of quasibound states.) Thus, the average rate constant at 

total energy E is just the RRKM statistical rate even in the case 

of no coupling between the modes. Even if there is coupling between 

the modes, it is still possible to define an average rate k(E) for 

a given total energy by averaging the individual rate constants over 

some energy interval. 

The scheme outlined above for describing unimolecular reaction 

rates, therefore, is to construct decay rate profiles such as that of 

Fig. 2 for systems in which V is not zero. The fundamental ques­

tion with regard to mode specificity is, when coupling between the 

modes is introduced, do all the points in Fig. 2 move and fall along 

a single smooth monotonically increasing curve (i.e., the curve k(E) 

of Eq. (1.12)). In other words, are there systems for which the 

unimolecular decay rates of each individual quasibound state depend 

only on their total energy. To investigate the extent to which this 

does or does not occur is the purpose of the model calculations, 

described in section I.C. 
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To be. more specific, the particular functional forms used for 

the potentials in the Hamiltonian of Eq. (1.5) are 

2 
V (x) - j m (/. x 2 e" X (1.13a) 

, 2 2 
V c(x,y) = x. e" x ( V 2 y - r, !l!!y_ y 2 ) (1.13b) 

The potential energy is harmonic near the bottc-i of the well with 

frequencies <u and u) , and through cubic anharmonicities it is 

identical to the well-studied Barbanis potential. Thus, results 

of calculations for this system should give some clues as to whether 

the classical ergodic features of the system (which the Barbanis 

system is known to possess) are relevant to the mode specificity of 

the unimolecular rates. 

The coupling interaction in Eq. (1.13b) has two terms. The n 

coupling serves to dilute or modulate the transverse frequency as one 

moves along the reaction path from reactants to products. Its effect 

(which is typical in many chemical systems) is to effectively widen 

the valley leading to products in the transition state region, i.e., 

the region of loosely bound complexes. The V - type of coupling 

of Eq. (1.13b) introduces curvature in the reaction path, i.e., the 

path of steepest descent down from the saddle points. These are the 

two types of coupling present in real systems, and one would like to 

ascertain which is most closely associated wi rh mode specific or 

statistical behavior. Finally, by varying tht degree of degeneracy 
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between the two modes, i.e., by varying the frequencies to and to , 

it should be possible to determine the effect on the mode specific 

character of the decay rates of resonant versus non-resonant intira-

molecular energy transfer. 

C. Quantum Mechanical Calculations 

1. The Complex Scaling Method 

The quasibound states associated with unimolecular decomposition 

are characterized by complex energies 

E r - i T / 2 (1.14) 

where E is assoi iited' with the energy of the state and T is, 

as discussed in section I.B , related to the deray rate or inverse 

lifetime of the state. That this is the case is seen most directly 

by noting that the time dependent Schrodin;.,er equation for complex 

energies 

i h |i(x,t) = H ^ ( X ( t ) = ( E ^ _ i r / 2 ) i | ) ( x > c ) a i 5 ) 

leads to probability distributions 

2 2 
iKx,t) I = I <K*,0) I e " r C / h (1.16) 

which decay exponentially with rate coefficient T / fi. 
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Thf complex energies of metastable states are defined rigorously 
13 as the poles of the analytically continued Green's function, or 

equivalently of the S - matrix (i.e., by considering the metastable 

states to be resonance states in a scattering situation), These 

resonance states give rise to resonance peaks in a scattering experi­

ment measuring total cross sections, the width of the peak being 

associated with the imaginary part of the complex energy. Finally, 

and perhaps most directly, the complex energies are defined as the 

eigenvalues of the time independent Schrodinger equation with boun-
1 8 dary conditions imposed on the wave function of out-going waves only. 

Since such boundary condition constraints give rise to non-Hilbert 

space type of wave functions, the Hamiltonian operator is no longer 

Hermitian, therefore giving rise to complex eigenvalues. 

Over the years, there have been many approaches to calculating 
19 these complex energy eigenvalues, both by approximate methods and 

18 by essentially exact quantum mechanical methods. Recently, several 

new methods have appeared which apply variational methods similar to 

those used for ordinary bound state calculations. For example, the 
18 Siegert eigenvalue approach, which applies the out-going wave 

boundary contition directly, has been used with some success in treat-
20 ing electron-atom resonances. One of the difficulties associated 

with this approach, however, is that each metactable state for the 

system must be obtained separately. For a unimolecular decomposition 

model such as that given in section I.B , where many quasibound 
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states exi.st, such a procedure would be prohibitive, computationally. 

The complex scaling method, which is closely related to the 

Siegert eigenvalue approach, is more convenient for the purposes at 

hand since it permits the calculation of many eigenvalues simultan­

eously. Though the mathematical justifications for the method are 

beyond the scope of this work, the physical idea underlying the 

method is clear, First, a transformation of the Hamiltonian is made 

by scaling the coordinates x by a complex factor: 

x + x exp(i 9 ) (1.17) 

so that 

H( x ) -• H( x exp( i9 )) = H. (1.18) 

2 2 Note that the kinetic energy operator scales as d /dx •* 

exp(-2i6) d 2 /dx 2 . 

Such a transformation has the following effects on the spectrum 

of energy eigenvalues: (1) bound state eigenvalues (if any) are 

unchanged, (2) continuum eigenvalue are rotated down in the complex 

energy plane by an angle 26 , and (3) metastable complex eigenvalues 

(if any) are unchanged except that for sufficiently large angles of 

rotation, they are now resident upon the first energy sheet, having 

been effectively "uncovered" due to effect (2) above (the continuum 
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21 energies form the branch cut separating the two Riemann sheets ), 

One then proceeds to solve the Schrodinger equation 

H 9 X = ( E r - i 17 2 ) X (1.13) 

by conventional bound state techniques, i.e., by expanding the 

wave function x in a suitable basis set and diagonalizing the 

resulting complex symmetric matrix. In essence, the complex scaling 

method transfers the non-Hermiticity of the system from the boundary 

conditions on the wave function to the Hamiltonian operator itself, 

thereby allowing one to expand the new wave function in a more 

convenient bound state type of basis set. 
22 Recent work on the complex scaling method has shown that in a 

system with both dissociative and bound degrees of freedom it is 

only necessary to scale the coordinates associated with the dissocia­

tive degree of freedom. That this should be Che case is seen by 

considering che fact that the complex scaling factor introduces 

oscillatory character into the basis functions, a correct feature for 

dissociative wave functions, but not so appropriate for the bound 

degree of freedom wave functions. 

By employing the transformation (Eq. (1.18)), the Hamiltonian 

for our model system becomes 

„ t? -216 d 2 h 2 d 2 , „, ie . ,, ,„. 
H6 " " 2 ^ e — 2 " 2 ^ - 2 + V ( X e ' y ) ( 1 " 2 0 ) 

dx dy 
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where V is the potential energy function of Eqs. (1.13) . For 

the calculations to be presented in section I.C.2 , the wave func­

tion X Is expanded as follows: 

> C n 4 (x) £ (y) (1.21) s t n ,n n n ^"^ x y x y 
n ,n x y 

where (f 00 a n d £ (y) are harmonic oscillator basis functions. 
x y 

(Other types of basis sets were tried, including a coherent states 
23 basis set , with no significant difference in convergence properties.) 

All matrix elements were computed using double precision word 

size so as to insure stability sufficient to obtain resonances with 
-20 

widths as small as 10 . In addition, all the computations repor­
ted in section I.C.2 used 40 basis functions for the dissociative 
degree of freedom and four basis functions for the bound degree of 
freedom. Truncation of the basis set expansions leads to slight 
dependence of the complex eigenvalues on the angle of rotation 6 . 
Typically, regions of stability of angle trajectories have been 
sought be either graphical methods or complex Hellmann-Feynman 

24 theorems, whereas in these computations the imaginary parts of the 

eigenvalues were found to be stable to at least three significant 

figures (some to as many as eight) over at least five degrees of 

rotr ion. This broad band of stability enabled all the complex eigen­

values (i.e., all the quasibound states) to be obtained simultaneously. 



17 

2. Calculations and Observations 

The object of the calculation of metastable state decay rates 

for the model system (Eq. (1.5)) is to ascertain the effects of 

various types of intramolecular coupling on the mode specificity of 

the decay rates. Table I gives the values of the various coupling 

parameters investigated, results of which are presented in the fol­

lowing paragraphs. 

Zeru Coupling Limit. Fig. 2 is the system with zero coupling 

as discussed in section I.B . This represents the extreme limit of 

mode specificity. 

Frequency Dilution and Curvature. Figs. 3 and 4 illustrate the 

effects of the two types of coupling (freouency dilution for Fig. 3, 

curvature for Fig. 4) taken separately. It is clear from both systems 

that neither type of coupling alone results in significant statisti­

cal behavior. There is some tendency of the individual rates to 

coalesce along a single monotonically increasing curve, but these 

two systems are still highly mode specific. Fig. 5 presents a system 

combining the two effects, with the same strengths as for the systems 

of Figs. 3 and 4 separately. It is obvious from Fig. 5 that their 

effects on the rates are non-additive, i.e., their combined effect 

is to produce a system which is substantially more statistical than 

either of the two taken individually. 

Intramode ^generacy. Figs. 6, 7, and 8 illustrate the effects 

of intramode degeneracy upon the energy randomization process. In­

creased degeneracy between modes is expected to enhance the resonant 
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energy transfer between modes, thus resulting In greater randomization 

and "equal weighting" of all contributing states (see section I.B ) . 

Fig. 7 represents the highest degree of degeneracy of the three 

systems (taking into account the anharmoniclty of the x-mode), and 

along with the couplings present leads to a strikingly statistical 

rate constant profile. 

Effects of Ergodicity. An interesting observation of these 

quantum mechanical systems discussed thus far is that there seems to 

be no energy requirement for statistical behavior in the unimolecular 

rates. In other words, for these quantum systems, statistical behavior 

is seen to occur at low energies to essentially the same extent that 

it occurs at higher energies. Classically, these types of coupled 

oscillator systems are known to often exhibit a definite transition 

from quasi-periodic trajectories to chaotic (or ergodic) trajectories 

as energy increases. This apparent disparity in quasi-periodic/ 

ergodic and mode specific/statistical behavior between classical and 

quantum mechanical treatments is even more clearly illustrated by the 

system of Fig. 9, which was chosen to be one that exhibits a well-

defined classical stochastic transition. Fig. 9 shows, as for the 

other systeuis, the specific rates as a function of energy. The 

vertical dashed line at the lower energy indicates the onset of the 

classical stochastic behavior (as determined from Poincare Surfaces 
25 of Section ) , and the line at the higher energy indicates the top 

of the barrier. The specific rate constants show no more (or less) 

mode specific character below the stochastic transition than they do 
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above it. In other words, there appears to be no specific correlation 

between t'..e classical behavior and the character of the quantum decay 

rates. 

That these two approaches to characterizing the unimolecular 

dynamics are actually monitoring different phenomena is seen froir. the 

following discussion. For the classical case the lifecime is infinite 

"~> matter what O J - .̂. ,..-LIUIC ^u lunj; u_ is Deiow the 

classical threshold), i.e., the system has an infinite amount of time 

to decide whether or not it is going to be ergodic at all energies. 

In considering unimolecular decay of the quantum system, on the other 

hand, even though the rate of intramolecular energy transfer increases 

with increasing energy, so does the rate of unimolfcular decomposi­

tion, so that the system has less time to randomize its internal 

energy before dissociation. It is thus not unreasonable for the 

degree of statistical behavior in the unimolecular rates to be 

similar for all energies, and for the systems depicted in Figs. 2-9, 

this is approximately the case. 

D. A Classical Trajectory Approach 

The quantum calculations presented in section I.C are, of course, 

the exact results for the given model systems. Such calculations 

would not be practical, however, for real molecular systems, which 

have more than two degrees of freedom. Therefore, tc is of consider­

able Interest 10 develop simpler approaches that, although less 
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accurate, ca^ be applied *-n morp genpr.-̂ l typps of -hemical systems. 

Classical trajectory methods have been developed extensively 

such that nowadays such simulations can be carried out routinely for 

small polyatomic molecules (provided a potential energy surface is 

available). With reference to unimolecular dynamics, classical 

trajectory simulations can only be useful at total energies above 

the classical barrier height for dissociation, and many such calcu-
27 lations have appeared. The object of this development is to combine 

the classical trajectory method with an approximate serai-classical 

tunneling model in order to extend the conventional trajectory 

methods to the energy region below the classical barrier height, as 

is the case for the model•studies presented in section I.C. Not 

only does this model serve to compare with the quantum results, but 

it also will be directly applicable to such unimolecular processes 

as formaldehyde decomposition, which is postulated to proceed via 
JO 

tunne1ing based upon some experimental results and other theore-
• -, •_, • 29 tical considerations -

1. Probability Branching Model 

The basic physical idea of the approach is very simple: A 

cJassical trajectory is begun inside the potential well, and since 

the energy is below the barrier height, it will oscillate in the well 

forever. Each time the trajectory hits the barrier (i.e., experiences 

a classical turning point along the barrier direction), however, it is 

allowed to tunnel through it with a probability computed from the 

local properties n c the trajectory at that time. The probability that 
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by time t the particle has not tunneled out, i.e., the survival 

probability, is 

P s(t) = (1-P1)(1-P2) ••• (1-P K ( : )) (1-22) 

where P, is the tunneling probability for the kth time the particle 

hits the barrier (or barriers if there is more than one decay channel, 

as for the potential well in Fig. 1), and K(t) is the number of 

hits that have occurred by time t . Eq. (1.22) states that the 

net probability of not having tunneled out by time t is the proba­

bility of not tunneling out each time the particle hits the barrier. 

The survival probability of Eq. (1.22) is for a single trajec­

tory, and this must therefore be averaged over an appropriate distri­

bution of trajectories (i.e., initial conditions). This averaging 

procedure is described in detail in section I.D.2 . Such an 

averaged survival probability ( P (tj > should decay exponentially, 

and the unimolecular rate constant k is obtained as the negative 

slope of a plot of £n ( P (t) > versus t . 

For small tunneling probabilities, i.e., P << 1 , Eq. (1.22) 
-14 is difficult to evaluate directly (becausr, for example, 1 - 1 0 = 1 

on a computer), so it is useful to compute first the cummulative 

tunneling probability P (t) : ° Y ' t u n 

P„ (t) = 1 - P (t) (1.23) 
tun s 

which can be shown to be given by 
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K(t) 

k*l 

In this expression, if P << 1 , then the cummulative tunneling 

probability simplifies to 
KCt) 

tun *-^ k 
k=l 

and this causes no computational difficulty. This quantity is then 

averaged over appropriate initial conditions (see section I.D.2 ) to 

give < P (t) ) , and then the averaged survival probability is tun 
obtained simply by 

< P (t) > = 1 - < P (t) > (1.26) 
s tun 

The key to thib probability branching model is how the tunneling 

probabilities P, are computed. The most rigorous semi-classical 

approach would be to integrate the classical equations of motion 

along the complex time contours for which the particle tunnels 

through the barrier. Such an approach, however, is known to be very 

difficult to apply in practice, largely due to instabilities which 
31 

arise in the propagation of the complex valued trajectories. Approx­
imate versions of this rigorous approach based on the assumption of 
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vibrationally adiabatic motion through the barrier are much simpler 

to implement, and in the calculations presented in section I.D.3 , 

the simplest of these approximations is used, i.e., the vibrationally 
32 adiabatic zero curvature (VAZC) approximation. Other forms of 

vibrationally adiabatic approximations were attempted (e.g., the 
3?h 

Marcus-Coltrin approximation ), but results showed little or no 

sensitivity to the level of vibrationaliy adiabatic approximation 

used. 

Within the VAZC approximation, the classical Hamiltonian used 

to describe the tunneling is 
2 

Ps 1 H(p ,s,n) = ^ + V (s) + (n + j) hio(s) (1.27) L 2m o ^ 

where s is the reaction coordinate (the steepest descent path 

down from the saddle point), n is the vibrational action variable 

(i.e., the quantum number analogue) for the transverse vibration, 

V (s) is the potential energy along the reaction coordinate, and 

'JJ(S) is the transverse vibrational frequency, which is a function 

of the reaction coordinate (thus maintaining the effects due to 

frequency modulation). The classical trajectories for intramolecular 

motion are computed using the full classical Hamil^onian in Eq. (1.5), 

the approximate Hamiltonian of Eq. (1.27) being used only for the 

purpose of determining an approximate tunneling probability for the 

branching model. At time t , the kth turning point for motion 

along the s direction, the current value of che vibrational action 
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variable n, is determined by energy conservation and E-q . (1.27) : 

V (s) 

fiu(s) 
(1.28) 

s=s(t. ) k 

The tunneling probability is then given within the VAZC approximation 
33 

by the semi-classical tunneling expression 

P, = e 2 6 k / (1 + e ? 9 k ) k (1.29) 

where 

/ d s V 2 m ef f J (1.30a) 

V ef(s) = V (s) + ( n + T ) hto(s) err o I (1.30b) 

2. Initial Conditions 

In order to make the connection to the quantum mechanical decay 

rates, it is necessary to choose initial conditions which most close­

ly ,_jrrespond to state specific preparation, i.e., the metastable 

states. This is accomplished by computing the survival probability, 

ani thus the unimolecular rate constant, corresponding to a definite 

total energy E and a specific initial value for n , the zeroth 
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order quantum number for the bound degree of freedom. Since n is 
y 

only an approximate quantum number for the -oupled system, this type 

of mode specific preparation of the system is not precisely equiva­

lent to that produced by the quantum calculations of section I.C , 

but is an approximate simulation of the true situation. Most impor­

tant, for our purposes, it does give the same kind of information, 

i.e., now the rate for a given total energy varies if the energy is 

initially distributed in the molecule in various ways. 

To specify the average over initial conditions corresponding to 

a given energy E and initial n , it is convenient to specify the 

bound coordinate and momentum ( y , p ) in terms of their harmonic 
y 

action angle variables 

, (2n + 1 )h 
y = \ — i mo) 

y y 
sin q (1.31a) 

p = \ / ( 2 r i + 1) fimw cos q ( 1 . 3 1 b ) 
y V y y n y 

For state specific preparation, n is set initially to an integer 

(the initial vibrational quantum number for the bound oscillator) and 

q is to be averaged over. The average over q is carried out 
n ° " n 

y 26 y 

by standard Monte Carlo methods, i.e., q is chosen as 2TT£. n l 
y 

for the ith trajectory, where £ is a random number uniformly 
chosen in the interval ( 0 , 1 ) . 
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The x motion is always started at a classical turning point x 

defined by the condition p - 0 , with x > being determined from 

energy conservation 

H ( p = 0 , p x y ) = E (1.32) 
x y 

The average over the phase of the x motion is effected by averaging 

over time t for Che first period of x oscillation. To see how this 

is accomplished, consider the function P (t) , the function P (t) 
tun tun 

of Eq. (1.24) for the ith trajectory whose initial conditions are 

jiven by 

q n = 2ir5i (1.33a) 
y 

y given integer (1.33b) 

0 (1.33c) 

X > (from Eq. (1.32)) (1.33d) 

Let { t^x' } and { P^ ? . k=l,2, ••• denote the times of the 

x turning points and the tunneling probabilities at these times, 

respectively. Fig. 10a sketches the typical form of P (t) . The 

explicit expression, for P_ (t) is v v tun 

P^Ct) = 2-1 p ( i J h(t-t, ( 1 )) (1.34) 
tun k k 

k=l 
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where the quant i ty P is defined by 

Pk0 5 P k 1 5 ( 1 " P k - l ) ) ( 1 " P k - 2 ) "" ( l - p 2 1 ) X 1 - p { i ) ) (-l-35'> 

and h i s the unit s tep function 

1 , x > 0 
h(x) - f Q x < 0 (1.36) 

Combining the time average and the Monte Carlo average over transverse 

vibrational phse yields the desired averaged tunneling probability 

< } " 
= ; L -.., / dt' Pt

(i)(t+t') (1.37) n N •*"-' ( I ) I t un 
y . • _ ! * - . . j 

< p „ ( t ) >_ 
tun E, 

y 1=1 '1 

where N is the number of trajectories run (i.e., the number of 

Monte Carlo selections of q ). The time average in Eq. (1.37) can 

be carried out explicitly by introducing the following function 

" b I 
^ 

Q k 1 ) ( t ) E ~(i) / d t ' h ( t + C' " ^ ) (1.38a) 
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0 , t < t„ ( i ) - t, ( i ) 

k 1 

1 + ( t - t ^ ) / t ^ , t^'- t ^ ' < t < t ^ ' (1.38b) 

t > •:<*> 
k 

so that the averaged tunneling probability is given finally by 

N » 

< P̂  (C)>_ = i V ] V * P ( i ) Q,(1)(t) (1.39) 
tun E,n N Z—/ * ' K k 

1=1 k=_ 

As previously described, Eq. (1.26) then gives the averaged 

survival probability for this mode specific preparation 

< P (t) >„ n = 1 - < P, (t) > (1.40) 
a E,n tun E,n 

y y 

the exponential decay of which gives the state specific rate constants 

kn (E) . 
y 

Though this model has been developed so as to treat classically 

forbidden unimolecular decay processes, it is easy to show that these 

same equations reduce to the standard classical prescription for 

computing the survival probability when the total energy is above the 

top of the classical barrier height. This is accomplished by setting 

the tunneling probabilities P, to either 0 or 1 (depending on 

whether or not the classical motion passes over the barrier). One 
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needs only to note the time t(i) at which trajectory i passes over 

the barrier, and the above equations reduce to 

N 

< W C ) >E,n y = i Z Q(i)(t) (1-41) 

i=l 

where (i) 
1 

Q (i). . _ 1 f dt' h(t +t' - t ( l ) ) (1.42a) ; i )(t) = ± f 
' c(i) J 

t< t(1> - t™ 

1 + ( t - t ^ J / t ^ , t ( i ) - t < l ) < t < t ( i ) 

t > t ( i ) 

(1.42b) 

Here, as before, t is the time for the first oscillation in the 

x potential well. 

3. Results and Observations 

An illustration of the typical exponential decay of the survival 

probability, from which the rate constant k is obtained, is shown 

in Fig. IQb. For the separable case (Fig. 2), the VAZC approxima­

tion for the tunneling probability is essentially exact, and the 

classical (plus tunneling) rate constants are in excellent agreement 
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(within 10%) with the quantum results. Fig. 11 shows a typical 

comparison when there is coupling between the modes. The points are 

the quantum results from Fig. 7, which show a high degree of 

statistical character. The solid curves are the results of the 

classical model, plotted as a continuous function of E (i.e., no 

attempt was made to quantize the x-mode semi-classicaliy) . 

An interesting feature of this classical model for unimolecular 

decomposition is that it enables one to investigate the effects 

of the classical motion more directly than from the quantum mechanical 

perspective. Consider, therefore, a trajectory initiated in the way 

prescribed in section I.D.2 , which is quasi-perxodic in its motion. 

Due to its quasi-periodicity, the region of the total energy-allowed 

phase space (or configuration space) covered by this trajectory will 

be restricted. As a consequence, the region of the barrier which 

it hits as it oscillates back and forth will also be restricted more 

than if the trajectory were chaotic. The average of the tunneling 

probabilities within this restricted hitting region will be different 

than the average of the tunneling probabilities for other types of 

trajectories, thus giving rise to mode specific behavior as a conse­

quence. Extension of this reasoning to the case of chaotic trajecto­

ries, however, is not straightforward due to the competing effects 

of intramolecular relaxation and unimolecular reaction, as discussed 

i r. - e " *- -: - - T . A . 

In any event, the classical (plus tunneling) model yields rates 

in very reasonable agreement with the quantum values, even with the 



31 

relatively primitive VAZC approximation for the tunneling 

probabilities. Therefore, it seems plausible that this model (which 

is no more difficult to implement than standard classical trajectory 

methods) can be applied with success o uiore realistic polyatomic 

unimolecular systems. 



32 

TI. The Henon-Heiles Potential Energy Surface 

There have been a number of theoretical studies on the classi­

cal intramolecular dynamics of model systems, such as those described 

in section I . A particularly striking feature of these studies is 

the existence of classical motion which is quasi-periodic at low 

energies, but which becomes ergodic (or stochastic) at higher ener­

gies. A mathematical theorem of non-linear dynamics, the KAM 

theorem , attempts to relate this transition in the intramolecular 

motion to the properties of the system, e.g., the potential. Many 
37 such related topics are currently being investigated in the 

mathematics and physics communities. 

Another question which has spurred much interest among many 
TO 

chemical dynf.aicists concerns the correspondence between classical 

ergodicity and quantum ergodicity. Sirce non-linear systems of 

chemical interest (e.g., polyatomic molecules) actual J y obey quantum 

mechanics, it would be interesting to discover whether such a corres­

pondence indeed exists, and if so how it is manifest in the quantum 

mechanical description. At present, many quantum mechanical features 

have been onsidered as probes of this correspondence, including the 

sensitivit- of individual energy levels to small perturbations of the 
3 ;a 

potential , the "localized" or "extended" distribution of coeffi­
cients of asis functions used to expand the wave function , the 35c nodal pat t rns of the wave functions , the overlap of true wave-
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functions with degenerate subspaces corresponding to separable 

Hamiltonians , etc. All of these approaches do indeed show 

quantum mechanical features which qualitatively correlate with the 

quasi-periodic/ergodic character of the classical mechanics. 

Of central importance to the work at nand, however, is how these 

approaches relating to intramolecular relaxation bear on the question 

of mode specificity in unimolecular reaction dynamics. A naive 

expectation would be that quasi-periodic classical motion would lead 

to mode specific behavior of the rate constants and that ergodic-like 

classical motion would correlate with statistical behavior of the 

Lates. As shown in the results of sec'ion I.C , however, very little 

correlation of this kind was observed for the model systems studied. 

For some potential surfaces for which the classical motion was quasi-

periodic (see Figs. 2-8, section I.C.2), the rate constants showed 

strong mode specificity, and for others they did not. 

To pursue further this question of the correlation between the 

quasi-periodic/ergodic classical behavior and the mode specific/ 

statistical behavior of the unimolecular rate constants, a well-
39 characterized system, the Hencn-Heiles potential energy surface , was 

investigated. This model system consists of two coupled oscillators 

Vac do the systems considered in section I.C ), and it possesses three 

barriers to dissociation. At low energies, the classical motion is 

quasi-periodic, but at higher energies it becomes chaotic, these two 

regimes being separated by a strikingly snarp critical energy, E , 
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which lies slightly more than half w a y up to the barrier height. The 

aim, therefore, is to determine whether the quantum mechanical decay 

ra'.?s exhibit any sort of transition from mode specific character to 

statistical character, analagous to the classical motion. 

A. Quantum Mechanical Calculations 

The quantum mechanical Hamiltonian for the Henon-Heiles system 

has the following form: 

? ? f -h , d d ~ x 1 2 . 2 2 , H = T - ( — - + _ ) + T m w ( x + y ) 
OX oy 

+ > ( - -j x 3 + x v 2 ) (2.1) 

Such a coupled oscillator system can be thought of as a cnllinear 

triatomic molecule in its center of mass frame. This Hamiltonian is 

transformed to a more standard form by introducing a reduced Plaick-'s 

constant 

*' Z H - > (2.Z) 

and R reduced energy unit 

3 6 
— ^ — (2.3) 
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In t h e s e ' i n i t s , H becomes 

H - - | ^ ( 3-2 + >12 ) + i( x2

 + y

2 ) 
dx dy 

1 3 . 2 0 . , 
•x- x + x y (2 .A) 

in Cartesian coordinates. In polar coordinates ( r, 8 ) , the 

potential energy has a form that more clearly depicts its C 

symmetry, 

2 
V(r,e) = Y~ ~ J r c°s(36) (2-5) 

Note that this potential has three equivalent saddle points at the 

positions (r,8) = (1,0), (1, 2TT/3), and (1, 4TT/3) , with the value 

of the potential at the saddle points being V = 1/6 . For 
sp 

clarity in notation, h 1 will simply be referred to as h , and by 

varying this parameter the system will become more or less quantum­

like (i.e., large h is more quantum-like, small h is closer to 

the classical limit). 

The classical mechanical investigations of the Henon-Heiles 

system demonstrate that for energies below a critical value E -0.11, 
c 

all trajectories are quasi-periodic, but above this value an increasing­

ly large fraction of initial conditions in phase space leads to ergo-

dic type trajectories. Very near to the classical barrier height, 
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essentially all phase space points give rise to ergodic trajectories. 

(This is not true in general, as demonstrated by studies of Hase, et 
.40 , al .) 

Though no classical trajectories can ever dissociate for energies 

below V , quantum mechanically the system has no bound states, there sp 
being only metastable states that decay by tunneling through the 

barriers. As for the model systems of section I.B , che complex 

scaling method (see section I.C.I ) was used to calculate the 

complex eigenvalues corresponding to these metastable states. 

The C-, symmetry of the Henon-Heiles potential gives rise to 

states corresponding to different irreducible representations, A., 

was of the form (in polar coordinates) 

$ (r,9) = r n exp{-3 r2/2} e i m 9 (2.6) 
n ,m n 

which is similar, but not identical, to the standard two dimensional 
41 harmonic oscillator basis . The exponential coefficients, Ct , n 

allow for extra diffuseness for large values of n , enabling the 

calculations to be stable using smaller basis set expansions. 

For this basis set, the three irreducible representations corres­

pond to the following grouping of func >ns: 

A : cos CmO) , m = 0, 3, 6, ••• m<n (2.7a) 
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A : sin(m6) , m = 3, 6, 9, ••• , m £ n (2.7b) 

. . •••, - 5 , - 2 , 1, h, • • • 

E : e ' m = {---, -4, -1, 2, 5, .- • ( 2 - 7 c > 

|m| £ n 

where the two groups of m values for the E states give rise to 

the double degeneracy of these states. 

In polar coordinates, the radial coordinate must be scaled as 

and the angle 8 remains real. The transformed Hamiltonian H has 
the form 

-2iB , h 2 3 2 1 3 1 3 2 

8 S ( _ 2" H — 2 + 7 — + 'I — 2 } 

or or r 30 

+ e 2 l S r2/2 - e 3 i S r3/3 cos( 3 6 ) (2.8) 

which is to be expanded in the irreducible representation basis 
sets of Eq. (2.7) and diagonalized. 

Figs. 12, 13, and 14 show the unimolecular decay rates versus 
energy for values of h = O.CA, 0.03, and 0.02, respectively. The 
value of ft Is chosen to make the system more (laTger ti) or less 
(smaller h) quantum-like, and to speed up or slow down the tunneling 
rates. The number of scates up to energy E for two degenerate har-
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4 2 
momc oscillators is 

N(E) = -| (E/h) 2 (2.9) 

and so the approximate number of states in the Henon-Heiles systems 

up to the energy of the saddle point ( 1/6 ) is 

N, = ( ••'•••• ) (2.10) 
6 72 h Z 

A value of h = 0.04 (see Fig. 12 ) thus produces about nine classi­

cally bound states, and a value h = 0.02 leads to about 35 

classically bound states. Since the larger the number of states to 

be obtained requires larger basis set expansions, the value h = 0.02 

represents a practical limit for the present problem in obtaining 

satisfactory quantum mechanical results. Indeed, for the case h = 0.02 

only the A, and A~ states could be obtained, the E state basis 

set being about twice as large and computationally intractable. 

B. Observations 

1. Symmetry-induced Mode Specificity 

A particularly striking feature of Figs. 12-14 is that the A 

and E type of states display significantly different rate profiles 

than the A. states. More specifically, for a given energy, the A, 

states decay more slowly than the A. and E states. This symmetry-

induced more specificity is readily understood by realizing that A 
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states have a nodal line from the origin through each sa. e point 

(due to the factor sin( m9 ) , ra = 3, 6, ..., in the wavefunctions 

for A, states, Eq. (2.7b)). This means that the vibrational states 

of the "activated complex" (i.e., the local vihrational modes at the 

saddle points of the potential energy surface) must be odd. 

The microcanonical transition state theory rate constant expres­

sion (i.e., the RRKM rate expression), including tunneling, is 

k(E) = 3 x {2nhp(E)}~1 V ^ P{E-(n + j)hj) (2.11) 

n=0 

where p(E) is the density of states of the reactants at energy E, 

and P(E ) is the tunneling probability with energy E = E -(n + — )ha) 

in the reaction coordinate direction. The factor of three is due to 

the three equivalent saddle points of the Henon-Heiles potential 

surface. 

In the tunneling region, where only the lowest state in the sum 

in Eq. (2.11) contributes significantly to the rate, transition state 

theory implies that 

k (E) = (frequency factor) x P(E - -rfiuj ) (2.12a) 
A l l 

k. (E) = (frequency factor) x P(E - Jioj*) (2.12b) 
A 2 l 

where P is the one-dimensional tunneling probability. This is due 

to the fact that the A 2 states must be odd with respect to reflec-
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tion across the reaction coordinate, and the lowest state of this 

symraetry contributing to the sum in Eq. (2.11) is the state for which 

n = 1 . This implies that 

k. (E) = k. (E - fit/) (2.13) 
A2 Al 

where m is Che vibrational frequency aC the saddle point for the 

transverse mode. For the Henon-Heiles surface, 

(2.14) 

and Figs. 12-14 do indeed show that the rate constants for the A and 

A* states are displaced in energy by approximately hto = v 3 h 

2. The Classical Limit 

Within a given irreducible representation, the rate constants 

show essentially no mode specificity, i.e., within each symmetry class 

the rate constants appear to be c smooth function only of the total 

energy. For these systems, the striking classical transition from 

quasi-periodic to ergodic behavior at the energy E - 0.11 is not 

observed. In fact, only among thn E states is there any hint of 

mode specificity, and this only occurs at higher energies. 

To verify whether the rate constants obtained from the quantum 

mechanical calculations correspond to the sCatistical rates more 
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quantitatively, the RRXM plus tunneling model was used. This 

model has been used for several molecular systems of physical interest 

in attempting to ascertain the importance of tunneling in certain 
43 unimolecular reactions. The density of states p(E) in Eq. (2.11) 

P(E) = E/ h 2 (2.15) 

and the one dimensional tunneling p robab i l i ty P i s given semi-c. lassi-

n 3 3 u ca l ly by 

P(E t ) = (1 + e ^ V r 1 (2.16a) 

6 (E t ) = t f dxv/2(V(x) - E t ) (2.16b) 

V(x) = x 2 / 2 - x 3 / 3 (2.16c) 

The b a r r i e r pene t ra t ion i n t eg ra l 6(E ) i s well approximated for t h i s 

cubic b a r r i e r case by 

^v^tf l -v^! -v 2 + ! ! M - v 3 } <?' i 7 ) 

The solid curves in Figs. 12-14 show that the rates of the A. and E 

states are reasonably well described within this simple statistical 

model, i.e., even the individual metastable states of these two sym-
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metries have coalesced to the statistical limit. The fact that the 

Ap states decay more slowly at a given energy could be described 

by the statistical model by excluding the even vibrational states 

in the sum in Eq. (2.11) from the activated complex. 

Though the results shown in Figs. 12-14 are the essentially 

exact results for these values of h , there is still one final ques­

tion which must be resolved before any conclusions about the classical/ 

quantum mechanical correspondence can be made. It is possible that we 

have not allowed h to become sufficiently small for any underlying 

classical structure to emerge in the quantum rate constants. The pure­

ly classical limit ( h -*• 0 ) is far beyond the reach of the quantum 

mechanical approach employed here. 

It is possible to extrapolate to the classical limit ( h -»• 0 ), 

however, by noting that in the form for the statistical rate constant 

k(E) - (frequency factor) x (tunneling probability) (2.18) 

the frequency factor has a classical limit which is independent of h . 

The tunneling probability hus the limiting form (semi-classically) 

tunneling probability - exp{ -20(E)/ h } (2.19) 

where 8(E) is the classical action integral given for the Henon-

Heiles system by Eqs. (2.16) and (2.17). These ficts imply that the 

quantity 
h Cn k(E) 
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should have a classical limit given by 

lim h C n k(E) = -2 9(E) (2.20a) 
h •+ 0 

lim h log k(E) = -2 6(E) log e - -0.87 8(E) (2.20b) 
h -»• 0 

Figs. 15 and 16 show the quantity ft log k(E) for h = 0.02, 0.03, 

and 0.04, for Che A. and che A_ staces, respectively. Also shown 

is the RRKM plus tunneling approximation to che classical limit of 

this quantity, Eq. 2.20b. It appears that (11 the quantum rate con-

scants are approaching the ft -+• 0 limit in a smooth manner wich no 

evidence of any new classical structure emerging, (2) che simple 

RRKM plus tunneling model is a reasonably good approximation to che 

ft -*- 0 limit of the quantum rate constants, and (3) both the A, an. 

A- states converge to the same ft -*• 0 limit (as is implied by the 

approximate relation in Eq. (2.12)). 

C. A One-barrier Henon-Heiles PoCencial 

The exiscence of chree equivalent barriers to dissociation for 

Che Henon-Heiles potential in Eq. (2.5) precludes the possibility of 

energy being trapped in a mode which does not significantly project 



onto one of the dissociative channels, even for energies where the 

classical motion is completely quasi-periodic. To test whether this 

effect might be responsible for the lack of mode specificity for the 

Henon-Heiles surface, similar calculations were carried out for a 

one-barrier Henon-Heiles-like potential energy surface, 

V(r,6) = ~ r 2 - y r 3 cos 6 (2.21a) 

1 2 2 1 3 1 2 = J C x + y > ~ T x " t x y (2.2Lb) 

The one sadd'.e point for this system occurs at (r,8) = (1,0) and the 

barrier height is still V = 1/6. 
sp 

For this system, the states divide into two symmetry classes, 

even and odd with respect to reflection about the x-axis. Fig. 1? 

shows the unimolecular rate constants as a function of energy (obtained 

by the complex scaling method) for h = 0.03 . As opposed to the three 

barrier case of section II.B , there is substantial mode specificity 

even within the same irreducible representation. 

The classical behavior for the one-barrier Henon-Heiles system 
25 was studied by generating the Poincare surfaces of section for 

several energies. This system possesses only quasi-pericdic trajec­

tories for all energies up to the top of the barrier, 

This potential surface, therefore, does show the expected corre­

lation, i.e., the classical mechanics is quasi-periodic for all energies 

(below the top of the barrier), and the quantum mechanical unimolecuiar 

decay rates are highly mode specific. No conclusions can be drawn, 
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however, with respect to the statistical/chaotic correlaCion or the 

transition from one type of motion Co Che ocher. 

D. Discussion 

It appears, based on the results of sections I.C and II.B, C 

Chat Chere is not necessarily a correlation between the quasi-periodic/ 

ergodic classical behavior and the mode specific/statistical behavior 

in quantum mechanical decay rates for unimolecular systems. Some 

examples seem to show a correlation (see section II.C ) while others 

tend to show no correlation (see section I.C) . 

Since many of the studies in intramolecular dynamics relating 
TO 

classical and quantum features do succeed in showing a qualitative 

correspondence (e.g., in nodal patterns of wave functions, etc.), it 

seems unlikely that the lack of correlation spoken of in the preceding 

paragraph should be due Co a quantum/classical non-correspondence of 

some sort. Rather, it seems clear that the two approaches taken are in 

fact monitoring different phenomena, and therefore need not show any 

particular correlation, as discussed in detail in section I.B . 

Another relevant factor, illustrated by the examples of the 

Henon-Heiles and one-barrier Henon-Heiles systems, is the coupling 

of the intramolecular motion to the reaction produce channels. It 

seems clear that mode specific reaction dynamics requires not only 

mode specific (I.e., quasi-periodic) intramolecular dynamics but also 

mode specific coupling to the reaction pre1 cts. For the three barrier 
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Henon-Heiles system, the three exit valleys effectively provide 

statistica;-like coupling to products since there is no mode (i.e., 

direction 1 the x-y plane) which does not project significantly onto 

a reaction coordinate for at least one of the exit valleys. The one-

barrier He jn-Heiles system, however, does possess a mode (e.g., 

motion in he y direction) which effectively avoids the saddle point 

leading to Jissociation. 
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III. A Semi-classical Multi-channel Branching Model 

Quantum mechanical calculations such as those presented in 

sections I and II are the rigorously correct way to characterize 

state-specific unimclecular decay. Unfortunately, however, such an 

approach is not feasible for systems with more than two or three degrees 

of freedom. For example, the unimolecular decomposition of formaldehyde 

H 2CO + H 2 + CO (3.1) 

has six vibrational degrees of freedom (we are ignoring rotations for 

the present) and is thus beyond the capabilities of these rigorous 

quantum mechanical approaches. 

As discussed in section I.D , an alternate approach to the 

characterization of state specific unimol-cular decay is the use of 

classical mechanics, via either the straightforward trajectory simula-

tion approach or an approach, as in section I.D, incorporating such 

quantum features as tunneling. There have been many such calculations 

for unimoiecular systems , and in .nany situations such an approach 

has been shown to describe the process correctly. For the example of 

Eq. (3.1), however, the energy region where the react ion proceeds may 
28,29 involve tunneling and a standard classical approach would bt. 

in section I.D. 
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Furthermore, there may be cases for which the unimolecular decay, 

though energetically possible classically, simply does not take place 
40 

via classical mechani s. Hase , for example, has observed quasi-

periodic trajectories which have enough energy to dissociate classically 
44 but which do not for some unimolecular systems. Heller has discussed 

such dynamically fort dden processes under the term "dynamic tunneling." 

Simple classical mechanics would give zero for the rate of unimolecular 

decomposition for sue a system, whereas the true (quantum mechanical) 

rate in non-zero. 

The classical trajectory (plus tunneling) approach of section I.D 

provides one way of qu litatively characterizing the mode specificity 

of unimolecular reacti is. However, even this approach is not capable 

of reliably determining state-specific decay rates, due to the difficul-
45 ties associated with qu. ntization of non-separable systems. Yet 

there are situations foi which a quantum mechanical description of the 

^ 'imolecular decay rates -rill be necessary. Therefore, the purpose 

of this section is to det :ribe and illustrate an approximate quantum 

mechanical model for dete mining state-specific unimolecular decay 

rates, one which is capabl • of being applied to polyatomic molecular 

systems of interest, such i the formaldehyde system of Eq. (3.1). 

The model to be presen ed is related to several methods developed 

in recent years, as well as to several old ideas. First* it is a 

multi-channel version of a s ni-classical branching model that has been 

shown to describe unimoleculc decay in one-dimensional systems cor-
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4b rectLy. The multi-channel aspect of the model is what enables it 

to be applicable to systems consisting of several degrees of freedom. 

The dynamical approximations incorporated in the model include the 
47 

reaction path Hamiltonian of Miller, Handy, and Adams and a semi-
classical perturbation-infinite order sudden approximation developed 

48 by MilLer and Shi. The reaction path model describes the molecular 

dynamics as motion along a reaction coordinate which is coupled to 

transverse locally harmonic vibrational modes. The semi-classical 

perturbation-infinite order sudden approximation (SfP-IOS) allows 

for vibrational inelasticity in the transverse viDrational modes as 

the system moves along the reaction coordinate. 

A. General Development of the S-Matrix 

Instead of considering the unimolecular decomposition in terms 

of the out-going wave boundary conditions (i.e., the half-collision 

process) of section I.C, the multi-channel branching model is deve­

loped in terms of an overall scattering matrix, the poles of which 

will :orrespond to the energie of the metastable states associated 
n 

with e system. Consider, therefore, the nonreactive scattering 

on a pcteitial energy surface for which the potential energy along 

Che rea< 'ion coordinate s is as depicted in Fig. 18. For such a 

scatten ; process, the system begins as s - + °° , moves to the 

left, collides, and eventually returns to s = + °° . If there are F 

total number of degrees of preedom, there are F - 1 vibrational 

degrees of freedom orthogonal to the reaction coordinate (we shall 

neglect rotations for the present). 
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The aim of this development is to construct an approximate 

S-matrix for the total energy E , 

S(E) = { S , } (3.2) 
r., n 

which are the amplitudes for transitions between an initial state 

n = ( n 1 7 n„, . . . n_ , ) , and a final state n' = ( n.', n' ... n' .,) 
1 2 F-l - 1 2 F-l 

of the transverse vibrational modes at s => + °° . The central idea 

of the branching model is to approximate this net amplitude S as 

a sum of amplitudes constructed from the different "trajectories" 

which can arise from tunneling through the barrier in Fig. 18. The 

most straightforward way to construct these "amplitude trajectories" 

is demonstrated in Fig. 19, where the first three are depicted. The 

first is reflected by the barrier (at the classical turning point, 

say) without tunneling, the second tunnels through and makes one 

oscillation in the well before tunneling back out, the third tunne's 

through and makes two oscillations in the well before tunneling back 

out, and so on. The amplitude associated with first "trajectory" is 

S • ( 1 - P ) 1 / 2 • S. , (3.3a) 
-out - - -in 

chat associated with the second "trajectory" is 

1/2 1/2 S • P ' • S • P ' • S 4 (3.3b) -out - -o -in 
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and Chat with the third trajectory is 

(-1) S • P 1 / 2 • S • ( 1 - P ) 1 / 2 - S • ? 1 U - S. (3.3c) -out - -o ~o -in 

and so on. In these expressions, S. is the S-matrix (i.e., matrix 
- m 

of transition amplitudes) associated with the incoming motion from 

s = + °° to the outer turning point s = s., (see Fig. 18). S is 

the S-matrix for the motion in the interior well from 3 = 5 . to s. 
and back to s_ . And S is the S-matrix for the outgoing motion 2 -out ° " 

from s = s, back to + °° . P is the matrix of tunneling proba-
1/2 "" 1/2 

bilitier (i.e., P is a tunneling amplitude matrix, and (1 - P) 
is a reflection amplitude matrix). Note that S. and S are 

-in -out 
in general rectangular matrices since there are in general a different 

number of transverse vibrational states that are energetically open 

at s = s„ and s = + <*> . Thus, in the matrix element S , , 3 n,n 
for example, n' refers to transverse vibrational states at s = + °° 

and n to those at s = s-, while for S , the identifications are 3 n,n 
reversed. (By symmetry, in fact, S is the transpose of S. .) ' -out K -in 
S is a square matrix, the indices of which refer to the transverse -o 
vibrational states at s = s„ . It is clear that the physical 

meaning of the matrices S. and S is that they describe -in -out 
vibrational inelasticity in the region outside the barrier, whereas 

S , the S-matrix per oscillation in the well, describes vibrational ~o 
inelasticity in the region of the potential well. Although it is not 
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necessary, Che matrix P is assumed to be square (I.e., the same 

number of vibrational states are open at s = s ? and s-, ), and for 

the applications presented in section III.D it is even approximated 

as diagonal (i.e., the tunneling proceeds adiabatically). All of 

the matrices are functions of the total energy E, i.e., S. = 

S. (E), etc. - in 

The net amplicude S is obtained by adding the amplitudes for 

all the trajectories of the type described in Fig. 19, i.e., 

1/2 S = S •( 1 - P ) ' • S. -out - - ..in 

£ (-!,» , • f 1 " . s • | ( 1 - P ] ' " Si"- P 1'? S 
- o u t - - o - - - o - -in 

k=0 
(3.4) 

The general kth term in Eq. (3.4) has the direct mechanistic inter­

pretation by simply reading the various factors from right to left: 

the system evolves from s = + °° Co s, ( S, ), tunnels through 
3 -in IP the barrier ( P ) , oscillates in the well ( k+1 ) times, not 

1/2 tunneling out each time it is reflected at s„ (( 1 - P ) ), 
1/2 tunnels out through the barrier ( P ) , and finally moves from 

S-, back out to s = + °° ( S ) . The factor (-1) enters because 3 -out 
of the extra reflections involved in the kth trajectory. 

The geometric series in Eq. (3.4) is easily summed (remembering 

to keep track of the order of mr.trix multiplications) to yield 
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1/2 s = s •( i - p y1 • s. - o u t - - l 

+ s • P I / 2 -s • [ i + ( i - P ) 1 1 2 - s r i p 1 / 2 - s. 
- o u t ~o - - o - i n 

( 3 . 5 ) 

Eq. (3.5) is the general result for the S-matrix given by 

this semiclassical multichannel branching model, as applied to a 

scattering system such as depicted in Fig. 18. Applications to 

other types of scattering systems (see section III.E ) are similar 

to the above development. The semi-classical aspect of the branching 

model is that we have used it to construct a probability amplitude. 
49 Other branching models have constructed probabilities, and 

these would be referred to as classical branch1' models (see also 

section III.E.2 ). The multichannel aspect of the present model is 

that the quantities S , F, S, , S are matrices in the trans--o ~ m -out 
verse vibrational states n = (n. , n„, ... n_ . ) , and as such it 

1 2 F-l 

is necessary to maintain the correct order of the matrix products 

in Eqs. (3.4) and (3.5). The matrix products, which involve sums 

over intermediate transverse vibrational states, are a manifestation 

of the quantum principle that one sums over all intermediate states 

that are not observed. 

E. Application to Unimolecular Decomposition 

Though the general result of Eq. (3.5) gives the overall 

S-matrix for the collision process depicted in Fig. 18, it is also 
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possible to extract from the result information regarding the 

unimolecular decay of the system. The connection lies in consi­

dering the collision complex (i.e., when the system is in the 

well region of Fig. 18) to be a prepared unimolecular system, 

which reacts to yield products (i.e., goes to s = + °° in Fig- 18). 

As before, che individual metastable states are characterized by 

complex energy eigenvalues 

E = E - i T / 2 (3.6) 

che real part of which is the energy of the state (E ) and che 

imaginary pare of which determines the width of the staCe, F (see 

Eq. (1.6)). 

The complex eigenvalues of the metastable system (i.e., the 
13 collision complex) are defined rigorously as che poles of the 

S-matrix S(E) . Therefore, the approximate full S-matrix of 

Eq - (3.5) is used to determine these poles. By inspection of the 

form for the scattering matrix, it is clear that poles of S(E) 

occur at values of E for which the inverse matrix in the second 

term in Eq. (3.5) is singular, i.e., values of E for which 

dec| 1 + ( 1 - P(E) \ l / 2 • S (E) I = 0 (3,7) 
.. -o 

where it is emphasized that P and S are functions of energy. 

Eq. (3.7) essentially serves to quantize the quasi-bound states 

of the system, and hence is the desired equaMon for determining 
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the state specific energies and lifetimes of the metastable system. 

As one would expectT the equation involves only the interior S-

matrix, S , and the tunneling probabilities, and not the exterior ^o 
S-matrices S. and S . Of course, if one desired to determine -in -out 
product state distributions of unimolecular reactions, it would 

be necessary to include the effects from these external S-matrices 

via the full scattering S-matrix, Eq. (3.5). 

In applying Eq. (3.7) to one-dimensional systems (i.e., no 

transverse vibrational modes), P and S become l x l matrices, 
-o 

i.e., simple numbers. The semi-classical (WKB) approximation 

for them is 
c ,_, 2i$(E) ,-, a , 
S (EJ = e (3.8a) 

PCE) = e - 2 9 ( E ) / ( l + e - 2 e ( E ) ) (3.8b) 

where 4>(E) is the WKB phase in t eg ra l across the well 

s 2 

if •,sT2 *(E) = f / dsV2( E - V(s)) (3.9) 

J l 

and 0(E) is the b a r r i e r penetra t ion in t eg ra l 

3 
kf HE) = i / d sy2(V(s ) - E ) (3.10) 
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The condition for determining the poles of the S-matrix then takes 

the form 

1 + e 2 i*/ Q + e " 2 9 ) 1 7 2 - 0 (3.11) 

which is equivalent to 

*(E) = ( n + i ) TT - i 8n ( 1 + e ) (3.12) 

—2 A In the tunneling region (i.e., when e << 1 ) the expression 

Eq. (3.12) can be expanded in a Taylor series about the real part 

of the complex energy, E - i T / 2 , then equating real and 

imaginary parts. This gives the usual WKB eigenvalue equation 

for the real part of the complex energy 

<t>(E ) = ( n + -| ) TT (3.13) 

and a width given by 

T = (dE /dn)/2TT e ~ 2 6 (3.14) 

46 
which is the well-known semiclassical result for the one-
dimensional case ( dE /dn is the semiclassical expression for the 

r 

frequency of oscillation in the well). 

Finally, although the construction of the S-matrix in Eq. (3.5) 

has referred to the situation shown in Fig. 18, where there is an 

actual barrier to dissociation, this is not a necessary condition. 
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Suppose, for example, that the reaction coordinate profile of 
52 potential energy is actually a Morse potential: 

i. / i n r -2a(s-s ) , -a(s-s ) , /•>,*<. V (s) = D [ e o L e o j (3.15) 

For energy E the classical turning points, defined by V (s) = E, 

are 

- - 2n ( 1 ± >/ 1 + E/D ) (3.16) 

For E < 0 there are two real turning points, as expected, while 

for E > 0, the "+" sign in Eq. (3.16) gives the real inner 

turning point, 

1 
sl ° So "a™ ( ' + ' 1 + E / D ) (3.17) 

and the "-" sign gives a complex outer turning point 

s 2 = S Q - i « n ( 1 - si 1 + E/D ) (3.18a) 

- «n(v/l + E/D - 1 ) i iir / a (3.18b) 

The tunneling probability matrix P for this situation will consist 
not of normal tunneling probabilities, but rather of transmission 
probabilities of passing into or out of the well from the outside 
(even though for real s there is no physical barrier that iden­
tifies the "inside" and "outside"). To be more specific, cj)(ii) in 
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Eq. ( 3 . 9 ) i s r e p l a c e d by 

Re s 

' / 

2 

ds %/2( E - V(s) ) 

33 and 9(E) i n Eq. ( 3 . 1 0 ) i s r e p l a c e d by 

h 

s 2 

/ ds \\fl~{ E - V(s ) ) 

which LS negative. For increasing energy above the barrier, the 

transmission probability (Eq. (3.8b)) approaches unity, i.e., the 

continuum limit, as indeed it must. This "above the barrier" 

situation is extended to the multi-channel case in the obvious 

straightforward manner, as discussed in section III.C. 

C. Dynamical Approximations 

The principle aim of the multi-channel branching model is to 

provide a quantum mechanical approach (though approximate) which 

can be applied to real polyatomic systems. It is therefore neces­

sary to utilize relatively simple dynamical approximations in 

constructing the matrices S and P in Eq. (3.7). It should be 

emphasized that the Eqs. (3.A) and (3.5), describing the overall 

S-matrix, are general, and any one of a number of dynamical approxi­

mations could be implemented. The one chosen for th.s particular 
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study is che semi-classical perturbation-infinite order sudden 
48 approximation (SCP-IOS) discussed recently my Miller and Shi. 

The SCP-IOS approximation makes use of the reaction path 
47 Hami Itonian of Miller, Handy, and Adams for modeling ...e 

molecular system. If ( s, p. ) are the mass-weighted reaction 

coordinate and its conjugate momentum and ( n, q ) = ( n , q. ), 

k = 1, . .., F-l are the action-angle variables for the transverse 

vibrational modes, then the classical Hamiltonian has the form 

F-l 
H( p s, s, n, q ) = j [ p s - 2_j B k v (s )\/(2nk+l) (2n +1) 

k,k'=l 

s /t ,(s)/lu (s) sin q, cos q , 2 

F-l 
x I l + 2 Z 3k F ( S ) '/(2' k + 1 }/'A- ( s ) S l n % i^ 

k=l 
F-l 

+ V (s) + y (n j) ui, (s) (3.19) 

k=l 

where V (s) is the potential energ> along the reaction path, 

•^ (s) are the loc'il harmonic fr quencies of the transverse v fa-

rational modes along the reaction path, and the matrix elemerts 

B ,(s) couple the transverse vibrational modes to each ot ler 

and to the reaction coordinate (labeled as mode k = F ). .he 

mar.ier in which r.iis Hamiltonian is constructed from ab ir itio 
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quantum chemical calculations, and the nature of the coupling 

elements is described elsewhere. 

Since the action variables n, are the classical counterpart 

- -ibrat iop.a 1 quantum numbers, this Hamiltonian provides a con­

venient framework for implementing Che branching model as developed 

in section III.A . 

Construction of the interior S-matrix, S (E) , within the 
~o 

SCP-IOS approximation i s a r e l a t i v e l y simple adapta t ion of the 

form for the s c a t t e r i n g matrix given by Mil ler and Shi for s c a t ­

te r ing s i t u a t i o n s (the i n t e r i o r S-matrix is an amplitude t r a n s i t i o n 

matrix for one o s c i l l a t i o n in the w e l l ) . Employing un i t s such that 

h = 1 , the expression for S i s 

S , (E) = £- / dq exp [-iAn-q + iA0(q)l 
n,n . . ,F-1 

(2TT) / 
0 (3.20) 

where :'in = n" - n and 

o o -
* = * (n ,E) = 2 / d s y ^ E - V ( s ) ) ( 3 . 2 1 ) 

F - l 

A<Mq,n,E) = 2 j 2 s i n It f d s v / c i ^ T T s l ) B R F ( s ) ( q , n , E ) = ^ , 2 s i n q / 

J 
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\/f2n + 1 ) / O J ( s ) cos 6 k ( s ) 

F - l 

1. 1, ' —1 J 

ds B k k , ( s ) v

/ ( 2 n k + D ( 2 n k , + l ) 

k , k ' = l 

x ^ V / u ) k s i n ( , 5 k " V * 

+ c o s ( q k + q k , ) / ds B k k , ( s ) \ / ( 2 n k + l ) ( 2 ^ , + D / U ^ , /co k 

x s i n ( 5 + 6 , ) 

( 3 . 2 2 ) 

In Eqs. ( 3 . 2 0 ) , ( 3 . 2 1 ) , and ( 3 . 2 2 ) , t h e te rm 6 k ( s ) i s g i v e n by 

6, ( s ) k / 
ds V s ) 

( 3 . 2 3 ) 
v 2 ( E-V ( s ) ) a 

The te rm V ( s ) i s the v i b r a t i o n a l l v a d i a b a t i c p o t e n t i a l a 

F - l 

V ( s ) = V ( s ) + Y ^ (n, + h ;,j, ( s ) a o £^j k 2 k 
k=l 

( 3 . 2 - ) 

and it is recognized that the quantum number index n is to be 

replaced everywhere by the average of the initial and final quantum 

.lumbers, i.e., 
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n - T ( n + n' ) (3.25) 

One recognizes the zeroth order phase f the above S-matrix, £ (E) , 

as the vibrationally adiabatic WKB phase integral bactc and forth 

across the well. The phase tern A(+> ar.ses because of couplings 

between the various modes and thus gives rise to a non-diagonal 

S-matrix, i.e., to vibrational inelasticity. The central modifica­

tion of the scattering situation expression for the S-matrix of 

Miller and Shi lies in replacing the limits of integration 

corresponding to scattering conditions by the turning point limits 

of integration corresponding to the bounded motion inside the well. 

The transition amplitude matrix, S (E), is a probability 

conserving matrix, i.e., the system will be found in one of the 

transverse states n both before and after the oscillation. Such 

a matrix is, by definition, a unitary matrix, i.e., 

S~ - S = S • s" = 1 (3.26) 

The approximation to S given by Eq. (J,20) however, will not 

be exactly unitary, and for the applications intended for this 

model this would cause serious errors. It becomes important, 

therefore, to unitarize the approximate matrix, S , in some 
-o 

fashion. Difficulties associated with unitarization have been 
54 encountered previously, and various methods exist for unitarizing 

matrices. One way to accomplish this is via an R-matrix procedure. 
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In general, an R-matrix and an S-matrix are related bv 

( L - iR )• C 1 + iR ) 1 (3.27a) 

or i n v e r s e l y by 

R = - i ( 1 - S ) • ( 1 + S ) l ( 3 . 2 7 b ) 

If S is unitary, then R is Hermitian, and vice versa. Thus, if 

S is not unitary, then R given by Eq. (3.27b) will not be 

Hermitian. One can make R Hermitian, however, by simply taking 

its Hermitian part: 

R^ = | ( R + R X ) (3.28) 

Thus, the prescription for unitarizing an approximate S-matrix 

employed in this study is to use Eq. (3.27b) to construct the 

corresponding approximate R-matrix and then "Hermitizing" this 

approximate R-matrix via Eq. (3.28). When ?_ is then put back 

into Eq. (3.27a) in place of R , a unitary S-matrix results. it 

is easy to show that the unitarized S-matrix, S , is given in 

terms of the approximate S-matrix by 

s y = [ s - d + s ) " 1 + s-(i + sT 1 ] 

• [ (1 + S)" 1 + (1 + S T V 1 (3.29) 
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where 

( s* rl 

This prescription for unitarizing an approximate S-matrix is, as 

mentioned, not a unique prescription. However, if the S-matrix 

resulting from a particular unitarization scheme is very sensitive 

to the scheme used, then the original S-matrix is probably far 

from unitary, which would cast doubt concerning the dynamical 

approximations employed. 

Finally, the matrix of the tunneling probabilities, P „ can 

also be obtained within the SCP-IOS approximation . A simplified 

form for the matrix elements will be a reasonable approximation, 

however, if the coupling elements B , are small in the tun­

neling region. Neglecting the effect of these coupling elements 

results in an SCP-IOS approximation which is equivalent to the 

vibrationally adiabatic approximation. The matrix P is diagonal 

and of the form 

P 6 , e " (3.30) 
p., n n , n 

where 9 is the vibrationally adiabatic barrier penetration integral 
S 3 

9 H 9(E,n) = / ds fi IK V_(s) - E ) (3.31) 
b2 
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Eq. (3.30) is valid only for small tunneling probabilities, the 
46 more generally valid expression being 

P , = 5 , (1 + e 2 9 ) l (3.32) 
n,n n,n 

Use of the expression Eq. (3.32) can be extended so as to include 

energies above the top of the barrier, or for situations where 

there is no actual barrier to dissociation, as discussed in 

section III.B for the case of a Morse oscillator reaction coordi­

nate potential. Using the turning points in Eqs. (3.17) and (3.18), 

the barrier penetration integral 9(E,n) can be analytically 
33 continued and is of the form of Eq. (3.18d). 

D. Calculations for Model Unimolecular Systems 

As a test of the model developed in sections III.A,B,C , one 

of the simple two oscillator models of section II was chosen for 

investigation. The particular example chosen is the one-barrier 

Henon-Heiles potential, the quantum mechanical results for which 

are discussed in section II.C. The potential function for this 

simple oscillator system is (in Cartesian coordinates) 

1 2 ') 1 3 1 ? 
V(x,y) - j ( Y. + y ) - y x - y x y (3.33) 

In order to apply the branching model to this system, it is 

first necessary to cast the potential into the form of the reaction 
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path Hamiltonian, Eq. (3.19). For this example, the reaction 

path is straight (the x-axis) and the reaction path Hamiltonian 

thus takes the relatively simple form 

H ( V s, n, q) = ± I P s + £ g j - ( n + I) s i n 2 q ] 2 

+ V (s) + (n + h u)(s) (3.34) o I 

where 

V (s) = s2/2 - s3/3 (3.35a) 
o 

(0(s) = 1 - 2s/3 (3.35b) 

Since the complete potential in Eq. (3.33) is already quadratic 

in the transverse degree of freedom (i.f., the y direction), the 

reaction path Hamiltonian is actually the exact Hamiltonian for 

this example. 

The interior S-matrix, S , and the tunneling probability 

matrix P were constructed as outlined in section III.C The 

vibrationally adiabatic approximation was made for the tunneling 

matrix, which was therefore diagonal, By finding the various roots 

of the secular determinant equation, Eq. (3.7), the various meta-

stable state eigenvalues were found. These eigenvalues, in an 

approximate way, correspond to the eigenvalues obtained from the 

exact quantum mechanical methods employed in section II.C. Figs. 

20 and 17 show the results given by the present model, and the 
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rigorous quantum mechanical values, respectively. As discussed 

before, this system shows quite pronounced mode specificity in its 

decay rates. More important for this study, however, is the fact 

that the multi-channel branching model reproduces the correct 

results quite well, for all energies of interest. In Fig. 20, 

the states corresponding to energies above the barrier were obtained 

by utilizing the methods outlined in section III.A and by Eqs. 

(3.31) and (3.32). Even for these "over the barrier" states, 

the agreement with the exact quantum results is excellent. 

E. Other Applications of the Branching Model 

1. Energy Levels in a Multi-dimensional Double-well Potential 

The overall S-matrix given by Eq. (3.5) is specific to the 

type of scattering situation depicted in Fig. 18. It is possible, 

of course, to apply the ideas of the branching model to situations 

other than that one, and thus be able to describe other types of 

dynamical phenomena. The object of this section is to demonstrate 

how the ideas of the branching model can be used to describe the 

energy levels of a multi-dimensional double-well potential. 

Consider first inelastic scattering on a potential surface for 

which the potential along the reaction coordinate is as depicted 

in Fig. 21. The analysis of section III.A can be generalised to 

treat the present case (which possesses two interior wells, sepa­

rated by a barrier) or any other more complicated sequence of wells 

and barriers. 
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Consider the entire region of well a , barrier 1, and well b 

as the "inside" region that is separated from the "outside" 

region by barrier 2 (see Fig. 21). If S is the S-matrix 

which characterizes this complete "inside" region (wells a and 

b and barrier 1), then Eq. (3.5) applies as before to give the 

S-matrix as 

!< E ) " !out- ( \ - ?2> 1 / 2- !in 

+ s - P 2
1 / 2 - s -i i + ( I + P , ) 1 / 2 - s ]- x.p/ / 2s. 

-out -V ~o - - -2 o -I -in 

(3.36) 

where S. and S are the incoming and outgoing S-matrices -in -out e o 
for the "outside" region in Fig 21 and P the matrix u? tun­

neling probabilities for barrier 2 . To determine the S-matrix 

S in Eq. (3.36), i.e., the S-matrix for walls a and b, sepa­

rated by barrier 1, one recognizes that this co.nplex "inside" 

region is equivalent to the scattering system in Fig. 18 if one 

identifies the external scattering region of Fig. 18 with the region 

of we I.', b in Fig. 21 . Thus, S in Eq. (3.36) is itself given 

by Eq. (3.5) , 

S - S, •( 1 - P . ) 1 / 2 - S, . 
-o ~ b , o u t - - 1 ~ b , i n 

+ s h . P l

1 / 2 . s [ i + o - P , ) 1 / 2 - s r V 1 7 2 ^ • 
„b,out -1 -a _ ^1 _a - 1 _b,in 

(3.37) 
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where S is the S-matrix for motion back and forth across well a -a 
(s, •* s„ -*• s, ), S, . is the S-matrix for inward mocion across 1 2. 1 ~o, in 
well b (s. •* s~ ) , S, „ the S-matrix for outward motion U 3 ~b,out 
across well b ( s, -*• s, ), and P. the matrix of tunneling 

probabilities for barrier 1 . The final expression for the S-

matrix for the system of Fig. 21 is obtained by inserting Eq. (3.37) 

for S into Eq. (3.36). It is straightforward :to extend this ~o 
procedure inductively to generate the S-matrix for the case of 

arbitrary number of wells and barriers. 

The S-raatrix given by Eq. (3.36) is the general one for 

the scattering situation of Fig. 21. If one is interested in 

bound state energy levels, however, it is necessary to modify the 

potential profile of Fig. 21 in the obvious way. Equivalent to 

making this modification is to "switch off" the tunneling 

through barrier 2 by setting P. = 0, and look for the poles 

of the S-matrix S(E) . With this modification, Eq. (3.36) shows 

that the poles occur at values of E for which 

det 1 + S (E) = 0 (3.38) 
' - ~o 

with S given by Eq. (3.37). Appendix » of reference 56 

demonstrates how expressions of this form correspond to the bound 

state eigenvalues calculated from quantum mechanical perturbation 

theory. (It is easy to show that for S unitary, the roots of the 

Eq. (3.38) will be real, thereby corresponding to true bound state 
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eigenvalues.) 

Inserting the expression for S given by Eq. (3.37) into 
~o 

Eq. (3.38), yields the following determinantel equation: 

dec | 1 + S. • ( 1 - P. ) 1 / 2 - S. . + S. -P, 1 / 2-S 1 ~ ~b,out ~ -1 -b,in ~b,out -1 ^a 

[i + ( i - p, ) 1 / 2-s l l- ?,1/2-su . | = o 
~1 ~a ~1 -b.in 

(3.39) 

This can be put into a more useful form by multiplying it from the 

left by det I S. . I and from the right by det I S, | . ' -b,in ' a J i -b.out 

This results in the expression 

d e t I ?b + !b '< i " ! i ) 1 / 2 -

 :

sb 

+ S • P, 1 / 2-3 •[ 1 + ( 1 - P , ) 1 7 2 ^ ]~l-?,1/2-Su ! = 0 ~b -1 -a - -1 -a -1 ~b 

(3.40) 

for determining the bound state eigenvalues. In Eq. (3.40), S , 

the S-matrix per oscillation in well b ( s., -*• s, -*- s-, ) is given 

by 

-b ~b,in ~b,out 

Note that the indices of S refer to transverse vibrational states 
~a 

at S-, and those of S, to transverse vibrational states at s., , 
I ~b 3 
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and since P, is assumed to be vibrationally adiabatic, all the 

matrices in Eq. (3.40) are thus square matrices of the same dimen­

sion. Finally, by simple matrix manipulation, it is easy to cast 

Eq. (3.40) into the following more symmetric form 

det | [ S b ~ X + ( 1 - P L ) 1 / 2 ] • P~ 1 / ? [ S a
_ 1 + (1 - P^ 1'' 2 ] 

+ P 1
1 / 2 | = 0 (3.42) 

which demonstrates that wells a and b enter the eigenvalue 

equation on equal footings, as expected. 

Recent quantum mechanical calculations of Bowman, et al , of 

the splittings in a symmetric double well potential, coupled to one 

transverse vibrational mode, provide an interesting example with 

which to test the branching model results of Eq. (3.42) . Again, 

the SCP-IOS approximation of section III.C was used to construct 

S (which is equivalent to S for this example) and P. Table II 

shows results obtained from Eq. (3.42) for the splittings of the 

nearly degenerate doublets, the most sensitive quantity for such 

systems, compared to Bowman's quantum mechanical results. (Splittings 

for higher energy levels were not attempted since in this case Bow­

man's model potential has more than two wells.) Again, the multi­

channel branching model appears to provide a good description of the 

phenomenon. 
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2. Reaction Probabilities in Complex Formation 

As a final application of the multi-channel branching model, 

consider the phenomenon of complex formation in molecular collisions. 

Such a system is characterized by the potential energy surface for 

which the potential along the reaction coordinate is sketched in 

Fig. 22. Reaction corresponds to motion from region a (s •+ - °°) 

to region b ( s -*• + °° ) , and as before, the ( F-l ) transveise 

vibrational modes are not indicated in the figure. 

To proceed, it is convenient to define S , S , and S, as r -a ^o ^b 
transition amplitude matrices for the intervals ( - °° , s- ), 

C s„, s~ ), and ( s,, + °° ) , respectively. These matrices are to 

be considered as transition amplitudes for a single pass across the 

well, not as a complete oscillation in it, as in section II.S. 

Another feature of these matrices is that they are in general rec­

tangular since the number of transverse vibrational states that are 

energetically open at s - - 0 0 , s, , s-, s , s , and + °° are in 

general different. P, and P~ are the tunneling probability mat­

rices for motion across barriers 1 and 2, which can be considered 

to be diagonal square matrices (via the vibrationally adiabatic 

approximation) as described in section III.C. 

The branching analysis for constructing the net scattering 

matrix, S , is similar to that presented in section III.A . -net* r 

The first trajectory (i.e., amplitude branch) which contributes 

to the a •+ b reaction process for the system in Fig. 22 corresponds 

to going straight across the inside well, with amplitude 
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S, • P n

l / 2 ' S • P, 1 / 2- S (3.43) 
~b ~2 -o -1 -a 

The next trajectory corresponds to making one extra oscillation 

back and forth across the inside well, with amplitude 

- s • P / / 2 - s •( i - p , ) 1 / 2 . s C r - ( i - p , ) 1 / 2 - s . P l
1 / 2 - s 

~b ~2 ~o ~1 ~o ~2 ~o ~1 -a 

(3.44) 

Note that the matrix S , the transpose of S , the amplitude ~o ~o r 

for going across the inside well in the negative di ction. By 

including all of the amplitude trajectories which ' ntribute to the 

reactive process a * b , the net amplitude (or matrix) for the 

reaction is 

S, (E) = S, • P, 1 / 2-S • [ 1 + ( 1 - P, / 2 - S t r - ( 1 - P, ) 1 / 2 

~b*-a ~b ~2 -o .. -o - ~2 

-1 1/2 • S ] l - P. 1' • (3.45) 
~o -1 a 

By calculating the matrices in Eq . (3 q>) by some dynamical 

approximations such as those described in ection II1.C , one would 

have an approximate state-to-state react' -e transition amplitude, 

along with other dynamical information. For example, the energy 

dependence of the net matrix S (E) jill in general show the 

complicated resonance structure corr ponding to the formation and 

decay of metastable states (i.e., c lision complexes) in the inside 

well region. The energies and lif .imes of these individual meta­

stable states are given, as in se tion III.B , by the poles of the 
13 S-matrix , which from Eq. (3.4 j) are the complex energies E for 
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which the following determinantal equation is satisfied: 

dec i 1 + ( 1 - P. ) 1 / 2 - S t r - ( 1 - P, ) 1 / 2-S | = 0 -i ~o -l -o 

(3.46) 

For many applications, however, one is interested in a some­

what less detailed level of experimental measurable, e.g., in an 

energy averaged reaction probability. This is equivalent to neg­

lecting all the cross terms in constructing the reaction probabi­

lities 

(P, ) , = | (S ) , ! - (3.47) 
-b , a r. ,n -o,an,n 

49 The branching model (now a classical probability branching model ) 

for this average reaction probability thus becomes 

*V = P, • P,' P • ?, • P 
-b<-a ~b -2 ~L. ~1 -a 

+ P • P,- P • (1 - P.)- P -(1 - P,)-P • P.- P 

-b -2 -o - -1 -o - -2 -o -i ~a 

+ ... (3.48) 

where t h e r e c t a n g u l a r m a t r i c e s P , P , and P u a r e d e f i n e d by 
-a -o -b 

(P ) , * | (S ) , | f c ( 3 . 4 9 ) 
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etc. Eq. (3.48) is a geometric matrix series that is easily 

summed to give 

?u = P • P • P • [ 1 - (1 - P.)- P t r- (1 - P,)- ? ] 
~b-*-a -b - 2 - o ~ - -1 -o - -I -o 

• P,* P (3.50) 
-1 ~a 

Such a result as Eq. (3.50) has no resonance structure in its 

energy dependence, for rb'.s detail of information is lost when the 

interference between the different trajectories that contribute to 

the a •+• b reaction is neglected. 

The analysis in Eqs. (3.48) - (3.50) is actually a multi­

channel version of a result which has been given previously, known 

as the unified statistical model. In fa-.c, in the limit of one 

dimension, the result of Eq. (3.50) can be shown to be equivalent 

to the results of the unified statistical model- Therefore, the 

multi-channel branching model has provided ^ way of extending the 

results to include the effects of vibrational inelasticity as one 

moves along the reaction coordinate, which id certainly a more 

realistic model when dealing w'th real polyatomic collision rivs terns. 
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IV. Mode Sptecificity in Formaldehyde Decomposition 

Results of exact qur turn ii.«schanical calculations of metastable 

state decay constants for model systems (see sections I, II ) have 

demonstrated two types of mode specificity. First, some systems 

manifested a dynamical mode specificity, by which is meant that the 

intramolecular couplings are such that energy redistribution among 

the vibrational modes of the molecule is very slow (though not 

strictly zero) compared to reaction rates. If there are certain 

symmetries in the Hamiltonian for the system, a second type of mode 

specificity can exist, i.e., a symmetry-induced mode specificity. 

Here if the molecular systern possesses a definite symmetry through­

out the entire course of reaction , it is possible to find decaying 

states belonging to different irreducible representations which 

therefore cannot transfer energy to each other (a sort of intra­

molecular dynamical selection rule). This second type of mode 
59 specificity has recently been discussed in detail in the context 

of transition state theory, including application to the formaIdehyde 

unimolecular decomposition react ion. 

To this point, such detailed dynamical studies as these have been 

restricted to model systems possessing only two decrees of freedom. 

Section III proposes a method which can, in principle, be applied 

to more realistic polyatomic unimolecular systems with semi-quanti­

tative accuracy. Though such an approach may prove to be inevitably 

necessary, it still retains much ot the computational intractability 



77 

associated with the exact quantum approaches. An alternate approach 

would be to somehow reduce the dimensionality of the system being 

investigated so as to retain the essential dynamical information 

being sought. Such approximations with application to scattering 

systems have recently been reported. 

The unim- ocular decomposition of formaldehyde represents a 

particularly interesting example of a polyatomic system to be 

investigated. Though it has received extraordinary attention over 

the past several years, both experimentally and theoretically, 

there remain many unresolved questions as to the details of the 

overall photochemical mechanism, grossly depicted in Eq, (4.1): 

H 2CO + hv * H CO (S ) (4.1a) 

H„CO (Sj -• H-CO (S ) (4.1b) 
/ 1 I o 

H_CO (S ) + H 0 + CO (̂ .lc) 
Z o *: 

The interest of this study, of course, focuses on the last two steps 

of the above mechanism, especially on the unimolecular decomposition 

step (Eq. (4.1c)) which occurs on the ground electronic (S ) surface. 

The radiationless transition from the S, electronic surface 

to t'ie S surface "prepares" the formaldehyde system in some 

high energy ro-vibrational state which can then dynamically evolve 

to eventually yield molecular products, H~ and CO . The question 

to be addressed is how the individual metastable states (correspond-
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ing to different initial distributions of energy among the modes 

of the molecule) behave in their decay rate constants, i.e., whether 

they exhibit mode-specificity, be it dynamical or symmetry-induced. 

The unique role of the out-of-plane bending mode has also been 

the subject of some interest in regard to formaldehyde photo­

chemistry. The S. electronic state geometry, being non-planar, 

gives rise (in the Franck-Condon sense) to significant population 

in the planar ground electronic state's out-of-plane bending mode 

initially. Since this is the only out-of-plane motion among the 

ground state vibrations, it is clear from symmetry considerations 

alone that energy cannot be directly transferred into or out of this 

mode from the other modes of the molecule (at least for small ampli 

tude vibrations), with the exception of the mode corresponding to 

the reaction coordinate (which obviously cannot be harmonic). A 

pertinent question, therefore, revolves around how the out-of-plane 

bend couples to the reaction coordinate motion, and whether just 

considering these two degrees of freedom should yield relevant 

information about the mode-specificity of the full-dimensional 

system. In other words, are the indirect couplings between the 

other modes and the out-of-plane mode (via the reaction coordinate) 

negligible so as to allow them to be separated out of the problem? 

Such a separation would, of course, allow a more rigorous treatment 

of the dynamics, i.e., a quantum mechanical treatment as described 

in sections I and II . 
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Such dynamical studies as these require the determination of 

the potential energy surface for all relevant configurations of the 

nuclei in the ground electronic surface, S . To this end, the 
47 reaction path Hamiltonian method of Miller, Handy, and Adams (see 

also section III.C ) was employed to construct the Hamiltonian for 

the decomposition process 

H.CO (S ) - H„ + CO (4.2) 
l o I 

The basic idea, as previously discussed, is to follow the gradient 

path (in mass weighted Cartesian coordinates) on the electronic 

surface from the saddle-point (or transition state) to both 

reactants and products. At each point along the gradient (or 

reaction) path, a projected force constant matrix is diagonalized, 

yielding normal mode frequencies for the vibrations orthogonal 

to the reaction path. These frequencies, of course, are dependent 

on the position along the reaction coordinate, and along with their 

corresponding eigenvectors give rise to the couplings between the 

various -odes as one goes from reactants to products. 

Once the Hamiltonian for the process has been obtained, it is 

possible to perform various types of dynamical calculations using 

various levels of theory, e.g., classical or quantum mechanical. The 

aim of this study of formaldehyde decomposition is to investigate 

the mode specificity of the individual decay rate constants, and 

therefore the more rigorous quantum mechanical approaches are required. 
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Sections IV.A, B will describe the Hamiltonian used for this svstem, 

as well as the justification for neglecting all the vibrational modes 

except the out-of-plane bend and the reaction coordinate mode in 

ascertaining the mode specific character of the decay rates. 

A. The Hamiltonian 

The potential energy surface tor :he S electronic state 

of formaldehyde leading from reactant to molecular products has 
64 been characterized previously at various levels of approximation. 

Calculation of electronic energies at enough points on a grid 

the six degrees of freedom for formaldehyde bv ab initio tt:,.hni. ,-e<; 

to yield a surface amenable to dynamics calculations is ~ :>rmidai; ' _•. 

However, by employing the methodology of the reaction path Ham.. • 

tonian of Miller, Handy, and Adams, one can generate the surface 

for all geometries surrounding Che rele/ant reaction path with much 

less computational effort. The general form for the reaction ;;ach 

Hamiltonian is given m section III.C, and is reproduced bei'-w : -r 

the specific example of formaldehyde (i.e., ^ix vibrational J< t;: ••es 

of freedom, neglecting overall rotation): 
5 

H(p , s , n , q ) = - [ p - / , B. , , ( s ) v /(2n 1 +1) (2n, ,+1) 

k , k ' = 1 

x y*J, , / ia s i n q coso. , ) 
K K K ' k 

5 

x ' ' + S Bk 6 ( s > V ^ 2 V y)l'\(-'s) s i n t l | , ]~2 

k=l 



k=l 

Here s represents the reaction coordinate (or position a lor-.; the 

gradient in mass-weighted Cartesian coordinates) , p is its cor, 

jugate momentum, ( n, q) are the action a..,̂ le variable'-^ tui 

vibrational modes f ansverse to the react i ̂ n cocrdi-..i . . J 

the s-dependent frequencies of these transverse vibrational .:ori. • 

and B, , , (s) is a matrix coupling functions del <>d in !ptai~ 

in reference 47. 

For this calculation, the transition stat' 'ome ^a . ''a -
64 by Schaefer, et al , was used. All evaluations of nl^-tro, 

energies, energy gradients, aT:d second derivatives .'re J-">n - .* 

SCF level (self-consistent field), with double zet y ' • 

basis sets. The vibrational frequencies at the tran. ion c *^ .•.-. 

at the equilibrium formaldehyde geometr-. as well as rv . iei 

height at the transition state, are given in r./ple ' ' JIOI i* • 

the best estimates for these quantities from highe vels -•r 

64 theory or from experiment. The calculated function ..is) C O - M ^ 

ponding to the out-of-plane bend is shown in Fig. -J, and ttu 

potential energy profile V (s) is shown in ':ig. ̂  "he or'"tT 

frequency functions as well as the coupling functions B >'s) it 
K , k 

n o t p r e s e n t e d h e r e s i n c e thev do noc i t e r d i r e c t iv •' my or i 

c a l c u l a t i o n , to be p r e s e n t e d Late: ' i t . - *. r '.he . (••., ..;L., • . •-

f o r t h e o u t - o f - p l a n e ot* nd has beei ;t\i 1 e- <• ' ' t: • 
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from higher Level of theory, and Che function V (s) has been 

adjusted to give the best barrier height estimates as well as the 

ima, Lnary frequency of the transition state. Similar results 

have been reported previously by Fukui, et al, for the formaldehyde 

system, but no coupling functions are included in their work. The 

smooth curves '.hown in Figs. 23 and 24 were obtained by fitting 

the discrete geometry points wltn one-dimensional spline functions. 

The Hamiltonian of Eq. (A. 3") (including the fits ijr the 

functions uKs) , b(s), and V (s)) coulH. in principle, be used 
- O r r 

directly in dynamical calculations, ?-uch as classical trajectory 

or semi-classical studies- Even if che dimensionality of the system 

were tractable, however, the Hamilconian (Eq. (4.3)) would need to 

be transform''' if quantum mechanical calculations were to be carried 
66 out. 

A principle feature oi." the results for this system is that the 

reaction coordinate (and hence the functions OJ(; id V (s)) is 
o 

symmetric ..jout the equilibrium geometry (s = ,. This is most 

easil) visualized by noting that there ari' two equivalent transition 

states obta' led by reflecting through the principle axis ot the 
64 mo let le. Thus, there are two .jqt- i valent barriers to reaction 

fo. J U S dissociation process, 

Note: The calculation of the reaction path Hamiltonian described 

above was i.irrLed out by Dr. S. K. Crav ', t'h . thesis, Department 

of Chemistrv, University of OaLil • rn: ;i, Berkeley, Berkeley, Calif.) 
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B. Dynamical Results 

Quantum mechanical calculations on the full six-dimensional 

Hamiltor.ian (with total J = 0) of section IV.A are, at present, 

not computationally feasible. However, careful Lunsideration of 

the coupling functions B(s) raveals that a reduction in the number 

of degrees of freedom (from six to two) is a reasonable approxima­

tion. 

The out-of-plane bend (shown in Fig. 23) has strictly zero 

direct coupling to all other transverse modes, i.e., B = 0 for 

all k ^ 5. Thus, in any dynamical calculation, energy could never 

be transferred directly from the ouc-of-plane bend to the other modes 

of the molecule, except to the reaction coordinate mode. Further, 

the direct coupling to the reaction coordinate occurs not through 

the function B t(s) (which is also zero), but through variation 

of the frequency oa(s) as one moves along the reaction path (see 

Fig. 23). Of course, all modes couple indirectly (via the reaction 

coordinate) to the out-of-plane bend, but if such indirect couplings 

are weak, it should be reasonable to neglect the other modes entirely 

and still retain the pertinent features of the dynamics, i.e., the 

mode specific character of the system should still be exhibiteJ as 

it would be for the entire full-dimensional system. 

The Hamiltonian used for the two degrees of freedom is thus 

of the form 
2 

P s , 
H(ps,s,n,q) = y- + V Q ( S ) + (n + j) u)(s) (A 4) 
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where it is also assumed that the term u)'(s)/u)(s) in the kinetic 

energy expression of Eq. (4,3) is negligible. 

For purposes of computation, the functions t-j(s) and V (s) 

were fit (by non-linear least squares fitting procedures) to poly-
2 nomials in s (recall the symmetry of the Hamiltonian about s = 0), 

of the following forms: 

V (s) = a„s 2 + a.s A (4.5a) 
o I 4 

ui(s) = b + b-s + b.s + b,s + b Qs + b,„s (4.5b) 
O I 4 D O 1U 

Values for the coefficients in Eqs. (4.5) are given in Table IV, 

and the functions arp depicted in Figs. 23 and 24 for comparison 

to the ab initio functions. The purpose of re-fitting the functions 
2 in powers of s is to allow for analytical evaluation of the 

quantum mechanical matrix elements necessary for application of the 

complex scaling method. 

In addition, calci lations were most easily carried out: in 

Cartesian (mass-weighted) coordinates, the Hamiltonian being given 

by 
2 2 , 

H(p ,s,p ,x) = -£• + V (s) + ~ + V ^ " *" i^-6) s x 2 o 2 2 

with ( p , s) as before, and ( x, p ) being the out-of-plane 

position and conjugate momentum, respectively. 
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Calculations of the metastable state decay rates for this 

simplified two dimensional system were performed by the complex 

scaling method, described in detail in section I.C. The scaled 

Hamiltonian for this system has the following form 

.2 .. ,2 . .2 ,2 h -2ia 3 , „ , ia. h 3 H = - — e — , + V (se ) - , , a 2 , 2 o 2 , 2 as ox 

2. ia. -, + in (se ) 2 
2 * (A.7) 

The basis set used for expanding the Hamiltonian of Eq . (4.7) 

was related to the simple harmonic oscillator basis set for each 

degree of freedom. Results of the calculation for the formaldehyde 

system are shown in Fig. 25. Only states above 70 kcal/mole total 

energy were obtainable due to precision limitations as well as basis 

set size limitations. However, the states obtained in r^is energy 

region (near the classical threshold) are the relevant ones ex-
-,, 28,29 perimentally. 

The Hamiltonian (Eq. (4.6)) possesses C_ symmetry, the 
r 2v - -

states corresponding to it therefore falling into one of four 

irreducible representations: A , A ?, B. , and B 9. In addition, 

the- Hamiltonian possessed a reflective symmetry with respect to 

the reaction coordinate at every point in space, therefore giving 

rise to an evenness and oddness in the out-of-plane bend vibrational 

states which is preserved all along the reaction coordinate. As 



86 

discussed in detail elsewhere, this gives rise to a symmetry-

induced mode specificity, which can easily be seen by inspection of 

Fig. 25. Out-of-plane bending states only couple with other out-of-

plane bending states with the same evenness or oddness, even-odd 

coupling being strictly zero because of the symmetry of the 

Hamiltonian about the reaction path (i.e., the line x = 0 ). Meta-

stable states with "even" out-of-plane contributions have faster 

decay rates because they lead to a build-up of probability density 

at the critical barrier region. Metastable states with "odd" out-

of-plane contributions have slower decay rates because of the relative 

lack, of probability density at the barrier regions. Even if the 

formaldehyde system exhibited onlv statistical behavior (i.e., if 

there was no dynamical mode specificity), this symmetry-induced 

mode specificity would still cause states with different irreducible 
59 representations to decay with different rates. 

Fig. 25, however, demonstrates that for this formaldehyde 

decomposit ion system, even the dynamical mode specificity is signifi-

cant, there being several states (within the same irreducible repre­

sentation) with almost the same energies having significantly dif­

ferent decay rates (differing by up to two orders of magnitude for 

the states shown). 

It should be noted that the reported calculations include from 

0 to 7 quanta in the out-of-plane bending mode, and therefore fall 
7 8 well within the range of experimental interest. 
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Classic ^ trajectory studies for the system whose Hamiltonian 

is given by Eq. (4.6) reveal that there does exist a transition 

in character from quasi-periodic to chaotic as one goes from low 

to higher energies. It is interesting to note that this system 

displays a significant degree of dynamical mode specificity in its 

deca^ rates, yet classically exhibits chaotic intramolecular dynamics. 

All of the states shown in Fig. 25 lie well within this classical 

er^odic region. 

C. Effects of OL!-.-"' Modes 

The significance oc. the results presented in section IV. B depend 

directly on the validity of the approximation of reducing the 

problem from the full dimensionality of the formaldehyde surface. 

By including a third mode (e.g., an HCH rocking mode), this 

approximation can be tested. The Hamiltonian used has the form 

2 2 , 
H = Ps + V (s) + Px + of (s) 2 — o -=— x x 

2 

+ ,j~(s) 2 + A v ( s 2 

_v y 

2 

where the new mode (with coordinate v and momentum p ) has been 
y 

included. By inspection, there is no direct coupling between modes 

x and y, but the third mode can couple indirectly (via the reaction 

coordinate, s) to the out-of-plane bending mode. Also, note that 

the third mode contributes to the curvature of tne reaction path 

- B s ) (4.8) 
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through the term 

? 4 A y ( s - B s ) (4,9) 

At least qualitatively, this is representative of the type of 

coupling present in the full-dimensional formaldehyde Hamiltonian 

of section IV.A. 

So as to be able to perform the exact quantum mechanical 

calculations for this three degree of freedom system, the effective 

value of ft in Eq• (4.8) had to be increased so as to include 

fewer states in the metastable well (per degree of freedom). 

Results are shown in Figs. 26, 2 7, and 28. Fig. 26 shews results 

holding the frequency LJ constant (i.e., no_ coupling to the 

y-mode), Fig. 27 has the frequency LO constant (i.e., no coupling 

to the x-mode), and Fig. 30 shows the full system of Eq. (4.8) 

where modes x and y can couple indirectly via the reaction coordinate. 

The main result is that there appears tc be no noticeable 

effect on the mode specific character of the two mode system of 

section IV.3 by inclusion of the third, indirectly coupled, mode. 

This therefore apoears to indicate that the degree of mode specifi­

city (both dynamical and syrnmet ry-induced) exhibited in Fig. 25 will 

carry over for the full-dimensional HamiLtonian (Eq. (4.3)) for 

formaldehyde deeomposit ion. 

D. Discussion 

It is interesting to compare the exact dynamical resuli-; of 

section IV.B with results obtained oased upen statistical ilu-ories 



of unimolecular reaction rates, i.e., the RRKM thecfy. Even by-

taking into account the effects of symmetry in the statistical 

treatment (see reference 59 for an example), it is seen that the 

dynamical results are much more complex (due to dynamical mode 

specificity) than previously expected. Whether or not this 

apparent mode specificity of the formaldehyde system can be taken 

advantage of or observed remains a very difficult experimental 

question. Preparation of the formaldehyde system on the ground 

electronic surface in a particular vibrational energy distribution 

among the modes is complicated due to the indirectness ot the 

mechanism, Eq. (4.1), as well as n.on-adiabat ic effects wni^h still 

influence the dynamics of the svs tem once it has reached the S 
o 39 surface. However, as pointed out by Miller, such a preparation 

should at least lead to some preservation of the evenness T oddr.es^ 

of the out-of-plane bending mode states, thus enabling experimenta­

lists to take advantage of the symmet rv- induced rr ie spe-- i t : c i • v 

possessed by the system. 

Of course, preparation of the high energy vibrational urates 

directly (without recourse to a second electronic surface 1 would 

ideally serve to test che theories and results presented here. 

•Jhether or not such preparations c m be achieved for r he tormaljehvde 
• • 6 7 , 

;y stent is still a question or sor.e interest, nor only I T the 
formaldehyde system, but for other ur. i molecular systems as we 11. 
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Table I. Potential Parameters 

Figure oo u us n V_ h m 
° V V V 7 

14.14 14.14 14.14 0 . 0 . . 5 1 

14.14 14.14 7.27 2.0 0 . . 5 1 

14.14 14.14 14.14 0 . 2 0 . . 5 1 

14.14 14.14 7.27 2 . 0 2 0 . . 5 1 

14.14 8.94 4.60 2 . 0 2 0 . . 5 1 

14.14 11.05 5.68 2 . 0 20 . . 5 1 

14.14 17.89 9.20 2 .0 2 0 . . 5 1 

14.14 14.14 14.14 0 . 170. . 4 1 

^For the potential function of Eq. (1.13). 

The loca l frequency of the y-mode at the saddle point on the 

p o t e n t i a l sur face . 
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Table II. Energy Level Splittings in a Two-Dimensional 

Symmetric Double Well Potential. 

Splittings (cm ) 

Transverse 
Quantum No., n 

Branching 
Model a Results 

Exact 
Quantum, 
Results 

0.91 0.95 

Lowest 

Doublet 
1.23 1.28 

1.66 1.77 

First Excited 

Doublet 
47.2 

'rresent results (see section IlI.E.l) 

44.4 

From reference 57. 
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Table III. Potential Parameters for Formaldehyde 

Decomposition to Molecular Products 

Frequencies of H-CO 

Equilibrium Geometry 3CF-DZ EXP. 

(cm ) 

"l 3315. 3009. 

U2 . 3223. 2944. 

U3 1878. 1764. 

\ 1585. 1563. 

"5 
1324. 1191. 

<"* 1349. 1287. 

Frequency of 

Transition State (cm ) 
23201 

Barrier Height (kcal/mole) 113.7 92. 

^rom DZ + P CI calculation (reference 64) 

Best estimata (non-zero point corrected), reference 64. 
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Table IV. Coefficients for polynomial fits to cu(s) and V(s) 

2 . 4 8 , , 10 d)(s) = b + b.s + b. s + b,s + bas + b s (s in Vamu A) o 2 4 6 8 10 

b = 1191. b_ = -511.755 b, = -343.317 
o 2 4 

b,. - 520.867 b_ = -159.227 b,_ = 14.186 
b o 10 

" " + a.s (s in ./arau A) V(s)u = a 2 4 

a, = 93.87755 a. = -23.94835 2 4 

u(s) in cm -1 

V(s) in kcal/mole 
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Figure Captions 

Figure 1. Profile of the potential energy V. (x) for the reaction 

coordinate motion; the exact functional form is given 

by Eq. (1.13a). 

Figure 2. State-specific decay rates, k = T/h, for the quasi-

bound states of the two-oscillator system with Hamil-

tonian defined by Eq, (1.5), with zero coupling between 

the modes (V = 0). c 

Figure 3. Same as Figure 2, except that now coupling is included. 

See Table I for parameters. 

figure b . Same as Figure 3. See Table I for parameters. 

Figure 5. Same as Figure 3. See Table I for parameters. 

Figure 6. Same as Figure 3. See Table I for parameters# 

Figure 7. Same as Figure 3. See Table I for parameters. 

Figure 8. Same as Figure 3. See Table I for parameters. 

Figure 9. Same as Figure 3. See Table I for parameters. The ver­

tical dashed lines indicate the energies of the onset 

of classical stochasticity and the classical threshold, 

respectively. 
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Figure 10a. A schematic representation of the cumulative tunneling 

probability for a single trajectory. { t } indicate 

the times at which the trajectory "hits" the barrier 

(i.e., experiences a classical turning point), and 

{ P } are the tunneling probabilities for these "hits." 

FiguLL. 10b. A typical example of the averaged survival probability, 

( P (t) >_ , defined by Eqs. (1.34) - (1.40). Note s fc. ,n 
y 

that the probability decays in an exponential fashion. 

Figure 11. Rate constants as a function of total energy, for the 

same potential parameters as for Figure 7 (see Table 1). 

The points are the quantum mechanical values, and the 

solid curves are the classical plus tunneling model 

results for the rates k (E) , obtained as outlined 
n 
y 

in section I.D. 

Figure 12. Quantum mechanical rate constants versus energy for the 

metastable states of the Henon-Heiles potential energy 

surface (Eq. (2.5)), with h = 0.04. Solid points are 

A statoj, squares are A ? states, and circles denote 

E states. The solid curve is the statistical (RRKM + 

tunneling) rate defined in Eqs. (2.11), (2.15), and 

(2.16). 
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Figure 13. Same as Figure 12, with h = 0.03. 

Figure 14. Same as Figure 12, with h = 0.02. Note that the E 

states were not obtainable due to computa "OT. i intrac­

tability. 

Figure 15. Plot of the function S In k versus energy for various 

values of h , for the A states. Points are the 

exact quantum mechanical values (connected with solid 

lines). The h = 0 solid curve is the h = 0 limit of 

the RRKM + tunneling rate, Eq. (2.20b). 

Figure 16. Same as Figure 15, for the A. states. 

Figure 17. Same as Figure 12, for the one-barrier Henon-Heiles 

potential of Eq. (2.21a), for ft = 0.03. The solid 

points denote even transverse states, the circles denoLc 

odd transverse states. 

Figure 18. The potential energy profile V(s) for the resonance 

scattering situation of section III.A. s , s_, and s, 

denote the classical motion turning points associated 

with the analysis leading to the S-matrix. 

Figure 19. The first three "amplitude trajectories" which contri­

bute to the overall scattering process. The amplitudes 

associated with them are given by Eqs. (3.3a), (3.3b), 

and (3.3c), respectively. 
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Figure 20. State-specific unimolecular decay rates as a function 

of energy, as calculated by the branching model, for 

the one-barrier Henon-Heiles system. Solid points 

correspond to even states with respect to reflection 

across the x-axis, circles correspond to odd states. 

See Figure 17 for a comparison to the "exact" quantum 

mechanical results. 

Figure 21. The potential energy profile V(s) for the scattering 

situation leading to the determination of double-well 

potential energy eigenvalues. 

Figure 22. Potential energy profile V(s) for the situation 

giving rise to complex formation in molecular collision 

processes. 

Figure 23. Formaldehyde's out-of-plane bending mode frequency, OJ, 

as a function of displacement along the reaction coordi­

nate, s, as computed via the reaction path Hamiltonian 

formalism. Solid curve is the scaled SCF result, dashed 

curve is the polynomial fit used in the complex scaling 

calculations (see Eq. (4.5b)). 

Figure 24. Potential energy profile V (s) for formaldehyde decom­

position to molecular products, H and CO. Solid curve 

is a scaled SCF result, dashed curve is a polynomial fit 

(see Eq. (4.5a)). 
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Figure 25, Rate constants as a function of total energy for the 

metastable states associated with the reduced two-dimen­

sional formaldehyde system, Eq t (4.6). Solid points 

denote even out-of-plane bending states, circles denote 

odd out-of-plane states. 

Figure 26. Rate constants as a function of energy for the three 

degree of freedom system of Eq. (4.8), holding u) 

constant (i.e., no coupling to y-mode). 

Figure 27. Same as Figure 26, but holding w constant (i.e., 

no coupling to x-mode). 

Figure 28. Same as Figure 26, but for the fully coupled system. 

Note that by superposing the results of Figures 26 and 

27, the results shown here are reproduced almost identi­

cally. 
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