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Gribov's recent observation that the Coulomb (or Landau) 

gauge condition does not fix the gauge completely in non- 

Abelian gauge theories has led to quite a few peculiar physi­

cal results.^ In particular, gauge fixing degeneracy implies

1 2
non-uniqueness of vacuum in transverse gauge. * In this 

gauge, within SU(2) Yang-Mills theory, in addition to the 

usual perturbative vacuum, (x) = 0 (supervacuum) with topo­

logical charge zero, there exist other space-dependent vacua 

with "topological" charges 1/2 and -1/2 (Gribov vacua). In 

contrast to the trivial vacuum A^fx) = 0, these vacua, Ay (x) *

, do not satisfy the asymptotic conditions U(x) -*• 1

as | x { •*• “>. Also the perturbative vacuum does not tunnel into
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any of these vacua. However, Sciuto, also Abbott and

Eguchi* have independently argued that the one instanton con­

figuration of Belavin, Polyakov, Schwartz, and Tyupkin (BPST) 

in the transverse gauge causes tunneling between the Giibov 

vacuum with topological charge -1/2 and the other Gribov vacuum 

with topological charge 1/2 as Euclidean time evolves from 

distant past to distant future.3’4 It has also been suggested

that the multi-instanton configurations cannot be written at
2

all in bhe transverse form. However, Jackiw, Muzinich and 

Rebbi have argued that discontinuities in the time evolution 

of the transverse potentials are essential in order to accom­

modate various configurations with the arbitrary Pontryagin 

indices.®

In this short note we shall study the transverse forms 

of the Alfaro-Fubini-Furlan (AFF) single meron configura­

tion. ̂  These configurations, it will be argued, connect the 

supervacuum to the Gribov vacuum, i.e., the non-singular 

vacuum with the topological charge +1/2 as Euclidean time 

evolves from the distant past to the distant future.

AFF single meron configuration in SU(2) Yang-Mills theory^ 

can be expressed as

Ap (x) - | g ‘1(x)3(Jg(x) ,

where

AM (x) = A®(x)Ta/2i ,

gOO • E exp T ~̂r~

and

e(r,t) » -tan'll), (0 < 3 < Ti) .

t®/2 are SU(2) generators and t is the Euclidean time which 

ranges from -» to ®. In order to study the transverse form 

of this meron solution, we perform a gauge transformation h(x), 

such that

Bu (x,t) = h'1 (x)Ap (x)h(x) + h'1 (x)3uh(x) , (4)

(1)

( 2)

(3)



and

B ^ ^ . t )  = 0 . (5)

This transverse gauge potential can be written as

y x . O  = J  ( C*1/2GJ f*1/2GJ + (*‘1/2G)'19u t«‘1/2G)} , (6) 

whe re

G(x) = g1/2(x)h(x) =exp|i a(r,t) - • (7)

Since B(r,t-*“0 = ir and B(r,t-»-») = 0, the gauge gield B 

goes to vacua as t + +»,

B ^ r . t -  — ) - G ' ^ x ^ G f x )  ,

Bp (r,t - <0 ■ G ' ^ x p ^ x )  ,

(8)

where G(x) is given by (7) and (?(x) is given by 

ff(x) - exp /ia ( r , t ) ~ . (9)

Field is written in terms of a and B as

B- = -Xt-fc- -Xi,, ,  ̂ . /, xaxi\ i|/sin2a  ̂ xaxi,_,'\
l 2T ^  ia.i-£(l - i(icos2a) + I6ai - — j-J — ---  ♦ — T~ J  ’

4

and

where prime denotes differentiation with respect to r and

iji = -cosB = t / A t  * r^ . (12)

The transversality condition for the raeron configuration 

can be obtained by substituting (6) into (5):

a" ♦ I’o’ - -Tj- sin2a ■ 0 . (13)
r rl

As t »  t  (-t >> r), this condition reduces to the damped

pendulum equation for a (a = a + if/2) with a periodic poten- 

.8

2 1 
tial V(o) » -sin a as discussed by Gribov, and Wadia and

Yoneya

a» * . sin2a _ 0 (14)

We now turn to the solutions of (13). We shall require 

that the field Bu of (10) and (11) be continuous at r - « for 

all t, and it is nonsingular except at the origin . The 

trivial solutions to Eq. (13) are:

a(r,t) = ^  , n » 0,*l,+2....... (IS)
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However, they are not compatible with the above requirement. 

More specifically, for even n, the field is singular at r = 0, 

along the negative t axis; while for odd n, it is singular at 

r = 0, along the positive t axis.

Now the nontrivial solutions. We introduce function f 

with 0 <_ f < it. We shall see later, for a solutions it is 

possible to write, for t > 0

oe(r,t) = +f * nir , (16)

and the corresponding differential equation is given by

f" + | f ’ - --- - 1----- sin2f - 0 . (17)

r2-'r r R T

For a general fixed positive t, the solution f is a function 

of the independent variable r and is specified by two constants 

of integration, which are chosen to be the value of f and its 

slope at r - 0,

f = 0 and f’ * C . (18)

The set of all possible solutions at this fixed time t 

F(r,t;C) corresponds to having "the slope parameter" C varying 

from 0 to

Now as t varies, the t-dependence of f is determined

through a specific choice for the slope parameter function 

C = C(t). We are not able to write down a close form for the 

solution, although the solution in two specific regions can 

be easily obtained. In particular, for f near zero and 

r << t we have

f(r,t) = C(t)r , (19)

and for f near n/2 and r >> t,

f(r,t) = \  + Sill , (20)

where D(t) is completely specified, once C(t) is given.

Now we turn our attention to the general form of C(t), so 

that as t -* 0, C(t) -<■ « (in this limit develops a singu­

larity at origin); and as t ♦ ■ C(t) approaches some finite non­

zero constant. More specifically for small t, we take f(r,t) 

to be that obtained through a scale transformation on the 

initial solution at t = tQ , F(r,tQ ;C(t0)):

f(r,t) = F(r,t;C(t)) = F ( ^ . , t o ;c (tQ)) , (21)

for small t. One can easily check that this implies having
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As t approaches zero, the scaling factor tQ/t increases in­

definitely. In turn the structure of F(r ,tQ ;C(tQ)) at finite 

domain of r is pushed toward the point r = 0 in F(r,t;C(t)), 

and thus f(r,t) approaches it/2 for every point of r, except 

r = 0. In other words, as t approaches zero from the positive 

direction

f(r,0) = j , for r > e , (23)

and the structure is cumulated in the region 0 < r < e, with 

e being arbitrarily small.

A numerical example for the small t behavior for the case 

C = 100/t is shown in Fig. la,b,c.

Now the large t limit. As t + ®, we require C(t) to 

approach a constant. This is both the necessary and suffi­

cient conditions, which allow f(r,t) to be smoothly joined 

onto the solution, f(r), of the damped penJulum equation of 

Gribov (14), where the corresponding r-slope is given by 

f ' (0) » C(<»). The numerical example for large t, and that for the 

Gribov vacuum with C » 10 are shown in Figs. Id and le respectively.

So far we have only concentrated on tlie behavior of f(r,t) 

near t » 0 and at large t. The general solutions explored 

here are associated with some general s m o o h  t-dependent form 

for C(t), with its small t behavior specified by Eq. (22). We 

observe that the small t behavior can be further generalized to
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include all possible forms of C(t), where the function is con­

tinuous for positive t, and as t approaches zero, C(t) smoothly 

approaches infinity. Our reasoning for this is as follows.

The infinite r-slope at r = 0 and t = 0, i.e. C(0) = ® is 

necessary to arrive at the behavior of given in (23). How­

ever, it appears that the specific Tate for approaching in­

finity given in (22) is not a necessary condition.

For a given positive t solution, f, the corresponding 

general solutions for a for t > 0 are given by (16). For t < 0, 

the corresponding solutions are given by

o(r,t) *= +f(r,t) + (m + j)ir , (24)

v/here m » 0»i.l»*2....  Solutions a(r,t) both for t > 0 and

t < 0 given by (IS) , (16), and (24) are to be matched at t = 0 

by requiring the continuity of a (r = “.t) and 3a (r « <",t)/3t. 

From (10) ai;d (11), one sees that this guarantees the continuity 

of B^(x,t) at r = <*> with respect to t. Thus we get the follow­

ing four general classes of solutions, up to modulus i t :

(i) o(r,t) ■ tt/ 2 ,  t < 0, and it - f(r,t), t > 0 ,

(ii) o(r,t) ■ tt/ 2  + f(r,t), t < 0 and rr, t > 0 ,

(25)

(iii) a(r,t) = tt/2, t < 0, and f(r,t), t > 0 ,

(iv) a(r,t) = tt/ 2  - f(r,t), t < 0 and 0, t > 0
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We note that these four solutions are continuous everywhere 

except at the origin which is a cummulation point. From (10) 

and (11) the £ield configuration B^x.t) is singular at the 

origin and discontinuous along the line 0 < r < “a t t = 0 ,  

and continuous everywhere else.

The topological charge is defined by^

■ hf
6ti Jo

1 6 i * J s  d V u v p a T r < V p B a  *  ! B v B p V  * C 2 6 >

The surface of integration S,,, is taken to be a cylinder with 

its axis along the t-axis. In this case q is decomposed into 

three pieces: two pieces are associated with the flux crossing 

the t = +T (T » 0 )  surfaces, 4>+ , and one associated with the 

flux crossing the lateral surface of the cylinder,

q = 4>+ - 4>_ + i)>L • (27)

For the potential (6), or equivalently (10) and (11), we obtain*5

-i r  i "ir=“= "lim —  I o - ^sin2a I , (28)
+ T + +® * L  Jr=0

and

= lira i  Jjot - ^ s i n 2 a j  J . (29)

Let us examine the topological nature of the various solu­

tions. The trivial solution a = ir/2 given in (IS) leads to a
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transverse field

B?(x,t) = 1(1 + t//r2 + t2)eai. ^  , B*(x,t) = 0 , (30)
r

which ha* a singularity along the line, r = 0, and t > 0. The 

topological charge is readily calculated from (28) and (29).

It gives <t>+ = 0 and = 0, since a is constant for all space­

time.
c

The topological charge of the original meron configura­

tion of (1) is = 1/4, <f>_ = -1/4, <}>L = 0 and q = 1/2. One 

can see explicitly how this charge is lost in the course of the 

singular gauge transformation of Eq. (4). In particular, this 

transformation is H = expfiy(x,t)x*r/r> with y(x.t) = u - 

(0 + 7t)/2 = -0/ 2 . This turns out to carry a topological charge 

-1/2 distributed on the three sides of the cylinder as <t>+ = -1/4, 

4>_ = 1/4 and <)>L = 0.

For the configuration (i) of Eq. (25), from Eqs. (28) and 

(29), it gives 4> + ■» 1/2, <(>_ = 0, ♦ ̂  = 0, or a topological charge 

1/2. For this case, the gauge transformation h is associated 

with a zero topological charge, with <J>+ s 1/4, <p_ = 1/4 and 

(J>, = 0. The corresponding field B is singular at the origin, 

rB0, t=0+ and discontinuous along the axis 0 < r < * at t » 0,

The topological charge q = 1/2 is also located a'c the origin.

Our demonstration for this is as follows. We observe that the 

right hand side of (28) and (29) can be evaluated for any
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shapes of coaxial cylinders. First consider a flat disk-like 

cylinder with its two bases at t = 0+ and r extends to ". For 

the case, <J>+ = 1/2, <J>_ = 0 and <!>L = 0, or a topological 

charge 1/2. On the other hand, consider a long thin cylinder 

with its bases at t = + °°and its radius r = 0+ . Here one 

finds = 0 and = 1/2 or again q = 1/2. The topological 

charge 1/2 must be located in the region common to both 

cylinders, which is the origin. Thus the configuration (i) 

being associated with q = 1/2 is a meron in the transverse 

gauge, which connects the supervacuum to the Gribov vacuum 

with again q = 1/2 as the Euclidean time evolves from distant 

past to distant future.

Similarly solution (ii) is a single meron configuration 

in the transverse gauge which connects the vacuum with the 

topological charge -1/2 to the supervacuum. Solution (iii) 

connects the supervacuum to the Gribov vacuum with the topo­

logical charge -1/2 and solution (iv) connects the Gribov 

vacuum with the topological charge 1/2 to the supervacuura.

More detailed informations are summarized in Table I.

Finally we remark that other configurations which have 

the magnitude of the topological charge |q| greater than 1/2 

can also be constructed if we allow the discontinuity for 

a(r,t) at r = °> for some t. The appearance of a cummulation 

point in a(r,t) at r - t = 0 for our transverse configuration 

(i) - (iv) is not unusual. The BPST instanton configuration
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in the transverse gauge obtained by Sciuto^ also h3S a similar

cumraulation point at r = t = 0. As expected, our transverse

configurations(i)-(iv) have zero Euclidean energy and the
2

action S = 3ir In R, where R is the size of space and time.

We would like to thank Professor E.C.G. Sudarshan for 

several useful discussions and critical comments and Professor

S. A. Zaidi for kindly showing us his program for the non­

linear differential equation.
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Footnotes

a. Let us contrast our criteria with that considered in 

Ref. 6, where a discontinuity in the transverse field at r « 

for some t is necessary in order to accommodate arbitrary 

Pontryagin indices. We consider here the field configuration 

with half-integer topological charge.

b. The limit r -*■ <*> is always taken before the 

t ■*• +»> limit.

c. Topological charge defined by (26) for meron A^ = 

(l/2)g'13yg and vacuum A^ = g'13pg, g = exp{iY(x,t)x-x/r) is 

given by 4 =■ -lim (1+6) [y - isin2y]!"’n and = 1 im (1+6)
2 t-±« liT~ 2 r=0 L T-® 2 7 ^

1 t»T
• [y * 7sin2y] , where 6 = 0 for meron and 1 for vacuum.

i t=-T r=»



15

Table Caption

Table I : The topological charges of various transverse con­

figurations and the corresponding gauge transformation 

h. ( i ) - ( i v )  correspond to meron (m) and anti-meron fra) 

configurations in the transverse gauge defined by Eq. (25). 

Q(x) is the topological charge density.
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Figure Caption

F ig .l: Numerical solution f ( r , t )  versus ln (r/ ro) with Tq* e 10 

for various t. (a ) ,  (b ), and ( c) exhibit the small 

t behavior of f ( r , t )  with the slope parameter C (t )  

f '(r = 0 ,t ) = 100/t. Note that, as t-+0+f the bump structure 

is pushed toward r*0  and f ( r , t )  approaches ir/2 except 

for r=0. (d) exhibits the large t behavior o f  f ( r , t )

(fo r  0 10 ). (e) The solution f (r )  of the damped pendulum 

equation (14) with the slope parameter f '(r=0 ) ■ 10 is  

shown. The sim ilarity between (d) and (e) indicates 

that for a common slope parameter, at large t, the function 

f f r , t )  approaches f ( r ) .
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