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Abstract

The M tara lubini furlan <ingle meron configuration for

SUe2) Yang-Milly theory s studied in the trapsverse gauge.
It is shewn that, as the Luclidean time varies from distant
past to distant futrure, this configuration cvo)veé from the
cupervacuum to the Cribov vacuum which is the nonsingular

vacuum with the topological charge 1/2)
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Gribov's recent observation that the Coulomb (or Landau)
gauge condition does not fix the gauge completely in non-
Abelian gauge theories has led to quite a few peculiar physi-
cal results.1 In particular, gauge fixing degeneracy implies

1,2 In this

non-uniqueness of vacuum in transverse gauge.
gauge, within SU(2) Yang-Mills theory, in addition to the
usyal perturbative vacuum, Au(x) = 0 (supervacuum) with topo-
logical charge zero, the;e exist other space-dependent vacua
with "topological' charges 1/2 and -1/2 (Gribov vacua). 1In
contrast to the trivial vacuum Au(x) = 0, these vacua, Au(x) =
U'l(x)auU(x), do not satisfy the asymptotic conditions U(x) + 1
as |[X| » @. Also the perturbative vacuum does not tunnel into

3 also Abbott and

any of these vacua.2 However, Sciuto,
Eguchi4 have independently argued that the one instanton con-
figuration of Belavin, Polyakov, Schwartz, and Tyupkin (BPST)
in the transverse gauge causes tunneling between the Gribov
vacuum with topological charge -1/2 and the other Gribov vacuum
with topological charge 1/2 as Euclidean time evolves from

3,4 It has also been suggested

distant past to distant future.
that the multi-instanton configurations cannot be written at
all in the transverse form.2 However, Jackiw, Muzinich and
Rebbi have argued that discontinuities in the time evolution
of the transverse potentiils are essential in order to accom-
modate various configurations with the arbitrary Pontryagin

indices.®
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In this short note we shall study the transverse forms
of the Alfaro-Fubini-Furlan (AFF) single meron configura-
tion.7 These configurations, it will be argued, connect the
supervacuum to the Gribov vacuum, i.e., the non-singular
vacuum with the topological charge +1/2 as Euclidean time
evolves from the distant past to the distant future.

AFF single meron configuration in SU(2) Yang-Mills theory7

can be expressed as

A = 3l a,e00) (1)
where
a A,z
Au(x) = Au(x)r /21 ,

g(x) = SEIXT 2 op [}e(r,t) 5%;—] , )

VAR

and

sr,t) = -tan”}(E), (0 gBm . (3)
18/2 are SU(2) generators and t is the Euclidean time which
ranges from -» to =, In order to study the transverse form
of this meron solution, we perfarm a gauge transformation h(x)},

such that

B, 1) = Al e0A on) + hTleoahe) ()



and

-
9,B;(x,t) = 0. ()
This transverse gauge potential can be written as

B, G0 = 210 N, 600 + Ve T e ey, (9)

where
6(x) = gY2()h(x) = exp{i [u(r,t) - ’%J"TT} . N

Since B(r,t+») = 7 and B(r,t+ -=) = 0, the gauge gield Bu

goes to vacua as t + +w,

-1
B,(r,t»-=) = 67 (x)3,6(x) ,

(8)
._.-1 -
Bu(r,t +a) =G (x)auG(x) N
where G(x) is given by (7) and G(x) is given by
G(x) = exp{ia(r,t)-’%}- . (9)

Field Bu is written in terms of a and B8 as

a
o .1 X, X_X. 5 X_X.
B H{ciaj—'}(l - ycosZa) + <6ai - Lzl> “i‘.r“z—“ . izlzcx'} ,
T r T
(10}

where prime denotes differentiation with respect to r and
Y = -cosB = t//tz + r2 . (12)

The transversality condition for the meron configuration

can be obtained by substituting (6) into (5):
a + ;2_-&' - :2- sin2a = 0 . a3’

As t >> 1t (-t »>> r), this condition reduces to the damped
pendulum equation for a (a = a 4+ w/2) with a periodic poten-
tial V(a) = -sinza as discussed by Gribov,1 and Wadia and
Yoneyasz

a' ¢ %m'-ﬂzzgao

x

. (14)

We now turn to the solutions of (13). We shall require
that the field Bu of (10) and (11) be continuous at r = = for
all t, and it is nonsingular except at the origin &, The

trivial solutions to Eq. (13) are:

a(r,t) = 50, no=0,#1,42,... . {15)



However, they are not compatible with the above requirement.
More specifically, for even n, the field is singular at r = 0,
along the negative t axis; while for odd n, it is singular at
r = 0, along the positive t axis.

Now the nontrivial solutions. We introduce function f
with 0 < f < 7. We shall see later, for « solutions it is

possible to write, for t > 0
a(r,t) = +f + nv , (16)

and the corresponding differential equation is given by

1

Kyt

t

g 2go sin2f = 0 . 7
For a general fixed positive t, the solution f is a function
of the independent variable r and is specified by two constants
of integration, which are chosen to be the value of f and its

slope at r = 0,
f=0 and f' = C . (18)

The set of all possible solutions at this fixed time t
F(r,t;C) corresponds to having 'the slope parameter" C varying
from 0 to =,

Now as t varies, the t-dependence of f is determined

through a specific choice for the slope parameter function

C = C(t). We are not able to write down a close form for the
solution, although the solution in two specific regions can
be casily obtained. In particular, for f near zero and

T << t we have
f(r,t) = C(t)r , (19)
and for f near n/2 and r >> t,

f(r,t) = T+ 2B (20)
where D(t) is completely specified, once C(t) is given.

Now we turn our attention to the general form of C(t), so
that as t - 0, C(t) » = (in this limit B“ develops a singu-
larity at origin); and as t + « C(t) approaches some finite non-
zero constant. More specifically for small t, we take f(r,t)
to be that obtained through a scale transformation on the

initial solution at t = ¢t F(r,to;c(to)):

ol
rto
£(r,t) = F(r,t:0(t)) = F (2,6 iC(t,)) (21)
for small t. One can easily check that this implies having

C(t )t
C(t) = —[%)—2 . (22)



As t approaches zero, the scaling factor to/t increases in-
definitely. 1In turn the structure of F(r,to;C(to)) at finite
domain of r is pushed toward the péint r = 0 in F(r,t;C(t)),
and thus f(r,t) apprcaches n/2 for every point of r, except
r = 0. In other words, as t approaches zero from the positive

direction
£(r,0) = ; . forr > ¢ , (23)

and the structure is cumulated in the region 0 < r < €, with
€ being arbitrarily small.

A numerical example for the small t behavior for the case
€ = 100/t is shown in Fig. 1la,b,c.

Now the large t limit. As t + =, we require C(t) to
approach a constant. This is both the necessary and suffi-
cient conditions, which allow f(r,t) to be smoothly joined
onto the solution, f(r), of the damped penlulum equation of

Gribov (14), where ~he corresponding r-slope is given by

f' (0} » C(«). The numerical example for large t, and that for the

Gribov vacuum with C = 10 are shown in Figs. 1d and 1le respectively,

So far we have only concentrated on the behavior of f(r,t)
near t ~ 0 and at large t. The general solutions explored
hcre are associated with some general smoo'h t-dependent form
for C(t), with its small t behavior specified by Eq. (22). We

observe that the small t behavior can be further generalized to

include all possible forms of C(t), where the function is con-
tinuous for positive t, and as t approaches zero, C(t) smoothly
approaches infinity. Our reasoning for this is as follows.
The infinite r-slope at r = D and t = 0, i.e. C(0) = = is
necessary to arrive at the behavior of given in (23). How-
ever, it appears that the specific rate for approaching in-
finity given in (22) is not a necessary condition.

For a given positive t solution, f, the corresponding
general solutions for a for t > 0 are given by (16). For t < 0,

the corresponding solutions are given by
1
a(r,t) = +£(r,t) ¢ (a + })n, (24)

vhere m = 0,+1,+2,.... Solutions a(r,t) both for t > 0 and

t < 0 given by (15), (16), and (24) are to be matched at t = 0
by requiring the continuity of « (r = «,t) and 3a (r = ~,t)/3t.
From (10) and (11), one sees that this guarantees the continuity
of Bu(i,t} at r = » with respect to t. Thus we get the follow-

ing four general classes of solutions, up to modulus w:
(i) a(r,t) = n/2, t <0, and 7w - f(r,t), t >0,
(ii) af(r,t) = w/2 + f(r,t), t <0 and w, t >0,
(25)

(iii) a(r,t) = n/2, t <0, and f(r,t), t >0,

n/2 - €(r,t), t <0 and 0, t >0 .

(iv) a(r,t)



We note that these four solutions are continuous éverywhere transverse field Bu
except at'the origin which is a cummulation point. From (10)
and (11) the field configuration Bu(§,t) is singular at the B?(E,t) = %(1 + t//rz + tZ gaij ;% . B§(§.t) =0 , (30)
origin and discontinuous along the line 0 < r < = at t = 0,
and continuovus everywhere else. which has a singularity along the line, r = 0, and t > 0. The
The topoiogical charge is defined by5 topological charge is readily calculated from (28) and (29).
It gives ¢, = 0 and ¢, = 0, since a is constant for all space-
q = -1—61:2-[5 as e, Tr(B,d B + %BvaBa) . (26) time. - )
© The topological charge  of the original meron configura-
The surface of integration S, is taken to be a cylinder with tion of (1) is ¢, = 1/4, ¢_ = -1/4, ¢L =0 and q = 1/2. One
its axis along the t-axis. In this case q is decomposed into can see explicitly how this charge is lost in the course of the
three pieces: two pieces are associated with the flux crossing singular gauge transformation of Eq. (4). In particular, this
the t = +T (T >>0) surfaces, ¢,, and one associated with the transformation is h = exp{iy(X,t)x-T/r} with v(x,t) = a -
flux crossing the lateral surf;Ee of the cylinder, ¢y (B+m)/2 = -B/2. This turns out to carry a topological charge
-1/2 distributed on the three sides of the cylinder as ¢, = -1/4,
Q=¢,-9¢_*4¢ - (27) ¢. = 1/4 and ¢; = 0.

For the configuration (i) of Eq. (25), from Eqs. (28) and

For the potential (6), or equivalently (10) and (11), we obtainb (29), it gives ¢, = 1/2, ¢_ =0, o, = 0, or a topological charge
1 1 r=o 1/2. For this case, the gauge transformation h is associated
= "1im == - in2 28 .
¢+ T.qu 3 e sade %Jr=0 ’ (28) with a zero topological charge, with ¢, = 1/4, ¢_ = 1/4 and
oL = 0. The corresponding field Bu is singular at the origin,

and T r=0, t=0, and discontinuous along the axis 0 < r < « at t = 0,

¢p = it X ia - Jysinza . (29)

L e -T{r=eo The topological charge q = 1/2 is also located at the origin.

Our demonstration for this is as follows. We observe that the
i i t f th ious lu-
Let us examine the topological nature o € various sotu right hand side of (28) and (29) can be evaluated for any

tions. The trivial solution a = w/2 given in (15) leads to a
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shapes of coaxial cylinders. First consider a flat disk-like
cylinder with its two bases at t = 0, and r extends to =. For
the case, ¢, = 1/2, ¢_= 0 and ¢ = 0, or a topological
charge 1/2. On the other hand, consider a long thin cylinder
with its bases at t = +~and its radius r = 0,. Here one
finds ¢, = 0 and ¢ = 1/2 or again q = 1/2. The topological
charge I}Z must be located in the region common to both
cylinders, which is the origin. Thus the configuration (i)
being associated with q = 1/2 is a meron in the transverse
gauge, which connects the supervacuum to the Gribov vacuum
with again q = 1/2 as the Euclidean time evolves from distant
past to distant future. .-
Similarly solution (ii) is a single meron configuration
in the transverse gauge which connects the vacuum with the
topological charge ~1/2 to the supervacuum. Solution (iii)
connects the supervacuum to the Gribov vacuum with the topo-
logical charge -1/2 and solution (iv) connects the Gribov
vacuum with the topological charge 1/2 to the supervacuum.
More detailed informations are summarized in Table I.
Finally we remark that other configurations which have
the magnitude of the topological charge |q| greater than 1/2
can also be constructed if we allow the discontinuity for
a(r,t) at r = « for some t. The appearance of a cummulation
point in a(r,t) at r = t = 0 for our transverse configuration

(i) - (iv) is not unusual. The BPST instanton configuration

in the transverse gauge obtained by Sciuto3 also has a similar
cummulation point at r = t = 0. As expected, -our transverse
configurations(i)-(iv) have zero Euclidean energy and the

action § = 3n21n R, where R is the size of space and time.

We would like to thank Professor E.C.G. Sudarshan for
several useful discussions and critical comments and Professor
S. A. Zaidi for kindly showing us his program for the non-

linear differential equation.
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Footnotes

ey

a., Let us contrast our criteria with that considered in
Ref. 6, where a discontinuity in the transverse field at r = «
for some t is necessary in order to accommodate arbitrary
Pontryagin indices. We consider here the field configuration

with half-integer topological charge.

b. The limit r + = is always taken before the

t + +o limit,

¢. Topological charge defined by (26) for meron Av =
-1 -
(1/2)g aug and vacuum Au =g laug, g = expliy(X,t)X-T/r} is
. 2 13 o _ 1. r=e a 14
given by ¢, lim gg;cz [v zsty]T=0 and 12 lim (1+6)

- t+ico Tow 27
=T , where § = 0 for meron and 1 for vacuum.

1 .
'[‘Y - -2-51n27]t
t=-T|{r==
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Figure (Caption
Table Caption

. . R -10
. Fig.1: Numerical solution £(r,t) versus ln(r/rO) with T ¢
Table I: The topological charges of various transverse con-

for various t. (a), (b), and (c) exhibit the small
figurations and the corresponding gauge transformation

_ t behavior of f(r,t} with the siope parameter C(¢)
ks (i)-(iv) correspond to meron (m) and anti-meron (m)

£'(r=0,t) = 100/t, Note that, as t+0_, the bump structure
configurations in the transverse gauge defined by Eq. (25).

is pushed toward r=0 and f(r,t) approaches w/2 except
Q(x) is the topological charge density,

for r=0, (d) exhibits the large t behavior of £(r,t)

(for C=10), (e} The solution f(r) of the damped pendulum

equation (14} with the slope parameter f'{r=0) = 10 is

shown. The similarity between (d) and (e) indicates

that for a common slope parameter, at large t, the function

f(r,t) approaches £(r).
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