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ABSTRACT 

We c o n s i d e r  t h e  n o n - r e l a t i v i s t i c  N-body s c a t t e r i n g  problem f o r  a sys tem 

of p a r t i c l e s  i n  which some s u b s e t s  o f  t h e  p a r t i c l e s  a r e  i d e n t i c a l .  We demon- 

s t r a t e  how t h e  p a r t i c l e  i d e n t i t y  can b e  i n c l u d e d  i n  a g e n e r a l  c l a s s  of l i n e a r  

. . 
. .  . i n t e g r a l  e q u a t i o n s  f n ~  s . c . a t t e r ing  o p e r a t o r s  o r  components of s c a t t e r i n g  opera- 

. . t o r s .  The Yakubovskii ,  Yakubovskif-Narodes t k i i ,  Rosenberg,. and Bencze- 

. . 
. . Redish-Sloan e q u a t i o n s  a r e  i n c l u d e d  i n  t h i s  c l a s s .  A l g e b r a i c  methods a r e  used 

which r e l y  on t h e  p r o p e r t i e s  of t h e  symmetry group of t h e  system. Opera to rs  

depending o n l y  on p h y s i c a l l y  d i s t i n g u i s h a b l e  l a b e l s  a r e  i n t r o d u c e d  and l i n e a r  

i n t e g r a l  e q u a t i o n s  f o r  them are d e r i v e d .  Th is  p rocedure  maximally reduces  t h e  

number of coupled e q u a t i o n s  w h i l e  r e t a i n i n g  t h e  c o n n e c t i v i t y  p r o p e r t i e s  of 

- . .- - - . - 
t h e  o r i g i n a l  e q u a t i o n s .  
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Numcrous methods f o r  w r i t i n g  down mathemat ica l ly  well-behaved equa- 

t i o n s  f o r  t h e  s c a t t e r i n g  o p e r a t o r s  i n  t h e  n o n - r e l a t i v i s t i c  N-body problem have 

b e e n  developed i n  t h e  p a s t  few y e a r s .  I n  most of t h e s e  methods t h e  par-  

t i c l e s  a r e  i n i t i a l l y  c o n s i d e r e d  t o  b e  d i s t i n g u i s h a b l e ,  and any e f f e c t s  of 

p a r t i c l e  i d e n t i t y  a r e  p u t  i n . o n l y  when s p e c i f i c  problems a r e  t r e a t e d .  S i n c e  

t h e  number of p h y s i c a l  s i t u a t i o n s  and e q u a t i o n  types  i s  l a r g e ,  we h e r e  pre-  

s e n t  a g e n e r a l  method f o r  c o n s t r u c t i n g  reduced e q u a t i o n s  which i n c l u d e  t h e  

e f f e c t  of p a r t i c l e  i d e n t i t y .  

I n  t h e  bound s t a t e  c a s e ,  t h e  t r e a t m e n t  of p a r t i c l e  i d e n t i t y  is  g e n e r a l l y  

c o n s i d e r e d  a t e c h n i c a l  problem. One must s o l v e  the Schrod inger  e i  p n v a  1 I I P  

problem on t h e  s u b s p a c e  o f  p r o p e r l y  symmetrized1o v e c t o r s  of t h e  H i l b e r t  

s p a c e .  Such problems can be typical1.y h a n d l ~ r l  e i t h e r  hjr the elaborate 

m a t h e m a t i c a l  machinery o f  t h e  s h e l l  model1' o r  w i t h  h y p e r s p h e r i c a l  harmonics.  126 

Both methods r e l y  h e a v i l y  on t h e  t h e o r y  of t h e  symmetric group. 

On t h e  o t h e r  hand t h e  i n c l u s i o n  o f  exchange symmetry i n  a  s c a t t e r i n g  

problem i s  f a r  from t r i v i a l .  The r e a s o n  i s  t h a t  when exchange s c a t t e r i n g  i s  

p r e s e n t ,  t h e  a s y m p t o t i c  form of t h e  s c a t t e r i n g  wave f u n c t i o n  i n c l u d e s  b o t h  

i n c o n ~ i n g  and  s c a t t e r e d  waves i n  d i f f e r e n t  r e g i o n s  of t h e  many-body conf igura -  

t i o n  s p a c e .  There  i s  no l o n g e r  a  s i n g l e  channel  Hamil tonian which d e s c r i b e s  

t h e  a s y m p t o t i c  waves s o  a l l  t h e  well-known problems of d e s c r i b i n g  rea r range-  

ment c h a n n e l s  a r i s e .  The c o n v e n t i o n a l  p rocedure  i s  s imply t o  s o l v e  t h e  

s c a t t e r i n g  problem f o r  d i s t i n g u i s h a b l e  p a r t i c l e s  and a f t e r w a r d s  t o  sum t h e  

c o n t r i b u t i o n s  of p h y s i c a l l y  i n d i s t i n g u i s h a b l e  c h a n n e . 1 ~  t o  t h e  c r o s s  s e c t i o n .  
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I n  some of t h e  e x a c t  f o r m u l a t i o n s  of N-par t i c le  s c a t t e r i n g  t h e  exchange 

symmetry can be  i n c o r p o r a t e d  d i r e c t l y  i n t o  t h e  s c a t t e r i n g  e q u a t i o n s  w i t h  

a r e s u l t i n g  d e c r e a s e  i n  t h e  number o f  coupled e q u a t i o n s .  Such a  p rocedure  

h a s  been c a r r i e d  o u t  by Lovelace i n  t h e  three-body problem13 and by 

Kharchenko and ~ u z m i c h e v ' ~  f o r  t h e  four-body Faddeev-Yakubovskii e q u a t i o n s .  

The f i r s t  e x p l i c i t  t r e a t m e n t  of t h e  s c a t t e r i n g  o f  an a r b i t r a r y  number of 

i d e n t i c a l  p a r t i c l e s  was . * c a r r i e d  o u t  by t h e  a u t h o r s  i n  Ref. 15 (hencefor th  

r e f e r r e d  t o  a s  I ) .  In t h i s  paper  a b s t r a c t  group t h e o r e t i c  methods were  used 

t o  i n c o r p o r a t e  exchange symmetry i n t o  t h e  Bencze-Redish-Sloan (BRS) N- 

p a r t i c l e  s c a t t e r i n g  e q u a t i o n s .  
5 ,6 ,16,17 

The t r e a t m e n t  p r e s e n t e d  i n  I made use  of t h e  s p e c i f i c  p r o p e r t i e s  o f  t h e  

BRS e q u a t i o n s .  I n  t h i s  paper  we develop a  g e n e r a l  a l g e b r a i c  method of  

i n c l u d i n g  exchange symmetry which can b e . a p p l i e d  t o  a  1 a r g e . v a r i e t y   of'^- 

p a r t i c l e  s c a t t e r i n g  e q u a t i o n s  and a l lows  t h e  t r e a t m e n t  of an a r b i t r a r y  number 

of d i f f e r e n t  k i n d s  of i d e n t i c a l  p a r t i c l e s ,  which may b e  bosons o r  fermions .  

S p e c i f i c a l l y  we c o n s i d e r  two i m p o r t a n t  c l a s s e s  of N - p a r t i c l e  e q u a t i o n s ,  t h e  

channel  coup l ing  c l a s s  o f  equa t ions , ,  which a r e  w r i t t e n  i n  terms of t r a n s i t i o n  

o p e r a t o r s ,  and t h e  &hain coup l ing  c l a s s  which arc w r i t t e n  f o r  components of 

t h e  N t o  N t r a n s i t i o ?  o p e r a t o r .  "he former  c l a s s  i n c l u d e s  t h e  BRS e q u a t i o n s ,  

1 9  
t h e  s e t  o f  e q u a t i o n s , d e s c r i b e d  by Bencze and Tandy, and t h e  e q u a t i o n s  of 

Chandler and ~ i b s o n  .' The l a t t e r  ' i n c l u d e  t h e  Rosenberg, Yakubovski i ,  3  

4 and Yakubovski i -Narodestki i  e q u a t i o n s .  For  t h e  s a k e  o f  completeness ,  i t  

shou ld  b e  mentioned t h a t  t h e r e  a l s o  e x i s t  N-par t i c le  f o r m a l i s &  i n t e r m e d i a t e  
I 20-22 

between t h e  cha in ' and  channe l  c o u p l i n g  c l a s s e s .  I n  t h e s e  formal isms 

i n t e g r a l  e q u a t i o n s  are w r i t t e n  f o r  o p e r a t o r s  l a b e l l e d  by c h a i n s ,  b u t  t h e s e  



o p e r a t o r s  a r e  components of  the  phys i ca l  t r a n s i t i o n  ope ra to r s  which a r e  

l a b e l l e d  by two p a r t i t i o n s .  While i t  is  s t r a igh t fo rward  t o  apply our  

a l g e b r a i c  method t o  t h e s e  equa t ions ,  f o r  s i m p l i c i t y  of d i s cus s ion  w e , r e s t r i c t  

our  cons ide ra t i ons  t o  equa t ions  of t h e  chain and channel coupl ing c l a s s e s .  

The paper i s  organized a s  fo l lows .  Sec t ion  I1 con ta in s  a  d i s cus s ion  

of t h e  gene ra l  form of t h e  N-par t ic le  equa t ions  and the  b a s i c  group t h e o r e t i c  

r e s u l t s  a s s o c i a t e d  w i th  t h e ' t r e a t m e n t  of i d e h t i c a l  p a r t i c l e s .  The symmetrixa- 

t i o n  of t h e  equa t ions  f o r  t h e  r a sp  nf a r b i t r a r y  numhors ldencicnl par- 

t i c l e s  is  r3rr-i ed out i n  Ecct .  111 dlld Lhe marhematical p r o p e r t i e s  of t h e  

symmetrized k e r n e l  a r e  d i scussed .  Sec t ion  I V  con ta in s  some a p p l i c a t i o n s  and 

a  s tudy  of t h e  a s s o c i a t e d  c o m b i n a t ~ r i a l  prnhlems. Thc r c s u l t s  d ~ e -  sunnu;lrf 96rf 

and conc lus ions  presen ted  i n  Sec t .  V. 

11. PER'FflTTATION SYMMETRY I N  N-PARTICLE SYSTEMS 

There e x i s t  numerous formula t ions  of N-part ic le  s m t t e r i n g  theory .  

Although they  a r e  a l l  exac t  i n  p r i n c i p l e ,  t he  N-part ic le  dynamics is  handled 

i n  d i f f e r e n t  ways i n  t h e  d i f f e r e n t  t h e o r i e s .  A bomon proper ty  of t he se  

exac t  t h e o r i e s  i s  t . 1 1 ~ ~  they ob ta in  coupled equa t ions  f o r  ope ra to r s  o r  wave 

f u n c t i o n s  which a r e  l a b e l l e d  by p a r t i t i o n s  o r  by cha ins  of p a r t i t i o n s 3  of 

t h e  N-part ic le  system. 

Equat ions of t h e  channel  coupl ing c l a s s  are. w r i t t e n  f o r  t h e  t r a n s i t i o n  

o p e r a t o r s  

Tab = va + Va G Vb 

where a  and b l a b e l  p a r t i t i o n s  of t h e  system. Equations of t h e  cha in  coupl ing 

A c l a s s  a r e  w r i t t e n  f o r  t h e  q u a n t i t i e s  T~ where T i s  a  component of t h e  N t o  

N t r a n s i t i o n  ope ra to r  



We have used t h e  n o t a t i o n  0 to'  i n d i c a t e  t h e  N-c lus te r  p a r t i t i o n .  The index  
. . 
. . 
.. . 

A may b e  e i t h e r  a  s i n g l e  p a r t i t i o n  o r  a  se t  of p a r t i t i o n s  s a t i s f y i n g  c e r t a i n  

i n t e r n a l  c o n d i t i o n s  (a c h a i n ) .  We w i l l  use  Greek l e t t e r s  a ,  B , . y ,  ... t o  

i n d i c a t e  e i t h e r  a p a r t i t i o n  o r  a c h a i n  of p a r t i t i o n s  and we w r i t e  t h e  s e t  of 

p o s s i b l e  l a b e l s  as 2. The g e n e r a l  e q u a t i o n  t h e n  t a k e s  t h e  form 

CL 
I f  Eqs. (3 )  r e f e r  t o  t r a n s i t i o n  o p e r a t o r s ,  t h e  q u a n t i t i e s  T and Ia a l s o  

c a r r y  a second l a b e l ,  y ,  which i n d i c a t e s  t h e  i n i t i a l  s ta te  of  t h e  s c a t t e r i n g  

p r o c e s s ,  i . e . ,  T" -+ TOLY and s i m i l a r l y  f o r  f'. For t h e  s a k e  o f  s i m p l i f y i n g  

t h e  n o t a t i o n  we s u p p r e s s  ' t h i s  i n d e x  excep t  where i t  i s  r e l e v a n t .  

Le t  us now assume t h a t  t h e  N - p a r t i c l e  sys tem c o n t a i n s  some p a r t i c l e s ,  

which a r e  i d e n t i c a l .  In  t h i s  c a s e ,  t h e  pe rmuta t ions  of t h e  i d e n t i c a l  p a r t i c l e s  

form a f i n i t e  symmPtry group whose e lements  commute w i t h  t h e  e x a c t  N - p a r t i c l e  

Hamil tonian.  I f  a l l  t h e  N-par t i c les  a r e  i d e n t i c a l ,  t h e  symmetry,group would 

be t h e  f u l l  synm~ctr lc  groiip 011 1J u b j e c l s ,  . 111 L11e case LllaL Ll~ert! are . 
3~ 

. . 
k d i f f e r e n t  k i n d s  of i d e n t i c a l  p a r t i c l e s  w i t h  ni p a r t i c l e s  of t h e  i - t h  type  

(N - 11 + 11 9.. . 411 ), the11 t h e  s y m e r r y  group of che syscem, S ,  w i l l  be 
1 2  k 

. i somorph ic  t o  t h e  d i r e c t '  produc t  of s y m l e t r i c  grbups ,  S , v i z . ,  
n  
i 

'L S = S  x . S  ... X S  
n ( 4 )  

"1 "2 k  

I f  t h e  p a r t i c l e s  of t h e  sys tem a r e  permuted by some e lement  o£ S,  t h e n  

t h e  sys tem l a b e l s  w i l l  i n  g e n e r a l  a l s o  be  a f f e c t e d .  The group S i n d u c e s  

. 
a t r a n s f o r m a t i o n  group of t h e  l a b e l  se t ,  3, i n t o  i t s e l f .  Symbolical . ly , 

we w r i t e  



Depending on t h e  sys tem of l a b e l l i n g ,  c e r t a i n  e lements  of t h e  symmetry group 

w i l l  l e a v e  a  g iven  l a b e l  i n v a r i a n t .  For example,  i f  t h e  l a b e l  i s  a  par-  

t i t i o n ,  t h e  i n t e r c h a n g e  of a p a i r  of i d e n t i c a l  p a r t i c l e s  w i t h i n  a s i n g l e  ~111s- 

t e r  o f  t h e  p a r t i t i o n  o r  t h e  exchange of two i d e n t i c a l  c l u s t e r s  w i l l  produce 

a new p a r t i t i o n  which i s  i d e n t i f i e d  as b e i n g  i d e n t i c a l  t o  t h e  o r i g i n a l  one. 

The set of e lements  P S  f o r  which 

forms 3 subgroup of S which we denote  as S ct . 

The r e d u c t i o n  of t h e  i n t e g r a l  e q u a t i o n s  (3)  by t h e  t r a n s f o r m a t i o n  group 

S i s  made p o s s i b l e  by t h e  t r a n s f o r m a t i o n  p r o p e r t i e s  of t h e  inhomogeneous 

t e r m  and t h e  k e r n e l  under S. S p e c i f i c a l l y  w e  assume tha . t  

P N p = .* (7) 

and 

I n  t h e  c a s e  of t h e  channel c o u p l i n g  e q u a t i o n s ,  t h e  s u p p r e s s e d  i n d e x  of t h e  

inhomogen.eous t e r m  a l s o  i s  assumed t o  t r a n s f o r m ,  v i z . ,  

W e  d e s c r i b e  any l a b e l l e d  q u a n t i t y  which t r a n s f n r m s  17i.a a r e l a t i o n  anslogouo ' . 

t o  ( 7 )  o r  (8) a s  l a b e l  t r ans forming .  S p e c i f i . c a l l y ,  t h i s  means t h a t  t h e  

t r a n s f o r m  of  t h e  l a b e l l e d  q u a n t i t y  i s  t h a t  same q u a n t i t y  w i t h  on ly  i t s  l a b e l s  

t r ans formed .  

ct We now demons t ra te  t h a t  t h e  q u a n t i t i e s  T a r e  l a b e l  t r ans forming .  I n  

g e n e r a l ,  t h e  k e r n e l  ICaB i s  n f u n c t i o n  o f  a  cur~lplrx pa ramete r  z whi,ch i s  taken 

t o  b e  e q u a l  t o  t h e  s c a t t e r i n g ' e n e r g y  approached from above i n  t h e  complex p l a n e .  



We f u r t h e r  assume t h a t  t h e  k e r n e l  i s  compact o r  pre-compact i n  t h e  complex 

2 3  
z-plane c u t  a l o n g  t h e  p o s i t i v e  r e a l  a x i s .  The a n a l y t i c  Fredholm theorem t h e n  

i m p l i e s  t h a t  Eq. (3) h a s  a unique s o l u t i o n  everywhere i n  t h e  complex c u t  

p l a n e  e x c e p t  p o s s i b l y  on a  d i s c r e t e  set D. We t h e n  have t h e  fo l lowing :  
. . 

Theorem I: I f  IO ar!d t r a n s f o r m b y  Eq. (7) and (8) and E & D ' t h e n  

Pa 
P T ~ P - '  = T . (10) 

I n  t h e  channel  c o u p l i n g  c a s e  t h e  second i n d e x  of T t r a n s f o r m s  l i k e  (9 ) .  

-1 
Proof :  Apply P t o  the l e f t  of (3)  and P-' t o  t h e  r i g h t .  I n t r o d u c e  P P 

between t h e  K and t h e  T. Using (7) and (8) g i v e s  

. . .  2 .  . ' . V  

For any P € S as B runs  over  8 ,  s o .  does PB. Rep lac ing  t h e  unknown v e c t o r  

of o p e r a t o r s  P  T ~ P - '  by t h e  o p e r a t o r s  T~~ y i e l d s  a  s o l u t i o n  by ( 3 ) .  ' S i n c e  

E $ D t h e  s o l u t i o n  i s  unique.  (I. E. D. 

The s i t u a t i o n s  i n  which t h e s e  t r a n s f o r m a t i o n  p r o p e r t i e s  are r e l e v a n t  

 an e a s i l y  b c  occn.  I n  the fnrmalisms discussed  above t h e  dependence on 

a  p a r t i c u l a r  p a r t i c l e  i s  e n t i r e l y  through a p o t e n t i a l  i n v o l v i n g  

thaL p a i L i c l e .  I n  t h q t  cacc i t  i s  e a s y  t o  S P P  that a renumbering of t h e  

p a r t i c l e s  produced by any permutat ion s imply changes t h e  r e s u l t i n g  l a b e l s  

as r e q u i r e d .  For  example, . . i n  Ref. 19 c l a s s e s  of e q u a t i o n s  a r e  cons idered  i n  

which 1" = C v'. apd 1"' = va W . I n  t h e  f i r s t  c a s e ,  ' t h e  c o e f f i c i e n t s  C 
Y Y  aY Y 

depend on ly  on t h e  number of c l u s t e r s  i n  each p a r t i t i o n  and are t h e r e f o r e  

i n v a r i a n t  under a  t r a n s f o r m a t i o n  (C = Ca V P C S) . The inhomogeniety Pa 
7  i s  t h e r e f o r e  l a b e l  t r ans forming .  I n  t h e  second c a s e  (Kouri-Levin c o u p l i n g s )  

W i s  a  numer ica l  macr ix  whose e lements  sum t o  u n i t y  a long  each row and 
aY 



! 
I . .  
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column. The v a l u e  of a  m a t r i x  e lement  i n  t h i s  c a s e  depends on s p e c i f i c  par-  

t i t i o n s ,  s o  i n  g e n e r a l  W "ab . T h i s  c o u p l i n g  scheme t h e r e f o r e  does 
PaPb 

n o t  s a t i s f y  t r a n s f o r m a t i o n  p r o p e r t y  (9). 

Consider  any l a b e l  a .  S i n c e  t h e  pe rmuta t ion  of i d e n t i c a l  p a r t i c l e s  

does  riot change any p h y s i c a l  p r o p e r t y  of t h e  sys tem,  l a b e l s  r e l a t e d  by 

a' = Pa are p h y s i c a l l y  e q u i v a l e n t .  We t h e r e f o r e  i n t r o d u c e  a b i n a r y  r e l a t i o n  

a' 252 a i f f  3 P S  3 Pa = a ' .  

L e q a :  i s  a n  e q u i v a l e n c e  r e l a t i o n  on Jf . 
The proof  i s  s t r a i g h t f o r w a r d .  

The r e l a t i o n  82 t h e r e f o r e  s p l i t s  t h e  s e t  2 i n t o  d i s j o i n t  e c l ~ . ~ ~ . v a l e n c e  . 

c l a s s e s .  S i n c e  t h e  q u a n t i t i e s  which depend on t h e  l a b e l  se t  a r e  i n  some s e n s e  

p h y s i c a l l y  e q u i v a l e n t  f o r  a l l  l a b e l s  i n  a  g iven  e q u i v a l e n c e  c l a s s ,  w e  e x p e c t  

that c l a s s  f u n c t i o n s  can b e  c o n s t r u c t e d  c a r r y i n g  a l l  t h e  p h y s i c a l l y  r e l e v a n t  

i n f o r m a t i o n .  These c l a s s  f u n c t i o n s  w i l l  be c o n s t r u c t e d  i 1 1  S e c t .  111. 

We now c o n s t r u c t  t h e  p r o j e c t i o n  o p e r a t o r s  on s t a t e s  of p roper  symmetry. 

I n  t h e  p h y s i c a l  d e s c r i p t i o n  of many-par t i c le  sys tems c o n t a i n i n g  i d e n t i c a l  

p a r t i c l e s ,  t h e  wave f u n c t i o n  of t h e  sys tem must t r a n s f o r m  by a  one-dimensional 

i r r e d u c i b l e  r e p r e s e n t a t i o n  of t h e  symmetry group, namely 

P$ = +$ 

t h e  p l u s  o r  minus b e i n g  chosen a c c o r d i n g  t o  whether  an  even  o r  odd number of 

fe rmions  i s  exchanged by t h e  o p e r a t o r  P .  S i n c e  S  i s  a  p r o d u c t  of pe rmuta t ion  

groups  S and s i n c e  e v e r y  e lement  of S  can be  w r i t t e n  as a produc t  o f  
i ' i 

t r a n s p o s i t i o n s ,  i t  f o l l o w s  t h a t  e v e r y  e lement  of S.;can be  w r i t t e n  as t h e  

p r o d u c t  of t r a n s p o s i t i o n s  of i d e n t i c a l  p a r t i c l e s .  We d e f i n e  f t o ' b e  +1 i f ,  
P 

when w r i t t e n  a s  t h e  p r o d u c t  of t r a n s p o s i t i o n s  of i d e n t i c a l  p a r t i . c l e s ,  P 

c o n t a i n s  a n  even number o f  fermion t r a n s p o s i t i o n s ,  and'-1. i f :  i t  c o n t a i n s  a n  
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4 

odd number o f  fermion t r a n s p o s i t i o n s .  For  convenience we w r i t e  P = f P P 

and I S /  f o r  t h e  o r d e r  of t h e  group S. The symmetr izer  on s t a t e s  of appro- 

p r i a t e  symmetry i s  
24 

It s a t i s f i e s  t h e  f o l l o w i n g  p r o p e r t i e s :  

and 

One may o b t a i n  a u s e f u l  f a c t o r i z a t i o n  o f  t h e  o p e r a t o r  R,  which g e n e r a l i z e s  

t h e  one given i n  I. Consider  a p a r t i c u l a r  e l e m k t  of t h e  l a b e l  se t ,  a € 8. 
. , ' ,;' 

, . 
Those e lements  of S which l e a v e  a i n v a r i a n t  form a subgroup of S which we 

. . 
l a b e l  S . We then have 

a 

(14) 
' 4 ,  

Pa = a V P C S  C S .  
a 

. ,.. 

I f  we l a b e l  t h e  e q u i v a l e n c e  c l a s s  by a = [ a ]  and i f  Na d e n o t e s  t h e  number of 

2 4 . . 
e lements  of & i n  a ,  then  by Lagrange 's  theorem we have . . 

Na = Is1 /Is,I. 

W e  t h e n  have: 

Theorem: For any e lement  a o f  t h e  e q u i v a l e n c e  c l a s s  a ,  i f  

t h e n  

R 
a ' a  a 

where P i s  any permuta t ion  i n  S which maps a i n t o  a ' .  
a ' a 

Proof :  For  each a!€ a ,  P R i s  a sum of e lements  of S ( t o g e t h e r  w i t h  t h e i r  
a ' a  a 

phases )  which e x h a q s t s  a s i n g l e  c o s e t  o f  S . The s u m a t i o n  over  a '  produces  
a 



1 a sum o v e r  c o s e t s .  S i n c e  t h e  c o s e t s  a r e  d i s j o i n t ,  when t h e , s u m  i n  (17) 

i .  
I : .  i s  expanded u s i n g  ( 1 6 ) ,  t h e  r e s u l t i n g  sum e x h a u s t s  t h e  e n t i r e  group. The 1 .  . 

! .  
c o r r e c t n e s s  of t h e  n o r m a l i z a t i o n  f o l l o w s  from (15).  S i m i l a r  arguments y i e l d  

I Eq. (18) .  Q.E.D. 

I 
i F i n a l l y ,  we o b s e r v e  t h e  r e s u l t .  

I Lemma: For  any l a b e l  t r a n s f o r m i n g  q u a n t i t y ,  A" 

i Proof :  By t h e  l a b e l  t r a n s f o r m i n g  p r o p e r t y ,  w e  have 
I ,  

i The r e s u l t  f o l l o w s  upon i n s e r t i n g  t h e  e x p l i c i t  e x p r e s s i o n  f o r  R Eh. (16) .  
1 . '  : a ' 

111. INTEGRAL EQUATIONS FOR'IDENTICAL PARTICLE SCATTERING 

J n  t h i s  s e c t i o n  we c o n s t r u c t  o p e r a t o r s  l a b e l l e d  by tlie e q u i v a l e n c e  

I '  
i .  ' c l a s s e s  o f  t h e  l.abe1. se t ,  These o p e r a t o r s  r .ar ry  the. complete c o n t e n t  o f  t h c  
I :  
6 .  

I 
! .  

permutat ion symmetry of t h e  N - p a r t i c l e  system. I n t e g r a l  e q u a t i o n s  f o r  t h e s e  
/ .  . 

! q u a n t i t i e s  a r e  d e r i v e d ,  r educ ing  t h e  number o f  coupled e q u a t i o n s  and t h e  
1. 
i 
I number of q u a n t i t i e s  r e q u i r e d  f o r  t h e  d e s c r i p t i o n  of  real processes. 

I : , .  . 
! Our f i r s t  t a s k  is  t o  d e f i n e  a p p r o p r i a t e  o p e r a t o r s  l a b e l l e d  by equiva- 

I . .  ; l e n c e  c l a s s e s  of l a b e l s .  We review b r i e f l y  t h e  r e s u l t s  of I t o  c l a r i f y  t h e  
I '  I : .  . 

procedure .  There ,  t h e  q u a n t i t i e s  c o n s i d e r e d  were t r a n s i t i o n  o p e r a t o r s  f o r  a sys tem 
j 

of  N i d e n t i c a l  p e r t i c l e s .  T h e i r  m a t r i x  e lements  between f u l l y  symmetrized channel  s t a t e s  

gave the t r a n s i t i o n  p r o b a b i l i t i e s ;  Class o p e r a t o r s  a r e  c o n s t r u c t e d  by d e f i n i n g  

I .  ! . '  . where N and Na a r e  c o n s t a n t s  a s s o c i a t e d  w i t h  t h e  n o r m a l i z a t i o n  of t h e  channe l  wave b I . 

I f u n c t i o n s .  Here a and BO denote  f i x e d ,  b u t  a r b i t r a r y ,  r e p r e s e n t a t i v e s  of t h e  equiva-  
0 

I 
I l e n c e  c l a s s e s  a and b ,  respe.c t ive1y.  These are r e f e r r e d  t o  as c a n o n i c a l  
i 

I l a b e l s .  The t r a n s i t i o n  p r o b a b i l i t y  f o r  p h y s i c a l  p r o c e s s e s  i s  g i v e n  by t h e  
I 

I 



on-she l l  m a t r i x  element 

where t h e  s t a t e s  Q and @ a r e  channe l  wave f u n c t i o n s  s a t i s f y i n g  t h e  sym- 
a. $0 

metry i n t e r n a l  t o  t h e  bound c l u s t e r s  of t h e  channe l ,  i . e . ,  

The c l a s s  f u n c t i o n  i n  t h i s  c a s e  was c o n s t r u c t e d  by d e f i n i n g  a c a n o n i c a l  

i n i t i a l  l a b e l  and s y m e t r i z i n g  on t h e  l e f t .  Th i s  .is s u f f i c i e n t  due. t o  t h e  

well-known p r o p e r t y  t h a t  one may symmetrize e i t h e r  t h e  i n i t i a l  s t a t e  o r  t h e  

: f i n a l  s t a t e  i n  a  many-body s c a t t e r i n g  m a t r i x  e lement .25 '  I t  is  n o t  n e c e s s a r y  

t o  symmetrize on b o t h  s i d e s .  The i n t e r n a l  symmetry of t h e  wave f u n c t i o n s  

used t o  c a l c u l a t e  m a t r i x  e lements  w a s  r e t a i n e d  because  o f  t h e  f a c t  tha. t  bound 

s t a t e s o f t h e  p roper  symmetry a r e  t h e n  r e q u i r e d .  

We w i l l  c o n s t r u c t  c l a s s  o p e r a t o r s  f o r  o u r  two g e n e r a l  c l a s s e s  o f , s c a t t e r i n g  
. , 

e q u a t i o n s  i n  a  s i m i l a r  way. We f i r s t  demons t ra te  t h a t  Eq.  ( 3 )  can be  shown 

t o  g i v e  an e q u a t i o n  f o r  t h e  c l a s s  o p e r a t o r  c o n s t r u c t e d . f o r  t h e  c a s e  of a  gen-. 

era1 symmetry group. Then w e  show how t h e  p h y s i c a l  m a t r i x  e l e m e n t s  are re- 

l a t e d  t o  t h o s e  o f  t h e  c l a s s  o p e r a t o r s  i n  t h e  two c a s e s .  F i n a l l y  wc dcmon- 

s t r a t e  t h a t  t h e  c o n n e c t i v i t y  s t r u c t u r e  o f  t h e  e q u a t i o n  i s  n o t  d e s t r o y e d  i n  

t h e  t r a n s i t i o n  t o  aq e q u a t i o n  f o r  t h e  c l a s s  o p e r a t o r s .  

The c l a s s  f u n c t i o n  we c o n s t r u c t  i s  

f o r  t h e  cha in  coup l ing  c l a s s  and 
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f o r  t h e  c h a n n e l  c o u p l i n g  c l a s s .  I n  t h e  channe l  coup l ing  c a s e  we t a k e  t h e  

i n i t i a l  i n d e x  t o  b e  B and s u p p r e s s  i t  u n t i l  t h e  d i s c u s s i o n  of t h e  m a t r i x  
0 

e l e m e n t s .  

M u l t i p l y i n g  Eq. (3 )  by R P  and summing on t h e  i n d e x  a g i v e s  t h e  
. . 

a~ aOn 
e q u a t i o n  

where we have d e f i n e d  

and 

The a p p r o p r i a t e  p e r m u t a t i o n  opera tors  must he. extracted from XaB on 

t h e  r i g h t .  Th i s  i s  made p o s s i b l e  by t h e  fo l lowing .  

P r o o f :  Th is  p r o p e r t y  f o l l o w s  d i r e c t l y  from t h e  t r a n s f o r m a t i o n  p r o p e r t y  of 

K. From t h e  d e f i n i t i o n  o f  X and t h e  t r a n s f o r m a t i o n  p r o p e r t y  of K ,  we have 

where  f o r  s i m p l i c i t y  of n o t a t i o n  we have w r i t t e n  

-1 
Q = P  

B6" 

Now P-l = P s o  
PU' 6 ' 6  

Q B = P  B = B '  
B ' B  

a11d 

i, = +-l 6-1 = (6 iaao)-l 
aOa 88' aao 

i ( d  ) - l = i  
Qaa0 no Qa' 



There fore ,  we have 

A s  a r u n s  o v e r  a l l  t h e  e lements  of a ;  s o  does  Qa f o r  any Q. There fore ,  t h e  ' 

. '  

sum may be  t aken  over  Qa i n s t e a d  o f  o v e r  a ;  and r e l a b e l l i n g  t h e  dummy i n d e x  

. Qa a s  cr g i v e s  t h e  r e s u l t .  Q.E.D. 

This  r e s u l t  f o l l o w s  immediately from t h e  p r o p o s i t i o n  as a l l  t h e  terms 

c o n t a i n e d  i n  t h e  R sum l e a v e  6  i n v a r i a n t .  
B . . 

These two p r o p o s i t i o n s  a l low u s  t o  make t h e  r i g h t  i n d e x  on t h e  xBB i n  
.: b 

Eq. (27)  c a n o n i c a l  by p u l l i n g  o u t  t h e  a p p r o p r i a t e  p e r m u t a t i o n  o p e r a t o r .  The 

r e s u l t i n g  o p e r a t o r  i s  a c l a s s  o p e r a t o r  and t h e  sum over  a l l  6 may b e  broken 

up i n t o  a sum o v e r  b  and a  sum over  f3Cb. Using t h e  p r o p o s i t i o n ,  Eq. (25) 

becomes 

By t h e  c o r o l l a r y  t h e  i n t e r n a l  symmetr izer  may be e x t r a c t e d  t o  g i v e  

F i n a l l y ,  b r e a k i n g  up t h e  sum g i v e s  t h e  r e s u l t  

where we have w r i t t e n  

f o r  t h e  symmetrized k e r n e l .  Equa t ion  (32) i s  an i n t e g r a l  e q u a t i o n  f o r  t h e  

c l a s s  o p e r a t o r s  as d e s i r e d .  



1 4  

We now cons ider  t h e  r e l a t i o n  of t h e  phys i ca l  mat r ix  elements t o  t h e  

m a t r i x  e lements  of t h e  c l a s s  ope ra to r s .  In  t h e  chain coupl ing case  t he  

p h y s i c a l  ma t r ix  e lements  d e s i r e d  could be  t h e  mat r ix  elements of t h e  

f u l l  T  o p e r a t o r  between some a r b i t r a r y  i n i t i a l  s t a t e ,  4 ;  and a  s e t  of f i n a l  

non - in t e r ac t i ng  s t a t e s  of a l l  t h e  p a r t i c l e s ,  . A t  l e a s t  one of t h e s e  4 0 

states must have t h e  c o r r e c t  symmetry. Because our  equa t ions  (3) were chosen 

t o  have the  T bn t h e  r i g h t ,  we have symmetrized from the  l e f t .  W e  t h e r e f o r e  

r e q u i r e  t h a t  the  l e f t  wave func t ion  have t h e  proper  symmetry. The  p h y s i c a l  

m a t r i x  element i.s therefore 

whcrc 2 5 

The s t a t e  $ O  may be  a  set of p lane  waves, f o r  example, o r  a  coord ina te  

space  s t a t e  i n  which each of t h e  p a r t i c l e s  i s  a t  a  p a r t i c u l a r  p o i n t .  Using 

(2), t h c  p h y s i c a l  ma t r ix  e lements  may be  w r i t t e n  

By p r o p e r t i e s  (13) and ( IS ) ,  t h e  r equ i r ed  permutat ion ope ra to r s  may be i n t r o -  

duced b e f o r e  t h e  Ta. W e  may t h e r e f o r e  w r i t e  

Decomposing t h e  sum i n t o  a  sum over c l a s s e s ,  a ,  and a  sum over  t h e  elements  

i n  t hose  c l a s s e s ,  ci c a  .. gives  . 



'For t h e  channel coupl ing case  t he  phys i ca l  ma t r ix  elements a r e  t r a n s i t i o n  

mat r ix  e lements .  The i n d i c e s  of the  T ope ra to r s  a r e  p a r t i t i o n s  and one 

t akes  mat r ix  elements between s t a t e s  of t he  app rop r i a t e  p a r t i t i o n  Hamiltonians.  

Phys i ca l  channels a r e  l a b e l l e d  by c l a s s  i nd i ce s  i n s t e a d  of p a r t i t i o n s .  The 

t r a n s i t i o n  mat r ix  el-ement hetween a  s t a t e  of c l a s s  b  and one of c l a s s  a  w i l l  

'L l A b  = '?,lul4,' . ( 4 0 )  

'I, 
where U i s  the  EQtein t r a n s i t i o n  o p e r a t o r  ( s ee  Eq. (2.5) of I) and 14,. and 

a r e  f i n a l  and i n i t i a l  s t a t e s  of t h e  proper  symmetry. Following I ,  we 

express  bo th  f i n a l  and i n i t i a l  s t a t e s  i n  terms of symmetr izat ions of canonica l  

s t a t e s .  W e  t h e r e f o r e  s e t  

'L 
= K R 14,. > 

a  . . 
(41) 

0 
'L 

and s i m i l a r l y ' f o r  14 >. The i n i t i a l  s t a t e  c o n s i s t s  of t h e  bound c l u s t e r s  of t h e  a  

r e p r e s e n t a t i v e  p a r t i t i o n  B 'and p lane  waves f o r  t h e i r  r e l a t i v e  motion. A s  i n  I 
0 

we assume t h a t  t h e  wave func t ions  of t h e  bound' c l u s t e r s  i n  bo th  t h e  i n i t i a l  

and f i n a l  s t a t e s  have t h e  p r o p e r  symetrv f o r  each c l u s t e r ,  b u t  have not  been 

symmetrized between members of d i f f e r e n t  c l u s t e r s .  This  a l lows t h e  s t r a i g h t -  

forward i n s e r t i o n  of s tandard  hnlind s t . a t e  t h e n r i e s  (which have t h e  c o r r e c t  sym- 

metry) i n t o  the  s c a t t e r i n g  equa t ions .  

The ope ra to r  .;J' may now be  expressed i n  terms of ma t r ix  elements of  t h e  
ab 

2  
T ope ra to r  (1) a s  fol lows.  Using t h e  f a c t  t h a t  R commutes w i th  U and R = R,  

i n s e r t i n g  (41) i n t o  (40) g ives  

Expanding R by Eq .  (11) y i e l d s  



Since  the  ma t r ix  element o.f U ag rees  with t h a t  of T~~ on-shel l ,  we may rep lncc  . . 

. . 

Using Eq.  (221, t h e  d e f i n i t i o n  of Sa and the  f a c t  t h a t  

It i s  now only  necessary  t o  observe the  fol lowing:  

. . Lemma: 

This fo l lows  very d i r e c t l y  from t h e  arguments of Ref. 25. ~ s s u m i n g  the  

fb 'b 
asymptot ic  s t a t e s  14 a  > and 1 m b >  correspond t o  normalizable  wave packets  we 

nus t have 

expanding out  R by (11) gives 

I f  we choose wave pakce ts  such t h a t  a l l  t h e  c l u s t e r s  a r e  w e l l  s epa ra t ed ,  

i n t e r chang ing  between d i f f e r e n t  c l u s t e r s  g ives  U and wi th in  the  same c l u s t e r  

g ives  1 (assuming <+ I$ > = 1 )  Therefore we have 
"0 Pal 1 

'4, IRlm > = - = -  

0 .  "0 ISI N a '  



We t h e r e f  o r e  have 

I n t r o d u c i n g  t h e  c l a s s  o p e r a t o r  g iven  by (24) t h e  p h y s i c a l  m a t r i x  e lement  is 

given  by . . 
. . 

We observe t h a t  ' a l l  t h e  complex c o u n t i n g  c o n s i d e r e d  i n  paper I ( i n c l u d i n g  t h e  

6 term of E q .  (2,35)) is  o b t a i n e d  from t h e  s t r a i g h t f o r w a r d  group t h e o r e t i c  

c o n s i d e r a t i o n s  o f  Eq. ( 4 7 ) .  

We now c o n s i d e r  t h e  c o n n e c t i v i t y  s t r u c t u r e  of t h e  r e s u l t i n g  e q u a t i o n s  :. 
. . 

f o r  t h e  c l a s s  o p e r a t o r s ,  E q .  (32) .  W e  have t h e  fo l lowing :  . 

Theorem: I f  t h e  n-th power of t h e  o p e r a t o r  K"' i s  complete ly  connected,  . , 

ab 
t h e n  s o  i s  t h e  n-th power of t h e  o p e r a t o r x  . 
Proof :  Le t  u s  consider t h e  m-th power of t h e  o p e r a t o r  X .  The theorem 

f o l l o w s  immediately from t h e  fo l lowing .  

Lemma : 

To pro,ve the Lemma we nhse rve  t h a t  

by t h e  d e f i n i t i o n  of m a t r i x  m u l t i p l i c a t i o n  and of (Eq. (33) ) .  We now n o t e  

t h a t  f 1 we have (where j = m - k) 

w i t h  j > 1, we can w r i t e  

C ( X  ?) b. ( x ~ - ~ ) ~ ~ * ~ ~ ~ R  ( K )  k 'OO 

d , c y ~  C c .  
Y o  YoY 



' Using t h e  p r o p o s i t i o n  and c c ? r o l l . a r ~  (Eqs. (28 )  and ( 2 9 ) )  g i v e s  . 

which by t h e  d e f i n i t i o n  of t h e  o p e r a t o r  X ( E q .  ( 2 7 ) )  hecomcs 

T h i s  e q u a t i o n  h a s  t h e  same s t r u c t u r e  a s  Eq. ( 5 2 )  with  k incremented by one. 

. . 
W e  may t h e r e f o r e  induce  on k beg inn ing  w i t h  k  = 1 (Eq. (51) )  and b r i n g  t h e  

o p e r a t o r  over  t o  t h e  l e f t  u n t i l  . . only  a s i n g l e  power of Yd remains.  The f i n a l  

s t e p  f o l l o w s  i n  a s imilar  manner. Q . E . D .  

We have t h e r e t o r e  demonstra ted t h a t  t h e  symmet r iza t ion  (23)-(24) d e f i n e s  

c l a s s  f u n c t i o n s  f o r  b o t h  t h e  c h a i n  and channe l  coup l ing  c a s e s ,  t h a t  e q u a t i o n s  

f o r  t h e s e  c l a s s  o p e r a t o r s  can be  d e f i n e d  (Eq. (32))  w i t h  a l l  t h e  symmetry 

c a r r i e d  i n  t h e  s t r u c t u r e  of t h e  inhomogeneity (26) and t h e  k e r n e l  (33),  t h a t  

t h e  p h y s i c a l  m a t r i x  e lements  a r e  given s imply i n  terms of m a t r i x  e lements  of 

t h e  c l a s s  o p e r a t o r s  (Eqs. (392 and ( 4 9 ) ) ,  and f i n a l l x  that: L11e c o n n e c t f v i t y  

s t r u c t u r e  of t h e  unsymmetrized e q u a t i o n  i s  main ta ined  by t h e  symmetr izat ion.  

IJc conclude Ll l is  s e c r i a n  w i t h  a tcw comments abou t  t h e  KLT e q u a t i o n s .  798 

As we remarked above, t h e  KLT method u s e s  a numer ica l  m a t r i x  i n  t h e  k e r n e l  

of t h e i r  e q u a t i o n s  s o  a l t h o u g h  the KLT e q u a t i o n s  have t h e  s t r u c t u r e  of ( 3 ) ,  

n e i t h e r  t h e  k e r n e l  n o r  t h e  r e s u l t i n g  T  o p e r a t o r  a r e  l a b e l  t r ans forming .  

There  a r e  many T o p e r a t o r s  cor responding  t o  d i f f e r e n t  c h o i c e s  of t h e  W m a t r i x .  

These T  o p e r a t o r s  have d i f f e r e n t  o f f - s h e l l  c o n t i n u a t i o n s ,  a l though  t h e  e x a c t  

o p e r a t o r s  a g r e e  on-she l l .  The permuta t ion  t r a n s f o r m a t i o n  T ~ ~ P T  aB p-l maps 

one T  o p e r a t o r  i n t o  a T o p e r a t o r  corresporlding t o  a  d i f f e r e n t  coup l ing  scheme. 

T h i s  prcvellls t h e  a p p l i c a t i o n  o f  our  p rocedure  t o  t h i s  c a s e .  An a t t e m p t  t o  

symmetrize t h e s e  e q u a t i o n s  was made by Tobocman. l8 I n  t h f  s work t h e  

e q u a t i o n s  are symmetrized b e f o r e  coupl ing i n  c o n t r a s t  t n  our  method which 

symmetrizes a f t e r  t h e  coupled e q u a t i o n s  have been c o n s t r u c t e d .  Tobocman's 

method does  n o t  produce an  e q u a t i o n  w i t h  connected k e r n e l .  



I V .  APPLICATIONS AND ASSOCIATED COMBINATORIAL PROBLEMS 

The r e s u l t s  p r e s e n t e d  i n  t h e  p r e v i o u s  s e c t i o n  make i t  s t r a i g h t f o r w a r d  

t o  c o n s t r u c t  p r o p e r l y  symmetrized N - p a r t i c l e  i n t e g r a l  e q u a t i o n s  once t h e  

2 6  
symmetry gorup of t h e  sys tem is given.  Only t h e  b a s i c  c o m b i n a t o r i a l  problems 

of ennumerating e q u i v a l e n c e  c l a s s e s  needs  t o  be  s o l v e d  t o  make t h e  e q u a t i o n s  

ready f o r  p r a c t ~ c a l  a p p l i c a t i o n s .  

I n  t h e  f o l l o g i n g  we p r e s e n t  two s p e c i f i c  a p p l i c a t i o n s  i n  o r d e r  t o  show 

p r e c i s e l y  what problems a r i s e  and how t h e y  a r e  d e a l t  w i t h .  . We c o n s i d e r  f i r s t  . ' .  

t h e  n u c l e a r  ' phys ics  example of N i d e n t i c a l  p r o t o n s  and Z i d e n t i c a l  n e u t r o n s  . . 

d e s c r i b e d  by channe l  coup l ing  c l a s s  e q u a t i o n s  employing minimal ( t w o - c l u s t e r )  

coupl ing.  A s  a second example we c o n s i d e r  t h e  problem of a homonucl'ear . s ,  

dia tomic  molecule  w i t h  2Z  e l e c t r o n s  and two i d e n t i c a l  s p i n  z e r o  (boson) 

3 
n u c l e i ,  t r e a t e d  by t h e  Yakubovskii  e q u a t i o n s ,  a  c h a i n  coup l ing  c a s e .  

For  t h e  f i r s t  example, N i d e n t i c a l  n e u t r o n s  and 2 i d e n t i c a l  p r o t o n s ,  

t h e  pe rmuta t ion  group of t h e  sys tem i s  isomorphic  t o  

s o  t h e  o r d e r  o f  t h e  g,xouP, is  1 s 1 = N! Z!  . W e  c o n s i d e r  a f o r m u l a t i o n  i n  

which t h e  i n d i c e s  a r e  two-c lus te r  p a r t i t i o n s .  An example o f  a f o r m u l a t i o n  

of t h i s  type i s  t h a t  o f  BRS which h a s  a k e r n e l  whose f i r s t  i t e r a t e  i s  com- 

p l e t e l y  connected.  

To c o n s t r u c t  t h e  p h y s i c a l  q u a n i t i t e s  needed one must de te rmine  t h e  

e q u i v a l e n c e  c l a s s e s  of t h e  l a b e l s  and t h e  number o f  e lements  i n  each equiva-  

l e n c e  class. The number of d i s t i n c t  l a b e l s  f o r  N + Z d i s t i n g u i s h a b l e  par-  

t i c l e s  i s  known6 t o  be  2 N+Z-1 - 1. F o r ' t h e  sys tem w i t h  i d e n t i c a l  p a r t i c l e s ,  

a l l  t h e  d i s t i n c t  p h y s i c a l  two-c lus te r  p a r t i t i o n s  may b e  c h a r a c t e r i z e d  by a  



p a i r  o f  p o s i t i v e  i n t e g e r s ,  (n . ,z) ,  which g i v e  t h e  number of n e u t r o n s  and 

p r o t o n s  i n  t hc  smnl.lcr Fragment . S i n c c  tllc num1)er o r  ncur rons  ant1 p r o t o n s  

a r e  b o t h  f i x e d ,  t h e  second fragment must c o n t a i n  ( N - n , Z -  z )  n e u t r o n s  and 

p r o t o n s ,  r e s p e c t i v e l y .  

A p a i r  of i n t e g e r s ,  (N,Z),  where N and Z cannot  b o t h  v a n i s h  s imul taneous ly ,  

\ 2 7 
i s  known i n  t h e  t h e o r y  o f  combina to r ics  as a  b i p a r t i t e  number. The equiva- 

lence classes of  t h e  two-c lus te r  p a r t i t i o n s  correspond p r e c i s e l y  t o  a l l  t h e  

p a r t i t i o n s  of a b i p a r t i t e  number i n t o  two b i p a r t i t e  numbers. The number 

2 7 
of such  p a r t i t i o n s  w a s  g i v e n  by Macmahon i n  c.losed form aE 

T h i s  i s  t h e r e f o r e  t h e  number of equ iva lence  c l a s s e s  and t h e r e f o r e  t h e  nunber 

of coupled e q u a t i o n s  i n  Eq. ( 3 2 )  f o r  t h i s  example. 

We now must de te rmine  t h e  number o f  e lements  i n  each e q u i v a l e n c e  c l a s s  

i n  o r d e r  t o  c o n s t r u c t  t h e  o p e r a t o r s  Ra . Given a  p a r t i c u l a r  two-c lus te r  
0 

p a r t i t i o n  of t h e  form, ( n , a )  - (N - n,Z ,,- z ) ,  l~uw many d i s t i n c t  p a r t i t i o n s  are 

t h e r e  i n  t h e  same e q u i v a l e n c e  c l a s s ?  I f  one a p p l i e s  a l l  t h e  p e r m ~ i t a t i o n s  i n  S 

onc would obCaitl N!Z! p a r t i t i o n s .  Not a l l  of them a r e  d i s t i n c t ,  however, a s  

e x c h a i n g i n g  p r o t o n s  a n d / o r  n e u t r o n s  i n  a s i n g l e  c l u s t e r  d o e s n ' t  l e a d  t o  a 

new p a r t i t i o n .  We have t o  d i v i d e  by t h e  number of ways of permut ing t h e  

p r o t o n s  and neucvons i n  each of t h e  two c l u s t e r s .  Th i s  reduces  t h e  number 

N 2 of e l e m e n t s  t o  N!Z!  / ( n !  (N - n )  ! z !  (Z - z )  ! ) o r  (n),(z).  I f  t h e  two c l u s t e r s  of 

ihe partition a r e  i d e n t i c a l ,  t h e n  t h e  complete  i n t e r c h a n g e  of t h e  two clris- 

tere docs n o t  produce a new p a r t i t i o n .  Th is  r e q u i r e s  reduc ing  t h e  number 

o f  d i s t i n c t  p a r t i t i o n s  produced by an a d d i t i o n  f a c t o r  UE two. W e  t h e r e f o r e  



These numbers f i x  t h e  n o r m a l i z a t i o n  of t h e  o p e r a t o r s  R which w i l l  b e  used . .  . 
. C1 

0 
i n  c o n s t r u c t t n g  t h e  inhomogeneous term by Eq. (26) and t h e  k e r n e l  by Eq. (33) .  

This  i s  a l s o  t h e  number o f  terms i n  t h e  n c a  summations (Eqs: (23) and ( 2 4 ) ) .  
U 

Let  us now i n v e s t i g a t e  how t h e  Yakubovskii  e q u a t i o n s  have t o  b e  symmetrized 

f o r  t h e  c a s e  of a d i a t o m i c  homonuclear molecule .  The l a b e l s  f o r , t h e s e  

e q u a t i o n s  a r e  c h a i n s  of p a r t 5  t i o n s ,  a l 2  a 2 3  a3 3 . . . aN-13 % where a repre'- 
. . j 

s e n t s  a p a r t i t i o n  o f  t h e  N - p a r t i c l e s  i n t o  j - c l u s t e r s  and t h e  r e l a t i o n  

a .  3 a j + l  means the p a r t i t i o n  aj+l can b e  o b t a i n e d  by b r e a k i n g  a s i n g l e  one 
J 

of t h e  c l u s t e r s  of a . The i n i t i a l  and f i n a l  p a r t i t i o n s ,  a and %, b e i n g  
j 1 

unique are u s u a l l y  omi t t ed .  

. . 
For d i s t i n g u i s h a b l e  p a r t i c l e s ,  t h e  number of complete (maximal) c h a i n s  

can b e  ennumerated by e lementa ry  methods. Th is  can b e  done because  t h e  

2 8 
s e t  of p a r t i t i o n s  forms a semimodular, r e l a t i v e l y  complemented l a t t i c e .  When. . ' 

. % 8  

t h e  symmetry group of t h e  sys tem is  a p p l i e d ,  t h e  s e t  p a r t i t i o n s  and t h e r e f o r e  

t h e  set of l a b e l s  is  s p l i t  up i n t o  d i s j o i n t  e q u i v a l e n c e  c l a s s e s , .  The.equiva-  

l e n c e  c l a s s e s  of t h e  p a r t i t i o n s  can. s t i l l  be  regarded  a s  a p a r t i . a l l y  o r d e r e d  

set,  s i n c e  t h e  o r d e r i n g  of t h e  p a r t i t i o n s  is  p r e s e r v e d  by t h e  mapping of 

each p a r t i t i o n  i n t o  i t s  e q u i v a l e n c e  c l a s s .  However, t h e  l a t t i c e  p r o p e r t y  
. . 

of t h e  s e t  o f  p a r t i t i o n s  i s  i n  g e n e r a l  n o t  p rese rved .  T h i s  h i n d e r s  one 

c o n s i d e r a b l y  i n  t r y i n g  ' t o  f i n d  a c l o s e d  form e x p r e s s i o n  f o r  t h e  number. o f  

e q u i v a l e n c e  c l a s s e s  of maxima.1 c h a i n s .  The problem is e q u i v a l e n t  t o  a cur- 

r e n t l y  unsolved problem i n  graph t h e o r y ;  however, an a l g o r i t h m  can b e  g iven  

f o r  ennumerating t h e  number of e q u i v a l e n c e  c l a s s e s  of c h a i n s  w i t h o u t  

e x p l i c i t l y  symmetrizing t h e  o r i g i n a l  e q u a t i o n s .  The e x p l i c i t  symmetriza- 

t i o n  procedure  h a s  been used i n  a l l  p r e v i o u s l y  cons idered  examples,  v i z . ,  

1 4  2 9 
t h e  works of Kharchenko and Kuzmichev and t h a t  of Roy-Choudhury, e t  a l .  



Under t h e  symmet r iza t ion  group, each p a r t i t i o n  w i l l  map i n t o  a  m u l t i -  

p a r t i t e  nuather. 'Tliereic.)re eacli cl iain w i l . 1  map i n t o  a cha in  01: mu l t i -  

p a r t i t e  numbers. A s  a s p e c i f i c  example we c o n s i d e r  t h e  sys tem D cons i s -  . 
2 

t i n g  of two d e u t e r o n s  and two e l e c t r o n s ,  l a b e l l e d  1 = d ,  2  = d, 3  = e ,  

and 4  = e. A l l  t h e  p o s s i b l e  d i s t i n c t  p a r t i t i o n s  a r e  i n d i c a t e d  i n  F i g .  1 wi th  
. . 

t h e  p o s s i b l e  i n c l u s i o n s  shown b.y arrows.  One can e a s i l y  r e a d  oI f  from 

t h i s  d iagram t h a t  t h e  number of maximal c h a i n s  i s  7. The number o f  coupled 

Yakubovski i  e q u a t i o n s  f o r  t h i s  sys tem w i l l  t h e r e f  o r e  b e  7. The lccrnsls  

and inhomogeneous terms f o r  t h e  e q u a t i o n s  coup l ing  t h e  o p e r a t o r s  l a b e l l e d  

by t h e s e  c h a i n s  can e a s i l y  be  c o n s t r u c t e d  once t h e  subgroups f o r  each c h a i n  

are de.rermlned. 'The number of Yakubovskii  and BRS e q u a t i o n s  f o r  t h e  v a r i o u s  

c a s e s  of d i f f e r e n t  numbers of i d e n t i c a l ' p a r t i c l e s  i n  t h e  th ree - ,  four- ,  and 

five-body problem are g iven  i n  Table  I. 

. . To be s p e c i f i c ,  t h e  f u l l  symmetry group i s  g e n e r a t e d  by t h e  o p e r a t o r s  

P12 ( i n t e r c h a n g e  o f  t h e  d e u t e r o n s )  and P ( i n t e r c h a n g e  of t h e  e l e c t r o n s ) .  3  4  

Taking i n t o  account  t h e  f a c t  t h a t  t h e  d e l i t ~ r n n s  are b o ~ o n c  and t h e  e l e c t r o ~ i s  

. . are fe rmions  y i e l d s  t h e  f u l l  symmetr izer  

Cons ider  t h e  c h a i n  a  = (dd) ( e e l  _7 ( 1 4 )  (d)  (ee) . A c a n o n i c a l  chaiii ' f u l  Lhls 

e q u i v a l e n c e  c l a s s  i s  t h e  c h a i n  a = (12) (34) 3 (1) (2)  (34) .  The f u l l  sym- 0 

metry group l e a v e s  t h i s  c h a i n  i n v a r i a n t .  T h e r e f o r e ,  we c o n s t r u c t  t h e  o p e r a t o r  

There  i s  on ly  a  s i n g l e  t e rm i n  t h e  a sum i n  e q u a t i o n s  (23) ,  (261, and ( 3 3 ) .  

F o r  t h e  c h a i n  b  = (d l  ( d m )  2 !d) (d) ( e e )  a  c a n o n i c a l  c h a i n  is 6 - (1). (234) 3 (1) (2 )  ( 3 4 ) .  
0 

Only t h e  group e lements  1 and P l e a v e  t h i s  c h a i n  i n v a r i a n t .  T h e r e f o r e  we have 
34 



2 3 

There a r e  two cha ins  i n  t h i s  e q u i v a l e n c e  c l a s s ,  ' and the  c h a i n  ;-. 

(2) (134) 3 (1) ( 2 )  (34) .  There w i l l  t h e r e f o r e  b e  two e lements  i n  t h e  sums 

I n  g e n e r a l ,  each c h a i n  can b e  a s s o c i a t e d  w i t h  a tree. The t r e e s  f o r  

t h e  c h a i n s  u and BO i n  t h e  above example a r e  shown i n  F ig .  2 .  The invar -  
0 

i a n c e  subgroup of a p a r t i c u l a r  c h a i n  i s  determined by t h e  number of 

i n d i s t i n g u i s h a b l e  p a r t i c l e s  which a r e  connected d i r e c t l y  t o g e t h e r  r a t h e r  

t h a n  b e i n g  j o i n e d  t o  a c l u s t e r .  The i n t e r n a l  symmetry o p e r a t o r  , f o r  each 

c h a i n  must be  determined by c o n s i d e r i n g  t h e  s t r u c t u r e  of t h e  s p e c i f i c  c h a i n .  

Upon t h e  c o n s t r u c t i o n  o f  ' t hese  o p e r a t o r s ,  t h e  e q u a t i o n s  coup l ing  t h e  

symmetrized o p e r a t o r s ,  (321, may b e  w r i t t e n  down d i r e c t l y  f o r  any c a s e  

w i t h o u t  t h e  need of beg inn ing  w i t h  t h e  o r i g i n a l  e q u a t i o n s  ( 3 ) .  . . 

V. CONCLUSIONS 

. . The t r e a t m e n t  of i d e n t i c a l  p a r t i c l e s  i n  N-par t i c le  s c a t t e r i n g  . g i v e s  

r i s e  t o  n o n t r i v i q l  mathemat ical  prohl-ems. I n  t h i s  p a p e r  we demons t ra te  t h a t  

a g e n e r a l  a l g e b r a i c  t r e a t m e n t  can b e  developed f o r  a l a r g e  c l a s s  of N- 

p a r t i c l e  s c a t t e r i n g  t h e o r i e s .  T h i s  t r e a t m e n t  r e l i e s  on t h e  p r o p e r t i e s  of 

t h e  pe rmuta t ion  group of t h e  system. These t h e o r i e s  i n c l u d e  channe l  c o u p l i n g  

e q u a t i o n s  such  a s  phose of BRS o r  Chandler and Gibson ( b u t  e x p l i c i t l y  exc lu -  
. . 

d i n g  t h e o r i e s  of KLT type)  and c h a i n  coup l ing  e q u a t i o n s  such  a s  t h o s e  of 
. -  - 

Rosenberg, Yakubevskii  and ~arodestkii-~akubovskii. 

There are two f e a t u r e s  of b a s i c  importance 'which make t h e  g e n e r a l  a l g e -  

b r a i c  t r e a t m e n t  p o s s i b l e .  F i r s t ,  i n  a l l  t h e  N - p a r t i c l e  t h e o r i e s  t h e  quan- 

t i t i e s  t o  b e  determined a r e  l a b e l l e d  by p a r t i t i o n s  o r  ( incomple te  o r  com- ;.. . 

p l c t e )  c h u i ~ l o  of p ~ r t i t i o n s  of  t h e  N-parti r.1 P. system. Consequent ly ,  t h e  
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number of coupled e q u a t i o n s  is  determined by t h e  way of l a b e l l i , n g  r a t h e r  

t h a n  t h e  t r e a t m e n t  o f  N-body dynamics. Second, t h e  pe rmuta t ion  gkoup of 

t h e  sys tem g e n e r a t e s  an  e q u i v a l e n c e  r e l a t i o n  on t h e  s e t  of l a b e l s  and 

a c c o r d i n g l y  s p l i t s  i t  i n t o  d i s j n i n t  e q u i v a l e n c e  c l a s s e s .  Only t h e  equiva-  

l e n c e  c l a s s e s  and o p e r a t o r  v a l u e d  f u n c t i o n s  of t h e s e  c l a s s e s  have p h y s i c a l  

meaning. T h i s  s t a t e m e n t  i s  j u s t  an a b s t r a c t  f o r m u l a t i o n  o f  t h e  p r o p e r t y  

t h a t  due t o  t h e  i n d i s t i n g u i s h a b i l i t y  of some of  t h e  p a r t i c l e s  t h e  ampl i tudes  

of t h e  p h y s i c a l  p r o c e s s e s  can be  expressed a s  c o h c r e n t  sums ur " d l r ~ q t "  

and "exchauge" p r o c e s s e s .  I n  o u r  general, a1ge.hraS.c t r e a t m e n t  w e  ~ L J L L S L L U C ~  

o p e r a t o r s  which a r e  sums of pe rmuta t ion  o p e r a t o r s  a c t i n g  on t h e  s c a t t e r i n g  

o p e r a t o r s  of t h e  r e l e v a n t  t h e o r y .  These c l a s s  o p e r a t o r s  g iven  by EQS. ! 2 3 )  

and ( 2 4 )  are l a b e l l e d  by t h e  e q u i v a l e n c e  c l a s s e s  of t h e  s e t  of o r i g i n a l  l a b e l s .  

I f  t h e  inhomogeneous t e r m  and t h e  k e r n e l  of t h e  r e l e v a n t  s e t  of N - p a r t i c l e  

e q u a t i o n s  s a t i s f y  c e r t a i n  g e n e r a l  c o n d i t i o n s ,  i . e . ,  i f  they  a r e  l a b e l  t r a n s -  

forming,  i t  follows t h a t  t h o  N - p a r t i c l e  @ q u a L l u ~ l s  can be re formula ted  i n  

t e r m s  of t h e  c l a s s  o p e r a t o r ,  w i t h  a  s imul taneous  r e d u c t i n n  i n  the number 

of iouplt..(I e q u a t i o n s .  Fur thermore,  t h e  p h y s i c a l  m a t r i x  e lements  a r e  e x p r e s s e d  

i n  terms of m a t r i x  e l e m e n t s  of t h e  c l a s s  o p e r a t o r s .  .The e n t i r e  burden of 

t h e  symmetry i s ' c a r r i e d  by t h e  symmet r iza t ion  of t h e  inhomogeneous term 

a ~ l d  the k e r n e l .  We a l s o  demons t ra te  t h a t  t h e  c o n n e c t i v i t y  p r o p e r t i e s  o f  

t h e  k e r n e l  a r e  passed on t o  t h e  symmetrized e q u a t i o n .  

The most remarkable  f a c t  e x h i b i t e d  by t h e  c o n s i d e r a t i o n s  o f  t h t s  

p a p e r  i s  t h a t  t h e  t r e a t m e n t  o f  i d e n t i c a l  p a r t i c l e s ,  i . e . ,  exchange e f f e c t s ,  

i s  a c t u a l l y  independent  of t h e  N - p a r t i c l e  dynamics f o r  a l a r g e  c l a s s  of N- 

p a r t i c l e  s c a t t e r i n g  t h e o r i e s .  T h i s  i s  t h e  consequence of t h e  nondynamical 

n a t u r e  of t h e  p e r m u t a t i o n  symmetry nf t h e  system. 
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TABLE CAFT'ION 

T a b l e  I. :  umber of  coupled i n t e g r a l  e q u a t i o n s  f o r  N=3, 4 ,  and 5 p a r t i c l e s  

i n  t h e  Yakubovski i  (Y) and Bencze-Redish-Sloan (BRS) methods. 

The l a b e l s  a ,  b ,  c ,  . . . i n d i c a t e  d i s t i n c t  s p e c i e s  of p a r t i c l e s .  . 



TABLE I 

-- 

N = 3  

aaa aab ab c 

Y 
BRS 

Y 
BRS 

N = 4  

aaaa aaab aabb aab c ab cd 

N = 5  

aaaaa aaaab aaabb aaab c aabbc aab cd ab cde 

4 ' 1 5  . 26 4 5 6 1 105 180 
Y 

BRS 
2 4 5 7 8 11 15 



FIGURE CAPTIONS 

F ig .  1: The p a r t i t i o n  s e t  f o r  a  four-body system cons i s t i ng  of 

two p a i r s  of i d e n t i c a l  p a r t i c l e s .  Arrows i n d i c a t e  i nc lus ion .  

. A complete maximal chain is  a  pa th  l ead ing  from the  top 

element (ddee) t o  t he  bottom (d) (d) (e)  (e)  . There a r e  

seven such d i s t i n c t  cha ins .  

Fig.  2 :  Tree r e p r e s e n t a t i o n s  of t he  canonica l  cha ins  i n  t h e  four-  

body problem ddee. The cha ins  a r c  read o f f  from the  tree 

by fol lowing t h e  success ive  connections down from the  top 

of t h e  t r e e .  I d e n t i c a l  p a r t i c l e s  are marked by curved 

b racke t s .  The d o t t e d  boxes i n d i c a t e  p a r t s  of t he  t r e e  

which a r e  i n v a r i a n t  under an element of t h e  symmetry group. 
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Fig. 1 






