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ABSTRACT

We consider the non-relativistic N-body scattering problem for a system
of particles in which some subsets of the particles are identical. We demon-
strate how the particle identity can be included in a general class of linear
integral equations for scattering operators or components of scattering opera-
tors. The Yakubovskii, Yakubovskii-Narodestkii, Rosenberg,.and Bencze-
Redish-Sloan equations are included in this class. Algebraic methods are used
which rely on the properties of the'symmetry groﬁp of the system. Qperators
depending only on physically distinguishable labels are introduced and linear
integral equations for them are derived. This procedure maximally reduces the
number of coupled equatioqs‘while retaining the connectivity properties of

the original equations.
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T. INTRODUCTTON ”

Numcrous methods for writing down mathematically well-behaved equa-
tions for the scattering Qperators in the non-relativistic N-body problent have
been developed in the past few years. B In most of these methods the par-
ticles are initially considered to be distinguishable, and any effects of
particle identity are put in only when specific problems are treated. Since
the number of physical situations and equation types is large, we here'pre—
sent a general method faor constructing reduced equations which include the
effect of particle identity.

In the bound state case, the treatment of particle identity is generally
considered a technical problem. One must solve tﬁe Schrddinger eigenvalue
problem on the subspace of properly symmetrizedlO vectors of the Hilbgrt
space. Such problems can be tvpically handled either hy the glaborate
mathematical machinery of the shell model11 or with hyperspherical harmoﬁics.l ‘
Both methods rely heavily on the theory of the symmetric group.

On the other hand the inclusion of exchange symmetry in a scattering
problem 'is far from trivial. The reason is that when exchange scatte?ing is
present, the asymptotic form of the scattering wave function includes:bdth
incowing and scattered waves in different regions of the many-body coﬂfigufa—
tion space. There is no longer a single channel Hamiltonian which describes
the asymptotic waves so all the well-known problems of describing rearrange-
ment channels arise. The conventional procedure is simply to solve thé

scattering problem for distinguishable particles and afterwards to sum the

contributions of physically indistinguishable channels to the cross section.
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In some of the exact formulations of N-particle scattering the exchange
symmetry can be incorpdrated directly into the scattering equations with
a resulting decrease in the number of coupled equations. Such a procedure
has been carried out by Lovelace in the three-body problem13 and by
Kharchenko and Kuzmict;ev14 for the four-body Faddeev-Yakubovskii equations.
The first explicit treatment of the scattering of an arbitrary number of
identical'particles was carried out by the authors in Ref..15 (henceforth
referred to as I). ig this paper abstract gfoup theoretic methods were used
to incorporate exchange symmetry into the Bencze-Redish-Sloan (BRS) N-
particle scattering equations.5’6’l6’17

The treatment‘presented in I made use of the specific properties of phe' L

BRS equations. 1In this paper we develop a general algebraic method of

&

including exchange symmetry which can be .applied to a large variety of N-

“s

particle scattering equations and allows the treatment of an arbitrary number
of different kinds of identical particles, which may be bosons or fermionq;
Specifically we consider two important élasses of N-particle equations,‘the ' .
channel coupling clags of equations, which are written in terms of transition
operators, and thg chain coupling class which are written for componénts of
the N to N transition operator. ‘The former class includes the BRS equations,
the.set of equations'gescribgd by Bencze and Tandy,19 and the equations of
Chandler and Gibson,g The latter.include the Rosenberg,? Yakubovskii,3
and Ya.kubovxskii—N'arodestkii4 equations. For the sake of completene;s; it
should be mentioned that there also exist N-particle formalisms intermediate

' 20-22

between the chain ‘and channel coupling classes. In these formalisms

integral equations are written for operators labelled by chains, but these
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operators are components of the physical transition operators which are
labelled by two partitions. While it is straightforward to apply our ' .
élgebraic method to these equations,'for simplicity of discussion we restrict
oﬁr considerations to equations of the chain and channel coupling classes.

The paper is organized as follows. Section II contains a discussion
of the general form of the N-particle equationé and the basic group theoretic
results associated with the 'treatment of identical particles. The symmetriza-
tion of the equations fgr the case of arbitrary numbers of ldentical par-
ticles is rarried out in EBcet. III aud the mathématical properties of the
symmetrized kernel are discussed. Section IV contains some applications and
a study of the associated combinatorial prnhlems. The rcaults are- sunmard zéd

and conclusions presented in Sect. V.

II. PERMUTATION SYMMETRY IN N-PARTICLE SYSTEMS

There exist numerous formulations of N-particle scattering theory.
Although they are all exact in principle, the N-particle dynamics is han&led
in different ways in the different Eheories. A bommon property of these
exact theories is that they obtain coupled equations for operators or wave
functions which are labelled by partitions or by chains of partitions3 of
the N-particle system.

Equations of the channel coupling class are written for the transition
~operators | : ‘ ' ' ’ ',

73 - y3 4 ylgyP | (1)

where a and b label partitions of the system. Equations of the chain coupliﬁg

: - A A . :
class are written for the quantities T where T is a component of the N to

N transition operator
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0 = < ;T (2)
A

We have used the notation O to indicate the N-cluster partition. The_index
A may be either a single partition or a set of partitions satisfying certain
internal conditions (a chain). We will use Greek ietters a, B, -Y,... toO
indicate either a partition or a chain of partitions and we write the set of

possible labels as J?. The general equation then takes the form

™= 1%+ 3 o8, (3)
Y 4 |

. A o o
1f Egqs. (3) refer to transition operators, the quantities T and I also
carry a second label, y, which indicates the initial state of the scattering

process, i.e., ™ 5> 1% and similarly for I™. TFor the sake of simplifying

-the notation we suppress this index-except where it is relevant.

Let us now assume that the N-particle system contains some particles .
which are iaentical.' In this case, the permutations of the identical pgrticles
form a finite symmétry group whose elements commute with the exact N-particle
Hamiltonian. If all the N-particles are identical, the symmetfy.group would
be the full symmetric group on N ubjecls, SN. Iu the vase Lhal Lhere dte
k different kinds of identical particles with n, particles of the i-th type

(N —'u14-u2+...=knk), then the symmetry group of the system, S, will be

.isomorphic to the direct product of symmetric groups, Srl , viz.,

i
S¥s x-§ el X 8 , (4)

If the particles of the system are permuted by some element of S, then
the system labels will in general also be affected. The group S induces
a transformation groﬁp of tﬁe label set, Jf, into itself. Symbolically
we write

Pa = o' P € S. (5)
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Depending on the system of labelling, certain elements of the symmetry group
will leave a given label invariant. For example, if the label is a par-
tition, the interchange of a pair of identical particles within a siﬁgle c1gs—
ter of the partition or the exchange of two identical clusters will produce
a new partition which is identified as being identical to the original onme.
The set of elements P € S for which

Pu = o | | (6)

torms a subgroup of S which we denote as Sa

The reduction of the integral equations (3) by the transformation group
S is made possible by the transformation properties of the inhomogeneous..

term and the kernel under S. Specifically we assume that
patel o P (7)
and

- PaPR

Pkt = (8)

In the case of the channel coupling equations, the suppressed index of the
inhomogeneous term also is assumed to transform, viz.,

p1®Bp~1 o {PaPB (9)

We describe any labelled quantity which transforms wia a relation analogouc

to (7) or (8) as label»transforming. Specifically, this means that tﬁe

transform of the labelled quantity is that same quantity with only its labels
transformed.
We now demonstrate that the quantities i are label fransforming. 1In

: aB . . . .
general, the kernel K B is a function of a cowplex parameter z which is taken

to be equal to the scattering energy approached from above in the complex plane.
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We further assume that the kernel is compact or pre-compact in the complex
z-plane cut along the positive regl axis. The analytic Fredholm theorem23 then
implies that Eq. (3) has a unique solution everywhere in the complex cut
plane except possibly on a discrete set D. We then have the followiﬁg:
Theorem I: If i© and KaB transform by Eq. (7) and (8) and E é:D'then

PTOP Tt = T . (10)
In the channel coup;ing case the second index of T transforms liké 9).

Proof: Apply P to the left of (3) and P—l to the right. Introduce P—lP

between the K and the T. Using (7) and (8) gives

erply = 1P 4+ Zﬂ oPB B el
B €

Fo; any P€ S as B runs over af, so. does PR. Replacing the unknown vectér
of operators P'I‘OLP“l by the operators TPa yields a solution by (3).w Since
E ¢I)the solution is unique. Q.E.D.

The situations in which these transformationvproperties are relevant
can easily be ocen. In the farmalisms discussed above the dependence‘on
a particular parfic;e is entirely through a .potgntial involving
that particle. In'thqt casc it is easy to see that a renumbering of tﬁe
particles prqduced by any permutation simply changes the resulting labels
as:requifed. For example, in Ref. 19 classes of equatiéns are considered in
which 1% = QYV$' and IaY = VxWaY. In the firét case, the coefficients CY
depend only on the gqmber of clusters in each partition and are therefore
invariant under a transformation (CPa = Ga V P € S). The inhomogeniety
is therefore label trgnsforming. In the second case (Kouri—Levin7 couplings)

way is a numerical matrix whose elements sum to unity along each row and
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column. The value of a matrix element in this case depends on specific par-

titions, so in generél WPan # W b This coupling scheme therefore does

ab
not satisfy transformation property 9).

Consider any label @. Since the permutation of identical particles
does not change any physical property of the system, labels related by
a' = Pa are physically equivalent. We therefore introduce a binary relation

"R o iff 3 PE S I3 Pa=2a'.
Lemma: # is an eqﬁivalgnce relation on Jf.
The proof is straightforward.

The relation & therefore splits therset &e into disjoint equivalence
classes. Since the quantities which depend on the label set are in éome sense
physically equivalent for all labels in a given equivalence class, we expect
rthat class functions can be constructed carrying all the physically relevant
informationf These class functions will be constructed in Sect. IIT.

We now construct the projection operators on states of proper symmetry.
In the physical description of many-particle systems containing idéntical
particles, the wave function of the system must transform by a one-dimensional
irreducible representation of the symmetry group, namely

Py = &y
the plus 6r minus being chosen according to whether an even or odd number of
fermions is exchanged by the operato£ P. Since S is a product of perﬁutation
groups Si’ and since every element of Si can be Written as a product ofl
transpositions, it follows that every element of S:-can be written as the
product of transpositions of identical particles. We define fP to be +1 if;
when written as the product of transpositions of identical particles, f

contains an even number of fermion transpositions, and -1 if it contains an
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odd number of fermion transpositions. For convenience we write P = fPP

and |S| for the order of the group S. The symmetrizer on states of appro-

. . 24
priate symmetry is

1. R
R = 15T P%;S P. (11)

It satisfies the follgwing properties:
RZ=r | (12)
and |
QR =R VQcEs. ‘ (13)

One may ohtain a useful factorization of the operator R, which generalizes
the one given in I. Consider a particular element of the label set, a C.Ja
Those elements of S which leave o invariant form a subgroub of S which‘&e'
label Sa' We then have '

: Pa = a VPE Sa‘C S. ' - (14)
If we label the equivalence class by a = [o] and if Na denotes the number of
elements of &€ in a, then by Lagrange's theoremz4 we ﬁave
N, = Isl/]s | (15)

We then have:

Theorem: For any element o of the equivalence class a, if

1 ~
R = P 16
@ 5 P%gé : (16
a .

o
then '

o1 5 '

= ;: Py R | (17)
aa'€ a .

1 )

R=5% 2 R P (18)

ao'€ a ‘

where Pa'a is any permutation in S which maps o into a'.

Proof: For each a'€ a, Pa'a Ra is a sum of elements of S (together with their

phases) which exhaqus a single coset of Sa' The summation over o' produces
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a sﬁm over cosets. Since the cosets are disjoinf, when the sum in (17)
is expanded using (16), the resulting sum exhausts the entire group. The
correctness of the normalization follows from (15). Similar arguﬁents yieid
Eq. (18). Q.E.D.
Finally, we observe the result.

Lemma: For any label transforming quantity, A

R A% = aA"R . ' (19)
o a
Proof: By the label transforming property, we have
pa¥=a"P VPL S .

The result follows upon inserting the explicit expression for Ra’ Eq. (16)}

" III. INTEGRAL EQUATIONS FOR‘iDENTICAL PARTICLE SCATTERING
In this section we construct operators labelled by the equivalence
‘classes of the labhel set, These‘operators harry the complete.content of the
_permutationsymmetry of the N-particle system. Integral equations for these
quantities are derived, reducing fthe number of coupled equations and the
number of quantities feguired for the description of real pronesses;
Our first task isbpo define appropriate operatofs labelled by equiva-
lence classes of labels.v We review briefly the results of I to clarify the
procedure. There, the quantities considered were transition operators for a system
of N identical particles.‘Their matrix elements between fully sSymmetrized channel states

gave the transition probabilities. Class operators are constructed by defining

o
ab _\Pﬁg “ *®0
™ =¥y 2 R, P T ) (20)

A aga 0 0LOOL

where Nb and Na are constants associated with the normalization of the channel wave
functions. Here 2 and BO denote fixed, but arbitrary, representatives of the equiva-
lence classes a and b, respectively. These are referred to as canonical

labels. The transition probability for physical processes is given by the
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on-shell matrix element

T® - |1, > (21)
' %0 %0
where the states @u and ¢B are channel wave functions satisfying the sym-
0 0 . . '
metry internal to the bound clusters of the channel, i.e.,
Ra Qa - ¢u
0 70 0 (22)
R ¢ = o .
BO BO BO

‘The class function in Ehis case was constructed by defining a canonical
initial label and symmetrizing on the left. This is sufficient due to the
well-known property that one may symmetrize either the initial state or the
final state iﬁ a many-body ;caftering matrix element;zs. It is not necessary
to symmetrize on both sides. The internal symmetry of the wave functions
used to calculate matrix elements was retained because of the fagt that bound
states of the proper symmetry are then required.

We will construct class operators for our two genera} classes of'scattefing
.equations in a similar way. We first demonstrate tha; ﬁq. (3) @an be shown
to give an équation for the class opérator constructed:for the case of a gén—
eral symmetry group. Then we show how thé physical matrix elements gfe re—
latea to those of tpg class operatofs in the two cases. Finélly we demSn—
strate that the conpectivity structure of the equation is not destroyed in.
thé transition to ap equation for tﬁe class operators. |

The class function we construct is

.o

a _ ~ o .
™= 3 R P T, (23)
o€ a 0 0 :

for the chain coupliﬁg class and

. aB : '
Tab=ZRP TO‘/‘E’- Q)

o€ a ozo aoa Na
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for the channel coupling class. In the channel coupling case we take the

initial index to be BO and suppress it until the discussion of the matrix

elements.

Multiplying Eq. (3) by Ru ﬁa o and summing on the index a gives the’

0 0
equation
=12 4+ § x* (25)
B .
where we have defined
= Y r P 1® (26)
«€a %0 % ’
and
x* = S R P g, e

aCa ay g
. a
The appropriate permutation operators must he extracted from X 8 on

the right. This is made possible by the following.

Proposition:

af a ag' o
x*#p = x,
‘88 (28)

Proof: This property follows directly from the transformation property of

K. From the definition of X and the transformation property of K, we have

ag » ‘ 5 of
X*P_,= > R P k*™p |,
BB" Ca % % B8
= SR PP 'KQaQB
a€a % %% B8
where for simplicity of notation we have written
-1
=P .
Q 8g"
Now P, = P Sc
N a7 Tpre 7°
= P = '
QB B'BB 8
and
: PBB' o e R
oo , aog aa
A -1 -
= ( ) =P
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Therefore, we have _
~ ~ 1]
ad : KQaB‘

As o runs over all the elements of a, so does Qua for any Q. Therefore, the
sum may be taken over Qu instead of over o; and relabelling the dummy index
Qe as a gives the result. Q.E.D.

Curovllary:

x® Ry = x2® B (29)

This result follows immediately from the proposition as all the terms

~

P contained in the RS sum leave $§ invariant.
These two propositions allow us to make the right index on the XaB in
Eq. (27) canonical by pulling out the appropriate permutation operator. The

resulting operator is a class operator and the sum over all g may be broken

up into a sum over b and a sum over 8€b. Using the proposition, Eq. (25) -

becomes
, ag . ;
™=1*+7x %p 18, | (30)
8 BoP
By the corolla%y the internal symmetrizer may be extracted to give
4 ag ) .
™-1*+7x % B 1P, (31)
Finally, breaking up the sum gives the result
: ™ =12+ 7 k%P (32)
b : .
where we have written '
b - -
x®-x %= Y r p x 0 (33)

aca %0 %
for the symmetrized kernel. Equation (32) is an integral equation for the

class operators as desired.



14
We now consider the relation of the physical matrix elements to the
matrix elements of the class operators. In the chain coupling case the
physical matrix elements desired could be the matrix elements of the
full T operator between some arbitrary initial state, ¢; and a set of final
non-interacting states»of all the particles, ¢0. At least one of these
states must have the correct symmetry. Because our equations (3) were chosen
to have the T on the right, we have symmetrized from the left. We therefore
require that the lefp wave fﬁpction have the proper Sfmmetry. The physical
matrix element ie thereforc ‘
CERALITSE (34)
where®>

1/2

<$ol = <oglRa tnyte.in 1] (35)

The state ¢ may be a set of plane waves, for example, or a coordinate
space state in which each of the particles is at a particular point. Using

(2), thc physical matrix elements may be written

1/2

T = [aptn,tee.n 117 %<0 R ] ™4, (36)
: o

By properties (13) and (16), the required permutation operators may be intro-

duced before the T%. We may therefore write

1/2

J’= [n !t ony 1) < |R g R ﬁa Lot (37)

0
Decomposing the sum into a sum over classes, a, and a sum over the elements
in those classes, a¢ a gives

1/2 a :
T = In ..o, ] <¢0[R é T |¢f> (38)

SO

T = <$o|z ™¢'>. (39)
a
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For the channel coupling case the physical matrix elements are tranéition
matrix elements. The indices of the T operators are partitions and one
takes matrix elements between states of the appropriate partition Hamiltonians.
Physical channels are labelled by class indices instead of partitions. The
transition matrix element hetween a state of class b and one of class a will
be

SR AT A - @

where U is the Ebstein transition operator (see Eq. (2.5) of I) and |$a> and
|$b> are final and initial states of the proper symmetry. Following I, we
express both final and initial states in terms of gymmetrizations of canonical

states. We therefore set
|b /—R|¢ . “(41)
and similarly for [$a>. The initial state con51sts of the bound clusters oflthe..
representative partition Bo‘and plane waves for their relative motion. As in I
we assume that the wave functions of the bound clusters in(both the initial
and final states have the broper symuetry for each cluster, but have not been
symmetrized between mémbers of different clusters. This allows the straight-
forward insertion of standard heimd state theories (which have the correct sym-

metry) into the scattering equations.

The operator zf;b may now be expressed in terms of matrix elements of the

T operator (1) as follows. Using the fact that R commutes with U and R2 = R,
inserting (41) into (40) gives
\i -— / < b
7ab NaNb <¢a0|RU| ¢SO> : (42)

Expanding R by Eq. (11) yields

1 -l
:7“.=NNT—TZ<¢I ulg, >
ab PeS 80

/NN,
=TT Z O|U|¢Bn>- | (43)
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ab
Since the matrix element of U agrees with that of T ~ on-shell, we may replacc

Tl by __._
= NaNb POLO BO
T = e[ L Oy 1T lo, >- (44)
ab S PeS PQL’O 80 :
Using Eq. (22), the definition.of Sa and the fact that
A At R _
= <P = p = P 45
<¢a‘ <Paao¢aol <¢a0'.aa0 <¢q0' aq0 ( A)
we. obtain
VYN N R Pa, B
ab 0 ~0
. = —=" |5 <4 R P T >. (46)
T o s] | %! aZa %l ap ag |¢BO |

It is now only necessary to observe the foliowing:

1S
- . /
Na ngT ‘ (47)
a .

This follows very directly from the arguments of Ref. 25, Assuming the

Lemma :

A ' " .
asymptotic states ]¢a> and ]¢b> correspond to normalizable wave packets we

must have

SO

Expanding out R by (11) gives

1 . 2
<¢ Ri¢ > =77 Z <¢ ]P|¢ >.
U‘ol' | “0 1Sl pgs o9 oo

1f we choose wave pakcets such that all the clusters are well separated,

interchanging between different clusters gives 0 and within the same cluster

gives 1 (assuming <¢a o >

1). Therefore we have
0 %o :

' IE"al 1
< R = = - .
‘paol‘ l¢u0> lsl Na
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We therefore have :

J—N-b‘ a8y
U’ab‘= T Z <¢OLIT |¢80>. | (48)

aoaca
Introducing the class operator given by (24) the physical matrix element is

given by

T, - '<¢a0|TabI¢BO>- - (49)

We observe that‘all the cbmplex counting considered in péper I (including the
§ terﬁ of Eq. (2,35)) is obtained from the straightforward gréup theoretic
considerations of Eq. (47).

We now consider the connectivity structure of the resulting equations
for the class operators, Eq. (32). We have the following:
Theorem: If the n;gh'power of the operator KOtB is completely connected,
then so is the‘nfth power of the operator‘j(ab.
gzggiz Let us éon§idér the m—éh power of the operator . The theoreﬁ
follows immediatély from the following.

Lemma:

a0

FMH® = T or B C (50)
a€a 0.0 -

To prove the Lemma we nhserve that

(j(m)ab _ Z (,*m-l)ac j(cb

o

(51)

- R YB
z I l)ac Z R P X - 0
c YEc Yo Yo¥

by the definition of matrix multiplication and of :k'(Eq. (33)). We now note
that if we have (where j = m-k)
m. ab PO, - YB o .
H®P =7 xH® T or P ®<y O . (52)
c Y€c _YO oY
with j > 1, we can write
’ Z ; : \(
b - -
(:K}g)a _ (%3 l)ad,j(dc R P (Kk) 0
YO YOY
“d,c,y€c
. . dy . YB
)‘ (j(:] l)ad X OR P (Kk) 0’
d,y Yo Yo
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" Using the proposition and corollary (Eqs. (28) and (29)) gives

, . Y8
— Z (7<J l)ad Xdy (Kk) 0
d,y
which by the definition ot the operator X (Eq. (27)) becomes
i ad o Y
- Z‘ (j(l l_) Z RG PG 5 KéY (Kk) 0
d,y §€d 0 0 .
j-1.ad . k+1. %80
=] KITHY PR, BT (53)
d §€d "0 0

This equation has the same structure as Eq. (52) with k incremented by one.
We may therefore induce on k beginning with k = 1 (Eq. (51)) and bring the
operator éver to the left ﬁntil only a single power of X remains. The final
step follows in‘a similar manner. Q.E.D.

We have theretore demonstrated that the symmetrization (23)-(24) defines
class functions for both the chain and channel coupling cases, that eqﬁations
for these class operators can be defined (Eq. (32)) with all the symmetry
carried in the structure of the inhomogeneity (26) and the kernel (33), that
the physical matrix elements are given simply in terms of métrix elements of
the class operators (Eqs. (39) and (49)), and finally that Llhe connectivity
structure of the unsymmetrized equation is maintained by the symmetriz#tion.

We conclude Lhis section with a tew comments abqut the KLT.equations. s
As we remarked above, the KLT method uses a numerical matrix in the kernei
of their equations so although the KLT equations have the structure of (3),
ncither the kernel nor the resulting T operator are label transforming.

There are many T operators corresponding to different choices of the W matrix.
These T operators have differént off-shell continuations, although the exact

B--*PTOLBP_l maps

. . o
operators agree on-shell. The permutation transformation T
one T operator into a T operator corresponding to a different coupling scheme.
This preveuls the application of our procedure to this case. An attempt to
. ‘ ) 18
symmetrize these equations was made by Tobocman. In this work the
equations are symmetrized before coupling in contrast to our method which

symmetrizes after the coupled equations have been constructed. Tobocman's

method does not produce an equation with connected kernel.
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.IV. APPLICATIONS AND ASSOCIATED COMBINATORIAL PROBLEMS

The results presented in the previous section make it straightforward
to construct properly symmetrized N-particle integral equations once the
symmetry goruﬁ of the system is given. Only thé basic combinatorial p;oblems?
ofAennumerating equivalence classes needs to be solved to make the equations
ready for practical applications.

In the following we present two specific applications in ofdér to show
precisely what prgblems arise and how they are dealt with. - - We consider first
the nuclgar'phygigs example of N identical protons and Z identical neutrons
described by channel coupling class equations emplqying minimal (two-cluster)
coupling. VAs a second example we consider the problem of a homonuclear
diatomic molecule yith 2Z electrons and two identical spin zero (boson)
nuclei, treated by the Yakubovskii equations_,3 a chain coupling case.

For the first example, N identical neutrons aﬁd Z identicai‘pfotons,
the permutation group of the system is isomorphic to

S %Sy xs,
so the order of the group is IS' = N!Z!. We consider a formulation in
which the indices are two-cluster partiﬁions. An example of a formulation
of this type is that of BRS which has a kernel whose first iterate is cém—
pletely connected.

To construct the physical quanitites needed one must determine the
equivalence classes of the labels and the number of elements in each equiva-
lence class. The number of distinct labels for N + Z distinguiéhable par-

N+Z-1

ticles is known6 to be 2 1. For the system with identical particles,

all the distinct physical two-cluster partitions may be characterized by a
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pair of positive integers, (n,z), which give the number of neutrons and
protons in the smaller Fragment.‘ Since the numher.QF neutrons and protons
are both fixed, the second fragment must contain.(N-—n,Z-z) neutrons and
protons, respectively.

A pair of integers, (N,Z), where N and Z cannot both vanish simultaneously,
is known i; the theory of combihatorics as a bipartite number. The equiva-
lence classes of the two-cluster partitions correspond precisely to all the
partitions of a bipartite number into two bipartite numbers. The number

27
of such partitions was given by Macmahon in closed form ae
W+1)(z+1) =1

s (BRG]
This is therefore the number of equivalence classes and therefore the number
of coupled equations in Eq. (32) for this example.

We now must determine the number of elements in each equivalence class
in order to construct the operators Rao. Given a particular two-cluster
partition of the form, (n,z) - (N-jn,Zn-z), how many distinct partitions are
there in the same equivalence class? If one applies all the permutations in §
onc would obtain N!Z! partitions. Not all of them are distinct, however, as
exchainging protons and/or neutrons in a single cluster doesn't lead to a
new partition. We have to divide by the number of ways of permuting the
protons and neutrons in each of the two clusters. This reduces the number
of elements to N!Z!/(n!(N-n)!z!(Z- z)!or (g)(i). If the two clusters of
the partition are identical, then the complete interchange of the two clus-
ters does not produce a new partition. This requires feducing the number
of distinct partitions produced by an addition factor of two. We therefore

ahiltaln
1
8
/2n Z/2 z

2

: . (55)
2 1+6N

_ _ /N
Na - N(n’z) - (n)(
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These numbers fix the normalization of the operators Rd which will be used
in constructing the inhomogeneous term by Eq. (26) and the kernel by Eq. (33).

This is also the number of terms in'the a €a summations (Eqs. (23) and (24)).

{

Let us now investigate how the Yakubovskii equations have to be symmetrized
for the case of a diatomic homonuclear molecule. The labels for these
equations are cha;ps of partitions, al:)az:)a3:)... aN_l:)aNAwhere aj repre-

sents a partition of the N-particles into j-clusters and the relation

a,:)a.+l means the partition a, can be obtained by breaking a single one
i the 1 :

J j+1

of the clusters of aj. The initial and final partitioms, a

1 and ay» being

unique are usually omitted.
For distinguishable particles, the number of complete (maximal) chains

can be ennumerated by elementary methods. This can be done because the

. 2 5
set of partitions forms a semimodular, relatively complemented lattice. When. -

the s&mmetry group of the system is applied, the set partitions ana.therefore
the set of lébels is split up into disjoint equivalence classes. Theteqﬁiva—
lence classes of the partitions can still be regarded as a partiaily sfdered
set, since the ordering of the partitions is preserved by the mapping of

each partition in;o its equivélence class. However, the latticebproperty

of the set of pgrpitions is 1n gemneral not preserved. This hinders one
considerably in trying to find a closed form expression for the nﬁmber,of'
equivalence classes of maximal chaiﬁs. The problem is equivalent to a cur-
rently qnsolved problem in graﬁh theory; however, an algorithm can be given
for ennﬁmerating the number of equivalence clésses of ;hains without
explicitly symmeprizing'the original eqpations. The explicit syﬁﬁetriza—
tion procedure hag been.used in all previously considered examples, viz.,

14 : .29
the works of Kharchenko and Kuzmichev and that of Roy-Choudhury, et al.
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Under the symmetrization group, each partition will map into a multi—
partife number. 'Therefore cach chain will map into a chain of multi-
partite ngmbers. As a spe;ific example we consider the system D2 consis— -
fing of two deuterons and two electrons, labelled 1 = d; 2=4d, 3=ce,
and 4 = e. All the ?ossible distinct partitions are indicated in Fig. 1 with
the possible inclusions shown by arrows. One can easily read olf from
this diagram that the number of maximal chains is 7. The number of coupled
Yakubovskii equations for this system will therefore be 7. The kernels
and inhomogeneous terms for the equations coupling the operators lahelled
by these chains can easily be constructed once the subgroups for each chain
dare determined. ''he number of Yakubovskii and BRS equations for the various
cases of different numbers of identical particles in the three-, four-, and
five-body problem are given in Table I.

To be specific, the full symmetry group is generated by the operators

(interchange of the deuterons) and P (interchange of the electronms).

P12 34

Taking into account the fact that the deuternns are boegonc and the electrons
are fermions yields the full symmetrizer

R:%(l"—l’ P ).

127 %347 F12 %y
Consider the chain a = (dd)(ee)D (d)(d)(ee). A canonical chaiin for Lhls

equivalence class is the chain a (12) (34) D(1)(2)(34). The full sym-

0"
metry group leaves this chain invariant. Therefore, we construct the operator

Ra = R,
0

There is only a single term in the o sum in equations (23), (26), and (33).
For the chain b = (d) (dee) D (d)(d) (ee) a canonical chain is SO = (1)(234) D) (2)(34).
Only the group elements 1 and P34 leave this chain invariant. Therefore we have

|
RB’ —E(l—P ).

0 34
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There are two chains in this equivalence class, B8,, and the chain

0
(2)(134) D(1)(2)(34). There will therefore be two elements in the sums

BE b.

In general, each chain can be associated with a tree. The trees for
the chains 2, and 80 in the above example are shown in Fig. 2. The invar-
iance subgroup of a particular chain is determined by the number of
indistinguishable particles which are connected directly together rather
than being joined to a cluster. The internal éymmetry operator‘for_each

Upon the construction of these operators, the equations coﬁpling the
symmetrized operators, (32), may be written down directly for any case -

without the need of beginning with the original equations (3).

V. CONCLUSIQNS

The treatment of identical particles in N-particle scattering gives
rise to nontrivial mathematical problems. In‘this paper we demonstrate that
a geperal algebraic treatment can be developéd for a largé class of'N— ‘
particle scattering theories. This treatment relies on fhe propertigs ofl
the permutation group of the system. These theories include channel coupling
equations such as ;hése of BRS or Chandler and Gibson (but expliqit1§ exclu-
ding theories of KLT type) and chain coupling equations such as those of
Rosenberg, Yakubovskii and Narodestkii-Yakubovskii. |

There are two features of basic importance:which make the general alge-

braic treatment possible. First, in all the N-particle theories the quan-

. tities to be detgrgined are labelled by partitions or (incomplete or com-

plete) chaino of partitions of the N-partinle system. Consequently, the
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number of coupled equations is determined by the way of labelling rather
than the treatment of N-body dynamics. Second, fhe permutation group of
the system generates an equivalence relation on the set of labels and
accordingly splits it into disjoint equivalence classes. Only the equiva-
lence classes and operatof valued functions of these classes have physical
meaning. This statement is jusé an abstract formulation of the property
that due to the indistinguighability of some of the particles the amplitudes
of the physical processes can be expressed as cohcrent sums ul "dlrect"
and "exchange' processes. In our general al geﬁraic treatment we cuusliuct
operators whicﬁ are sums of permutation operators acting on the scattering
operators of the relevant theory. These class operators given by Egqs. (23)
and (24) are labelled by the equivalence classes of the set of original labels.
If the inhomogeneous term and the kernel of the relevant set of N-particle
equations satisfy certain genéral conditions, i.e., if they are label trans-
forming, it follows that the N-particle equalluns can be reformulated in
"terms of the class operator, with a simultaneous reduction in the number
of coupled equations. Furthermore, the physical matrix elements are expressed
in terms of matrix elements of the class operators. -The entire burden of
the symmetry is carried by the symmetrization of the inhomogeneous term
aud the kernel. We also demonstrate that the conhectivity properties of
tﬁe kernel are passed on to the symmetrized equation.

The most remarkable fact exhibited by the considerations of this
paper is that the treatment of identical particles, i.e., exchange effects,
is actually independent of the N-particle dynamics for a large class of N--
particle scattering theories. This is the consequence of the ﬁondynamical

nature of the permutation symmetry of the system.

&

AR
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TABLE CAPTION
Table I.: Number of coupledAintegral equations for N=3, 4, and 5 barticles
in the Yakubovskii (Y) and Bencze-Redish-Sloan (BRS) methods.

The labels a, b, ¢, ... indicate distinct species of particles.



"TABLE I

N=3

aaa 4 aab ch
v | 1 2 3
BRS | 1 2 3

N =4

aaaa aaab aabb aabc abced
¥ 2 5 7 11 18
BRS 2 3 4 5 7

N =5

aaaéa aaaab aaabb aaabc aabbe aabcd abcde
v 4 15 . 26 45 61 105 180
BRS 2 4 5 7 8 T 15




Fig. 1:

FIGURE CAPTIONS
The partition set for a four-body system consisting of

two pairs of identical particles. Arrows indicate inclusion.

. A complete maximal chain is a path leading from the top

element (ddee) to the bottom (d)(d)(e)(e). There are
seven such distinct chains.

Tree representations of the canonical chains in the four-
body problem ddee. ‘The chains are rcad off from the tree
by following the successive connections down from the top
of the tree. Identical particles are marked by curved
brackets. The dotted boxes indicate parts of the tree

which are invariant under an element of the symmetry group.

D
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(d) (dee) (dd)(ee) . (de)(de) (e)(dde)
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